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Preperiodic points for quadratic
polynomials over quadratic fields

John R. Doyle, Xander Faber and David Krumm

Abstract. To each quadratic number field K and each quadratic poly-
nomial f with K-coefficients, one can associate a finite directed graph
G(f,K) whose vertices are the K-rational preperiodic points for f , and
whose edges reflect the action of f on these points. This paper has two
main goals. (1) For an abstract directed graph G, classify the pairs
(K, f) such that the isomorphism class of G is realized by G(f,K). We
succeed completely for many graphs G by applying a variety of dynam-
ical and Diophantine techniques. (2) Give a complete description of
the set of isomorphism classes of graphs that can be realized by some
G(f,K). A conjecture of Morton and Silverman implies that this set is
finite. Based on our theoretical considerations and a wealth of empirical
evidence derived from an algorithm that is developed in this paper, we
speculate on a complete list of isomorphism classes of graphs that arise
from quadratic polynomials over quadratic fields.
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1. Introduction

1.1. Background. Let K be a number field and let f(z) = A(z)/B(z)
be a rational function defined over K, where A(z) and B(z) are coprime
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polynomials with coefficients in K. The function f(z) naturally induces a
map f : P1(K) → P1(K); a fundamental problem in dynamics is that of
describing the behavior of points P ∈ P1(K) under repeated iteration of the
map f . Thus, we consider the sequence

P, f(P ), f(f(P )), f(f(f(P ))), . . . .

For convenience we denote by fm the m-fold composition of f : f0 is the
identity map, and fm = f ◦ fm−1 for all m ≥ 1. We say that a point
P ∈ P1(K) is preperiodic for f if the orbit of P under f , i.e., the set

{fm(P ) : m ≥ 0},
is finite. Furthermore, we say that P is periodic for f if it satisfies the
stronger condition that fm(P ) = P for some m > 0; in this case, the least
positive integer m with this property is called the period of P . The set of all
points P ∈ P1(K) that are preperiodic for f is denoted by PrePer(f,K). Fi-
nally, the degree of f(z) is defined to be the number d := max{degA,degB}.

Using the theory of height functions, Northcott [29] proved that the set
PrePer(f,K) is finite as long as the degree of f is greater than 1. This
set can be given the structure of a directed graph by letting the elements
P ∈ PrePer(f,K) be the vertices of the graph, and drawing directed edges
P → f(P ) for every such point P . Thus, we obtain a finite directed graph
representing the K-rational preperiodic points for f . It is then natural to
ask how large the set PrePer(f,K) can be, and what structure the associated
graph can have. Drawing an analogy between preperiodic points of maps
and torsion points on abelian varieties, Morton and Silverman [27, page 100]
proposed the following conjecture regarding the size of the set PrePer(f,K):

Uniform Boundedness Conjecture (Morton-Silverman). Fix integers
n ≥ 1 and d ≥ 2. There exists a constant M(n, d) such that for every
number field K of degree n, and every rational function f(z) ∈ K(z) of
degree d,

# PrePer(f,K) ≤M(n, d).

Very little is currently known about this conjecture; indeed, it has not
been proved that such a constant M(n, d) exists, even in the simplified
setting where K = Q and f(z) ∈ K[z] is a quadratic polynomial. However,
Poonen [31, Cor. 1] proposed an upper bound of 9 in this case, and moreover
gave a conjecturally complete list of all possible graph structures arising in
this context — see [31, page 17].

Theorem 1.1 (Poonen). Assume that there is no quadratic polynomial over
Q having a rational periodic point of period greater than 3. Then, for every
quadratic polynomial f with rational coefficients,

# PrePer(f,Q) ≤ 9.

Moreover, there are exactly 12 graphs that arise from PrePer(f,Q) as f
varies over all quadratic polynomials with rational coefficients.
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Regarding the assumption made in Poonen’s result, it is known that there
is no quadratic polynomial over Q having a rational periodic point of period
m = 4 or 5 (see [11, Thm. 1] and [26, Thm. 4]), and assuming standard
conjectures on L-series of curves, the same holds for m = 6 (see [38, Thm.
7]). In [11] Flynn, Poonen, and Schaefer conjecture that no quadratic poly-
nomial over Q has a rational point of period greater than 3, a hypothesis
which Hutz and Ingram have verified extensively by explicit computation
(see [19, Prop. 1]). However, a proof of this conjecture seems distant at
present.

One direction in which to continue the kind of work carried out by Poo-
nen in studying the Uniform Boundedness Conjecture (UBC) is to consider
preperiodic points for higher degree polynomials over Q, such as was done
by Benedetto et al. [1] in the case of cubics. In this paper we take a differ-
ent approach and consider maps defined over number fields of degree n > 1.
The case of degree n = 1 is very special because there is only one number
field with this degree; hence, in this case the UBC is a statement only about
uniformity as one varies the rational function f(z) with Q-coefficients. More
striking is that the conjecture predicts upper bounds even when all number
fields of a fixed degree n > 1 are considered. Our goal in this article is to
carry out an initial study of preperiodic points for maps defined over qua-
dratic number fields (the case n = 2 of the UBC). Having fixed this value of
n, we will focus on the simplest family of maps to which the conjecture ap-
plies, namely quadratic polynomials. Thus, we wish to address the following
questions:

(1) How large can the set PrePer(f,K) be as K varies over all quadratic
number fields and f varies over all quadratic polynomials with coef-
ficients in K?

(2) What are all the possible graph structures corresponding to sets
PrePer(f,K) as K and f vary as above?

1.2. Outline of the paper. Our initial guesses for answers to the above
questions were obtained by gathering large amounts of data, and doing this
required an algorithm for computing all the preperiodic points of a given
quadratic polynomial defined over a given number field. In §4 we develop
an algorithm for doing this which relies heavily on a new method, due to the
first and third authors [8], for listing elements of bounded height in number
fields. Our algorithm for computing preperiodic points can in principle be
applied to quadratic polynomials over any number field, but we will focus
here on the case of quadratic fields. Using this algorithm we computed the
set PrePer(f,K) for roughly 250,000 pairs (K, f) consisting of a quadratic
field K and a quadratic polynomial f with coefficients in K. Our strategy
for choosing the fields K and polynomials f is explained in §4.4. The graph
structures found by this computation are shown in Appendix B, and for
each such graph G we give in Appendix C an example of a pair (K, f) for
which the graph associated to PrePer(f,K) is isomorphic to G.
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In order to state the more refined questions addressed in this article and
our main results, we introduce some notation. From a dynamical standpoint,
quadratic polynomials form a one-parameter family; more precisely, if K
is a number field and f(z) ∈ K[z] is a quadratic polynomial, then f(z)
is equivalent, in a dynamical sense, to a unique polynomial of the form
fc(z) = z2+c. (See the introduction to §3 for more details.) In studying the
dynamical properties of quadratic polynomials, we will thus consider only
polynomials of the form fc(z). We denote by G(fc,K) the directed graph
corresponding to the set PrePer(fc,K), excluding the point at infinity.

The graphs arising from our computation did not all occur with the same
frequency: some of them appeared only a few times, while others were ex-
tremely common. For each graph G that was found we may then ask:

(1) How many pairs (K, c) are there for which the graph G(fc,K) is
isomorphic to G?

(2) If there are only finitely many such pairs, can they be completely
determined?

(3) If there are infinitely many such pairs, can they be explicitly de-
scribed?

Our strategy for addressing these questions is to translate them into Dio-
phantine problems of determining the set of quadratic points on certain
algebraic curves over Q. In essence, the idea is to attach to each graph
G an algebraic curve C whose points parameterize instances of the graph
G. This philosophy of studying rational preperiodic points via algebraic
curves was first taken up by Morton [26], and then pushed much further
by Flynn–Poonen–Schaefer [11], Poonen [31], and Stoll [38]. However, the
Diophantine questions we need to answer in this article differ from those
studied by previous authors, since they were interested primarily in finding
Q-rational points on curves, whereas we need to determine all K-rational
points on a given curve C/Q, where K is allowed to vary over all quadratic
number fields. A survey of known theoretical results on this type of question
is given in §2, where we also develop our basic computational methods for
attacking the problem in practice. In §3 we construct the algebraic curves
corresponding to the graphs found by our computation, and the methods
of §2 are used to describe or completely determine their sets of quadratic
points.

1.3. Main results. In our extensive computation of preperiodic points
mentioned above, we obtained a total of 46 nonisomorphic graphs, and the
maximum number of preperiodic points for the polynomials considered was
15 (counting the fixed point at infinity). This data may provide the correct
answers to questions (1) and (2) posed in §1.1, though it is not our goal
here to make this claim and attempt a proof. However, our computations
do yield the following result:
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Theorem 1.2. Suppose that there exists a constant N such that

# PrePer(f,K) ≤ N

for every quadratic number field K and quadratic polynomial f with coeffi-
cients in K. Then N ≥ 15. Moreover, there are at least 46 directed graphs
that arise from the set PrePer(f,K) for such a field K and polynomial f .

For each of the 46 graphs that were found we would like to answer ques-
tions (1)–(3) stated in §1.2. This can be done easily for 12 of the graphs,
namely those that appeared in Poonen’s paper [31] — see §3.1 below. The
essential tool for this is Northcott’s theorem on height bounds for the prepe-
riodic points of a given map. For 15 of the 34 remaining graphs we were able
to determine all pairs (K, c) giving rise to the given graph. In most cases
this was done by finding all quadratic points on the parameterizing curve of
the graph, using our results concerning quadratic points on elliptic curves
and on curves of genus 2 with Mordell–Weil rank 0. With the notation used
in Appendix B, the labels for these graphs are

4(1), 5(1,1,)b, 5(2)a, 5(2)b, 6(2,1), 7(1,1)a, 7(1,1)b, 7(2,1,1)a,
7(2,1,1)b, 9(2,1,1), 10(1,1)a, 12(2,1,1)a, 14(2,1,1), 14(3,1,1), 14(3,2).

With the exception of graph 5(2)a — which occurs for two Galois conjugate
pairs, namely (Q(i),±i) — all of these graphs turned out to be unique; i.e.,
they occur for exactly one pair (K, c). Moreover, the parameter c in all of
these pairs is rational.

Of the remaining 19 graphs, there are 4 for which we were not able to
determine all pairs (K, c) giving rise to the graph, but instead proved an
upper bound on the number of all such pairs that could possibly exist. This
was done by reducing the problem of determining all quadratic points on the
parameterizing curve to a problem of finding all rational points on certain
hyperelliptic curves. Table 1 below summarizes our results for these graphs.
The first column gives the label of the graph under consideration, the second
column gives the number of known pairs (K, c) corresponding to this graph
structure, and the third column gives an upper bound for the number of
such pairs.

Graph Known pairs Upper bound

12(2) 2 6
12(2,1,1)b 2 6

12(4) 1 6
12(4,2) 1 2

Table 1.

In order to complete our analysis of these four graphs we would need
to determine all rational points on the hyperelliptic curves defined by the
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following equations:

w2 = x7 + 3x6 + x5 − 3x4 + x3 + 3x2 − 3x+ 1,

s2 = −6x7 − 6x6 + 34x5 + 22x4 − 18x3 + 38x2 − 10x+ 10,

w2 = x12 + 2x11 − 13x10 − 26x9 + 67x8 + 124x7 + 26x6 − 44x5

+ 179x4 − 62x3 − 5x2 + 6x+ 1,

w2 = (x2 + 1)(x2 − 2x− 1)(x6 − 3x4 − 16x3 + 3x2 − 1).

Of the 15 graphs that remain to be considered, there are 9 for which we
showed that the graph occurs infinitely many times over quadratic fields.
This is achieved by using results from Diophantine geometry giving asymp-
totics for counting functions on the set of rational points on a curve.

Theorem 1.3. For each of the graphs

8(1,1)a, 8(1,1)b, 8(2)a, 8(2)b, 8(4), 10(2,1,1)a, 10(2,1,1)b

there exist infinitely many pairs (K, c) consisting of a real (resp. imaginary)
quadratic field and an element c ∈ K for which G(fc,K) contains a graph
of this type. The same holds for the graphs 10(3,1,1) and 10(3,2), but these
occur only over real quadratic fields.

Remark. Showing the existence of infinitely many pairs for which G(fc,K)
not only contains a graph of a given type but in fact is itself of this type is
a more difficult problem. This kind of result was achieved in the article [9]
for several of the graphs G(fc,Q) with c ∈ Q.

For the six graphs that remain, our methods did not yield a satisfactory
upper bound on the number of possible instances — see §1.4 below for more
information.

Finally, we point out some results in this article which may be of indepen-
dent interest. First, our description of quadratic points on elliptic curves in
§2.1, though completely elementary, has been useful in practice for quickly
generating many quadratic points on a given elliptic curve, as well as for
proving several of our results stated above. The formula in §2.2 for the
number of “nonobvious” quadratic points on a curve of genus 2 does not
seem to be explicitly stated in the literature, nor is its application (in The-
orem 2.4) to the study of quadratic points on the modular curves X1(N)
of genus 2. The techniques used here to determine all quadratic points on
certain curves also appear to be new. As an example of our methods we
mention our study of the graph 12(2,1,1)a in §3.14, which illustrates our
approach to finding all quadratic points on a curve C having maps C → E1

and C → E2, where E1 and E2 are elliptic curves of rank 0. A second
example is our study of the graph 12(4,2) in §3.17, in which we bound the
number of quadratic points on a curve C having a map C → X1, where X1

is a curve of genus 2 and Mordell–Weil rank 0, and a map C → X2, where
X2 is a curve of genus 3 and Mordell–Weil rank 1.
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1.4. Future work. This paper leaves open several questions that we intend
to address in subsequent articles. First of all, there are a few graphs in
Appendix B for which we are at present not able to carry out a good analysis
of the quadratic points on the corresponding curves; precisely, these are the
graphs labeled

10(1,1)b, 10(2), 10(3)a, 10(3)b, 12(3), and 12(6).

In most cases the difficulties do not seem insurmountable, but the methods
required to study these graphs may be rather different from the ones used
in this paper. Second, for some of the graphs analyzed in §3 we have only
partially determined the quadratic points on the parameterizing curve, the
obstruction being a problem of finding all rational points on certain hyper-
elliptic curves (listed above). We expect that the method of Chabauty and
Coleman can be successfully applied to determine all rational points on these
curves, thus completing our study of the corresponding graphs; this analysis
will appear in a sequel to the present paper.

The next open question concerns 5-cycles. All evidence currently available
suggests that there does not exist a quadratic polynomial f defined over a
quadratic field K such that f has a K-rational point of period 5. Such
a polynomial did not show up in our computations, nor was it found in a
related search carried out by Hutz and Ingram [19]. We therefore set the
following goal for future research:

Either find an example of a 5-cycle over a quadratic field, or show that it
does not exist.

As a result of their own extensive search for periodic points with large
period defined over quadratic fields, Hutz and Ingram [19, Prop. 2] provide
evidence supporting the conjecture that 6 is the longest cycle length that
can appear in this setting. Moreover, they found exactly one example of a
6-cycle over a quadratic field, which is the same one found during our com-
putations and the same one that had been found earlier by Flynn, Poonen,
and Schaefer [11, page 461]; namely the example given in Appendix C under
the label 12(6). While the question of proving that 6 is the longest possi-
ble cycle length may be too ambitious, we do aim to study the following
question:

Determine all instances of a 6-cycle over a quadratic field.

We remark that it follows from known results in Diophantine geometry
(see Theorem 2.1 below) applied to the curve parameterizing 6-cycles1 that
there are only finitely many pairs (K, c), with K quadratic, giving rise to a
6-cycle.

As a final goal, we wish to prove a theorem analogous to Poonen’s result
(Theorem 1.1), but in the context of quadratic fields. In view of the above
discussion, we propose the following:

1The geometry of this curve, and its set of rational points, were studied by Stoll in
[38]. In particular, it is shown that the curve is not hyperelliptic and not bielliptic.
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Speculation 1.4. Assume that there is no quadratic polynomial over a qua-
dratic field having a periodic point of period n = 5 or n > 6. Then, for every
quadratic polynomial f with coefficients in a quadratic field K,

# PrePer(f,K) ≤ 15.

Moreover, there are exactly 46 graphs that arise from PrePer(f,K) as f
varies over all quadratic polynomials with coefficients in a quadratic field
K.

