New York Journal of Mathematics

New York J. Math. 20 (2014) 257-274.

Nonreciprocal units in a number field with an application to Oeljeklaus-Toma manifolds

Artūras Dubickas

Abstract

In this paper we show that if a number field K contains a nonreciprocal unit u of degree $s+2 t$ with s positive conjugates and $2 t$ complex conjugates of equal moduli, where $t \geqslant 2$, then $s=(2 t+2 m) q-2 t$ for some integers $m \geqslant 0$ and $q \geqslant 2$. On the other hand, for any s and $t \geqslant 2$ related as above we construct a number field K with s real and $2 t$ complex embeddings that contains a nonreciprocal unit u of degree $s+2 t$ with s positive conjugates and $2 t$ complex conjugates of equal moduli. From this, for any pair of integers $s \geqslant 1, t \geqslant 2$ satisfying $s \neq$ $(2 t+2 m) q-2 t$ we deduce that the rank of the subgroup of units U whose $2 t$ complex conjugates have equal moduli is smaller than s and, therefore, for any choice of an admissible subgroup A of K the corresponding Oeljeklaus-Toma manifold $X(K, A)$ admits no locally conformal Kähler metric.

Contents

1. Introduction 258
2. Main results 259
3. Auxiliary results 260
4. The restriction on the number of real embeddings in Theorem 1 263
5. The construction of a nontrivial unit in Theorem 1 265
6. Proof of Theorem 2 269
Appendix (by Laurent Battisti) 270
References 272
[^0]ARTŪRAS DUBICKAS

1. Introduction

Let throughout K be a number field of degree $d=[K: \mathbb{Q}]$ with $s \geqslant 0$ real embeddings $\sigma_{1}, \ldots, \sigma_{s}$ into \mathbb{C} and $2 t$ complex embeddings

$$
\sigma_{s+1}, \bar{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \bar{\sigma}_{s+t}
$$

into \mathbb{C}, so that $d=s+2 t$. Here, for each $i=1, \ldots, t$ the embedding $\bar{\sigma}_{s+i}: K \rightarrow \mathbb{C}$ is defined as $\bar{\sigma}_{s+i}(a)=\sigma_{s+i}(a)$ for every $a \in K$, where \bar{z} stands for the complex conjugate of $z \in \mathbb{C}$. Let \mathcal{O}_{K}^{*} be the group of units in the ring of integers of K. Put

$$
\mathcal{U}_{K}:=\left\{u \in \mathcal{O}_{K}^{*}: \sigma_{i}(u)>0 \text { for every } i=1, \ldots, s\right\}
$$

for a subgroup of \mathcal{O}_{K}^{*} consisting of units whose real conjugates are all positive.

Consider the logarithmic representation of units $l: \mathcal{O}_{K}^{*} \rightarrow \mathbb{R}^{s+t}$ given by

$$
l(u):=\left(\log \left|\sigma_{1}(u)\right|, \ldots, \log \left|\sigma_{s}(u)\right|, 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right) .
$$

By the Dirichlet's unit theorem, $l\left(\mathcal{U}_{K}\right)$ is a full discrete lattice in the subspace

$$
\mathcal{S}:=\left\{\left(x_{1}, \ldots, x_{s+t}\right) \in \mathbb{R}^{s+t}: \sum_{i=1}^{s+t} x_{i}=0\right\}
$$

of \mathbb{R}^{s+t}. Equivalently (see, e.g., [13] and [20]), one can choose $s+t-1$ multiplicatively independent units in \mathcal{U}_{K}, say u_{1}, \ldots, u_{s+t-1}, such that every other unit in \mathcal{U}_{K} can be written as $w u_{1}^{k_{1}} \ldots u_{s+t-1}^{k_{s+t-1}}$ with a root of unity $w \in K$ and some $k_{1}, \ldots, k_{s+t-1} \in \mathbb{Z}$. From now on, assume that $s \geqslant 1$. Then the projection $\mathcal{P}: \mathcal{S} \rightarrow \mathbb{R}^{s}$ given by the first s coordinates is surjective. Thus, there are subgroups A of rank s in \mathcal{U}_{K} such that $\mathcal{P}(l(A))$ is a full discrete lattice in \mathbb{R}^{s}. Throughout, such a subgroup A will be called admissible for K. An admissible subgroup A for K is generated by s units $u_{1}, \ldots, u_{s} \in \mathcal{U}_{K}$ such that the matrix

$$
M\left(u_{1}, \ldots, u_{s}\right):=\left(\log \left|\sigma_{j}\left(u_{i}\right)\right|\right)_{1 \leqslant i, j \leqslant s}
$$

has rank s, so that these units are multiplicatively independent.
The results of this paper are motivated by some applications to the socalled locally conformal Kähler complex manifolds X (according to Vaisman [29], such a manifold is defined as a Hermitian manifold whose metric is conformal to a Kähler metric in some neighborhood of every point) and the corresponding study of locally conformal Kähler metrics (LCK metrics) on X (see, e.g., [3], [4], [17], [19], [28], [29], [30]). In [16], Oeljeklaus and Toma introduced some compact complex manifold $X(K, A)$ associated to a number field K and to an admissible subgroup A for K. These manifolds were named as Oeljeklaus-Toma manifolds and have many interesting properties (see the recent papers of Battisti and Oeljeklaus [1], Kasuya [14], Ornea and Verbitsky [18], Verbitsky [32], Vuletescu [33], etc.). In particular, it is
known that if an Oeljeklaus-Toma manifold $X(K, A)$ admits an LCK metric then for all $u \in A$ we have

$$
\left|\sigma_{s+1}(u)\right|=\cdots=\left|\sigma_{s+t}(u)\right|
$$

(see the proof of Proposition 2.9 in [16]). Since the numbers $\sigma_{s+i}(u)$ and $\bar{\sigma}_{s+i}(u)$ are complex conjugate, the previous condition can be written in the form

$$
\begin{equation*}
\left|\sigma_{s+1}(u)\right|=\left|\bar{\sigma}_{s+1}(u)\right|=\cdots=\left|\sigma_{s+t}(u)\right|=\left|\bar{\sigma}_{s+t}(u)\right| . \tag{1}
\end{equation*}
$$

In the appendix of this paper (written by Laurent Battisti), it is shown (see Theorem 8) that the Oeljeklaus-Toma manifold $X(K, A)$ admits an LCK metric if and only if for all $u \in A$ the condition (1) holds (which is stronger than just the 'only if' condition that was proved in the previous result in [16]).

This raises the following natural question: are there s multiplicatively independent units u_{1}, \ldots, u_{s} in \mathcal{U}_{K} such that (1) holds for each $u=u_{1}, \ldots, u_{s}$? Such units would generate an admissible subgroup A for K and a corresponding manifold $X(K, A)$ with LCK metric. The answer is 'yes' for $s \geqslant 1$ and $t=1$ (so far this is the only known case with a positive answer) and 'no' for $s=1$ and $t \geqslant 2$ (see Proposition 2.9 in [16]). It is not clear whether or not there are some cases with $s, t \geqslant 2$ when the answer is positive. Vuletescu [33] has shown recently that the answer is 'no' for $1<s<t$. Below, we will show that the answer is 'no' for any s that is not of the form (2) below. In particular, for $t \geqslant 2$ this implies a negative answer for $1<s<2 t$ and also for s odd. Unfortunately, the second statement of Theorem 1 shows that for all other s the field K may contain a nonreciprocal unit. This leaves the problem open for some special pairs $s, t \geqslant 2$ satisfying (2), since our construction gives only one nonreciprocal unit in \mathcal{U}_{K} instead of s multiplicatively independent units.

2. Main results

Recall that an algebraic number α is called reciprocal if α^{-1} is its conjugate over \mathbb{Q} and nonreciprocal otherwise. The main result of this paper is the following:

Theorem 1. If a number field K of degree $d=s+2 t$ over \mathbb{Q} with s real and $2 t$ complex embeddings, where $t \geqslant 2$, contains a nonreciprocal unit $u \in \mathcal{U}_{K}$ of degree d whose $2 t$ nonreal algebraic conjugates satisfy (1) then for some integers $m \geqslant 0$ and $q \geqslant 2$ we have

$$
\begin{equation*}
s=(2 t+2 m) q-2 t . \tag{2}
\end{equation*}
$$

On the other hand, if s and $t \geqslant 2$ satisfy (2) with some integers $m \geqslant 0$ and $q \geqslant 2$ then there is a number field K with s real and $2 t$ complex embeddings that contains a nonreciprocal unit $u \in \mathcal{U}_{K}$ of degree $d=s+2 t$ satisfying (1).