Using techniques similar to those applied in §3, substantial progress to-
wards proving this result — or one very similar to it — has already been
made by the first author and will appear in a later paper.
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2. Quadratic points on algebraic curves

The material in this section forms the basis for our analysis of preperiodic
graph structures in §3. As mentioned in the introduction, questions concern-
ing the sets of preperiodic points for quadratic polynomials over quadratic
number fields can be translated into questions about the sets of quadratic
points on certain algebraic curves defined over Q. We will therefore require
some basic facts about quadratic points on curves, from a theoretical as well
as computational perspective.

Let k be a number field, and fix an algebraic closure k̄ of k. Let C be a
smooth, projective, geometrically connected curve defined over k. We say
that a point P ∈ C(k̄) is quadratic over k if [k(P ) : k] = 2, where k(P )
denotes the field of definition of P , i.e., the residue field of C at P . The set
of all quadratic points on C will be denoted by C(k, 2). It may well happen
that C(k, 2) = ∅: for instance, it follows from a theorem of Clark [5, Cor. 4]
that there are infinitely many curves of genus 1 over k with this property.
The set C(k, 2) may also be nonempty and finite; several examples of this
will be seen in §3. Finally, the set C(k, 2) may be infinite. Suppose, for
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instance, that C is hyperelliptic, so that it admits a morphism C → P1 of
degree 2 defined over k. By pulling back k-rational points on P1 we obtain
— by Hilbert’s irreducibility theorem [13, Chap. 12] — infinitely many
quadratic points on C. Similarly, suppose C is bielliptic, so that it admits
a morphism of degree 2 to an elliptic curve E/k. If the group E(k) has
positive rank, then the same argument as above shows that C has infinitely
many quadratic points. Using Faltings’ theorem [10] concerning rational
points on subvarieties of abelian varieties (formerly a conjecture of Lang),
Harris and Silverman [15, Cor. 3] showed that these are the only two types
of curves that can have infinitely many quadratic points.

Theorem 2.1 (Harris–Silverman). Let k be a number field and let C/k be
a curve. If C is neither bielliptic nor hyperelliptic, then the set C(k, 2) is
finite.

Thus, we have simple geometric criteria for deciding whether a given curve
C/k has finitely many or infinitely many quadratic points. However, we are
not only interested here in abstract finiteness statements, but also in the
practical question of explicitly determining all quadratic points on a curve,
given a specific model for it. If the given curve has infinitely many quadratic
points, then we will require an explicit description of all such points, and if
it has only a finite number of quadratic points, then we require that they be
determined. For the purposes of this paper we will mostly need to address
these questions in the case of elliptic and hyperelliptic curves, or curves with
a map of degree 2 to such a curve.

We begin by discussing quadratic points on hyperelliptic curves in general.
Suppose that the curve C/k admits a morphism ϕ : C → P1

k of degree 2.
Let σ be the hyperelliptic involution on C, i.e., the unique involution such
that ϕ ◦ σ = ϕ. Corresponding to the map ϕ there is an affine model for C
of the form y2 = f(x), where f(x) ∈ k[x] has nonzero discriminant. With
respect to this equation, σ is given by (x, y) 7→ (x,−y), and the quotient
map ϕ : C → C/〈σ〉 = P1

k is given by (x, y) 7→ x. We wish to distinguish
between two kinds of quadratic points on C; first, there is the following
obvious way of generating quadratic points: by choosing any element x0 ∈ k
we obtain a point (x0,

√
f(x0)) ∈ C(k̄) which will often be quadratic as we

vary x0. Indeed, Hilbert’s irreducibility theorem implies that this will occur
for infinitely many x0 ∈ k. Points of this form will be called obvious quadratic
points for the given model. Stated differently, these are the quadratic points
P ∈ C(k̄) such that ϕ(P ) ∈ P1(k), or equivalently σ(P ) = P , where P is the
Galois conjugate of P . Quadratic points that do not arise in this way will
be called nonobvious quadratic points on C. Though a hyperelliptic curve
always has infinitely many obvious quadratic points, this is not the case for
nonobvious points; in fact, a theorem of Vojta [39, Cor. 0.3] implies that
the set of nonobvious quadratic points on a hyperelliptic curve of genus ≥ 4
is always finite. We focus now on studying the nonobvious quadratic points
on elliptic curves and on curves of genus 2.
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2.1. Case of elliptic curves. The following result gives an explicit de-
scription of all nonobvious quadratic points on an elliptic curve.

Lemma 2.2. Let E/k be an elliptic curve defined by an equation of the form

y2 = ax3 + bx2 + cx+ d,

where a, b, c, d ∈ k and a 6= 0. Suppose that (x, y) ∈ E(k̄) is a quadratic
point with x /∈ k. Then there exist a point (x0, y0) ∈ E(k) and an element
v ∈ k such that y = y0 + v(x− x0) and

x2 +
ax0 − v2 + b

a
x+

ax20 + v2x0 + bx0 − 2y0v + c

a
= 0.

Proof. Since y ∈ k(x), we can write y = p(x) for some polynomial p(t) ∈
k[t] of degree at most 1. Note that x is a root of the polynomial

F (t) := at3 + bt2 + ct+ d− p(t)2,
so F (t) must factor as F (t) = a(t − x0)m(t), where m(t) is the minimal
polynomial of x and x0 ∈ k. Since F (x0) = 0, then (x0, p(x0)) ∈ E(k).
Letting y0 = p(x0) we can write p(t) = y0 + v(t − x0) for some v ∈ k; in
particular, y = p(x) = y0 + v(x− x0). Carrying out the division

F (t)/(a(t− x0))
we obtain

m(t) = t2 +
ax0 − v2 + b

a
t+

ax20 + v2x0 + bx0 − 2y0v + c

a
. �

Remark. The description of quadratic points on E given above has the
following geometric interpretation: suppose P = (x, y) ∈ E(k̄) is quadratic
over k, let K = k(x, y) be the field of definition of P , and let σ be the
nontrivial element of Gal(K/k). We can then consider the point

Q = P + P σ ∈ E(k),

where P σ = (σ(x), σ(y)) denotes the Galois conjugate of P . If Q is the point
at infinity on E, then the line through P and P σ is vertical, so that x = σ(x)
and hence x ∈ k; this gives rise to obvious quadratic points on E. If Q is
not the point at infinity, then it is an affine point in E(k), say Q = (x0,−y0)
for some elements x0, y0 ∈ k. The points P, P σ, and (x0, y0) are collinear,
and the line containing them has slope in k, say equal to v ∈ k. We then
have y = y0 + v(x− x0), and this gives rise to the formula in Lemma 2.2.

2.2. Curves of genus 2. Suppose now that C/k is a curve of genus 2. Fix
an affine model y2 = f(x) for C, where f(x) has degree 5 or 6, and let σ be
the hyperelliptic involution on C.

Lemma 2.3. Suppose that C/k has genus 2 and C(k) 6= ∅. Let J be the
Jacobian variety of C.

(1) The set of nonobvious quadratic points for the model y2 = f(x) is
finite if and only if J(k) is finite.
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(2) Suppose that J(k) is finite, and let q denote the number of nonobvi-
ous quadratic points for the given model. Then there is a relation

q = 2j − 2 + w − c2,
where j = #J(k), c = #C(k), and w is the number of points in
C(k) that are fixed by σ.

Proof. Fix a point P0 ∈ C(k) and let ι : C ↪→ J be the embedding taking
P0 to 0. Let S = Sym2(C) denote the symmetric square of C. Points in S(k̄)
correspond to unordered pairs {P,Q}, where P,Q ∈ C(k̄). The embedding
ι induces a morphism f : S → J taking {P,Q} to ι(P ) + ι(Q). We will need
a few facts concerning the fibers of this morphism; see the article of Milne
[25] for the necessary background material. There is a copy of P1

k inside
S whose points correspond to pairs of the form {P, σ(P )}. The image of
P1 under f is a single point ∗ ∈ J(k), and f restricts to an isomorphism

f : U = S\P1 ∼−→ J\{∗}. In particular, there is a bijection

(2.1) U(k) = S(k)\P1(k)←→ J(k)\{∗}.
Points in S(k) correspond to pairs of the form {P,Q} where either P and

Q are both in C(k), or they are quadratic over k and Q = P ; in particular,
points in P1(k) ⊂ S(k) correspond to pairs {P, σ(P )} where either P ∈ C(k)
or P is an obvious quadratic point. Finally, the points of U(k) are either
pairs {P, P} with P a nonobvious quadratic point, or pairs {P,Q} with
P,Q ∈ C(k) but Q 6= σ(P ).

Hence, there are three essentially distinct ways of producing points in
S(k): first, we can take points P and Q in C(k) and obtain a point

{P,Q} ∈ S(k).

Second, we can take an obvious quadratic point P and obtain

{P, σ(P )} ∈ P1(k) ⊂ S(k).

Finally, we can take a nonobvious quadratic point P and obtain

{P, P} ∈ U(k) ⊂ S(k).

Let Qo and Qn denote, respectively, the set of obvious and nonobvious
quadratic points on C. We then have maps

ψo : Qo → P1(k),

ψn : Qn → U(k),

and a map
ϕ : C(k)× C(k)→ S(k)

defined as above. The proof of the lemma will be a careful analysis of the
images of these three maps.

We have S(k) = im(ϕ) t im(ψo) t im(ψn). Removing the points of
P1(k) from both sides we obtain

(2.2) U(k) = (im(ϕ)\P1(k)) t im(ψn).
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To prove part (1), suppose first that Qn is finite. We know by Faltings’
theorem that C(k) is finite, so it follows from (2.2) that U(k) is finite. By
(2.1) we conclude that J(k) is finite. Conversely, assume that J(k) is finite.
Then U(k) is finite by (2.1), so im(ψn) is finite by (2.2). But ψn is 2-to-1
onto its image, so we conclude that Qn is finite. This completes the proof
of part (1).

To prove part (2), suppose that J(k) is finite and let q = #Qn, so that
#im(ψn) = q/2. By (2.1) and (2.2) we have

(2.3) q/2 = #U(k)−#(im(ϕ)\P1(k)) = j − 1−#(im(ϕ)\P1(k)).

By simple combinatorial arguments we see that

#im(ϕ) = c+
c(c− 1)

2
and #(P1(k) ∩ im(ϕ)) = w +

c− w
2

.

Therefore,

#(im(ϕ)\P1(k)) = c+
c(c− 1)

2
− w − c− w

2
=
c2 − w

2
.

By (2.3) we then have

j − 1 =
q

2
+
c2 − w

2
,

and part (2) follows immediately. �

2.3. Application to the modular curves X1(N) of genus 2. For later
reference we record here some consequences of Lemma 2.3 in the particular
case that k = Q and C is one of the three modular curves X1(N) of genus
2. We will fix models for these curves to be used throughout this section.
The following equations are given in [31, page 15], [41, page 774], and [32,
page 39], respectively:

X1(13) : y2 = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1;

X1(16) : y2 = −x(x2 + 1)(x2 − 2x− 1);

X1(18) : y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.

Theorem 2.4.

(1) Every quadratic point on X1(13) is obvious.
(2) The only nonobvious quadratic points on X1(16) are the following

four:

(
√
−1, 0), (−

√
−1, 0), (1 +

√
2, 0), (1−

√
2, 0).

(3) The only nonobvious quadratic points on X1(18) are the following
four:

(ω, ω − 1), (ω2, ω2 − 1), (ω, 1− ω), (ω2, 1− ω2),

where ω is a primitive cube root of unity.
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Proof. It is known that the Jacobians J1(N) for N ∈ {13, 16, 18} have only
finitely many rational points (see [24, §4] for the case of J1(13), [21, Thm.
1] for J1(16), and [22, Thm. IV.5.7] for J1(18)). Hence, Lemma 2.3 implies
that the corresponding curves X1(N) have only finitely many nonobvious
quadratic points. The various quantities appearing in the lemma are either
known or can be easily computed. Indeed, Ogg [30, page 226] showed that
#X1(N)(Q) = 6 for N ∈ {13, 16, 18} and

#J1(13)(Q) = 19 , #J1(16)(Q) = 20 , #J1(18)(Q) = 21.

The number w in Lemma 2.3 is determined by the number of rational roots
of the polynomial f(x).

Applying Lemma 2.3 to the curve C = X1(13), we have j = 19, c = 6, w =
0, and hence q = 0. Therefore, all quadratic points on X1(13) are obvious.

Similarly, with C = X1(16) we have j = 20, c = 6, w = 2, and hence
q = 4. We have already listed four nonobvious quadratic points, so these
are all.

Finally, with C = X1(18) we have j = 21, c = 6, w = 0, and hence q = 4.
Therefore, X1(18) has exactly four nonobvious quadratic points. Since we
have already listed four such points, these must be all. �

3. Classification of preperiodic graph structures

For each graph G appearing in the list of 46 graphs in Appendix B, it
is our goal in this section to describe — as explicitly as possible — all the
quadratic fields K and quadratic polynomials f(z) ∈ K[z] such that the
graph corresponding to the set PrePer(f,K) is isomorphic to G. There are
several graphs in the list for which this description can be achieved without
too much work: see §3.1 below for the case of graphs arising from quadratic
polynomials over Q, and §5 for other graphs with special properties. To-
gether, these two sections will cover all graphs in the appendix up to and
including the one labeled 7(2,1,1)b, and also 8(2,1,1), 8(3), and 9(2,1,1); in
this section we will focus on studying the remaining graphs. Our general ap-
proach is to construct a curve parameterizing occurrences of a given graph,
then apply results from §2 to study the quadratic points on this curve, and
from there obtain the desired description. As mentioned in §1.4, there are
a few graphs for which this approach does not yet yield the type of result
we are looking for; hence, we will exclude these graphs from consideration
in this section.

For the purpose of studying preperiodic points of quadratic polynomials
over a number field K, it suffices to consider only polynomials of the form

fc(z) := z2 + c

with c ∈ K. Indeed, for every quadratic polynomial f(z) ∈ K[z] there is a
unique linear polynomial g(z) ∈ K[z] and a unique c ∈ K such that

g ◦ f ◦ g−1 = fc.
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One sees easily that the graph representing the set of preperiodic points is
unchanged upon passing from f to g ◦ f ◦ g−1; hence, for our purposes we
may restrict attention to the one-parameter family {fc(z) : c ∈ K}. For a
quadratic polynomial f(z) with coefficients in K, we denote by G(f,K) the
directed graph corresponding to the set of K-rational preperiodic points for
f , excluding the fixed point at infinity. If m and n are positive integers, a
point of type mn for f(z) is an element x ∈ K which enters an m-cycle after
n iterations of the map f .

3.1. Graphs occurring over Q. Given a rational number c and a qua-
dratic fieldK, we may consider the two sets PrePer(fc,K) and PrePer(fc,Q).
For all but finitely many quadratic fields K these sets will be equal, since
Northcott’s theorem [33, Thm. 3.12] implies that there are only finitely
many quadratic elements of Q that are preperiodic for fc. Therefore, every
graph appearing in Poonen’s paper [31] — that is, every graph of the form
G(fc,Q) with c ∈ Q — will also occur as a graph G(fc,K) for some qua-
dratic field K (in fact, for all but finitely many such K). These graphs all
appear in Appendix B and are labeled

0, 2(1), 3(1,1), 3(2), 4(1,1), 4(2), 5(1,1)a, 6(1,1), 6(2), 6(3), 8(2,1,1), and
8(3).

For every graph G in the above list, Poonen provided an explicit parame-
terization of the rational numbers c for which G(fc,Q) ∼= G. This essentially
achieves, for each of the graphs above, our stated goal of describing the pairs
(K, c) giving rise to a given graph. There still remains the following ques-
tion, which will not be further discussed here: given c ∈ Q, how can one
determine the quadratic fields K for which PrePer(fc,K) 6= PrePer(fc,Q)
and moreover, what are all the graphs G(fc,K) that can arise in this way?
From the data in Appendix C we see that many of the graphs shown in
Appendix B are induced by a rational number c.

3.2. Preliminaries. We collect here a few results that will be used repeat-
edly throughout this section.

Let X be a smooth, projective, geometrically integral curve defined over
Q; let g denote the genus of X, and assume that g ≥ 2. Let r be the rank
of the group Jac(X)(Q), where Jac(X) denotes the Jacobian variety of X.
By Faltings’ theorem we know that X(Q) is a finite set; the following three
results can be used to obtain explicit upper bounds on the size of this set
under the assumption that r < g.

Theorem 3.1 (Coleman). Suppose that r < g and let p > 2g be a prime of
good reduction for X. Let X/Zp be a model of X with good reduction. Then

#X(Q) ≤ #X (Fp) + 2g − 2.

Proof. See the proof of Corollary 4a in [6] and the remark following the
corollary. �
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Theorem 3.2 (Lorenzini-Tucker). Assume that r < g. Let p be a prime of
good reduction for X, and let X/Zp be a model of X with good reduction. If

d is a positive integer such that p > d and pd > 2g − 1 + d, then

#X(Q) ≤ #X (Fp) +

(
p− 1

p− d

)
(2g − 2).

Proof. This follows from [23, Thm. 1.1] �

Theorem 3.3 (Stoll). Suppose that r < g and let p > 2r + 2 be a prime of
good reduction for X. Let X/Zp be a model of X with good reduction. Then

#X(Q) ≤ #X (Fp) + 2r.

Proof. This is a consequence of [37, Cor. 6.7]. �

The next result is crucial for obtaining equations for the parameterizing
curves of the graphs to be considered in this section. Different versions of
the various parts of this result have appeared elsewhere (for instance, [31]
and [40]), but not exactly in the form we will need. Hence, we include here
the precise statements we require for our purposes.

Proposition 3.4. Let K be a number field and let f(z) = z2+c with c ∈ K.

(1) If f(z) has a fixed point p ∈ K, then there is an element x ∈ K such
that

p = x+ 1/2, c = 1/4− x2.

Moreover, the point p′ = 1/2− x is also fixed by f(z).
(2) If f(z) has a point p ∈ K of period 2, then there is a nonzero element

x ∈ K such that

p = x− 1/2, c = −3/4− x2.

Moreover, the orbit of p under f consists of the points p and

f(p) = −x− 1/2.

(3) If f(z) has a point p ∈ K of period 3, then there is an element x ∈ K
such that x(x+ 1)(x2 + x+ 1) 6= 0 and

p =
x3 + 2x2 + x+ 1

2x(x+ 1)
, c = −x

6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Moreover, the orbit of p under f consists of the points p and

f(p) =
x3 − x− 1

2x(x+ 1)
,

f2(p) = −x
3 + 2x2 + 3x+ 1

2x(x+ 1)
.
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(4) If f(z) has a point p ∈ K of period 4, then there are elements x, y ∈
K with y(x2 − 1) 6= 0 such that

y2 = F16(x) := −x(x2 + 1)(x2 − 2x− 1)

and

p =
x− 1

2(x+ 1)
+

y

2x(x− 1)
, c =

(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
.

Moreover, the orbit of p under f consists of the points p and

f(p) = − x+ 1

2(x− 1)
+

y

2x(x+ 1)
,

f2(p) =
x− 1

2(x+ 1)
− y

2x(x− 1)
,

f3(p) = − x+ 1

2(x− 1)
− y

2x(x+ 1)
.

Proof. (1) The equation p2+c = p can be rewritten as (p−1/2)2+c−1/4 =
0. Letting x = p−1/2 we then have x2 + c−1/4 = 0, and the result follows.

(2) Since f2(p) = p and f(p) 6= p, then we have the equation

p2 + p+ c+ 1 =
f2(p)− p
f(p)− p

= 0.

Letting x = p + 1/2, this equation becomes x2 + c + 3/4 = 0, and hence
c = −3/4− x2. Expressing p and c in terms of x we obtain

f(p) = p2 + c = −x− 1/2.

We must have x 6= 0 since p and f(p) are distinct.
(3) See the proof of [40, Thm. 3].
(4) The existence of x and y and the expressions for p and c in terms

of x and y can be obtained from the discussion in [26, page 91–93]; the
expressions for the elements of the orbit of p are obtained by a straightfor-
ward calculation from the expressions for p and c. Finally, we must have
y 6= 0 since otherwise p would have period smaller than 4: indeed, note that
p = f2(p) if y = 0. �

Remark. Note that part (2) of Proposition 3.4 implies that f(z) can have
at most two points of period 2 in K, so that the graph G(f,K) can have
at most one 2-cycle. This fact will be needed in the analysis of some of the
graphs below.

The following lemma will allow us to show that certain preperiodic graph
structures occur infinitely many times over quadratic fields.

Lemma 3.5. Let p(x) ∈ Q[x] have nonzero discriminant and degree ≥ 3.
For every rational number r, define a field Kr by

Kr := Q
(√

p(r)
)
.
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Then, for every interval I ⊂ R of positive length, the set

Σ(I, p) = {Kr : r ∈ Q ∩ I}
contains infinitely many quadratic fields. In particular, if the polynomial
function p : R→ R induced by p(x) takes both positive and negative values,
then Σ(I, p) contains infinitely many real (resp. imaginary) quadratic fields.

Proof. For the proof of the statement that Σ(I, p) contains infinitely many
quadratic fields, see Appendix A. The second part follows from this state-
ment by choosing an interval I1 where p > 0 and an interval I2 where
p < 0. �

Use of computational software. In preparing this article we have made
extensive use of both the Magma [2] and Sage [34] computer algebra sys-
tems. Our data-gathering computations explained in §4.4 were carried out
by implementing the algorithms of §4.3 in Sage; these methods rely on the
algorithm [8] for listing elements of bounded height in number fields, which
is also implemented in Sage. In Magma, we have made use of some rather
sophisticated tools; in particular, we apply the RankBound function, which
implements Stoll’s algorithm [35] of 2-descent for bounding the rank of the
group of rational points on the Jacobian of a hyperelliptic curve over Q. In
addition, we frequently use the CurveQuotient function relying on Magma’s
invariant theory functionality to determine the quotient of a curve by an au-
tomorphism. Whenever this function is used in our paper, one can easily
check by hand that the output is correct. Finally, for the analysis of the
graph 14(3,1,1) in §3.19 we require the Chabauty function, which imple-
ments a method due to Bruin and Stoll [3, §4.4] combining the method of
Chabauty and Coleman with a Mordell–Weil sieve in order to determine the
set of rational points on a curve of genus 2 with Jacobian of rank 1.

We can now proceed to the main task of this paper, namely to study the
preperiodic graph structures appearing in Appendix B. We will consider the
graphs one at a time, following the order in which they are listed in the ap-
pendix; however, the graphs discussed in §3.1 and §5 will not be considered
henceforth in this section. The format for our discussion of each graph G
is roughly the same for all graphs: first, a parameterizing curve C is con-
structed and an explicit map is given which shows how to use points on C
to obtain instances of G. Next, a theorem is proved which describes the set
of quadratic points on C; finally, we use this theorem to deduce information
about the instances of G defined over quadratic fields. When there are in-
finitely many examples of a particular graph occurring over quadratic fields,
we will also be interested in deciding whether it occurs over both real and
imaginary fields, or only one type of quadratic field.
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3.3. Graph 8(1,1)a.

Lemma 3.6. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = −(x2 − 3)(x2 + 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a = − 2x

x2 − 1
, b =

y

x2 − 1
, c =

−2(x2 + 1)

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : (x4 − 1)(x2 + 3) 6= 0} to the set of all triples (a, b, c) ∈ K3

such that a and b are points of type 12 for the map fc satisfying f2c (a) 6=
f2c (b).

Figure 1. Graph type 8(1,1)a

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining a, b, c as in the lemma, it is straightforward to verify that
a is a point of type 12 for the map fc; that f2c (b) is fixed by fc; and that the
following relations hold:

(3.1) f2c (b)− fc(b) =
2(x2 + 1)

x2 − 1
, f2c (b)− f2c (a) =

x2 + 3

x2 − 1
.

It follows from these relations that if (x2 + 1)(x2 + 3) 6= 0, then b is of type
12 and f2c (a) 6= f2c (b). Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a and b
are points of type 12 for the map fc satisfying f2c (a) 6= f2c (b). The argument
given in [31, page 19] then shows that there exists a point (x, y) ∈ C(K)
with x2 6= 1 such that ϕ(x, y) = (a, b, c). Furthermore, the relations (3.1)
imply that necessarily (x2 + 1)(x2 + 3) 6= 0. To see that ϕ is injective, one
can verify that if ϕ(x, y) = (a, b, c), then

x =
−a

a2 + c
, y =

2b

a2 + c
. �

Remark. As shown in [31, page 19], the curve C is birational over Q to the
elliptic curve 24a4 in Cremona’s tables [7].

Proposition 3.7. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 8(1,1)a.
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Proof. Let p(x) = −(x2 − 3)(x2 + 1) ∈ Q[x]. Applying Lemma 3.5 to the
polynomial p(x) we obtain infinitely many real (resp. imaginary) quadratic

fields of the form Kr = Q(
√
p(r)) with r ∈ Q. For every such field there is

a point (r,
√
p(r)) ∈ C(Kr) which necessarily satisfies (r4 − 1)(r2 + 3) 6= 0;

hence, by Lemma 3.6 there is an element c ∈ Kr such that fc has points
a, b ∈ Kr of type 12 with f2c (a) 6= f2c (b). In order to conclude that G(fc,Kr)
contains a subgraph of type 8(1,1)a we need the additional condition that
ab 6= 0, so that the points fc(a) and fc(b) each have two distinct preimages.
We have

ab2 =
2r(r2 − 3)(r2 + 1)

(r2 − 1)3
,

so the condition ab 6= 0 will be satisfied as long as r 6= 0. �

3.4. Graph 8(1,1)b.

Lemma 3.8. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = 2(x3 + x2 − x+ 1).

Consider the rational map ϕ : C 99K A2 = SpecQ[p, c] given by

p =
y

x2 − 1
, c =

−2(x2 + 1)

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : x2 6= 1} to the set of all pairs (p, c) ∈ K2 such that p
is a point of type 13 for the map fc.

Figure 2. Graph type 8(1,1)b

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining p and c as in the lemma, it is straightforward to verify that
p is a point of type 13 for the map fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that p, c ∈ K are such that p is a
point of type 13 for fc. Then an argument given in [31, page 22] shows that
there exists a point (x, y) ∈ C(K) with x2 6= 1 such that ϕ(x, y) = (p, c).
To see that ϕ is injective, one can verify that if ϕ(x, y) = (p, c), then

x =
fc(p)

f2c (p)
, y = p(x2 − 1). �
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Remark. As shown in [31, page 23], the curve C is birational over Q to
the elliptic curve 11a3 in Cremona’s tables [7], which is the modular curve
X1(11).

Proposition 3.9. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 8(1,1)b.

Proof. Let q(x) = 2(x3 + x2 − x + 1) ∈ Q[x]. Applying Lemma 3.5 to the
polynomial q(x) we obtain infinitely many real (resp. imaginary) quadratic

fields of the form Kr = Q(
√
q(r)) with r ∈ Q. For every such field there

is a point (r,
√
q(r)) ∈ C(Kr) which necessarily satisfies r2 6= 1; hence, by

Lemma 3.8 there is an element c ∈ Kr such that fc has a point p ∈ Kr

of type 13. In order to conclude that G(fc,Kr) contains a subgraph of
type 8(1,1)b we need the additional condition that p · fc(p) · c(4c − 1) 6= 0.
Indeed, the condition p · fc(p) 6= 0 ensures that fc(p) and f2c (p) each have
two distinct preimages, while the condition c(4c− 1) 6= 0 guarantees that fc
has two distinct fixed points, and each fixed point has a preimage different
from itself. Now, one can check that

p2 · fc(p) · c(4c− 1) =
8r(r3 + r2 − r + 1)(r2 + 1)(r2 + 3)2

(r2 − 1)7
,

so we will have p · fc(p) · c(4c− 1) 6= 0 as long as r 6= 0. �

3.5. Graph 8(2)a.

Lemma 3.10. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = 2(x4 + 2x3 − 2x+ 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a = −x
2 + 1

x2 − 1
, b =

y

x2 − 1
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y) ∈ C(K) : x(x2 − 1)(x2 + 4x− 1)(x2 + 2x− 1) 6= 0}

to the set of all triples (a, b, c) ∈ K3 such that a and b are points of type 22
for the map fc satisfying f2c (a) 6= f2c (b).

Figure 3. Graph type 8(2)a
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Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining a, b, c as in the lemma, it is a routine calculation to verify
that f2c (a) = f4c (a), f2c (b) = f4c (b), f2c (b) = f3c (a), and

f3c (a)− f2c (a) =
x2 + 4x− 1

x2 − 1
,(3.2)

f3c (a)− fc(a) =
4x

x2 − 1
,

fc(b)− f3c (b) =
2(x2 + 2x− 1)

x2 − 1
.

From these relations it follows that if x(x2 + 4x− 1)(x2 + 2x− 1) 6= 0, then
a and b are points of type 22 for fc with f2c (a) 6= f2c (b). Hence, ϕ gives a
well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a and
b are points of type 22 for the map fc satisfying f2c (a) 6= f2c (b). Since the
map fc can have only one 2-cycle, the points f2c (a) and f2c (b) must form
a 2-cycle. The argument given in [31, page 20] then shows that there is a
point (x, y) ∈ C(K) with x2 6= 1 such that ϕ(x, y) = (a, b, c). Furthermore,
the relations (3.2) imply that x(x2 + 4x− 1)(x2 + 2x− 1) 6= 0. To see that
ϕ is injective, one can verify that if ϕ(x, y) = (a, b, c), then

x =
a− 1

a2 + c
, y = b(x2 − 1). �

Remark. As shown in [31, page 20], the curve C is birational over Q to the
elliptic curve 40a3 in Cremona’s tables [7].

Proposition 3.11. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 8(2)a.

Proof. Let p(x) = 2(x4 + 2x3 − 2x + 1) ∈ Q[x]. Applying Lemma 3.5
to the polynomial p(x) we obtain infinitely many quadratic fields of the

form Kr = Q(
√
p(r)) with r ∈ Q∗. For every such field there is a point

(r,
√
p(r)) ∈ C(Kr) which necessarily satisfies

(r2 − 1)(r2 + 4r − 1)(r2 + 2r − 1) 6= 0;

hence, by Lemma 3.10 there is an element c ∈ Kr such that fc has points
a, b ∈ Kr of type 22 satisfying f2c (a) 6= f2c (b). In order to conclude that
G(fc,Kr) contains a subgraph of type 8(2)a we need the additional condition
ab 6= 0 so that fc(a) and fc(b) each have two distinct preimages. Now, one
can check that

(3.3) − ab2 =
2(r2 + 1)(r4 + 2r3 − 2r + 1)

(r2 − 1)3
,

so the condition ab 6= 0 is automatically satisfied since r ∈ Q.
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Note that the polynomial function p : R → R induced by p(x) only
takes positive values, so that all fields Kr are real quadratic fields. Hence,
this argument proves the statement only for real quadratic fields. To prove
the statement for imaginary quadratic fields, we first obtain a Weierstrass
equation for the elliptic curve birational to C. The following are inverse
rational maps between C and the elliptic curve E with equation

Y 2 = X3 − 2X + 1 :

(x, y) 7→
(

2x2 + y

(x− 1)2
,
3x3 + 3x2 + 2xy − 3x+ 1

(x− 1)3

)
,

(X,Y ) 7→
(

X2 + 2Y

X2 − 4X + 2
,
2X4 + 8X3 + 8X2Y − 24X2 − 8XY + 24X − 8

(X2 − 4X + 2)2

)
.

Let q(X) = X3 − 2X + 1 ∈ Q[X]. Applying Lemma 3.5 to the polynomial
q(X) we obtain infinitely many imaginary quadratic fields of the form KR =

Q(
√
q(R)) with R ∈ Q. For every such field there is a point (R,

√
q(R)) ∈

E(KR); applying the change of variables above we obtain a point (r, s) ∈
C(KR) with

(3.4) r =
R2 + 2

√
q(R)

R2 − 4R+ 2
.

In particular, r must satisfy r(r2 − 1)(r2 + 4r − 1)(r2 + 2r − 1) 6= 0, since
otherwise r would be rational or would generate a real quadratic field. We
can now apply Lemma 3.10 to see that there is an element c ∈ KR such
that fc has points a, b ∈ KR of type 22 satisfying f2c (a) 6= f2c (b). From (3.3)
and (3.4) it follows that there are only finitely many values of R ∈ Q for
which we might have ab = 0. Hence, for all but finitely many values of R,
this construction will yield a graph G(fc,KR) containing a subgraph of type
8(2)a. �

3.6. Graph 8(2)b.

Lemma 3.12. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = 2(x3 + x2 − x+ 1).