In general, the situation when a number field K contains a nonreciprocal unit $u \in \mathcal{U}_{K}$ as described in Theorem 1 happens very rarely. If, for instance, the Galois group $\operatorname{Gal}(F / \mathbb{Q})$, where F is the normal closure of K over \mathbb{Q}, is 'large' (say the group $\operatorname{Gal}(F / \mathbb{Q})$ acts on d conjugates of $\alpha \in K$ as a full symmetric group S_{d} which is the 'generic' situation, by an old result of van der Waerden ([31]), then the equality (5) below cannot hold (see, e.g., [27]). Hence, such fields K do not contain units with the required properties.

From Theorem 1 we shall derive the following:
Theorem 2. Let K be a number field of degree $d=s+2 t$ over \mathbb{Q} with s real and $2 t$ complex embeddings, where $s \geqslant 1$ and $t \geqslant 2$ are not of the form (2). Then the rank of the subgroup U of \mathcal{U}_{K} of units satisfying (1) is smaller than s and, therefore, for any choice of an admissible subgroup A for K the Oeljeklaus-Toma manifold $X(K, A)$ has no LCK metric.

This implies the main result of [33], where the same conclusion as that of Theorem 2 has been proved under the assumption $1<s<t$.

In the next section we shall give some auxiliary results. The proof of Theorem 1 is then given in Sections 4 and 5. In Section 5 one can also find an explicit example corresponding to the case $s=4, t=2, m=0$ and $q=2$ of Theorem 1. In Section 6 we shall give the proof of Theorem 2. Finally, in an appendix Laurent Battisti gives the proof of his Theorem 8 and using an alternative (geometrical) approach derives Theorem 2 from Theorem 1 as well.

3. Auxiliary results

An algebraic integer $\alpha>1$ is called a Perron number if all of its conjugates over \mathbb{Q} are less than α in absolute value. In particular, a Perron number is a Pisot number if its conjugates over \mathbb{Q} (if any) are less than 1 in absolute value. We shall use totally positive Pisot units (Pisot numbers that are units whose algebraic conjugates are all positive) in Lemma 5 and subsequently in the proof of Theorem 1.

A version of the next lemma appears in [26]. Its proof is based on the argument of applying an automorphism of the Galois group that maps an algebraic number to its maximal (or minimal) conjugate which leads to a contradiction. This simple argument also plays a crucial role in the papers [7], [9], [27]. Below, we shall give a proof of the next lemma, since a similar argument appears several times in this paper as well.

Lemma 3. Let α or α^{-1} be a Perron number of degree $d \geqslant 3$, and let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be any three distinct conjugates of α. Then $\alpha_{1}^{2} \neq \alpha_{2} \alpha_{3}$.
Proof. Assume that $\alpha_{1}^{2}=\alpha_{2} \alpha_{3}$. Let F be the normal closure of $\mathbb{Q}(\alpha)$ over \mathbb{Q}. Take an automorphism of the Galois group of F / \mathbb{Q} which maps α_{1} to α. It maps α_{2}, α_{3} to some conjugates $\alpha_{i} \neq \alpha_{j}$ of α, different from α, and so it maps the equality $\alpha_{1}^{2}=\alpha_{2} \alpha_{3}$ into the equality $\alpha^{2}=\alpha_{i} \alpha_{j}$. However,
the modulus of its left hand side is greater than the modulus of its right hand side if α is Perron number (resp. smaller if α^{-1} is a Perron number), a contradiction.

Corollary 4. Suppose that a unit $u \in \mathcal{U}_{K}$ satisfying (1) has $2 t^{\prime}>0$ distinct complex conjugates and s distinct real ones. Then none of its real conjugates has the same modulus as the complex (nonreal) one.

Proof. There is nothing to prove if $s=0$. Assume that $s>0$. If one of the real conjugates of u, say, $\alpha_{1}>0$ has the same modulus as the complex (nonreal) conjugate α_{2} then $\alpha_{1}^{2}=\alpha_{2} \overline{\alpha_{2}}$. Here, $\alpha_{1}, \alpha_{2}, \overline{\alpha_{2}}$ are distinct. By Lemma 3, none of the conjugates of u (and of u^{-1}) is a Perron number. This happens only if there are no other positive conjugates of u except for α_{1}. Thus, $s=1$ and all the conjugates of u lie on the circle $|z|=\alpha_{1}$. Since u is a unit, the radius of the circle must be 1 , so that $u=\alpha_{1}=1$. Hence, $\operatorname{deg} u=1$, contrary to $\operatorname{deg} u=s+2 t^{\prime} \geqslant 2$.

We remark that an alternative proof of Corollary 4 can be given by applying the results of Boyd [2] and Ferguson [12].

A standard construction of Pisot numbers in a real field gives Pisot numbers but not Pisot units [23]; see also [11] for a construction of a dense set of Pisot numbers in a given field with very small conjugates and [6] for a contruction of Pisot units. In the proof of Theorem 1 we shall need the following result (which is also of independent interest):

Lemma 5. For each number field L, each constant $c>1$ and each integer $q \geqslant 2$ there is a totally positive Pisot unit $\beta>c$ of degree q whose minimal polynomial over \mathbb{Q} is irreducible in the ring $L[x]$.

Proof. Consider the polynomial

$$
\begin{equation*}
H(x):=(-x)^{q}+k_{q-1}(-x)^{q-1}+\cdots+k_{q-1} k_{q-2} \ldots k_{1}(-x)+1, \tag{3}
\end{equation*}
$$

where $k_{1}<k_{2}<\cdots<k_{q-1}$ is a rapidly increasing sequence of positive integers; for example, $k_{j+1}>k_{j}^{2}$ for $j=1, \ldots, q-2$ and k_{1} is large enough. (This construction is similar in spirit to that of Lemma 3 in [6].) Then $H(0)=1>0$ and $H\left(1 / k_{1}\right)<0$. Also, it is easy to see that the sign of $H\left(2 k_{j}\right)$ is the same as that of $(-1)^{j+1}$. Indeed, inserting $x=2 k_{j}$ into $H(x)$ we see that among the two largest terms $k_{q-1} \ldots k_{j+1}\left(-2 k_{j}\right)^{j+1}$ and $k_{q-1} \ldots k_{j+1} k_{j}\left(-2 k_{j}\right)^{j}$ the first one is greater in absolute value. Similarly, the sign of $H\left(k_{j} / 2\right)$ is the same as that of $(-1)^{j}$. So in each of the q intervals $\left(0,1 / k_{1}\right)$ and $\left(k_{j} / 2,2 k_{j}\right)$, where $j=1, \ldots, q-1$, there is a root of the polynomial H. Consequently, the polynomial $G(x)=x^{q} H(1 / x)$ reciprocal to H has $q-1$ roots in the interval $(0,1)$ and one root β in $\left(k_{1}, \infty\right)$. As $\operatorname{deg} G=q$, this polynomial must be irreducible in $\mathbb{Z}[x]$, since the product of any number of its roots without β is of modulus smaller than 1 . Therefore, $\beta>k_{1}$ is a totally positive Pisot unit of degree q.

Note that the polynomial (3) is linear in k_{q-1}, so the polynomial (3), as a polynomial in two variables $H\left(x, k_{q-1}\right)$, is irreducible in the ring $L\left[x, a_{d-1}\right]$. Indeed, otherwise the polynomials $(-x)^{q}+1$ and
$H_{1}(x):=\frac{H(x)-(-x)^{q}-1}{k_{q-1}}=(-x)^{q-1}+k_{q-2}(-x)^{q-2}+\cdots+k_{q-2} \ldots k_{1}(-x)$
must have a common factor in $L[x]$. Hence, $(-x)^{q}+1$ and $H_{1}(x)$ must have a common root. However, this is not the case, since the roots of $(-x)^{q}+1$ are roots of unity whereas the modulus of lowest term in H_{1} is greater than the sum of the moduli of the other terms for any x of modulus 1 . Thus, by Hilbert's irreducibility theorem (see Theorem 46 on p. 298 in [24]), for some positive integer $k_{q-1}^{*} \geqslant k_{q-1}$ the polynomial $H\left(x, k_{q-1}^{*}\right)$ is irreducible in the ring $L[x]$, and so the polynomial $G\left(x, k_{q-1}^{*}\right)=x^{q} H\left(1 / x, k_{q-1}^{*}\right)$ is irreducible in $L[x]$ too.