Consider the rational map ϕ : C 99K A2 = SpecQ[p, c] given by

p =
y

x2 − 1
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : x(x2−1)(x2+4x−1) 6= 0} to the set of all pairs (p, c) ∈ K2

such that p is a point of type 23 for the map fc.
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Figure 4. Graph type 8(2)b

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining p, c as in the lemma, it is straightforward to verify that
f3c (p) = f5c (p) and

(3.5) f4c (p)− f2c (p) =
4x

x2 − 1
, f4c (p)− f3c (p) =

x2 + 4x− 1

x2 − 1
.

From these relations it follows that if x(x2 + 4x− 1) 6= 0, then p is of type
23 for fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that p, c ∈ K are such that p is a point
of type 23 for the map fc. Then an argument given in [31, page 23] shows
that there is a point (x, y) ∈ C(K) with x2 6= 1 such that ϕ(x, y) = (p, c).
Furthermore, the relations (3.5) imply that we must have x(x2+4x−1) 6= 0.
To see that ϕ is injective, one can verify that if ϕ(x, y) = (p, c), then

x =
fc(p)− 1

f2c (p)
, y = p(x2 − 1). �

Remark. The curve C is the same curve parameterizing the graph 8(1,1)b.
As noted earlier, C is birational to the modular curve X1(11).

Proposition 3.13. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 8(2)b.

Proof. Let q(x) = 2(x3 + x2 − x + 1) ∈ Q[x]. Applying Lemma 3.5 to the
polynomial q(x) we obtain infinitely many real (resp. imaginary) quadratic

fields of the form Kr = Q(
√
q(r)) with r ∈ Q∗. For every such field there

is a point (r,
√
q(r)) ∈ C(Kr) which necessarily satisfies r2 6= 1; hence, by

Lemma 3.12 there is an element c ∈ Kr such that fc has a point p ∈ Kr of
type 23. In order to conclude that G(fc,Kr) contains a subgraph of type
8(2)b we need the additional condition p·fc(p)·f3c (p) 6= 0 so that fc(p), f

2
c (p),

and f4c (p) each have two distinct preimages. One can check that

p2 · fc(p) · f3c (p) =
2(r3 + r2 − r + 1)(r2 + 1)(r2 + 2r − 1)

(r2 − 1)4
,

so in fact the condition p · fc(p) · f3c (p) 6= 0 is automatically satisfied since
r ∈ Q. �
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3.7. Graph 8(4).

Lemma 3.14. Let C/Q be the affine curve of genus 2 defined by the equation

y2 = F16(x) := −x(x2 + 1)(x2 − 2x− 1).

Consider the rational map ϕ : C 99K A2 = SpecQ[p, c] given by
(3.6)

p =
x− 1

2(x+ 1)
+

y

2x(x− 1)
, c =

(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : y(x2 − 1) 6= 0} to the set of all pairs (p, c) ∈ K2 such
that p is a point of period 4 for the map fc.

Figure 5. Graph type 8(4)

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x(x2 − 1) 6= 0. Defining p and c as in the lemma, it is straightforward to
verify the relations

(3.7) f4c (p) = p, p− f2c (p) =
y

x(x− 1)
.

The condition that y 6= 0 thus implies that p has period 4. Hence, ϕ gives
a well-defined map. The fact that ϕ is surjective follows immediately from
Proposition 3.4. To see that ϕ is injective, one can verify that if ϕ(x, y) =
(p, c), then

x =
1 + f2c (p) + p

1− f2c (p)− p
, y =

2px(x2 − 1)− x(x− 1)2

x+ 1
. �

Remark. As noted in §2.3, the curve C is birational over Q to the modular
curve X1(16).

Proposition 3.15. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 8(4).

Proof. Applying Lemma 3.5 to the polynomial F16(x) we obtain infinitely

many real (resp. imaginary) quadratic fields of the form Kr = Q(
√
F16(r))

with r ∈ Q∗. For every such field there is a point (r,
√
F16(r)) ∈ C(Kr)

which necessarily satisfies (r2−1)
√
F16(r) 6= 0; hence, by Lemma 3.14 there
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is an element c ∈ Kr such that fc has a point p ∈ Kr of period 4. In order
to conclude that G(fc,Kr) contains a subgraph of type 8(4) we need the
additional condition that every point in the orbit of p is nonzero, so that
each point has two distinct preimages. Using Proposition 3.4(4) we find
that if p · fc(p) · f2c (p) · f3c (p) = 0, then one of the following equations will
be satisfied:

r(r − 1)4 + (r2 + 1)(r + 1)2(r2 − 2r − 1) = 0,

r(r + 1)4 + (r2 + 1)(r − 1)2(r2 − 2r − 1) = 0.

However, one can verify that neither of these equations has a rational solu-
tion; therefore, every point in the orbit of p is necessarily nonzero. �

Remark. Our search in §4.4 failed to produce an example of a graph of type
8(4) over an imaginary quadratic field, though the previous proposition sug-
gests that there are infinitely many such examples. The reason for this is
that, even for rational parameters x of moderate size, the discriminant of the
field K = Q(

√
F16(x)) may be large, and the complexity of the rational func-

tion defining c forces the height of c to be large as well, thus placing the pair
(K, c) outside of our search range. We obtain an instance of this graph by
taking x = 5 in (3.6); this leads to the pair (K, c) = (Q(

√
−455), 199/720).

A computation of preperiodic points using the algorithm developed in §4.3
shows that, indeed, the graph G(fc,K) for this pair (K, c) is of type 8(4).

We end our discussion of the graph type 8(4) by stating explicitly how
to obtain all pairs (K, c) consisting of a quadratic field K and an element
c ∈ K for which G(fc,K) is of this type.

Theorem 3.16. Let K be a quadratic field. Suppose that there exists an
element c ∈ K such that G(fc,K) is of type 8(4). Then there is a rational
number x /∈ {0,±1} such that

(3.8) c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2

and K = Q(
√
−x(x2 + 1)(x2 − 2x− 1)).

Proof. By Lemma 3.14 there exists a point (x, y) ∈ C(K) with y(x2−1) 6= 0
such that c is given by (3.8). We claim that (x, y) cannot be a rational point
on C. Indeed, C is an affine model of the curve X1(16), which has exactly
six rational points. Therefore, C has five rational points, and it is easy to
see that they are (0, 0) and (±1,±2). Thus, if (x, y) ∈ C(Q), then either
x = 0 or x = ±1; however, both possibilities are precluded by the fact
that y(x2 − 1) 6= 0. Therefore, (x, y) is a quadratic point on C. Since
y 6= 0, it follows from Theorem 2.4 that x must be a rational number. In
particular, since (x, y) is a quadratic point, then K = Q(x, y) = Q(y) =

Q(
√
−x(x2 + 1)(x2 − 2x− 1)). �
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3.8. Graph 10(1,1)a. Our search described in §4.4 produced the pair

(K, c) =

(
Q(
√
−7),

3

16

)
for which the graph G(fc,K) is of type 10(1,1)a. We show here that this is
the only such pair (K, c) with K a quadratic number field and c ∈ K.

Lemma 3.17. Let C/Q be the affine curve of genus 4 defined by the equa-
tions

(3.9)

{
y2 = 2(x3 + x2 − x+ 1)

z2 = −2(x3 − x2 − x− 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y

x2 − 1
, b =

z

x2 − 1
, c =

−2(x2 + 1)

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y, z) ∈ C(K) : x(x2 − 1) 6= 0} to the set of all triples (a, b, c) ∈ K3 such
that a and b are points of type 13 for the map fc satisfying f2c (a) = f2c (b)
and fc(a) 6= fc(b).

Figure 6. Graph type 10(1,1)a

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) satisfies
x2 6= 1. Defining a, b, c as in the lemma, it is a routine calculation to verify
that a and b are points of type 13 for the map fc satisfying f2c (a) = f2c (b);
moreover, we have the relation

(3.10) fc(a)− fc(b) =
4x

x2 − 1
.

It follows that if x 6= 0, then fc(a) 6= fc(b). Hence, ϕ gives a well-defined
map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a
and b are points of type 13 for the map fc satisfying f2c (a) = f2c (b) and
fc(a) 6= fc(b). Then an argument given in [31, page 22] shows that there is
an element x ∈ K \ {±1} such that

(3.11) c =
−2(x2 + 1)

(x2 − 1)2
, a2 =

2(x3 + x2 − x+ 1)

(x2 − 1)2
.
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Since a2 + c = fc(a) = −fc(b) = −b2 − c, then using (3.11) we obtain

b2 =
−2(x3 − x2 − x− 1)

(x2 − 1)2
.

Letting y = a(x2 − 1) and z = b(x2 − 1) we then have a point (x, y, z) ∈
C(K) with x2 6= 1 such that ϕ(x, y, z) = (a, b, c). Furthermore, the relation
(3.10) implies that x 6= 0. To see that ϕ is injective, one can verify that if
ϕ(x, y, z) = (a, b, c), then

x =
fc(a)

f2c (a)
, y = a(x2 − 1), z = b(x2 − 1). �

Theorem 3.18. With C as in Lemma 3.17 we have the following:

(1) C(Q) = {(±1,±2,±2)}.
(2) If K is a quadratic field different from Q(

√
2) and Q(

√
−7), then

C(K) = C(Q).
(3) For K = Q(

√
2), C(K) \ C(Q) = {(0,±

√
2,±
√

2)}.
(4) For K = Q(

√
−7), C(K) \ C(Q) consists of the points

(x,±(2x− 4),±(2x+ 4)) with x2 + 7 = 0.

Proof. The equation y2 = 2(x3 + x2− x+ 1) defines the elliptic curve with
Cremona label 11a3. This curve has rank 0 and torsion order 5; the affine
rational points are (±1,±2). The equation z2 = −2(x3−x2−x− 1) defines
the same elliptic curve, and the affine rational points are again (±1,±2).
Therefore, C(Q) = {(±1,±2,±2)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2,
and let K = Q(x, y, z).

Case 1. x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2
and z = ±2, contradicting the assumption that (x, y, z) is a quadratic point
on C; hence, x 6= ±1. It follows that y /∈ Q, since having x, y ∈ Q would
imply that x = ±1. By the same argument, z /∈ Q. Therefore, K = Q(y) =
Q(z), so the rational numbers 2(x3 + x2 − x + 1) and −2(x3 − x2 − x − 1)
have the same squarefree part, and thus their product is a square. Hence,
there is a rational number w such that

(3.12) w2 = −x6 + 3x4 + x2 + 1.

Let X be the hyperelliptic curve of genus 2 defined by (3.12). We claim that
the following is a complete list of rational points on X:

X(Q) = {(±1,±2), (0,±1)}.
To see this, note that X has a nontrivial involution given by

(x,w) 7→ (−x,−w).

The quotient of X by this involution is the elliptic curve E defined by the
equation v2 = u3 + u2 + 3u− 1; this is the curve 44a1 in Cremona’s tables.
The quotient map X → E of degree 2 is given by (x,w) 7→ (1/x2, w/x3).
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The curve E has exactly 3 rational points, namely the point at infinity and
the points (1,±2). It follows that X has at most six rational points, and
since we have already listed six points, these must be all.

Returning to (3.12), we have a point (x,w) ∈ X(Q) with x 6= ±1, so we
conclude that x = 0. By (3.9) we then have y2 = z2 = 2. Thus, we have
shown that the only quadratic points on C having a rational x-coordinate
are the points (x, y, z) = (0,±

√
2,±
√

2).

Case 2. x is quadratic. By Lemma 2.2 applied to the equation

y2 = 2(x3 + x2 − x+ 1),

there exist a rational number v and a point (x0, y0) ∈ {(±1,±2)} such that

(3.13) x2 +
2x0 − v2 + 2

2
x+

2x20 + v2x0 + 2x0 − 2y0v − 2

2
= 0.

Similarly, applying Lemma 2.2 to the equation z2 = −2(x3− x2− x− 1) we
see that there exist a rational number w and a point (x1, z1) ∈ {(±1,±2)}
such that

(3.14) x2 +
2x1 + w2 − 2

2
x+

2x21 − w2x1 − 2x1 + 2z1w − 2

2
= 0.

Comparing (3.13) and (3.14) we obtain the system{
2x0 − v2 + 4 = 2x1 + w2

2x20 + v2x0 + 2x0 − 2y0v = 2x21 − w2x1 − 2x1 + 2z1w.

For each choice of points (x0, y0), (x1, z1) the above system defines a
zero-dimensional scheme S in the (v, w) plane over Q, and hence all its
rational points may be determined. There are a total of 16 choices of
pairs (x0, y0), (x1, z1), leading to 16 schemes S. Using the Magma function
RationalPoints we find all the rational points (v, w) on these schemes, and
in every case check whether the polynomial (3.13) is irreducible. This occurs
for four of these schemes, and for all of these (3.13) becomes x2+7 = 0. The
equations (3.9) now imply that y2 = (2x − 4)2 and z2 = (2x + 4)2. Thus,
we have shown that the only quadratic points on C having a quadratic x-
coordinate are those of the form (x,±(2x− 4),±(2x+ 4)) with x2 + 7 = 0.

In conclusion, the quadratic points on C are the points (0,±
√

2,±
√

2)
defined over the field Q(

√
2) and the points (x,±(2x− 4),±(2x+ 4)) where

x2 + 7 = 0, defined over the field Q(
√
−7); the theorem now follows imme-

diately. �

Corollary 3.19. Let K be a quadratic field and let c ∈ K. Suppose that
G(fc,K) contains a graph of type 10(1,1)a. Then c = 3/16 and K =
Q(
√
−7).
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Proof. By Lemma 3.17 there is a point (x, y, z) ∈ C(K) with x(x2− 1) 6= 0
such that

(3.15) c =
−2(x2 + 1)

(x2 − 1)2
.

It follows from Theorem 3.18 that (x, y, z) is a quadratic point on C with
x 6= 0. Therefore, K = Q(

√
−7) and x2 +7 = 0. From (3.15) we then obtain

c = 3/16. �

3.9. Graph 10(2,1,1)a.

Lemma 3.20. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = 5x4 − 8x3 + 6x2 + 8x+ 5.

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
3x2 + 1

2(x2 − 1)
, b =

y

2(x2 − 1)
, c = −3x4 + 10x2 + 3

4(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : x(x2 − 1)(x2 − 4x − 1) 6= 0} to the set of all triples
(a, b, c) ∈ K3 such that a is a fixed point and b is a point of type 22 for the
map fc.

Figure 7. Graph type 10(2,1,1)a

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining a, b, c as in the lemma, it is straightforward to verify that
a is a fixed point for fc; that f2c (b) = f4c (b), and that the following relations
hold:

(3.16) f3c (b)− f2c (b) =
4x

x2 − 1
, fc(b)− f3c (b) =

x2 − 4x− 1

x2 − 1
.

From these relations it follows that if x(x2 − 4x − 1) 6= 0, then b is of type
22 for fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a is a
fixed point and b is a point of type 22 for the map fc. Then an argument
given in [31, page 21–22] shows that there exists a point (x, y) ∈ C(K) with
x(x2− 1) 6= 0 such that ϕ(x, y) = (a, b, c). Furthermore, the relations (3.16)
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imply that we must have x2 − 4x − 1 6= 0. To see that ϕ is injective, one
can verify that if ϕ(x, y) = (a, b, c), then

x =
1 + 2f2c (b)

3− 2a
, y = 2b(x2 − 1). �

Remark. As shown in [31, page 22], the curve C is birational over Q to the
elliptic curve 17a4 in Cremona’s tables [7].

Proposition 3.21. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 10(2,1,1)a.

Proof. Let p(x) = 5x4−8x3 +6x2 +8x+5 ∈ Q[x]. Applying Lemma 3.5 to
the polynomial p(x) we obtain infinitely many quadratic fields of the form

Kr = Q(
√
p(r)) with r ∈ Q. For every such field Kr with r 6= 0 there is a

point (r,
√
p(r)) ∈ C(Kr) which necessarily satisfies r(r2−1)(r2−4r−1) 6= 0;

hence, by Lemma 3.20 there is an element c ∈ Kr such that fc has a fixed
point a ∈ Kr and a point b ∈ Kr of type 22. In order to guarantee that
G(fc,Kr) contains a subgraph of type 10(2,1,1)a we need the additional
condition that b · f2c (b) · c(4c − 1) 6= 0. Indeed, the condition b · f2c (b) 6=
0 ensures that fc(b) and f3c (b) each have two distinct preimages, and the
condition c(4c− 1) 6= 0 ensures that fc has two distinct fixed points, each of
which has a preimage different from itself. Now, one can check that

(3.17) − b2 · f2c (b) · c(4c− 1)

=
(5r4 − 8r3 + 6r2 + 8r + 5)(3r2 + 1)(r2 + 4r − 1)(r2 + 3)(r2 + 1)2

8(r2 − 1)7
,

so the condition b ·f2c (b) ·c(4c−1) 6= 0 is automatically satisfied since r ∈ Q.
Note that the polynomial function p : R → R induced by p(x) only

takes positive values, so that all fields Kr are real quadratic fields. Hence,
this argument proves the statement only for real quadratic fields. To prove
the statement for imaginary quadratic fields, we first obtain a Weierstrass
equation for the elliptic curve birational to C. We give inverse rational maps
between C and the elliptic curve E given by Y 2 = X3 − 11X + 6. The map
C → E is given by

(x, y) 7→
(

2y + x2 + 2x+ 5

(x− 1)2
,
2y(x+ 3) + 6x3 − 6x2 + 18x+ 14

(x− 1)3

)
.

The map back is given by

(X,Y ) 7→
(

4Y + (X + 1)2

X2 − 2X − 19
,

8Y (X2 + 10X + 9) + 4(X4 + 2X3 + 24X2 + 46X − 233)

(X2 − 2X − 19)2

)
.
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Let q(X) = X3 − 11X + 6 ∈ Q[X]. Applying Lemma 3.5 to the polynomial
q(X) we obtain infinitely many imaginary quadratic fields of the form KR =

Q(
√
q(R)) with R ∈ Q. For every such field there is a point (R,

√
q(R)) ∈

E(KR); applying the change of variables above we obtain a point (r, s) ∈
C(KR) with

(3.18) r =
4
√
q(R) + (R+ 1)2

R2 − 2R− 19
.

In particular, r must satisfy r(r2 − 1)(r2 − 4r − 1) 6= 0, since otherwise r
would be rational or would generate a real quadratic field. We can now
apply Lemma 3.20 to see that there is an element c ∈ KR such that fc
has a fixed point a ∈ KR and a point b ∈ KR of type 22. Once again, we
must check the condition b · f2c (b) · c(4c − 1) 6= 0. From (3.17) and (3.18)
it follows that there are only finitely many values of R ∈ Q for which we
might have b · f2c (b) · c(4c− 1) = 0. Hence, for all but finitely many R, the
above construction yields a graph G(fc,KR) containing a subgraph of type
10(2,1,1)a. �

3.10. Graph 10(2,1,1)b.

Lemma 3.22. Let C/Q be the affine curve of genus 1 defined by the equation

y2 = (5x2 − 1)(x2 + 3).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y

2(x2 − 1)
, b = −x

2 − 4x− 1

2(x2 − 1)
, c = −3x4 + 10x2 + 3

4(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : x(x2− 1)(x2 + 3) 6= 0} to the set of all triples (a, b, c) ∈ K3

such that a is a point of type 12 and b is a point of period 2 for the map fc.

Figure 8. Graph type 10(2,1,1)b

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x2 6= 1. Defining a, b, c as in the lemma, it is straightforward to verify that
f2c (a) is fixed by fc; that b = f2c (b); and that

(3.19) b− fc(b) =
4x

x2 − 1
, fc(a)− f2c (a) =

x2 + 3

x2 − 1
.
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From these relations it follows that if x(x2 + 3) 6= 0, then b is a point of
period 2 and a is of type 12 for fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a is a
point of type 12 and b is a point of period 2 for the map fc. Then an argument
given in [31, page 21] shows that there exists a point (x, y) ∈ C(K) with
x(x2− 1) 6= 0 such that ϕ(x, y) = (a, b, c). Furthermore, the relations (3.19)
imply that we must have x2 + 3 6= 0. To see that ϕ is injective, one can
verify that if ϕ(x, y) = (a, b, c), then

x = − 1 + 2f2c (b)

1 + 2f2c (a)
, y = 2a(x2 − 1). �

Remark. As shown in [31, page 21], the curve C is birational over Q to the
elliptic curve 15a8 in Cremona’s tables [7].

Proposition 3.23. There are infinitely many real (resp. imaginary) qua-
dratic fields K containing an element c for which G(fc,K) admits a subgraph
of type 10(2,1,1)b.

Proof. Let p(x) = (5x2 − 1)(x2 + 3) ∈ Q[x]. Applying Lemma 3.5 to the
polynomial p(x) we obtain infinitely many real (resp. imaginary) quadratic

fields of the form Kr = Q(
√
p(r)) with r ∈ Q. For every such field Kr

with r 6= 0 there is a point (r,
√
p(r)) ∈ C(Kr) which necessarily satisfies

r(r2 − 1)(r2 + 3) 6= 0; hence, by Lemma 3.22 there is an element c ∈ Kr

such that fc has a point a ∈ Kr of type 12 and a point b ∈ Kr of period 2.
In order to conclude that G(fc,Kr) contains a subgraph of type 10(2,1,1)b
we need the additional condition that ac(4c − 1)b · fc(b) 6= 0. Indeed, the
condition a 6= 0 ensures that fc(a) has two distinct preimages, while the
condition c(4c − 1) 6= 0 guarantees that fc has two distinct fixed points,
each of which has a preimage different from itself; the condition b · fc(b) 6= 0
ensures that b and fc(b) each have two distinct preimages. Now, one can
check that

a2c(4c− 1)b · fc(b)

=
(5r2 − 1)(r2 + 3)2(3r2 + 1)(r2 + 1)2(r2 − 4r − 1)(r2 + 4r − 1)

16(r2 − 1)8
,

so the condition ac(4c − 1)b · fc(b) 6= 0 is automatically satisfied since r ∈
Q. �

3.11. Graph 10(3,1,1).

Lemma 3.24. Let C/Q be the affine curve of genus 2 defined by the equation

y2 = F18(x) := x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.
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Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
,

b =
1

2
+

y

2x(x+ 1)
,

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

For every number field K, the map ϕ induces a bijection from the set
{(x, y) ∈ C(K) : x(x+1)(x2+x+1) 6= 0} to the set of all triples (a, b, c) ∈ K3

such that a and b are points of periods 3 and 1, respectively, for the map fc.

Figure 9. Graph type 10(3,1,1)

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x(x+ 1) 6= 0. Defining a, b, c as in the lemma, it is a routine calculation to
verify that b is a fixed point for fc; that f3c (a) = a; and that

(3.20) a− fc(a) =
x2 + x+ 1

x(x+ 1)
.

It follows from these relations that if x2 + x + 1 6= 0, then a has period 3
under fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a and
b are points of periods 3 and 1, respectively, for the map fc. Applying
Proposition 3.4 we see that there are elements ρ ∈ K and x ∈ K \ {0,−1}
such that

(3.21) b = 1/2 + ρ, c = 1/4− ρ2

and

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
,(3.22)

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.
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Equating the two expressions for c given in (3.21) and (3.22) and letting
y = 2x(x+ 1)ρ we obtain

y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.

Thus, we have a point (x, y) ∈ C(K) with x(x+ 1) 6= 0 such that ϕ(x, y) =
(a, b, c). Furthermore, the relations (3.20) imply that x2 +x+ 1 6= 0. To see
that ϕ is injective, one can verify that if ϕ(x, y) = (a, b, c), then

x = a2 + a+ c, y = x(x+ 1)(2b− 1). �

Remark. As noted in §2.3, the curve C is birational over Q to the modular
curve X1(18).

Theorem 3.25. Let K be a quadratic field. Suppose that there exists an
element c ∈ K such that G(fc,K) has a subgraph of type 10(3,1,1). Then
there is a rational number x /∈ {0,−1} such that

(3.23) c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2

and K = Q(
√
F18(x)). In particular, K is a real quadratic field.

Proof. By Lemma 3.24 there is a point (x, y) ∈ C(K) with

x(x+ 1)(x2 + x+ 1) 6= 0

such that c is given by (3.23). We claim that (x, y) cannot be a rational point
on C. Indeed, C is an affine model of the curve X1(18), which has exactly
six rational points (two of them at infinity). Therefore, C has four rational
points, and it is easy to see that they are (0,±1) and (−1,±1). Thus, if
(x, y) ∈ C(Q), then either x = 0 or x = −1; however, this contradicts
the assumption that x(x + 1) 6= 0. Therefore, (x, y) is a quadratic point
on C. Since x2 + x + 1 6= 0, it follows from Theorem 2.4 that x must
be a rational number. In particular, since (x, y) is a quadratic point, then

K = Q(x, y) = Q(y) = Q(
√
F18(x)). The fact thatK is a real quadratic field

now follows from the observation that the polynomial function F18 : R→ R
induced by F18(x) only takes positive values. �

Proposition 3.26. There are infinitely many (real) quadratic fields K con-
taining an element c for which G(fc,K) admits a subgraph of type 10(3,1,1).

Proof. Applying Lemma 3.5 to the polynomial F18(x) we obtain infinitely

many (real) quadratic fields of the form Kr = Q(
√
F18(r)) with r ∈ Q.

For every such field there is a point (r,
√
F18(r)) ∈ C(Kr) which necessarily

satisfies r(r+1)(r2+r+1) 6= 0; hence, by Lemma 3.24 there is an element c ∈
Kr such that fc has points a, b ∈ Kr of periods 3 and 1, respectively. In order
to conclude that G(fc,Kr) contains a subgraph of type 10(3,1,1) we need the
additional condition that a ·fc(a) ·f2c (a) ·c(4c−1) 6= 0. Indeed, the condition
c(4c− 1) 6= 0 guarantees that fc has two distinct fixed points, each of which
has a preimage different from itself; and the condition a · fc(a) · f2c (a) 6= 0
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ensures that every point in the orbit of a has two distinct preimages. The
expression for c given in Lemma 3.24 implies that c < 0, so in fact the
condition c(4c − 1) 6= 0 is automatically satisfied. Furthermore, one can
verify that

−a · fc(a) · f2c (a) =
(r3 + 2r2 + r + 1)(r3 − r − 1)(r3 + 2r2 + 3r + 1)

8r3(r + 1)3
,

so a · fc(a) · f2c (a) 6= 0 since r ∈ Q. �

Remark. Our search in §4.4 failed to produce an example of a graph of type
10(3,1,1), though the previous proposition suggests that there are infinitely
many such examples. The reason for this is that, even for rational param-
eters x of moderate size, the discriminant of the field K = Q(

√
F18(x))

may be large, and the complexity of the rational function defining c forces
the height of c to be large as well, thus placing the pair (K, c) outside of
our search range. However, we expected this graph to occur infinitely times
over quadratic fields, since Poonen [31, page 15] had showed that the curve
parametrizing maps with a fixed point and a point of period 3 is the mod-
ular curve X1(18), which is hyperelliptic and therefore has infinitely many
quadratic points. We obtain one instance of the graph by taking x = 2 in
(3.23); this leads to the pair (K, c) = (Q(

√
337),−301/144). A computa-

tion of preperiodic points using the algorithm developed in §4.3 shows that,
indeed, the graph G(fc,K) for this pair (K, c) is of type 10(3,1,1).

3.12. Graph 10(3,2).

Lemma 3.27. Let C/Q be the affine curve of genus 2 defined by the equation

y2 = F13(x) := x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1.

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
.

b = −1

2
+

y

2x(x+ 1)
,

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y) ∈ C(K) : xy(x+ 1)(x2 + x+ 1) 6= 0}

to the set of all triples (a, b, c) ∈ K3 such that a and b are points of periods
3 and 2, respectively, for the map fc.

Proof. Fix a number field K and suppose that (x, y) ∈ C(K) satisfies
x(x+ 1) 6= 0. Defining a, b, c as in the lemma, it is straightforward to verify
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Figure 10. Graph type 10(3,2)

that f3c (a) = a, f2c (b) = b, and

(3.24) a− fc(a) =
x2 + x+ 1

x(x+ 1)
, b− fc(b) =

y

x(x+ 1)
.

It follows from these relations that if y(x2 + x+ 1) 6= 0, then a has period 3
under fc and b has period 2. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K are such that a and
b are points of periods 3 and 2, respectively, for the map fc. Applying
Proposition 3.4 we see that there are elements σ ∈ K and x ∈ K \ {0,−1}
such that

(3.25) c = −3/4− σ2, b = −1/2 + σ

and
(3.26)

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
, c = −x

6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Equating the two expressions for c given in (3.25) and (3.26) and letting
y = 2x(x+ 1)σ we obtain

y2 = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1.

Thus, we have a point (x, y) ∈ C(K) with x(x+ 1) 6= 0 such that ϕ(x, y) =
(a, b, c). Furthermore, the relations (3.24) imply that y(x2 + x+ 1) 6= 0. To
see that ϕ is injective, one can verify that if ϕ(x, y) = (a, b, c), then

x = a2 + a+ c, y = x(x+ 1)(2b+ 1). �

Remark. As noted in §2.3, the curve C is birational over Q to the modular
curve X1(13).

Theorem 3.28. Let K be a quadratic field. Suppose that there exists an
element c ∈ K such that G(fc,K) has a subgraph of type 10(3,2). Then
there is a rational number x /∈ {0,−1} such that

(3.27) c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
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and K = Q(
√
F13(x)). In particular, K is a real quadratic field.

Proof. By Lemma 3.27 there is a point (x, y) ∈ C(K) with

xy(x+ 1)(x2 + x+ 1) 6= 0

such that c is given by (3.27). We claim that (x, y) cannot be a rational point
on C. Indeed, C is an affine model of the curve X1(13), which has exactly
six rational points (two of them at infinity). Therefore, C has four rational
points, and it is easy to see that they are (0,±1) and (−1,±1). Thus, if
(x, y) ∈ C(Q), then either x = 0 or x = −1; however, this contradicts the
assumption that x(x+1) 6= 0. Therefore, (x, y) is a quadratic point on C, so
it follows from Theorem 2.4 that x must be a rational number. In particular,
since (x, y) is a quadratic point, then K = Q(x, y) = Q(y) = Q(

√
F13(x)).

The fact that K is a real quadratic field now follows from the observation
that the polynomial function F13 : R → R induced by F13(x) only takes
positive values. �

Proposition 3.29. There are infinitely many (real) quadratic fields K con-
taining an element c for which G(fc,K) admits a subgraph of type 10(3,2).

Proof. Applying Lemma 3.5 to the polynomial F13(x) we obtain infinitely

many (real) quadratic fields of the form Kr = Q(
√
F13(r)) with r ∈ Q.

For every such field there is a point (r,
√
F13(r)) ∈ C(Kr) which necessarily

satisfies r(r + 1)(r2 + r + 1)F13(r) 6= 0; hence, by Lemma 3.27 there is
an element c ∈ Kr such that fc has points a, b ∈ Kr of periods 3 and 2,
respectively. In order to conclude that G(fc,Kr) contains a subgraph of
type 10(3,2) we need the additional condition that all points in the orbits
of a and b are nonzero, as this will ensure that every such point has two
distinct preimages. One can check that

−a · fc(a) · f2c (a) =
(r3 + 2r2 + r + 1)(r3 − r − 1)(r3 + 2r2 + 3r + 1)

8r3(r + 1)3
,

so all points in the orbit of a are nonzero since r ∈ Q. Now, using Lem-
ma 3.27 we see that if b · fc(b) = 0, then

r6 + 2r5 + r4 + 2r3 + 6r2 + 4r + 1 = r2(r + 1)2.

However, one can verify that this equation has no rational solution. There-
fore, both points in the orbit of b must be nonzero. �

3.13. Graph 12(2). Our search described in §4.4 produced the pairs

(K, c) =

(
Q(
√

2),−15

8

)
and (K, c) =

(
Q(
√

57),−55

48

)
for which the graph G(fc,K) is of type 12(2). We will show here that,
in addition to these known pairs, there are at most four other pairs (K, c)
giving rise to this graph structure.
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Lemma 3.30. Let C/Q be the affine curve of genus 5 defined by the equa-
tions

(3.28)

{
y2 = 2(x4 + 2x3 − 2x+ 1)

z2 = 2(x3 + x2 − x+ 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, s, c] given by

a =
z

x2 − 1
, s =

y

x2 − 1
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : x(x2 − 1)(x2 + 4x− 1)(x2 + 2x− 1) 6= 0}

to the set of all triples (a, s, c) ∈ K3 such that a is a point of type 23 for the
map fc and s is a point of type 22 satisfying f2c (s) 6= f3c (a).

Figure 11. Graph type 12(2)

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
with x2 6= 1. Defining a, s, c ∈ K as in the lemma, it is a straightforward
calculation to verify that f3c (a) = f5c (a), f4c (a) = f2c (s), fc(s) − f2c (s) = 1,
and

f4c (a)− f3c (a) =
x2 + 4x− 1

x2 − 1
,(3.29)

f4c (a)− f2c (a) =
4x

x2 − 1
,

fc(s)− f3c (s) =
2(x2 + 2x− 1)

x2 − 1
.