For any $u_{1}, \ldots, u_{s} \in \mathcal{U}_{K}$ we write

$$
S\left(u_{1}, \ldots, u_{s}\right):=\left\{u_{1}^{k_{1}} \ldots u_{s}^{k_{s}}: k_{1}, \ldots, k_{s} \in \mathbb{N} \cup\{0\}\right\}
$$

for the multiplicative semigroup generated by u_{1}, \ldots, u_{s}.
Lemma 6. Let u_{1}, \ldots, u_{s} be some $s \geqslant 1$ multiplicatively independent units in \mathcal{U}_{K} satisfying (1). Then either $\mathbb{Q}\left(u_{1}, \ldots, u_{s}\right)$ is a proper subfield of K or \mathcal{U}_{K} contains s multiplicatively independent units $v_{1}, \ldots, v_{s} \in S\left(u_{1}, \ldots, u_{s}\right)$, each of degree $d=[K: \mathbb{Q}]$.
Proof. Assume that $\mathbb{Q}\left(u_{1}, \ldots, u_{s}\right)=K$ (otherwise there is nothing to prove). Suppose $S\left(u_{1}, \ldots, u_{s}\right)$ does not contain s multiplicatively independent units of degree d each. Choose multiplicatively independent units $v_{1}, \ldots, v_{s} \in S\left(u_{1}, \ldots, u_{s}\right)$ satisfying $\mathbb{Q}\left(v_{1}, \ldots, v_{s}\right)=K$ for which the sum $D:=\operatorname{deg} v_{1}+\cdots+\operatorname{deg} v_{s}$ is the largest possible. If $D=s d$ we are done. In case $D<s d$, we will show that D can be increased, and so arrive to a contradiction.

Without restriction of generality we may assume that $h:=\operatorname{deg} v_{1}<d$. Then $s>1$ and for some v_{j} with $j \geqslant 2$, say for v_{2}, we have $v_{2} \notin \mathbb{Q}\left(v_{1}\right)$, since otherwise $\mathbb{Q}\left(v_{1}, \ldots, v_{s}\right)=\mathbb{Q}\left(v_{1}\right)$ is a proper subfield of K. Now, replace the set $v_{1}, v_{2}, \ldots, v_{s}$ by the set $v_{1} v_{2}^{p}, v_{2}, \ldots, v_{s}$, where p is an integer that will be chosen later. The latter set is also multiplicatively independent, all of its elements belong to $S\left(u_{1}, \ldots, u_{s}\right)$ and also

$$
\mathbb{Q}\left(v_{1} v_{2}^{p}, v_{2}, \ldots, v_{s}\right)=\mathbb{Q}\left(v_{1}, v_{2}, \ldots, v_{s}\right)=K
$$

In order to complete the proof it remains to show that

$$
\begin{equation*}
\operatorname{deg} v_{1} v_{2}^{p}>h=\operatorname{deg} v_{1} \tag{4}
\end{equation*}
$$

for some large positive integer p.
It is clear that $v_{1}, v_{2}>0$, since $v_{1}, v_{2} \in S\left(u_{1}, \ldots, u_{s}\right)$ and $u_{1}, \ldots, u_{s}>0$. If all the conjugates of v_{2} are of equal moduli then, as v_{2} is a unit, they all lie on the circle $|z|=1$. Hence, $v_{2}=1$, which is a contradiction to
$v_{2} \notin \mathbb{Q}\left(v_{1}\right)$. It follows that not all conjugates of v_{2} have the same modulus. Since $v_{2} \in S\left(u_{1}, \ldots, u_{s}\right)$, and the units u_{1}, \ldots, u_{s} satisfy the condition (1), the unit v_{2} satisfies (1) as well. Consequently, either the largest positive conjugate of v_{2} (it can be v_{2} itself) is a Perron number or a reciprocal of the smallest positive conjugate of v_{2} is a Perron number.

Select the smallest $\ell \in \mathbb{N}$ for which $v_{2}^{\ell} \in \mathbb{Q}\left(v_{1}\right)$, if such an ℓ exists. Take p of the form $\ell k+1$ with large $k \in \mathbb{N}$ if $\ell \in \mathbb{N}$ as above exists and take any large p otherwise. For such p we have $v_{2}^{p} \notin \mathbb{Q}\left(v_{1}\right)$. Thus, v_{2}^{p} has a conjugate over the field $\mathbb{Q}\left(v_{1}\right)$ distinct from v_{2}^{p}. Assume that w_{2}^{p} is such a conjugate, where $w_{2} \neq v_{2}$ are conjugate over \mathbb{Q}. It follows that the numbers $v_{1} v_{2}^{p} \neq v_{1} w_{2}^{p}$ are conjugate over \mathbb{Q}. Now, consider some h automorphisms of the Galois group of $\mathbb{Q}\left(v_{1}, v_{2}\right) / \mathbb{Q}$ that map v_{1} into its h conjugates over \mathbb{Q}. These map v_{2} and w_{2} to some of their conjugates over \mathbb{Q} and the pair $v_{1} v_{2}^{p}, v_{1} w_{2}^{p}$ into some h pairs of two distinct conjugates of $v_{1} v_{2}^{p}$. Therefore, either $\operatorname{deg} v_{1} v_{2}^{p} \geqslant 2 h$ (which finishes the proof of (4)) or the list of $2 h$ conjugates contains some equal elements. This means that for some two distinct conjugates of v_{1}, say for v_{1} itself and $w_{1} \neq v_{1}$, we have $v_{1} v_{2}^{p}=w_{1}\left(w_{2}^{*}\right)^{p}$, where w_{2}^{*} is a conjugate of v_{2} over \mathbb{Q}. Then $w_{2}^{*} \neq v_{2}$.

Now, take an automorphism σ of the Galois group of $\mathbb{Q}\left(v_{1}, v_{2}\right) / \mathbb{Q}$ that maps w_{2}^{*} into v. (Recall that v is a conjugate of v_{2} which is a Perron number, or v^{-1} is a Perron number.) This maps the equality $v_{1} v_{2}^{p}=w_{1}\left(w_{2}^{*}\right)^{p}$ into $\sigma\left(v_{1}\right) \sigma\left(v_{2}\right)^{p}=\sigma\left(w_{1}\right) v^{p}$, where $\sigma\left(v_{1}\right) \neq \sigma\left(w_{1}\right)$ and $\sigma\left(v_{2}\right) \neq v$. However, this is impossible, since $\left|\sigma\left(v_{2}\right)\right| \neq v$ and so the modulus of the right hand side, $\sigma\left(w_{1}\right) v^{p}$, is greater (resp. smaller) than that of the left hand side, $\sigma\left(v_{1}\right) \sigma\left(v_{2}\right)^{p}$, if v is a Perron number (resp. v^{-1} is a Perron number) and p is large enough.

Finally, in the proof of Theorem 2 we shall use the next lemma (which is Lemma 1.6 in [16]):

Lemma 7. Let K^{\prime} be a proper subfield of K and a proper extension of \mathbb{Q}, i.e., $\mathbb{Q} \subset K^{\prime} \subset K$, and let $A \subset \mathcal{U}_{K^{\prime}}$ be an admissible subgroup for K. Suppose that s^{\prime} and $2 t^{\prime}$ are the numbers of distinct real and complex embeddings of K^{\prime}, respectively. Then t^{\prime} is positive, $s=s^{\prime}$ and A is admissible for K^{\prime}.

4. The restriction on the number of real embeddings in Theorem 1

The aim of this section is to prove (2). Take a nonreciprocal unit in \mathcal{U}_{K} of degree d with conjugates

$$
\alpha_{1}, \ldots, \alpha_{s}, \alpha_{s+1}, \overline{\alpha_{s+1}}, \ldots, \alpha_{s+t}, \overline{\alpha_{s+t}}
$$

satisfying (1). Then

$$
\begin{equation*}
\alpha_{s+1} \overline{\alpha_{s+1}}=\cdots=\alpha_{s+t} \overline{\alpha_{s+t}}=\beta \tag{5}
\end{equation*}
$$

for some $\beta>0$. Here, $\beta \neq 1$, since otherwise the unit α_{1} is reciprocal. Thus, $s>0$. We claim that the set $\left\{\alpha_{1}, \ldots, \alpha_{s}, \alpha_{1}^{-1}, \ldots, \alpha_{s}^{-1}\right\}$ contains a Perron number. As the conjugates $\alpha_{1}, \ldots, \alpha_{s}$ are positive, at most one of them can lie on the circle $|z|=\sqrt{\beta}$. If $s=1$ then we are done, unless all the conjugates of α_{1} lie on the circle $|z|=\sqrt{\beta}$. However, then the norm of α_{1} is $\beta^{d / 2}$. In view of $\alpha_{1} \in \mathcal{U}_{K}$ we obtain $\beta=1$, a contradiction. In the alternative case, $s \geqslant 2$, we take α to be the largest number in the set $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ if it is greater than $\sqrt{\beta}$, and the smallest one if all the conjugates of α_{1} lie in $|z| \leqslant \sqrt{\beta}$. Then α (resp. α^{-1}) is a Perron number.

Obviously, β cannot be written as a product of two complex conjugates of α other than given in (5), and it is not a product of a real conjugate and a complex (nonreal) conjugate. Assume that among the real conjugates of α there are $m \geqslant 0$ pairs of conjugates that multiply to β, where $m=0$ if there are no such pairs. Then, without restriction of generality (5) can be extended to

$$
\begin{equation*}
\beta=\alpha_{s-2 m+1} \alpha_{s-2 m+2}=\cdots=\alpha_{s-1} \alpha_{s}=\alpha_{s+1} \overline{\alpha_{s+1}}=\cdots=\alpha_{s+t} \overline{\alpha_{s+t}} . \tag{6}
\end{equation*}
$$

Note that $s>2 m$, since otherwise the norm of α is equal to $\beta^{d / 2} \neq 1$ and α is not a unit.