It follows from these relations that if x(x2+4x−1)(x2+2x−1) 6= 0, then a is
a point of type 23 and s is of type 22 for fc, and moreover that f2c (s) 6= f3c (a).
Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, s, c ∈ K are such that a is a
point of type 23 for the map fc and s is a point of type 22 satisfying f2c (s) 6=
f3c (a). Let r = fc(a), so that r is of type 22. Since fc can have only one
2-cycle, the points f2c (r) and f2c (s) must form a 2-cycle. Then the argument
given in [31, page 20] shows that there is an element x ∈ K \ {0,±1} such
that
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c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
,(3.30)

r = −x
2 + 1

x2 − 1
,

s2 =
2(x4 + 2x3 − 2x+ 1)

(x2 − 1)2
.

Since a2 = r − c, this implies that

a2 =
2(x3 + x2 − x+ 1)

(x2 − 1)2
.

Letting y = s(x2 − 1) and z = a(x2 − 1) we obtain a point (x, y, z) ∈ C(K)
with x(x2 − 1) 6= 0 and ϕ(x, y, z) = (a, s, c). Furthermore, the relations
(3.29) imply that (x2 + 4x− 1)(x2 + 2x− 1) 6= 0. To see that ϕ is injective,
one can verify that if ϕ(x, y, z) = (a, s, c), then

x =
fc(a)− 1

f2c (a)
, y = s(x2 − 1), z = a(x2 − 1). �

Lemma 3.31. Let X/Q be the hyperelliptic curve of genus 3 defined by the
equation

w2 = x7 + 3x6 + x5 − 3x4 + x3 + 3x2 − 3x+ 1.

Then X(Q) contains the points ∞, (−1,±2), (0,±1), (1,±2) and at most 8
other points.

Proof. Using the Magma function Points we search for rational points on
X of height at most 105 and obtain the points listed above. Using the
RankBounds function we find that the group Jac(X)(Q) has rank 2; we
may therefore apply the method of Chabauty and Coleman to bound the
number of rational points on X. The prime 3 is of good reduction for X,
and Magma’s Points function yields #X(F3) = 7. Applying the Lorenzini-
Tucker bound (Theorem 3.2) with p = 3, d = 2 we obtain #X(Q) ≤ 15.
Since we have already listed 7 rational points, we conclude that there are at
most 8 additional rational points on X. �

Theorem 3.32. With C as in Lemma 3.30 we have the following:

(1) C(Q) = {(±1,±2,±2)}.
(2) If (x, y, z) is a quadratic point on C with x ∈ Q, then there exists

w ∈ Q such that (x,w) ∈ X(Q), where X is the curve defined in
Lemma 3.31. Moreover, x 6= ±1.

(3) The quadratic points (x, y, z) on C with x /∈ Q are the points

(x,±(4x+ 10),±(2x+ 4)) with x2 − 2x− 7 = 0,

which are defined over the field Q(
√

2), and the points

(x,±(24x− 10),±(6x− 4)) with x2 − 16x+ 7 = 0,
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which are defined over the field Q(
√

57).

Proof. Let C1 be the hyperelliptic curve of genus 1 defined by equation
y2 = 2(x4 + 2x3 − 2x + 1). Since C1 has a rational point — for instance,
the point (1,2) — it is an elliptic curve; in fact, as mentioned in §3.5, C1

is the elliptic curve with Cremona label 40a3, which has exactly four ra-
tional points. Hence, #C1(Q) = 4, and we easily find the four points:
C1(Q) = {(±1,±2)}. Similarly, let C2 be the hyperelliptic curve defined
by the equation z2 = 2(x3 + x2 − x + 1). Then C2 is the elliptic curve
11a3, which has exactly five rational points. Hence, C2(Q) consists of the
point at infinity and four other points, which are easily found to be the
points (±1,±2). Knowing C1(Q) and C2(Q) we conclude, in particular,
that C(Q) = {(±1,±2,±2)}.

Suppose now that (x, y, z) ∈ C(Q) satisfies [Q(x, y, z) : Q] = 2, and let
K = Q(x, y, z).

Case 1. x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2
and z = ±2, contradicting the assumption that (x, y, z) is a quadratic point
on C. It follows that y /∈ Q, since having x, y ∈ Q would imply that x = ±1.
By the same argument, z /∈ Q. Since both y and z are quadratic, then
K = Q(y) = Q(z), so the numbers 2(x4+2x3−2x+1) and 2(x3+x2−x+1)
must have the same squarefree part; hence their product is a square, so there
is a rational number w such that

w2 = x7 + 3x6 + x5 − 3x4 + x3 + 3x2 − 3x+ 1.

This proves part (2) of the theorem.

Case 2. x is quadratic. By Lemma 2.2 applied to the equation

z2 = 2(x3 + x2 − x+ 1),

there exist a rational number w and a point (x0, z0) ∈ {(±1,±2)} such that

(3.31) x2 +
2x0 − w2 + 2

2
x+

2x20 + w2x0 + 2x0 − 2z0w − 2

2
= 0.

We will now deduce a different expression for the minimal polynomial of
x. Making the change of variables

(3.32) X =
2x2 + y

(x− 1)2
, Y =

3x3 + 3x2 + 2xy − 3x+ 1

(x− 1)3

satisfying

(3.33) x =
X2 + 2Y

X2 − 4X + 2
,

the system (3.28) becomes{
Y 2 = X3 − 2X + 1

z2 = 2(x3 + x2 − x+ 1).
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Suppose that X ∈ Q. Substituting y = X(x − 1)2 − 2x2, the equation
y2 − 2(x4 + 2x3 − 2x+ 1) = 0 becomes

(x− 1)2
(
(X2 − 4X + 2)x2 − 2X2x+X2 − 2

)
= 0,

so we must have

(3.34) x2 − 2X2

X2 − 4X + 2
x+

X2 − 2

X2 − 4X + 2
= 0.

Comparing (3.31) and (3.34) we arrive at the system{
(2x0 − w2 + 2)(X2 − 4X + 2) = −4X2

(2x20 + w2x0 + 2x0 − 2z0w − 2)(X2 − 4X + 2) = 2(X2 − 2).

For every choice of point (x0, z0) ∈ {(±1,±2)}, the above system defines
a 0-dimensional scheme in the (X,w) plane over Q, whose rational points
we compute using the Magma function RationalPoints. For every solution
(X,w) we then check whether the polynomial (3.34) is irreducible. With
(x0, z0) = (−1, 2) and (X,w) = (1/2, 2) we obtain x2 − 2x − 7 = 0; with
(x0, z0) = (1, 2) and (X,w) = (4, 6) we obtain x2 − 16x + 7 = 0. All other
solutions lead to one of these two equations.

Suppose now that X /∈ Q. By Lemma 2.2 applied to the equation
Y 2 = X3 − 2X + 1, there exist a rational number v and a point (X0, Y0) ∈
{(0,±1), (1, 0)} such that

(3.35) X2+(X0−v2)X+X2
0+v2X0−2Y0v−2 = 0 and Y = Y0+v(X−X0).

The point (0,−1) is excluded in this case because (3.33) would imply that
x = v

v−2 ∈ Q. If (X0, Y0) = (0, 1), then (3.33) and (3.35) imply that

(3.36) x2 − 4(v + 1)

v2 − 2
x− 1 = 0,

and if (X0, Y0) = (1, 0), then

(3.37) x2 − 4x

v2 − 2v − 1
− v2 + 2v − 1

v2 − 2v − 1
= 0.

Suppose that (X0, Y0) = (0, 1). Comparing (3.31) and (3.36) we obtain
the system {

(2x0 − w2 + 2)(v2 − 2) = −8(v + 1)

2x20 + w2x0 + 2x0 − 2z0w = 0.

For each choice of point (x0, z0) ∈ {(±1,±2)} we solve the above system
for v and w, and find that v = −1. But then (3.36) implies that x = ±1,
which is a contradiction.

Now suppose that (X0, Y0) = (1, 0). Comparing (3.31) and (3.37) we
obtain the system{

(2x0 − w2 + 2)(v2 − 2v − 1) = −8

(2x20 + w2x0 + 2x0 − 2z0w − 2)(v2 − 2v − 1) = −2(v2 + 2v − 1).
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For each choice of point (x0, z0) ∈ {(±1,±2)} we consider the above
system and find that it has no rational solutions.

The assumption that X /∈ Q has led in every case to a contradiction, so
we conclude that X must be rational. Hence, the analysis done earlier shows
that either x2 − 2x− 7 = 0 or x2 − 16x+ 7 = 0. Assuming x2 − 2x− 7 = 0,
the system (3.28) can be solved to obtain y = ±(4x + 10), z = ±(2x + 4).
Thus, we have found the points (x,±(4x + 10),±(2x + 4)) ∈ C(K), where
K = Q(x) = Q(

√
2). Now assume that x2− 16x+ 7 = 0. Then we solve the

system (3.28) and find that y = ±(24x− 10), z = ±(6x− 4). Thus, we have
found the points (x,±(24x − 10),±(6x − 4)) ∈ C(K), where K = Q(x) =
Q(
√

57). This proves part (3) of the theorem. �

Corollary 3.33. In addition to the known pairs

(Q(
√

2),−15/8) and (Q(
√

57),−55/48)

there are at most four pairs (K, c), with K a quadratic number field and
c ∈ K, for which G(fc,K) contains a graph of type 12(2). Moreover, for
every such pair we must have c ∈ Q.

Proof. Suppose that (K, c) is such a pair. By Lemma 3.30 there is a point
(x, y, z) ∈ C(K) with x(x2 − 1) 6= 0 such that

(3.38) c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

We cannot have (x, y, z) ∈ C(Q) since this would imply, by Theorem 3.32
part (1), that x ∈ {±1}. Hence, (x, y, z) is a quadratic point on C. Suppose
that x is quadratic. Then Theorem 3.32 implies that either x2 − 2x− 7 = 0
or x2 − 16x + 7 = 0. In the former case we have K = Q(x) = Q(

√
2), and

(3.38) implies that c = −15/8; in the latter case have K = Q(x) = Q(
√

57)
and (3.38) implies that c = −55/48. Thus, we recover the two pairs listed
in the corollary. Note also that c ∈ Q in this case.

Consider now the case where x ∈ Q (and hence c ∈ Q, by (3.38)). By
Theorem 3.32 there is a rational number w such that (x,w) ∈ X(Q). Since
x /∈ {0,±1}, then Lemma 3.31 implies that there are at most four options
for x. Each value of x determines the number c by (3.38) and the field K
by (3.28). This gives at most four options for the pair (K, c). �

3.14. Graph 12(2,1,1)a. Our search described in §4.4 produced the pair

(K, c) =

(
Q(
√

17),−13

16

)
for which the graph G(fc,K) is of type 12(2,1,1)a. We will show here that
this is the only such pair (K, c) with K a quadratic number field and c ∈ K.
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Lemma 3.34. Let C/Q be the affine curve of genus 5 defined by the equa-
tions

(3.39)

{
y2 = 2(x4 + 2x3 − 2x+ 1)

z2 = 5x4 + 8x3 + 6x2 − 8x+ 5.

Consider the rational map ϕ : C 99K A4 = SpecQ[r, s, p, c] given by

r = −x
2 + 1

x2 − 1
,

s =
y

x2 − 1
,

p =
1

2
+

z

2(x2 − 1)
,

c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : x(x2 − 1)(x2 + 4x− 1)(x2 + 2x− 1) 6= 0}

to the set of all tuples (r, s, p, c) ∈ K4 such that p is a fixed point of the map
fc and r, s are points of type 22 for fc satisfying f2c (r) 6= f2c (s).

Figure 12. Graph type 12(2,1,1)a

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
satisfying x2 6= 1. Defining r, s, p, c ∈ K as in the lemma, it is a simple
calculation to verify that p is a fixed point of the map fc; moreover, Lem-
ma 3.10 implies that if x(x2 + 4x − 1)(x2 + 2x − 1) 6= 0, then r and s are
points of type 22 for fc with f2c (r) 6= f2c (s). Hence, ϕ gives a well-defined
map.

To see that ϕ is surjective, suppose that r, s, p, c ∈ K are such that p is
a fixed point of the map fc and r, s are points of type 22 for fc satisfying
f2c (r) 6= f2c (s). By Lemma 3.10 there are elements x, y ∈ K satisfying
y2 = 2(x4 + 2x3− 2x+ 1) such that x(x2− 1)(x2 + 4x− 1)(x2 + 2x− 1) 6= 0
and

r = −x
2 + 1

x2 − 1
, s =

y

x2 − 1
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.
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Now, since p is a fixed point for fc, Proposition 3.4 implies that there is
an element ρ ∈ K such that

c = 1/4− ρ2 and p = 1/2 + ρ.

Equating the two expressions for c given above and letting z = 2ρ(x2 − 1),
we obtain the relation z2 = 5x4 + 8x3 + 6x2 − 8x + 5. Thus, we have a
point (x, y, z) ∈ C(K) with x(x2 − 1)(x2 + 4x − 1)(x2 + 2x − 1) 6= 0 and
ϕ(x, y, z) = (r, s, p, c). To see that ϕ is injective, one can verify that if
ϕ(x, y, z) = (r, s, p, c), then

x =
r − 1

r2 + c
, y = s(x2 − 1), z = (2p− 1)(x2 − 1). �

Theorem 3.35. With C as in Lemma 3.34 we have the following:

(1) C(Q) = {(±1,±2,±4)}.
(2) If K is a quadratic field different from Q(

√
5) and Q(

√
17), then

C(K) = C(Q).
(3) For K = Q(

√
5),

C(K) \ C(Q) = {(x,±(4x− 2),±8x) : x2 + 4x− 1 = 0}.

(4) For K = Q(
√

17), C(K) \ C(Q) consists of the points

(−3,±2
√

17,±4
√

17), (1/3,±2
√

17/9,±4
√

17/9),

and the points (x,±10x,±(16x− 4)) with x2 + 8x− 1 = 0.

Proof. As shown in the proof of Theorem 3.32, the only rational solutions
to the equation y2 = 2(x4 + 2x3 − 2x+ 1) are (x, y) = (±1,±2). Let C2 be
the hyperelliptic curve of genus 1 defined by the equation

z2 = 5x4 + 8x3 + 6x2 − 8x+ 5.

Making the change of variables x 7→ −x, it follows from the proof of Proposi-
tion 3.21 that C is isomorphic to the elliptic curve 17a4 in Cremona’s tables,
which has exactly four rational points; hence, C2 has four rational points,
and these are easily found to be (±1,±4). Knowing all rational solutions to
each of the defining equations for C, we deduce that C(Q) = {(±1,±2,±4)}.

Suppose now that (x, y, z) ∈ C(Q) satisfies [Q(x, y, z) : Q] = 2, and let
K = Q(x, y, z).

Case 1. x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2
and z = ±4, contradicting the assumption that (x, y, z) is a quadratic point
on C. It follows that y /∈ Q, since having x, y ∈ Q would imply that
x = ±1. By a similar argument, z /∈ Q. Since y and z are both quadratic,
we must have K = Q(y) = Q(z), so the numbers 2(x4 + 2x3 − 2x + 1) and
5x4 + 8x3 + 6x2 − 8x + 5 must have the same squarefree part, and hence
their product is a square; thus, there is a rational number w such that

(3.40) w2 = 10x8 + 36x7 + 44x6 − 12x5 − 44x4 + 12x3 + 44x2 − 36x+ 10.
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Let X be the hyperelliptic curve of genus 3 defined by (3.40). Searching
for rational points on X using Magma’s Points function we obtain the 8
points (±1,±8), (−3,±136), (1/3,±136/81); we will show that these are all
the rational points on X. To see this, note that X has an involution given by
(x,w) 7→ (−1/x,w/x4). The quotient of X by this involution is the elliptic
curve

E : v2 + uv + v = u3 − u2 − 6u− 4.

The quotient map X → E of degree 2 is given by

u =
2x4 + 6x3 + 4x2 − 6x− w + 2

(x2 − 1)2
,

v =
−6x6 − 24x5 − 22x4 + 16x3 + 2x2w + 22x2 + 4xw − 24x− 2w + 6

x6 − 3x4 + 3x2 − 1
.