Assume that the degree of β over \mathbb{Q} is q, and the conjugates of β are $\beta_{1}=\beta, \beta_{2}, \ldots, \beta_{q}$. If $q=1$ then mapping $\alpha_{s-2 m+1}$ to α_{1}, we find that $\alpha_{1} \alpha^{\prime}=\beta$ for some conjugate $\alpha^{\prime} \neq \alpha_{1}$ of α, since $\beta \mapsto \beta$. But the pair $\alpha_{1}, \alpha^{\prime}$ does not appear in (6), a contradiction. Hence, $q \geqslant 2$.

Take any automorphism $\sigma=\sigma_{j}$ of the Galois $\operatorname{group} \operatorname{Gal}(F / \mathbb{Q})$, where F is the normal closure of $\mathbb{Q}(\alpha)$ over \mathbb{Q}, that maps β to β_{j}. Then (6) (which corresponds to $\sigma=\mathrm{id}$) maps to

$$
\begin{align*}
\beta_{j} & =\sigma\left(\alpha_{s-2 m+1}\right) \sigma\left(\alpha_{s-2 m+2}\right)=\cdots=\sigma\left(\alpha_{s-1}\right) \sigma\left(\alpha_{s}\right) \tag{7}\\
& =\sigma\left(\alpha_{s+1}\right) \sigma\left(\overline{\alpha_{s+1}}\right)=\cdots=\sigma\left(\alpha_{s+t}\right) \sigma\left(\overline{\alpha_{s+t}}\right) .
\end{align*}
$$

Here, σ acts as a permutation of the set $\mathcal{C}:=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s+t}, \overline{\alpha_{s+t}}\right\}$. Consider q multiple equalities (7), where $j=1, \ldots, q$. Evidently, each of the q sets

$$
\begin{aligned}
\mathcal{C}_{\sigma}:=\left\{\sigma\left(\alpha_{s-2 m+1}\right), \sigma\left(\alpha_{s-2 m+2}\right)\right. & , \ldots, \sigma\left(\alpha_{s-1}\right), \sigma\left(\alpha_{s}\right), \\
& \left.\sigma\left(\alpha_{s+1}\right), \sigma\left(\overline{\alpha_{s+1}}\right), \ldots, \sigma\left(\alpha_{s+t}\right), \sigma\left(\overline{\alpha_{s+t}}\right)\right\}
\end{aligned}
$$

contains $2 t+2 m$ distinct elements. We will show that they are disjoint, so that $\cup_{\sigma} \mathcal{C}_{\sigma}=\mathcal{C}$.

Suppose first that some set \mathcal{C}_{σ}, where $\sigma \neq \mathrm{id}$, contains a complex (nonreal) number. Then $\alpha_{i} \alpha_{j}=\alpha_{k} \alpha_{l}=\beta_{J} \neq \beta$, where the indices i, j, k, l are distinct and

$$
\mathcal{I}:=\left\{\alpha_{i}, \alpha_{j}, \alpha_{k}, \alpha_{l}\right\} \cap\left\{\alpha_{s+1}, \overline{\alpha_{s+1}}, \ldots, \alpha_{s+t}, \overline{\alpha_{s+t}}\right\} \neq \emptyset .
$$

If $|\mathcal{I}|=1$, then one side of the equality

$$
\begin{equation*}
\alpha_{i} \alpha_{j}=\alpha_{k} \alpha_{l} \tag{8}
\end{equation*}
$$

is real and the other side is nonreal, a contradiction. Suppose next that $|\mathcal{I}|=2$. If both complex numbers are on one side of (8), say on its right hand side, then $\left|\alpha_{i} \alpha_{j}\right|=\left|\alpha_{k}\right| \cdot\left|\alpha_{l}\right|=\sqrt{\beta} \cdot \sqrt{\beta}=\beta$, so $\alpha_{i} \alpha_{j}=\beta$, contrary to $\alpha_{i} \alpha_{j}=\beta_{J} \neq \beta$. If the two complex numbers are on different sides of (8), say α_{j} and α_{l}, then $\left|\alpha_{i} / \alpha_{k}\right|=\left|\alpha_{l}\right| /\left|\alpha_{j}\right|=\sqrt{\beta} / \sqrt{\beta}=1$. Thus, $\alpha_{i}= \pm \alpha_{k}$, which is impossible in view of $i \neq k$ and $\alpha_{i}, \alpha_{k}>0$. Next, if $|\mathcal{I}|=3$ then, assuming that the remaining real conjugate in (8) is α_{i}, we obtain $\left|\alpha_{i}\right|=\left|\alpha_{k}\right|\left|\alpha_{l}\right| /\left|\alpha_{j}\right|=\sqrt{\beta}$.Thus, $\alpha_{i}=\sqrt{\beta}$. Then $\beta=\alpha_{i}^{2}=\alpha_{s+1} \overline{\alpha_{s+1}}$, which contradicts Lemma 3. Finally, if $|\mathcal{I}|=4$, then all 4 conjugates of α in (8) are complex, $\alpha_{j} \neq \overline{\alpha_{i}}$ and $\alpha_{l} \neq \overline{\alpha_{k}}$. We have already proved that the product of such α_{i} and α_{j} cannot be the product of two real conjugates or a real and a complex conjugate. Hence, the set \mathcal{C}_{σ} corresponding to β_{J} (which is equal to $\alpha_{i} \alpha_{j}$) consists entirely of complex (nonreal) numbers. As $\left|\mathcal{C}_{\sigma}\right|=2 t+2 m \geqslant 2 t$, all the complex conjugates of α must belong to \mathcal{C}_{σ}. Thus, $\overline{\alpha_{i}} \in \mathcal{C}_{\sigma}$, and so $\alpha_{i} \alpha_{j}=\overline{\alpha_{i}} \alpha_{\ell}$ with some complex (nonreal) conjugate α_{ℓ}. Multiplying both sides by $\alpha_{i} \overline{\alpha_{j}} / \beta$, we deduce that

$$
\alpha_{i}^{2}=\alpha_{i}^{2} \alpha_{j} \overline{\alpha_{j}} / \beta=\overline{\alpha_{i}} \alpha_{\ell} \alpha_{i} \overline{\alpha_{j}} / \beta=\alpha_{\ell} \overline{\alpha_{j}} .
$$

Now, if $\overline{\alpha_{j}}=\alpha_{\ell}$ then $\alpha_{i}=\alpha_{\ell}$, which is not the case. If otherwise $\overline{\alpha_{j}} \neq \alpha_{\ell}$ then the conjugates $\alpha_{i}, \alpha_{\ell}$ and $\overline{\alpha_{j}}$ are distinct. Then equality $\alpha_{i}^{2}=\alpha_{\ell} \overline{\alpha_{j}}$ is impossible, by Lemma 3. Hence, the set \mathcal{I} is empty.

We have thus proved that all the numbers in (8) are distinct positive numbers. Hence, for each $\sigma \neq$ id the set \mathcal{C}_{σ} consists of $2 t+2 m$ positive conjugates of α. Assume that some positive conjugate, say α_{1}, appears in $b>1$ sets \mathcal{C}_{σ}. Then an automorphism of $\operatorname{Gal}(F / \mathbb{Q})$ that maps α_{1} to α_{s+1} acts as a permutation of the set \mathcal{C} and as a permutation of the set $\left\{\beta_{1}, \ldots, \beta_{q}\right\}$. In this way we will obtain q equalities of the type (7), where the complex conjugate α_{s+1} appears b times. As $b>1$, this contradicts the fact that $\beta_{J}=\alpha_{i} \alpha_{j}$ with complex (nonreal) α_{i}, α_{j} only happens once when $J=1$ and $\alpha_{j}=\overline{\alpha_{i}}$. By the same argument, a conjugate of α cannot appear $b=0$ times in the sets \mathcal{C}_{σ}. Consequently, every conjugate of α appears exactly once in the union of q sets \mathcal{C}_{σ}. Hence,

$$
s+2 t=d=|\mathcal{C}|=\left|\mathcal{C}_{\text {id }}\right| q=(2 t+2 m) q .
$$

As $q \geqslant 2$, this finishes the proof of (2).

5. The construction of a nontrivial unit in Theorem 1

Let $I(n)$ be the infimum among all positive numbers I_{n} with the following property: any closed real interval of length at least I_{n} contains a full set of conjugates of an algebraic integer of degree n. By a result of Robinson [21], every interval of length greater than 4 contains infinitely many full sets of conjugates of algebraic integers (see also [22]). Later, Ennola [10] proved that such an interval contains full sets of conjugates of algebraic integers of degree n for all n sufficiently large. Hence, for each positive ε we have $I(n)<$
$4+\varepsilon$ for every $n>n(\varepsilon)$. From [5] we know that $I(2)=(1+\sqrt{5}) / 2+\sqrt{2}$ and it is evident that $I(1)=1$. It seems very likely that every interval of length, say 5 , or even smaller (although greater than 4 , by an old result of Schur [25]) contains a full set of conjugates of an algebraic integer of degree n for every $n \in \mathbb{N}$. However, since no result of such type is given explicitly in the literature, we simply put

$$
I:=\max \left\{5, \sup _{n \in \mathbb{N}} I(n)\right\}
$$

Therefore, every interval of length I contains a full set of conjugates of an algebraic integer of degree n for every $n \in \mathbb{N}$.

We claim that for any integers $t \geqslant 1$ and $m \geqslant 0$ there is an algebraic integer γ of degree $t+m$ with t conjugates in the interval $[1, I+1]$ and m conjugates in the interval $(2 I, \infty)$, say

$$
\begin{equation*}
1 \leqslant \gamma=\gamma_{1}<\cdots<\gamma_{t} \leqslant I+1<2 I<\gamma_{t+1}<\cdots<\gamma_{t+m} \tag{9}
\end{equation*}
$$

Indeed, by the definition of I, such an algebraic integer γ exists for $m=0$. To show the existence of such γ for $m \geqslant 1$ we can use a theorem of Motzkin [15]. Let us take, for instance, arbitrary t points $\lambda_{1}<\cdots<\lambda_{t}$ in the interval $(1, I+1)$ and arbitrary $m-1$ points $\lambda_{t+1}<\cdots<\lambda_{t+m-1}$ in the interval $(2 I, 2 I+1)$. Then, by the main result of [8], for each $\varepsilon>0$ there is a constant $c\left(\varepsilon, \lambda_{1}, \ldots, \lambda_{t+m-1}\right)$ and a totally positive algebraic integer

$$
\gamma_{t+m}>\max \left\{c\left(\varepsilon, \lambda_{1}, \ldots, \lambda_{t+m-1}\right), 2 I+1\right\}
$$

of degree $t+m$ such that the numbers $\gamma_{1}, \ldots, \gamma_{t+m-1}$ conjugate to γ_{t+m} over \mathbb{Q} lie in the ε-neighborhoods of the points $\lambda_{1}, \ldots, \lambda_{t+m-1}$, respectively. By taking a sufficiently small $\varepsilon>0$, we see that this algebraic integer γ_{t+m} of degree $t+m$ with conjugates $\gamma_{1}=\gamma, \ldots, \gamma_{t+m}$ satisfies (9).

By Lemma 5, we can take a totally positive Pisot unit β of degree $q \geqslant 2$ such that, firstly,

$$
\begin{equation*}
\beta=\beta_{1}>\frac{I(I+1)}{I-1}>1>\beta_{2}>\cdots>\beta_{q} \tag{10}
\end{equation*}
$$

and, secondly, the minimal polynomial of β over \mathbb{Q} is irreducible in the ring $\mathbb{Q}\left(\gamma_{1}, \ldots, \gamma_{t+m}\right)[x]$.

Set

$$
\begin{equation*}
k:=\left\lceil\left(1+I^{-1}\right) \beta\right\rceil \geqslant\left(1+I^{-1}\right) \beta>\left(1+I^{-1}\right) \frac{I(I+1)}{I-1}>I+1 \geqslant 6 . \tag{11}
\end{equation*}
$$

Consider the polynomial

$$
H\left(x, \beta_{j}\right):=\prod_{i=1}^{t+m}\left(x^{2}-\gamma_{i}\left(k-\beta_{j}\right) x+\beta_{j}^{2}\right)
$$

If $j>1$ then the discriminant of each quadratic factor in $H\left(x, \beta_{j}\right)$ is positive. Indeed, using (9), (10) and (11), we obtain

$$
\left(\gamma_{i}\left(k-\beta_{j}\right)\right)^{2}-4 \beta_{j}^{2} \geqslant\left(k-\beta_{j}\right)^{2}-4 \beta_{j}^{2}>(6-1)^{2}-4>0 .
$$

Since $\gamma_{i}\left(k-\beta_{j}\right)>0$, the factor $x^{2}-\gamma_{i}\left(k-\beta_{j}\right) x+\beta_{j}^{2}$ has two positive roots. Hence, the polynomial $H\left(x, \beta_{j}\right)$ has $2 t+2 m$ positive roots.

We claim that for $j=1$ the polynomial

$$
H\left(x, \beta_{1}\right)=\prod_{i=1}^{t+m}\left(x^{2}-\gamma_{i}(k-\beta) x+\beta^{2}\right)
$$

has $2 m$ positive roots and $2 t$ complex roots lying on the circle $|z|=\beta$. Indeed, this time the discriminant

$$
\Delta_{i}:=\left(\gamma_{i}(k-\beta)\right)^{2}-4 \beta^{2}
$$

is positive for $i=t+1, \ldots, t+m$. To see this, we use $k-\beta \geqslant \beta / I$ and $\gamma_{i}>2 I$ which gives

$$
\left(\gamma_{i}(k-\beta)\right)^{2}-4 \beta^{2} \geqslant \gamma_{i}^{2}(\beta / I)^{2}-4 \beta^{2}>4 I^{2}(\beta / I)^{2}-4 \beta^{2}=0 .
$$

Thus, the quadratic polynomial $x^{2}-\gamma_{i}(k-\beta) x+\beta^{2}$ has two positive roots for every $i=t+1, \ldots, t+m$.

Similarly, we may check that Δ_{i} is negative for $i=1, \ldots, t$. Indeed, by (9), (10) and (11),

$$
\begin{aligned}
\left(\gamma_{i}(k-\beta)\right)^{2}-4 \beta^{2} & \leqslant(I+1)^{2}\left(\left\lceil\left(1+I^{-1}\right) \beta\right\rceil-\beta\right)^{2}-4 \beta^{2} \\
& <(I+1)^{2}(\beta / I+1)^{2}-4 \beta^{2} \\
& <(I+1)^{2}(2 \beta /(I+1))^{2}-4 \beta^{2}=4 \beta^{2}-4 \beta^{2}=0,
\end{aligned}
$$

where the inequality $\beta / I+1<2 \beta /(I+1)$ follows from (10). Consequently, for each $i=1, \ldots, t$ the roots of $x^{2}-\gamma_{i}(k-\beta) x+\beta^{2}$ are

$$
\frac{\gamma_{i}(k-\beta) \pm \sqrt{\left(\gamma_{i}(k-\beta)\right)^{2}-4 \beta^{2}}}{2} .
$$

These are complex conjugate numbers lying on the circle $|z|=\beta$. Thus, $H\left(x, \beta_{1}\right)$ has $2 m$ positive roots and $2 t$ complex roots all lying on the circle $|z|=\beta$.

Summarizing, we conclude that the polynomial

$$
\begin{equation*}
P(x):=\prod_{j=1}^{q} H\left(x, \beta_{j}\right)=\prod_{j=1}^{q} \prod_{i=1}^{t+m}\left(x^{2}-\gamma_{i}\left(k-\beta_{j}\right) x+\beta_{j}^{2}\right) \in \mathbb{Z}[x] \tag{12}
\end{equation*}
$$

has $(2 t+2 m)(q-1)+2 m=(2 t+2 m) q-2 t$ positive roots and $2 t$ complex roots.

We next show that the polynomial $P(x)$ of (12), of degree $d=s+2 t$, where $s=(2 t+2 m) q-2 t$, is irreducible in $\mathbb{Z}[x]$. Let α be one of its complex roots, say

$$
\alpha=\frac{\gamma(k-\beta)+i \sqrt{4 \beta^{2}-(\gamma(k-\beta))^{2}}}{2},
$$

where $i=\sqrt{-1}, \beta=\beta_{1}$ and $\gamma=\gamma_{1}$. Assume that $\ell:=\operatorname{deg} \alpha<2(t+m) q$ and consider the set of conjugates of α, say $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{\ell}$. Evidently,

$$
\bar{\alpha}=\frac{\gamma(k-\beta)-i \sqrt{4 \beta^{2}-(\gamma(k-\beta))^{2}}}{2}
$$

is a conjugate of α over \mathbb{Q}, so both α and $\bar{\alpha}$ belong to the set $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$.
Let F be the Galois closure of $\mathbb{Q}(\beta, \gamma)$ over \mathbb{Q} and $G:=\operatorname{Gal}(F / \mathbb{Q})$. Note that the numbers $\beta_{j}, j=1, \ldots, q$, are conjugate over $\mathbb{Q}(\gamma)$, since, by the choice of β, the minimal polynomial of β is irreducible in the $\operatorname{ring} \mathbb{Q}(\gamma)[x]$. Thus, given any j in the range $1 \leqslant j \leqslant q$, there is an automorphism $\sigma \in$ G that fixes γ and maps $\beta \mapsto \beta_{j}$. This automorphism maps the factor $x^{2}-\gamma(k-\beta) x+\beta^{2}$ to the factor $x^{2}-\gamma\left(k-\beta_{j}\right) x+\beta_{j}^{2}$, so it takes the pair of roots of the first quadratic polynomial, $\alpha=\alpha_{1}(\gamma, \beta), \bar{\alpha}=\alpha_{2}(\gamma, \beta)$, to the pair of roots $\alpha_{1}\left(\gamma, \beta_{j}\right), \alpha_{2}\left(\gamma, \beta_{j}\right)$ of the second quadratic polynomial. In particular, this implies that these four roots are conjugate over \mathbb{Q} for each $j=1, \ldots, q$.