The curve E is the elliptic curve 17a2 in Cremona’s tables, and has exactly
four rational points. It follows that X can have at most 8 rational points,
and since we have already listed 8 points in X(Q), these must be all.

Returning to (3.40), we have a point (x,w) ∈ X(Q) with x 6= ±1; we
must then have x = −3 or x = 1/3. Taking x = −3 we obtain by
(3.39) that y2 = 68 and z2 = 272; if x = 1/3, then y2 = 68/81 and
z2 = 272/81. Thus, we have shown that the only quadratic points on
C having a rational x-coordinate are the points (−3,±2

√
17,±4

√
17) and

(1/3,±2
√

17/9,±4
√

17/9).

Case 2. x is quadratic. Starting with the system (3.39), we make the change
of variables

X =
2x2 + y

(x− 1)2
, Y =

3x3 + 3x2 + 2xy − 3x+ 1

(x− 1)3
(3.41)

S =
5x2 + 2x+ 2z + 1

(x− 1)2
, T =

2(7x3 + 9x2 + 3xz − 3x+ z + 3)

(x− 1)3
(3.42)

satisfying

(3.43)
X2 + 2Y

X2 − 4X + 2
= x =

S2 + 2S + 4T + 1

S2 − 10S + 5

to obtain the equations {
Y 2 = X3 − 2X + 1

T 2 = S3 − 11S + 6.

The idea of the proof is to use these two equations together with Lemma
2.2 to find the minimal polynomials of X and S, and then using (3.43) to
find the minimal polynomial of x. It may occur that X or S are rational
rather than quadratic, so we must consider this possibility. If X ∈ Q, then
using the relation y = X(x− 1)2 − 2x2, the equation

y2 − 2(x4 + 2x3 − 2x+ 1) = 0
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becomes

(x− 1)2(X2 − 4X + 2)

(
x2 − 2X2

X2 − 4X + 2
x+

X2 − 2

X2 − 4X + 2

)
= 0.

Since x /∈ Q and the equation X2 − 4X + 2 = 0 has no rational solution,
this implies that

(3.44) x2 − 2X2

X2 − 4X + 2
x+

X2 − 2

X2 − 4X + 2
= 0.

Similarly, if S ∈ Q, then using the relation z = 1
2 [S(x− 1)2 − 5x2 − 2x− 1],

the equation

z2 − (5x4 + 8x3 + 6x2 − 8x+ 5) = 0

becomes

1

4
(x− 1)2(S2 − 10S + 5)

(
x2 − 2S2 + 4S + 2

S2 − 10S + 5
x+

S2 − 2S − 19

S2 − 10S + 5

)
= 0.

Since x /∈ Q and the equation S2 − 10S + 5 = 0 has no rational solution,
this implies that

(3.45) x2 − 2S2 + 4S + 2

S2 − 10S + 5
x+

S2 − 2S − 19

S2 − 10S + 5
= 0.

Now, if X is quadratic, then by Lemma 2.2 applied to the equation
Y 2 = X3 − 2X + 1, there is a rational number v and a point (X0, Y0) ∈
{(0,±1), (1, 0)} such that

(3.46) X2 +(X0−v2)X+X2
0 +v2X0−2Y0v−2 = 0 , Y = Y0 +v(X−X0).

The point (0,−1) is excluded in this case because (3.43) would imply that
x = v

v−2 ∈ Q. If (X0, Y0) = (0, 1), then (3.43) and (3.46) imply that

(3.47) x2 − 4(v + 1)

v2 − 2
x− 1 = 0.

If instead (X0, Y0) = (1, 0), then

(3.48) x2 − 4x

v2 − 2v − 1
− v2 + 2v − 1

v2 − 2v − 1
= 0.

Similarly, if S /∈ Q, then by Lemma 2.2 applied to the equation

T 2 = S3 − 11S + 6,

there is a rational number w and a point (S0, T0) ∈ {(−1,±4), (3, 0)} such
that

(3.49) S2 + (S0−w2)S+S2
0 +w2S0−2T0w−11 = 0 , T = T0 +w(S−S0).

The point (−1,−4) is excluded because it would lead to x = w+1
w−3 ∈ Q. If

(S0, T0) = (3, 0), then (3.43) and (3.49) imply that

(3.50) x2 − 8x

w2 − 4w − 1
− w2 + 4w − 1

w2 − 4w − 1
= 0,
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and if (S0, T0) = (−1, 4), then

(3.51) x2 − 8w + 8

w2 − 5
x− 1 = 0.

We now split the proof into four cases, according to whether X and S are
rational or quadratic.

Case 2a. X,S ∈ Q. We simultaneously have relations (3.44) and (3.45).
Comparing these equations we obtain the system{

X2(S2 − 10S + 5) = (X2 − 4X + 2)(S2 + 2S + 1)

(X2 − 2)(S2 − 10S + 5) = (X2 − 4X + 2)(S2 − 2S − 19),

whose rational solutions are (X,S) = (0,−1) and (X,S) = (1, 3). However,
both solutions lead to x = ±1 by applying (3.44) and (3.45). We conclude
that X and S cannot both be rational.

Case 2b. X ∈ Q, S /∈ Q. We have (3.44) and (3.49). If (S0, T0) = (3, 0),
then we compare (3.44) and (3.50) to arrive at the system{

X2(w2 − 4w − 1) = 4(X2 − 4X + 2)

(X2 − 2)(w2 − 4w − 1) = −(X2 − 4X + 2)(w2 + 4w − 1),

whose only rational solution is (X,w) = (1, 1). However, when w = 1, (3.50)
becomes (x+ 1)2 = 0, a contradiction.

If (S0, T0) = (−1, 4), then we compare (3.44) and (3.51) to conclude
that X = 0 or 2. Then (3.44) becomes x2 − 1 = 0 (a contradiction) or
x2 + 4x− 1 = 0.

Case 2c. X /∈ Q, S ∈ Q. In this case we have (3.45) and (3.46). If
(X0, Y0) = (0, 1), then we compare (3.45) and (3.47) to conclude that S = 7
and x2 + 8x− 1 = 0.

If (X0, Y0) = (1, 0), then we compare (3.45) and (3.48) to arrive at the
system{

2(S2 − 10S + 5) = (v2 − 2v − 1)(S + 1)2

−(v2 + 2v − 1)(S2 − 10S + 5) = (v2 − 2v − 1)(S2 − 2S − 19),

whose only rational solution is (S, v) = (3, 1). However, if v = 1, then (3.48)
becomes (x+ 1)2 = 0, a contradiction.

Case 2d. X,S /∈ Q. We have (3.46) and (3.49).

• If (X0, Y0) = (1, 0) and (S0, T0) = (3, 0), then comparing (3.48) and
(3.50) we find that v = w = ±1. But then (3.48) implies that
x = ±1, a contradiction.
• If (X0, Y0) = (1, 0) and (S0, T0) = (−1, 4), then we compare (3.48)

and (3.51) to see that v = 0 and x2 + 4x− 1 = 0.
• If (X0, Y0) = (0, 1) and (S0, T0) = (3, 0), then we compare (3.47) and

(3.50) to conclude that w = 0, and therefore x2 + 8x− 1 = 0.
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• If (X0, Y0) = (0, 1) and (S0, T0) = (−1, 4), then comparing (3.47)
and (3.51) we obtain

(v + 1)(w2 − 5) = 2(w + 1)(v2 − 2).

Let E ⊂ P2 be the projective closure of the curve defined by this
equation. Then E is a nonsingular plane cubic with at least four
rational points, namely the affine point (−1,−1) and three points
at infinity. Using Magma we find that E is the elliptic curve with
Cremona label 17a4, which has exactly 4 rational points. It follows
that (v, w) = (−1,−1) is the only affine point on E. But then (3.47)
becomes x2 − 1 = 0, which is a contradiction.

In all cases that have not led to a contradiction we concluded that either
x2 + 4x− 1 = 0 or x2 + 8x− 1 = 0. If x2 + 4x− 1 = 0, then (3.39) implies
that y = ±(4x − 2) and z = ±8x. If x2 + 8x − 1 = 0, then y = ±10x and
z = ±(16x−4). Thus, we have determined all quadratic points on C having
a quadratic x-coordinate, and now the theorem follows immediately. �

Corollary 3.36. Let K be a quadratic field and let c ∈ K. Suppose that
G(fc,K) contains a graph of type 12(2,1,1)a. Then c = −13/16 and K =
Q(
√

17).

Proof. By Lemma 3.34, there is a point (x, y, z) ∈ C(K) with

(x2 − 1)(x2 + 4x− 1) 6= 0

such that

(3.52) c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

It follows from Theorem 3.35 that K = Q(
√

17) and that x is either −3, 1/3,
or a quadratic number satisfying x2 + 8x− 1 = 0. In all three cases, (3.52)
implies that c = −13/16. �

3.15. Graph 12(2,1,1)b. Our search described in §4.4 produced the pairs

(K, c) =

(
Q(
√
−7),− 5

16

)
and

(
Q(
√

33),−45

16

)
for which the graph G(fc,K) is of type 12(2,1,1)b. We will show here that,
in addition to these known pairs, there are at most four other pairs (K, c)
giving rise to this graph structure.

Lemma 3.37. Let C/Q be the affine curve of genus 5 defined by the equa-
tions

(3.53)

{
y2 = −3x4 + 14x2 + 5,

z2 = 2(x3 + x2 − x+ 1).
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Consider the rational map ϕ : C 99K A3 = SpecQ[p, q, c] given by

p =
y + 1− x2

2(x2 − 1)
, q =

z

x2 − 1
, c =

−2(x2 + 1)

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : y(x2 − 1) 6= 0}

to the set of all tuples (p, q, c) ∈ K3 such that p is a point of period 2 and q
is a point of type 13 for the map fc.

Figure 13. Graph type 12(2,1,1)b

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
with x2 6= 1. Defining p, q, c ∈ K as in the lemma, it is a simple calculation
to verify that q is a point of type 13 for fc and that

(3.54) f2c (p) = p, p− fc(p) =
y

x2 − 1
.

It follows that if y 6= 0, then p has period 2 under fc. Hence, ϕ gives a
well-defined map.

To see that ϕ is surjective, suppose that p, q, c ∈ K are such that p is a
point of period 2 and q is a point of type 13 for fc. By Proposition 3.4, there
is an element σ ∈ K such that

(3.55) p = σ − 1/2 and c = −3/4− σ2.

Since q is of type 13, an argument given in [31, page 22] shows that there is
an element x ∈ K \ {±1} such that

(3.56) q2 =
2(x3 + x2 − x+ 1)

(x2 − 1)2
and c =

−2(x2 + 1)

(x2 − 1)2
.

Letting z = q(x2 − 1) we then have z2 = 2(x3 + x2 − x + 1). Equating the
expressions for c given in (3.55) and (3.56) we obtain

4σ2(x2 − 1)2 = −3x4 + 14x2 + 5;

hence, letting y = 2σ(x2−1) we arrive at the equation y2 = −3x4+14x2+5.
Thus, we have a point (x, y, z) ∈ C(K) satisfying x2 6= 1 and ϕ(x, y, z) =
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(p, q, c). Moreover, the relations (3.54) imply that y 6= 0. To see that ϕ is
injective, one can verify that if ϕ(x, y, z) = (p, q, c), then

x =
fc(q)

f2c (q)
, y = (2p+ 1)(x2 − 1), z = q(x2 − 1). �

Lemma 3.38. Let X/Q be the hyperelliptic curve of genus 3 defined by the
equation

s2 = −6x7 − 6x6 + 34x5 + 22x4 − 18x3 + 38x2 − 10x+ 10.

Then X(Q) contains the points ∞, (±1,±8), (−3,±56), (1/3,±88/27) and
at most 8 other points.

Proof. Using the Magma function Points we search for rational points on
X of height at most 105 and obtain the points listed above. Using the
RankBounds function we find that the group Jac(X)(Q) has rank 1; we
may therefore apply the method of Chabauty and Coleman to bound the
number of rational points on X. The prime 13 is of good reduction for
X, and we compute #X(F13) = 16. Applying Stoll’s bound (Theorem 3.3)
we obtain #X(Q) ≤ 18. Since X has no rational point with s = 0, the
number of rational points must be odd, and therefore #X(Q) ≤ 17. Since
we have already listed 9 rational points, we conclude that there are at most
8 additional rational points on X. �

Theorem 3.39. With C as in Lemma 3.37 we have the following:

(1) C(Q) = {(±1,±4,±2)}.
(2) If (x, y, z) is a quadratic point on C, then x ∈ Q \ {±1}. Moreover,

there exists s ∈ Q such that (x, s) ∈ X(Q), where X is the curve
defined in Lemma 3.38.

Proof. Let C1 be the hyperelliptic curve of genus 1 defined by the equation
y2 = −3x4 + 14x2 + 5. Making the change of variables (x, y) 7→ (1/x, y/x2)
we see from [31, page 21] that C1 is isomorphic to the elliptic curve with
Cremona label 15a8, which has exactly four rational points. Therefore, C1

has four rational points, and these are easily found to be (±1,±4). The
curve z2 = 2(x3 +x2−x+1) is birational to the elliptic curve 11a3, which is
the modular curve X1(11). This curve has five rational points, the nontrivial
ones being (±1,±2). Knowing all rational solutions to both of the equations
defining C, we deduce that C(Q) = {(±1,±4,±2)}.

To prove part (2) of the theorem, suppose that (x, y, z) ∈ C(Q) satisfies
[Q(x, y, z) : Q] = 2, and let K = Q(x, y, z).

Case 1. x ∈ Q. We cannot have x = ±1, since this would imply that y = ±4
and z = ±2, contradicting the assumption that (x, y, z) is a quadratic point
on C. It follows that y /∈ Q, since having x, y ∈ Q would imply that x = ±1.
By a similar argument, z /∈ Q. Therefore, K = Q(y) = Q(z), so the numbers
−3x4 + 14x2 + 5 and 2(x3 +x2−x+ 1) must have the same squarefree part,
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and so their product is a square; hence, there is a rational number s such
that

s2 = −6x7 − 6x6 + 34x5 + 22x4 − 18x3 + 38x2 − 10x+ 10.

Thus, we have (x, s) ∈ X(Q).

Case 2. x is quadratic. By Lemma 2.2 applied to the equation

z2 = 2(x3 + x2 − x+ 1),

there is a rational number w and a point (x0, z0) ∈ {(±1,±2)} such that

(3.57) x2 +
2x0 − w2 + 2

2
x+

2x20 + w2x0 + 2x0 − 2z0w − 2

2
= 0.

With x, y as in (3.53) we make the change of variables

(3.58) X =
−x2 + 4x+ y + 1

2(x− 1)2
, Y =

−3x3 + 7x2 + xy + 7x+ 3y + 5

2(x− 1)3

satisfying

(3.59) x =
Y +X2 + 2X

X2 +X + 1

to obtain the equations{
Y 2 = 4X3 + 5X2 + 2X + 1

z2 = 2(x3 + x2 − x+ 1).

Suppose that X ∈ Q. Substituting y = 2X(x− 1)2 + x2− 4x− 1 into the
equation y2 = −3x4 + 14x2 + 5 we obtain the following expression for the
minimal polynomial of x:

(3.60) x2 − 2X2 + 4X

X2 +X + 1
x+

X2 −X − 1

X2 +X + 1
= 0.

Comparing (3.57) and (3.60) we arrive at the system{
(2x0 − w2 + 2)(X2 +X + 1) = −4X(X + 2)

(2x20 + w2x0 + 2x0 − 2z0w − 2)(X2 +X + 1) = 2(X2 −X − 1).

For every choice of point (x0, z0) ∈ {(±1,±2)} the above system defines
a 0-dimensional scheme over Q, whose rational points we compute using the
Magma function RationalPoints. In every case we find that X = −1 or
X = 0. But then (3.60) implies that x = ±1, which is a contradiction.
Therefore, X cannot be rational, so by Lemma 2.2 applied to the equation
Y 2 = 4X3 + 5X2 + 2X + 1, there is a rational number v and a point
(X0, Y0) ∈ {(0,±1), (−1, 0)} such that

X2 +
4X0 − v2 + 5

4
X +

4X2
0 + v2X0 + 5X0 − 2Y0v + 2

4
= 0,(3.61)

Y = Y0 + v(X −X0).
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The point (X0, Y0) = (0,−1) is excluded because (3.59) would imply that
x = v+3

v−1 ∈ Q. If (X0, Y0) = (0, 1), then (3.59) and (3.61) imply that

(3.62) x2 − v2 + 4v − 1

v2 − 4v + 7
= 0,

and if (X0, Y0) = (−1, 0), then

(3.63) x2 − 8v

v2 + 3
x− v2 − 5

v2 + 3
= 0.