Next, map γ to γ_{i}, where i is one of the indices $1, \ldots, t+m$. This automorphism of G takes β to some β_{J} and $x^{2}-\gamma(k-\beta) x+\beta^{2}$ to $x^{2}-\gamma_{i}\left(k-\beta_{J}\right) x+\beta_{J}^{2}$. Hence, their roots $\alpha_{1}(\gamma, \beta), \alpha_{2}(\gamma, \beta)$ and $\alpha_{1}\left(\gamma_{i}, \beta_{J}\right), \alpha_{2}\left(\gamma_{i}, \beta_{J}\right)$ are conjugate over \mathbb{Q}. Furthermore, by the same argument as above and the fact that the minimal polynomial of β_{J} is irreducible in $\mathbb{Q}\left(\gamma_{i}\right)[x]$, the roots of $x^{2}-\gamma_{i}\left(k-\beta_{J}\right) x+\beta_{J}^{2}$ (namely $\left.\alpha_{1}\left(\gamma_{i}, \beta_{J}\right), \alpha_{2}\left(\gamma_{i}, \beta_{J}\right)\right)$ and the roots of $x^{2}-\gamma_{i}\left(k-\beta_{r}\right) x+\beta_{r}^{2}\left(\right.$ say $\left.\alpha_{1}\left(\gamma_{i}, \beta_{r}\right), \alpha_{2}\left(\gamma, \beta_{r}\right)\right)$ are conjugate over \mathbb{Q} for any indices J, r in the range $1 \leq J, r \leqslant q$. Thus, we conclude that all $(2 t+2 m) q$ roots of the polynomial P defined in (12) are conjugate over \mathbb{Q}.

Hence, $\ell=\operatorname{deg} \alpha$ can be smaller than $\operatorname{deg} P=2(t+m) q$ only if α is a multiple root of P. However, if α is equal to another complex root α^{\prime} of P corresponding, say to $\gamma_{i} \neq \gamma$ and β (which is the only possibility to get a complex root), then

$$
\alpha+\bar{\alpha}=\gamma(k-\beta)=\gamma_{i}(k-\beta)=\alpha^{\prime}+\overline{\alpha^{\prime}} .
$$

This yields $\gamma=\gamma_{i}$, a contradiction. The proof of Theorem 1 is now completed.

We conclude this section with an example which shows that the unit

$$
\begin{align*}
\alpha: & =15+5 \sqrt{2}+6 \sqrt{3}+2 \sqrt{6}+\sqrt{310+222 \sqrt{2}+276 \sqrt{3}+120 \sqrt{6}} \tag{13}\\
& =74.724635 \ldots
\end{align*}
$$

is a nonreciprocal unit of degree 8 with 4 real conjugates and two pairs of complex conjugates of equal moduli. This corresponds to the case $K=\mathbb{Q}(\alpha)$ and $s=4, t=2, m=0, q=2$ in equality (2) of Theorem 1 .

Take a quadratic algebraic integer $\gamma=3-\sqrt{2}$ with conjugate $\gamma^{\prime}=3+\sqrt{2}$ and a quadratic Pisot unit $\beta:=7+4 \sqrt{3}$ with conjugate $\beta^{\prime}=7-4 \sqrt{3}$. Then the conditions (9) and (10) are satisfied with $I=5$. Evidently, the minimal
polynomial of β is irreducible in the ring $\mathbb{Q}\left(\gamma, \gamma^{\prime}\right)[x]=\mathbb{Q}(\sqrt{2})[x]$. By (11), we obtain $k=17$. Hence, $H(x, \beta)$ is the product of the polynomials

$$
x^{2}-(3-\sqrt{2})(10-4 \sqrt{3}) x+97+56 \sqrt{3}
$$

and

$$
x^{2}-(3+\sqrt{2})(10-4 \sqrt{3}) x+97+56 \sqrt{3} .
$$

Thus, $H(x, \beta)$ is equal to
$x^{4}-(60-24 \sqrt{3}) x^{3}+(1230-448 \sqrt{3}) x^{2}-(1788+1032 \sqrt{3}) x+18817+10864 \sqrt{3}$.
Similarly, $H\left(x, \beta^{\prime}\right)$ equals
$x^{4}-(60+24 \sqrt{3}) x^{3}+(1230+448 \sqrt{3}) x^{2}-(1788-1032 \sqrt{3}) x+18817-10864 \sqrt{3}$.
Now, calculating the product $H(x, \beta) H\left(x, \beta^{\prime}\right)$ we find the polynomial (12)

$$
\begin{aligned}
P(x)= & x^{8}-120 x^{7}+4332 x^{6}-86664 x^{5}+1311590 x^{4}-10994952 x^{3} \\
& +75494124 x^{2}-19704 x+1,
\end{aligned}
$$

which is irreducible in $\mathbb{Z}[x]$. It has four positive roots

$$
0.000068 \ldots, 0.000192 \ldots, 26.844323 \ldots, 74.724635, \ldots
$$

where the last one is the root α defined in (13), which is the larger of the roots of the quadratic factor $x^{2}-(3+\sqrt{2})(10+4 \sqrt{3}) x+(7-4 \sqrt{3})^{2}$ and is the largest positive root of P, and two pairs of complex conjugate roots

$$
6.779783 \ldots \pm i 12.166732 \ldots, 2.435606 \ldots \pm i 13.713594 \ldots
$$

on the circle $|z|=\beta=7+4 \sqrt{3}=13.928203 \ldots$.

6. Proof of Theorem 2

Consider the subgroup U of \mathcal{U}_{K} of units satisfying (1). If U has rank at least s then it contains s multiplicatively independent units u_{1}, \ldots, u_{s}. In particular, $u_{1} \notin \mathbb{Q}$. Suppose first that $K^{\prime}:=\mathbb{Q}\left(u_{1}, \ldots, u_{s}\right)$ is a proper subfield of K. Note that K^{\prime} is a proper extension of \mathbb{Q}, since $u_{1} \notin \mathbb{Q}$. Applying Lemma 7 we find that K^{\prime} has s real and $2 t^{\prime}>0$ complex embeddings. By Corollary 4, the conjugates of u_{1} have at least $s+1$ distinct moduli. Note that the restrictions of the embeddings $\sigma_{1}, \ldots, \sigma_{s}$ of K to K^{\prime} are the real embeddings of K^{\prime}. Hence, the list

$$
\sigma_{1}\left(u_{1}\right), \ldots, \sigma_{s}\left(u_{1}\right), \sigma_{s+1}\left(u_{1}\right), \bar{\sigma}_{s+1}\left(u_{1}\right), \ldots, \sigma_{s+t}\left(u_{1}\right), \bar{\sigma}_{s+t}\left(u_{1}\right)
$$

contains at least $s+1$ numbers with distinct moduli. Since the last $2 t$ numbers in this list have the same modulus, the first s must have distinct moduli. Now, as $\sigma_{1}\left(u_{1}\right)$ appears in the list exactly $k=(s+2 t) /\left(s+2 t^{\prime}\right)>1$ times and $k \in \mathbb{N}$, it must appear at least once among the last $2 t$ numbers of the list. However, then the number of distinct moduli in the list is at most s, a contradiction.

It remains to consider the alternative case when $\mathbb{Q}\left(u_{1}, \ldots, u_{s}\right)=K$. Then, by Lemma 6 , the semigroup $S\left(u_{1}, \ldots, u_{s}\right)$ contains s multiplicatively independent units v_{1}, \ldots, v_{s} of degree d each. Since $v_{1}, \ldots, v_{s} \in S\left(u_{1}, \ldots, u_{s}\right)$ and the units u_{1}, \ldots, u_{s} satisfy the condition (1), the units v_{1}, \ldots, v_{s} must satisfy (1) as well. In particular, this implies that the matrix

$$
M=M\left(v_{1}, \ldots, v_{s}\right):=\left(\log \left|\sigma_{j}\left(v_{i}\right)\right|\right)_{1 \leqslant i, j \leqslant s}
$$

has rank s. However, by Theorem 1 , the units v_{1}, \ldots, v_{s} of degree d must be reciprocal. Hence, for each $i=1, \ldots, s$ the product over real embeddings $\prod_{j=1}^{s} \sigma_{j}\left(v_{i}\right)$ is equal to 1 . Thus, the columns of the matrix M are linearly dependent, which implies that the rank of M is smaller than s. (This is also true for $s=1$ when M is the 1×1 matrix with entry 0 .) Therefore, the rank of U is smaller than s. This completes the proof of Theorem 2, by the result of Oeljeklaus and Toma [16] stated in Section 1. (See also a stronger result given in Theorem 8 of the Appendix.)

Acknowledgements. I thank Professor Oeljeklaus for communicating the problem to me and sending several relevant papers. I also thank the referee, who pointed out several inaccuracies in the paper.

Appendix (by Laurent Battisti ${ }^{1}$)

This appendix has two objectives. First, we prove a criterion for detecting OT-manifolds admitting a locally conformally Kähler metric and in the second part we give an alternative proof of Theorem 2 by using a geometric property of OT-manifolds (namely, their non-Kählerianity). In what follows, we keep the notation defined in the introduction of the main article.

A complex manifold X is said to admit an LCK metric if there exists a closed positive (1,1)-form $\widetilde{\omega}$ on the universal cover \widetilde{X} of X and a representation $\rho: \pi_{1}(X) \rightarrow \mathbb{R}_{>0}$ such that for all $g \in \pi_{1}(X)$, one has $g^{*} \widetilde{\omega}=\rho(g) \widetilde{\omega}$. This notion was introduced by Vaisman in [28]. See also the introduction of the main article for further references on the subject.

In the case of an OT-manifold $X(K, A)$, its fundamental group is (up to isomorphism) the semi-direct product $A \ltimes \mathcal{O}_{K}$ and its universal cover is $\mathbb{H}^{s} \times \mathbb{C}^{t}$. In [16] (proof of Proposition 2.9) and in [33] the authors prove that if an OT-manifold $X(K, A)$ admits an LCK metric then one has $\rho(g)=$ $\left|\sigma_{s+1}(u)\right|^{2}=\ldots=\left|\sigma_{s+t}(u)\right|^{2}$ for all $g=(u, a) \in A \ltimes \mathcal{O}_{K}$. It turns out that this relation between the absolute values of the complex embeddings of the elements of A is in fact a characterization:

[^1]Theorem 8. An OT-manifold $X(K, A)$ admits an LCK metric if and only if the following holds:

$$
\begin{equation*}
\text { for all } u \in A, \quad\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \text {. } \tag{14}
\end{equation*}
$$

Proof. We only need to check that this condition is sufficient. Let $X(K, A)$ be an OT-manifold with A satisfying condition (14) and define the following real function on $\mathbb{H}^{s} \times \mathbb{C}^{t}$:

$$
\varphi(z):=\left(\prod_{j=1}^{s} \frac{i}{z_{j}-\overline{z_{j}}}\right)^{\frac{1}{t}}+\sum_{k=1}^{t}\left|z_{s+k}\right|^{2} .
$$

This definition of φ is very natural: when $t=1$, this function is the same as the function F defined in [16], example p. 169.

It is enough to prove that it is a Kähler potential on $\mathbb{H}^{s} \times \mathbb{C}^{t}$. For this, we will see that the matrix $\left(\partial_{z_{p}} \partial_{\overline{z_{q}}} \varphi_{1}\right)$ is positive definite, where we set $\varphi_{1}(z)=\left(\prod_{j=1}^{s} \frac{i}{z_{j}-\overline{z_{j}}}\right)^{\frac{1}{t}}$. For all $q \in\{1, \ldots, s\}$, one has:

$$
\partial_{\overline{z_{q}}} \varphi_{1}(z)=\frac{1}{t} \frac{1}{z_{q}-\overline{z_{q}}} \varphi_{1}
$$

and for all $p \in\{1, \ldots, s\}$, one has:

$$
\partial_{z_{p}} \partial_{\overline{z_{q}}} \varphi_{1}(z)=\left\{\begin{array}{l}
\frac{1}{t^{2}} \frac{-1}{\left(z_{p}-\overline{z_{p}}\right)\left(z_{q}-\overline{z_{q}}\right)} \varphi_{1} \text { if } p \neq q \\
\frac{1}{t^{2}}(1+t) \frac{-1}{\left(z_{p}-\overline{z_{p}}\right)^{2}} \varphi_{1} \text { if } p=q
\end{array}\right.
$$

Hence, $\left(\partial_{z_{p}} \partial_{\overline{z_{q}}} \varphi_{1}\right)=\frac{1}{t^{2}} \varphi_{1} B$ where the matrix B is

$$
B=\left(\begin{array}{cccc}
\frac{(1+t)}{4 y_{1}^{2}} & \frac{1}{4 y_{1} y_{2}} & \cdots & \frac{1}{4 y_{1} y_{s}} \\
\frac{1}{4 y_{2} y_{1}} & \frac{(1+t)}{4 y_{2}^{2}} & \cdots & \frac{1}{4 y_{2} y_{s}} \\
\vdots & & & \\
\frac{1}{4 y_{s} y_{1}} & \frac{1}{4 y_{s} y_{2}} & \cdots & \frac{(1+t)}{4 y_{s}^{2}}
\end{array}\right),
$$

and $z_{j}=x_{j}+i y_{j}$ for all $j \in\{1, \ldots, s+t\}$. As in [19], we notice that B is the sum of a diagonal positive definite matrix and a positive semidefinite one. Hence, B is positive definite.

Now, let $\omega_{0}:=i \partial \bar{\partial} \varphi$ and for all $g=(u, a) \in A \ltimes \mathcal{O}_{K}$ set $\rho(g):=\left|\sigma_{s+1}(u)\right|^{2}$. First, notice that because u is a unit we have

$$
\left(\sigma_{1}(u) \ldots \sigma_{s}(u)\right)\left(\left|\sigma_{s+1}(u)\right|^{2} \ldots\left|\sigma_{s+t}(u)\right|^{2}\right)=1
$$

Then, write

$$
\begin{aligned}
\partial \bar{\partial}(\varphi \circ g)(z)= & \frac{1}{\left(\sigma_{1}(u) \ldots \sigma_{s}(u)\right)^{\frac{1}{t}}} \partial \bar{\partial} \varphi_{1}(z) \\
& +\partial \bar{\partial} \sum_{k=1}^{t}\left|\sigma_{s+k}(u) z_{s+k}+\sigma_{s+k}(a)\right|^{2} \\
= & \rho(g) \partial \bar{\partial} \varphi_{1}(z)+\rho(g) \partial \bar{\partial} \sum_{k=1}^{t}\left|z_{s+k}\right|^{2} \\
= & \rho(g) \partial \bar{\partial} \varphi(z) .
\end{aligned}
$$

We now obtain the following equalities:

$$
g^{*} \omega_{0}=g^{*}(i \partial \bar{\partial} \varphi)=i \partial \bar{\partial}(\varphi \circ g)=i \rho(g) \partial \bar{\partial}(\varphi)=\rho(g) \omega_{0} .
$$

This concludes the proof.

Recall that in [16], the authors showed that no OT-manifold admits a Kähler structure (this is Proposition 2.5, loc. cit.). Using this fact, we now see how to prove Theorem 2.

Assume that K is a number field of degree $d=s+2 t$ with $t \geqslant 2$ and with s not being of the form (2). We now suppose that the rank of the subgroup U of \mathcal{U}_{K} of units satisfying equation (1) is at least (therefore, equal to) s and we want to show that this leads to a contradiction.

First, notice that $l(U)$ has a trivial intersection with the kernel of the projecting map $\mathcal{P}: \mathcal{S} \rightarrow \mathbb{R}^{s}$, where l and \mathcal{P} are defined in the introduction of the main article. Thus, U is an admissible subgroup of \mathcal{U}_{K}. Now, consider the OT-manifold $X(K, U)$; it admits an LCK metric by Theorem 8. As a consequence of Theorem 1, all the elements of U are reciprocal. In particular, $\left|\sigma_{s+j}(u)\right|=1$ for all $u \in U$ and for all $j \in\{1, \ldots, t\}$.

Let ω be a Kähler form on $\mathbb{H}^{s} \times \mathbb{C}^{t}$ giving rise to an LCK metric on $X(K, U)$. For all $g=(u, a) \in U \ltimes \mathcal{O}_{K}$, one has $g^{*} \omega=\left|\sigma_{s+1}(u)\right|^{2} \omega$ (see the paragraph before Theorem 8), which simplifies as $g^{*} \omega=\omega$. The form ω being invariant under the action of $A \ltimes \mathcal{O}_{K}$, it descends to a Kähler form on $X(K, U)$. This implies that $X(K, U)$ is a Kähler manifold, which is the desired contradiction.

References

[1] Battisti, Laurent; Oeljeklaus, Karl. Holomorphic line bundles over domains in Cousin groups and the algebraic dimension of OT-manifolds. To appear in Proc. Edinburgh Math. Soc., 2013. arXiv:1306.3047v1.
[2] Boyd, David W. Irreducible polynomials with many roots of maximal modulus. Acta Arith. 68 (1994), no. 1, 85-88. MR1302509 (95i:11119), Zbl 0813.11060.
[3] Brunella, Marco. Locally conformally Kähler metrics on certain non-Kählerian surfaces. Math. Ann. 346 (2010), no. 3, 629-639. MR2578564 (2011c:32027), Zbl 1196.32015, doi: $10.1007 / \mathrm{s} 00208-009-0407-8$.
[4] Dragomir, Sorin; Ornea, Liviu. Locally conformal Kähler geometry. Progress in Mathematics, 155. Birkhäuser Boston Inc., Boston, MA, 1998. xiv+327 pp. ISBN: 0-8176-4020-7. MR1481969 (99a:53081), Zbl 0887.53001.
[5] Dubickas, Artūras. On intervals containing full sets of conjugates of algebraic integers. Acta Arith. 91 (1999), no. 4, 379-386. MR1736019 (2000i:11161), Zbl 0935.11037.
[6] Dubickas, Artūras. The Remak height for units. Acta Math. Hungar. 97 (2002), no. 1-2, 1-13. MR1932792 (2003k:11159), Zbl 1059.11062, doi: 10.1023/A:1020822326977.
[7] Dubickas, Artūras. On the degree of a linear form in conjugates of an algebraic number. Illinois J. Math. 46 (2002), no. 2, 571-585. MR1936938 (2004c:11194), Zbl 1028.11066.
[8] Dubickas, Artūras. Conjugate algebraic numbers close to a symmetric set. Algebra i Analiz 16 (2004), no. 6, 123-127; translation in St. Petersburg Math. J. 16 (2005), no. 6, 1013-1016. MR2117450 (2005h:11240), Zbl 1092.11040, doi: 10.1090/S1061-0022-05-00887-3.
[9] Dubickas, Artūras; Smyth, Chris J. On the lines passing through two conjugates of a Salem number. Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 29-37. MR2388230 (2009f:11132), Zbl 1166.11031, doi: 10.1017/S0305004107000692.
[10] Ennola, Veikko. Conjugate algebraic integers in an interval. Proc. Amer. Math. Soc. 53 (1975), no. 2, 259-261. MR0382219 (52 \#3104), Zbl 0286.12001, doi: 10.1090/S0002-9939-1975-0382219-7.
[11] Fan, Ai-Hua; Schmeling, Jörg. ε-Pisot numbers in any real algebraic number field are relatively dense. J. Algebra 272 (2004), no. 2, 470-475. MR2028068 (2004m:11175), Zbl 1043.11074, doi: 10.1016/j.jalgebra.2003.09.027.
[12] Ferguson, Ronald. Irreducible polynomials with many roots of equal modulus. Acta Arith. 78 (1997), no. 3, 221-225. MR1432017 (98f:11114), Zbl 0867.11012.
[13] Fieker, Claus; Pohst, Michael E. Dependency of units in number fields. Math. Comp. 75 (2006), no. 255, 1507-1518. MR2219041 (2007a:11168), Zbl 1097.11061, doi: 10.1090/S0025-5718-06-01899-0.
[14] Kasuya, Hisashi. Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds. Bull. Lond. Math. Soc. 45 (2013), no. 1, 15-26. MR3033950, Zbl 1262.53061, arXiv:1204.1878, doi: $10.1112 / \mathrm{blms} / \mathrm{bds} 057$.
[15] Motzkin, Theodore S. From among n conjugate algebraic integers, $n-1$ can be approximately given. Bull. Amer. Math. Soc. 53 (1947), 156-162. MR0019653 (8,443f), Zbl 0032.24702, doi: 10.1090/S0002-9904-1947-08772-3.
[16] Oeljeklaus, Karl; Toma, Matei. Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier 55 (2005), no. 1, 161-171. MR2141693 (2006c:32020), Zbl 1071.32017.
[17] Ornea, Liviu; Verbitsky, Misha. A report on locally conformally Kähler manifolds. Harmonic maps and differential geometry, 135-149. Contemp. Math., 542, Amer. Math. Soc., Providence, RI, 2011. MR2796645 (2012e:53135), Zbl 1230.53068. arXiv:1002.3473, doi: 10.1090/conm/542.
[18] Ornea, Liviu; Verbitsky, Misha. Oeljeklaus-Toma manifolds admitting no complex subvarieties. Math. Res. Lett. 18 (2011), no. 4, 747-754. MR2831839 (2012m:32020), Zbl 1272.53060, arXiv:1009.1101.
[19] Parton, Maurizio; Vuletescu, Victor. Examples of non-trivial rank in locally conformal Kähler geometry. Math. Z. 270 (2012), no. 1-2, 179-187. MR2875828 (2012k:32022), Zbl 1242.32011, arXiv:1001.4891, doi: 10.1007/s00209-010-0791-5.
[20] Pohst, Michael E.; Zassenhaus, Hans J. Algorithmic algebraic number theory. Encyclopedia of Mathematics and its Applications, 30. Cambridge Univ. Press, Cambridge, 1989. xiv+465 pp. ISBN: 0-521-33060-2. MR1033013 (92b:11074), Zbl 0685.12001.
[21] Robinson, Raphael M. Intervals containing infinitely many sets of conjugate algebraic integers. Studies in mathematical analysis and related topics, 305-315. Stanford Univ. Press, Stanford, Calif, 1962. MR0144892 (26 \#2433), Zbl 0116.25402.
[22] Robinson, Raphael M. Intervals containing infinitely many sets of conjugate algebraic units. Ann. of Math. (2) 80 (1964), 411-428. MR0175881 (31 \#157), Zbl 0156.27905.
[23] Salem, Raphaël. Algebraic numbers and Fourier analysis. D. C. Heath and Co., Boston, Mass., 1963. x+68 pp. MR0157941 (28 \#1169), Zbl 0126.07802.
[24] Schinzel, Andrzej. Polynomials with special regard to reducibility. Encyclopedia of Mathematics and its Applications, 77. Cambridge University Press, Cambridge, 2000. x+558 pp. ISBN: 0-521-66225-7. MR1770638 (2001h:11135), Zbl 0956.12001.
[25] Schur, Issai. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 1 (1918), no. 4, 377-402. MR1544303, JFM 46.0128.03, doi: 10.1007/BF01504345.
[26] Smyth, Chris J. Conjugate algebraic numbers on conics. Acta Arith. 40 (1981/82), no. 4, 333-346. MR0667044 (84b:10079), Zbl 0431.12001.
[27] Smyth, Chris J. Additive and multiplicative relations connecting conjugate algebraic numbers. J. Number Theory 23 (1986), no. 2, 243-254. MR0845906 (87i:11142), Zbl 0586.12001, doi: 10.1016/0022-314X(86)90094-6.
[28] Vaisman, Izu. On locally conformal almost Kähler manifolds. Israel J. Math. 24 (1976), no. 3-4, 338-351. MR0418003 (54 \#6048), Zbl 0335.53055.
[29] Vaisman, Izu. A theorem on compact locally conformal Kähler manifolds. Proc. Amer. Math. Soc. 75 (1979), no. 2, 279-283. MR0532151 (80h:53070), Zbl 0414.53045, doi: 10.1090/S0002-9939-1979-0532151-4.
[30] Vaisman, Izu. On locally and globally conformal Kähler manifolds. Trans. Amer. Math. Soc. 262 (1980), no. 2, 533-542. MR0586733 (81j:53064), Zbl 0446.53048, doi: 10.1090/S0002-9947-1980-0586733-7.
[31] van der Waerden, B. L. Die Seltenhen der Gleichungen mit Affekt. Math. Ann. 109 (1934), no. 1, 13-16. MR1512878, Zbl 0007.39101, doi: 10.1007/BF01449123.
[32] Verbitsky, Sima. Curves on Oeljeklaus-Toma manifolds. Preprint, 2013. arXiv:1111.3828v2.
[33] Vuletescu, Victor. LCK metrics on Oeljeklaus-Toma manifolds vs Kronecker's theorem. Preprint, 2013. arXiv:1306.0138v1.

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
arturas.dubickas@mif.vu.lt
This paper is available via http://nyjm.albany.edu/j/2014/20-16.html.

[^0]: Received October 28, 2013; in final form March 7, 2014.
 2010 Mathematics Subject Classification. 11R06, 11R21, 11R27, 53C55.
 Key words and phrases. nonreciprocal unit, Pisot unit, Oeljeklaus-Toma manifold, LCK metric.

 This research was supported by the Research Council of Lithuania grant No. MIP-068/2013/LSS-110000-740.

[^1]: ${ }^{1}$ Fakultät für Mathematik, Raum NA 4/26, Ruhr-Universität Bochum, Bochum D44780, Germany and Aix-Marseille Université, CNRS - LATP - UMR 7353, 39, Rue F. Joliot-Curie, Marseille F-13013, France.
 laurent.battisti@rub.de and laurent.battisti@yahoo.com