Suppose that (X0, Y0) = (0, 1). Comparing (3.57) and (3.62) we obtain
the system{

2x0 − w2 + 2 = 0

(2x20 + w2x0 + 2x0 − 2z0w − 2)(v2 − 4v + 7) = −2(v2 + 4v − 1).

For each choice of point (x0, z0) ∈ {(±1,±2)} we solve the above system
for v and w, and find that v = 1. But then (3.62) implies that x = ±1,
which is a contradiction.

Suppose now that (X0, Y0) = (−1, 0). Comparing (3.57) and (3.63) we
obtain the system{

(2x0 − w2 + 2)(v2 + 3) = −16v

(2x20 + w2x0 + 2x0 − 2z0w − 2)(v2 + 3) = −2(v2 − 5).

For each choice of point (x0, z0) ∈ {(±1,±2)} we solve the above system
for v and w, and find that v = ±1. But then (3.63) implies that x = ±1, a
contradiction.

Since the assumption that x /∈ Q has led in every case to a contradiction,
we conclude that x must be rational. The analysis done in Case 1 then
proves the theorem. �

Corollary 3.40. In addition to the known pairs

(Q(
√
−7),−5/16) and (Q(

√
33),−45/16)

there are at most four pairs (K, c), with K a quadratic number field and
c ∈ K, for which G(fc,K) contains a graph of type 12(2,1,1)b. Moreover,
for every such pair we must have c ∈ Q.

Proof. Suppose that (K, c) is such a pair. Since fc has a point of period 2
and a point of type 13 in K, then by Lemma 3.37 there is a point (x, y, z) ∈
C(K) with y(x2 − 1) 6= 0 such that

(3.64) c =
−2(x2 + 1)

(x2 − 1)2
.

We cannot have (x, y, z) ∈ C(Q) since this would imply, by Theorem 3.39(1),
that x ∈ {±1}. Hence, (x, y, z) is a quadratic point on C. By Theo-
rem 3.39(2) we must therefore have x ∈ Q, and thus c ∈ Q. Moreover, there
is a rational number s such that (x, s) ∈ X(Q). It follows from Lemma 3.38
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that either x ∈ {−3, 1/3} or x belongs to a list of at most 4 other rational
numbers. Setting x = −3 we obtain by (3.64) and (3.53) that c = −5/16
and y2 = −112, so K = Q(y) = Q(

√
−7). If x = 1/3, then c = −45/16

and y2 = 176/27, so K = Q(y) = Q(
√

33). Thus, we recover the two pairs
(K, c) listed in the statement of the corollary. If x /∈ {−3, 1/3}, then there
are at most four options for x; each value of x determines the number c by
(3.64) and the field K by (3.53). This gives at most four options for the pair
(K, c). �

3.16. Graph 12(4). Our search described in §4.4 produced a unique pair

(K, c) =
(
Q(
√

105),−95/48
)

consisting of a quadratic field K and an element c ∈ K for which the graph
G(fc,K) is of type 12(4). We will show here that, in addition to this known
example, there are at most five other such pairs (K, c).

Lemma 3.41. Let C/Q be the affine curve of genus 9 defined by the equa-
tions
(3.65){

y2 = −x(x2 + 1)(x2 − 2x− 1)

z2 = x(−x6 + x5 + 7x4 + 10x3 − 7x2 + 5x+ 1)− 2x(x− 1)(x+ 1)2y.

Consider the rational map ϕ : C 99K A2 = SpecQ[p, c] given by

p =
z

2x(x2 − 1)
, c =

(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set{
(x, y, z) ∈ C(K) : y(x2 − 1)

(
y(x+ 1) + x(x− 1)2

)
6= 0
}

to the set of all pairs (p, c) ∈ K2 such that p is a point of type 42 for the
map fc.

Figure 14. Graph type 12(4)
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Proof. Fix a number field K, suppose that (x, y, z) ∈ C(K) is a point
satisfying y(x2 − 1) 6= 0, and define p, c ∈ K as in the lemma. From Lem-
ma 3.14 it follows that the point

r :=
x− 1

2(x+ 1)
+

y

2x(x− 1)

has period 4 under fc. Now, it is a simple calculation to verify that fc(p) =
−r; in order to conclude that p is of type 42 for fc it is therefore enough to
show that −r is of type 41. Since r has period 4, −r will necessarily be of
type 41 as long as r 6= −r. We have

(3.66) r = 0⇐⇒ y(x+ 1) + x(x− 1)2 = 0,

so if we assume that y(x + 1) + x(x − 1)2 6= 0, then it follows that p is of
type 42 for fc. This proves that ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that p, c ∈ K are such that p is a
point of type 42 for the map fc. Then q := p2 + c is a point of type 41, so
r := −q is a point of period 4. By Lemma 3.14 there are elements x, y ∈ K
satisfying y2 = −x(x2 + 1)(x2 − 2x− 1) and y(x2 − 1) 6= 0 such that

c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
, r =

x− 1

2(x+ 1)
+

y

2x(x− 1)
.

Clearing denominators in the equation

−p2 − (x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
=

x− 1

2(x+ 1)
+

y

2x(x− 1)

and letting z = 2x(x2 − 1)p we obtain

z2 = x(−x6 + x5 + 7x4 + 10x3 − 7x2 + 5x+ 1)− 2x(x− 1)(x+ 1)2y.

Thus, we have a point (x, y, z) ∈ C(K) with y(x2 − 1) 6= 0 and ϕ(x, y, z) =
(p, c). Furthermore, we must have y(x+1)+x(x−1)2 6= 0 because otherwise
(3.66) would imply that q = r, and hence that q has period 4, a contradiction.

To see that ϕ is injective, one can verify that if ϕ(x, y, z) = (p, c), then

x =
f4c (p) + f2c (p)− 1

f4c (p) + f2c (p) + 1
,

y = −2x(x2 − 1)fc(p) + x(x− 1)2

x+ 1
,

z = 2x(x2 − 1)p. �

Lemma 3.42. Let X/Q be the hyperelliptic curve of genus 5 defined by the
equation

w2 = x12 + 2x11 − 13x10 − 26x9 + 67x8 + 124x7 + 26x6 − 44x5

+ 179x4 − 62x3 − 5x2 + 6x+ 1.

Then X(Q) contains the points ∞+,∞−, (±1,±16), (0,±1), (−3,±368) and
at most 10 other points.
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Proof. Using the Magma function Points we search for rational points
on X of height at most 105 and obtain the points listed above. Using
the RankBound function we obtain an upper bound of 4 for the rank of
Jac(X)(Q); we are thus in a position to bound the number of rational points
on X using the method of Chabauty and Coleman. The prime 7 is of
good reduction for X, and Magma’s Points function yields #X(F7) = 12.
Applying the Lorenzini-Tucker bound (Theorem 3.2) with p = 7, d = 2 we
obtain

#X(Q) ≤ #X(F7) +
6

5
(8) = 12 +

6

5
(8) < 22,

so #X(Q) ≤ 21. However, since X has no rational point with w = 0, the
number of rational points must be even, and therefore #X(Q) ≤ 20. Since
we have already found 10 rational points, we conclude that there are at most
10 additional rational points on X. �

Theorem 3.43. With C as in Lemma 3.41 we have the following:

(1) C(Q) = {(0, 0, 0), (±1,±2,±4)}.
(2) If (x, y, z) is a quadratic point on C, then x ∈ Q\{0,±1}. Moreover,

there exists w ∈ Q such that (x,w) ∈ X(Q), where X is the curve
defined in Lemma 3.42.

Proof. As noted in §2.3, the curve y2 = −x(x2 + 1)(x2−2x−1) is an affine
model for the modular curve X1(16), which has exactly six rational points:

X1(16)(Q) = {∞, (0, 0), (±1,±2)}.

It follows that if (x, y, z) ∈ C(Q), then (x, y) = (0, 0) or (x, y) ∈ {(±1,±2)}.
Setting these values of x, y in the system (3.65) and solving for z we conclude
that C(Q) = {(0, 0, 0), (±1,±2,±4)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2, and
let K = Q(x, y, z). We cannot have x ∈ {0,±1} since this would imply that
(x, y, z) ∈ C(Q); it follows that (x, y) cannot be a rational point on X1(16),
and must therefore be quadratic. We claim that x must be rational. Indeed,
if x /∈ Q, then by Theorem 2.4, either x2 = −1 and y = 0, or x2−2x−1 = 0
and y = 0. However, in both cases we find that the second equation in (3.65)
has no solution in K. Thus, we conclude that x must be a rational number
different from 0,±1. Since y2 ∈ Q and y /∈ Q, the Galois conjugate of y is
−y. Hence, taking norms on both sides of the second equation in (3.65) we
obtain

w2 = x12 + 2x11 − 13x10 − 26x9 + 67x8 + 124x7 + 26x6 − 44x5

+ 179x4 − 62x3 − 5x2 + 6x+ 1,

where w = NK/Q(z)/x. �

Corollary 3.44. In addition to the known pair (Q(
√

105),−95/48) there
are at most five pairs (K, c), with K a quadratic number field and c ∈ K,
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for which G(fc,K) contains a graph of type 12(4). Moreover, for every such
pair we must have c ∈ Q.

Proof. Suppose that (K, c) is such a pair. Since fc has a point of type 42
in K, then Lemma 3.41 implies that there is a point (x, y, z) ∈ C(K) with
y(x2 − 1) 6= 0 such that

(3.67) c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x2 − 1)2
.

We cannot have (x, y, z) ∈ C(Q) since this would imply that x ∈ {0,±1}.
Hence, (x, y, z) is a quadratic point on C. By Theorem 3.43, x ∈ Q and thus
c ∈ Q. Moreover, there is a rational number w such that (x,w) ∈ X(Q).
It follows from Lemma 3.42 that either x = −3 or x belongs to a list of at
most 5 other rational numbers. Setting x = −3 yields c = −95/48, and the
system (3.65) becomes {

y2 = 420

z2 = 2256− 96y.

Hence, y = ±2
√

105 and z = ±(2y − 24). In particular, K = Q(
√

105),
so we have recovered the known pair (Q(

√
105),−95/48). If x 6= −3, then

there are at most five options for x; each value of x determines the number
c by (3.67) and the field K by (3.65). This gives at most five options for the
pair (K, c). �

3.17. Graph 12(4,2). Our search described in §4.4 produced the pair

(K, c) =

(
Q(
√
−15),−31

48

)
for which the graph G(fc,K) is of type 12(4,2). We will show here that in
addition to this known example there is at most one other such pair (K, c)
consisting of a quadratic number field K and an element c ∈ K.

Lemma 3.45. Let C/Q be the affine curve of genus 9 defined by the equa-
tions

(3.68)

{
y2 = −x(x2 + 1)(x2 − 2x− 1)

z2 = −x(x6 − 3x4 − 16x3 + 3x2 − 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
z − x(x2 − 1)

2x(x2 − 1)
,

b =
x− 1

2(x+ 1)
+

y

2x(x− 1)
,

c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x2 − 1)2
.
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For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : yz(x2 − 1) 6= 0}

to the set of all triples (a, b, c) ∈ K3 such that a is a point of period 2 for
the map fc and b is a point of period 4.

Figure 15. Graph type 12(4,2)

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
satisfying x(x2 − 1) 6= 0. Defining a, b, c ∈ K as in the lemma, it is a
straightforward calculation to verify that f2c (a) = a, f4c (b) = b, and

(3.69) a− fc(a) =
z

x(x2 − 1)
, b− f2c (b) =

y

x(x− 1)
.

It follows from these relations that if yz 6= 0, then a is a point of period 2
for fc and b is a point of period 4. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K satisfy the conditions
of the lemma. Since a is a point of period 2 for fc, then by Proposition 3.4
there is an element σ ∈ K such that

(3.70) a = σ − 1/2, c = −3/4− σ2.

Since b is a point of period 4, then by Proposition 3.4 there are elements
x, y ∈ K with y(x2 − 1) 6= 0 such that y2 = −x(x2 + 1)(x2 − 2x− 1) and
(3.71)

b =
x− 1

2(x+ 1)
+

y

2x(x− 1)
, c =

(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
.

Equating the two expressions for c given in (3.70) and (3.71), and setting
z = 2x(x− 1)(x+ 1)σ, we obtain the relation

z2 = −x(x6 − 3x4 − 16x3 + 3x2 − 1).

Thus, (x, y, z) ∈ C(K) with ϕ(x, y, z) = (a, b, c) and y(x2−1) 6= 0. Further-
more, the relations (3.69) imply that z 6= 0. To see that ϕ is injective, one



564 JOHN R. DOYLE, XANDER FABER AND DAVID KRUMM

can verify that if ϕ(x, y, z) = (a, b, c), then

x =
1 + b+ f2c (b)

1− b− f2c (b)
, y =

2x(x2 − 1)b− x(x− 1)2

x+ 1
, z = x(x2 − 1)(2a+ 1).

�

Lemma 3.46. Let X/Q be the hyperelliptic curve of genus 4 defined by the
equation

w2 = (x2 + 1)(x2 − 2x− 1)(x6 − 3x4 − 16x3 + 3x2 − 1).

Then X(Q) contains the twelve points

∞+,∞−, (±1,±8), (0,±1), (3,±40), (−1/3,±40/243)

and at most four other points.

Proof. Using the Magma function Points we search for rational points on
X of height at most 105 and obtain the points listed above. Using the
RankBound function we find that Jac(X)(Q) has rank at most 2; thus, we
may apply the method of Chabauty and Coleman to bound the number of
rational points on X. The prime 11 is of good reduction for X, and we
compute #X(F11) = 12; Stoll’s bound (Theorem 3.3) then yields #X(Q) ≤
16. �

Remark. The curve X from Lemma 3.46 has an automorphism of order
4 given by (x,w) 7→ (−1/x,w/x5). Hence, if there is some rational point
(x0, w0) ∈ X(Q) missing from the list above, then in fact there are exactly
four of them, namely (x0, w0), (−1/x0, w0/x

5
0), (x0,−w0),

and (−1/x0,−w0/x
5
0).

Theorem 3.47. With C as in Lemma 3.45 we have the following:

(1) C(Q) = {(0, 0, 0), (±1,±2,±4)}.
(2) The quadratic points (x, y, z) on C with x /∈ Q are the points

(x, 0,±(6x+ 2)) with x2 − 2x− 1 = 0,

which are defined over the field Q(
√

2).
(3) If (x, y, z) is a quadratic point on C with x ∈ Q, then there exists a

rational number w such that (x,w) ∈ X(Q), where X is the curve
defined in Lemma 3.46. Moreover, x /∈ {0,±1}.

Proof. As noted in §2.3, the curve defined by the equation

y2 = −x(x2 + 1)(x2 − 2x− 1)

is an affine model for the modular curve X1(16), which has exactly six
rational points:

(3.72) X1(16)(Q) = {∞, (0, 0), (±1,±2)}.
Let C2 denote the hyperelliptic curve defined by the equation

z2 = −x(x6 − 3x4 − 16x3 + 3x2 − 1).
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Note that C2 has an involution given by (x, z) 7→ (−1/x, z/x4). The quotient
of C2 by this involution is the elliptic curve E defined by the Weierstrass
equation s2 + s = r3; the quotient map C2 → E of degree 2 is given by

r =
1− x2

4x
, s =

−4x2 − z
8x2

.

The elliptic curve E is the curve 27a3 in Cremona’s tables, and has exactly
three rational points. It follows that C2 has at most six rational points, and
a search quickly yields six such points:

(3.73) C2(Q) = {∞, (0, 0), (±1,±4)}.
From (3.72) and (3.73) we deduce that C(Q) = {(0, 0, 0), (±1,±2,±4)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2,
and let K = Q(x, y, z).

Case 1. x is quadratic. In the terminology of §2, the point (x, y) is then a
nonobvious quadratic point on X1(16), so Theorem 2.4 implies that either
x2 + 1 = 0 or x2−2x−1 = 0. If x2 + 1 = 0, one can check that the equation
z2 = −x(x6−3x4−16x3+3x2−1) has no solution z ∈ K; hence, this cannot
occur. Assuming x2 − 2x− 1 = 0, we can solve the system (3.68) to obtain
y = 0, z = ±(6x+ 2). Thus, we have shown that the only quadratic points
on C having a quadratic x-coordinate are the points (x, 0,±(6x + 2)) with
x2 − 2x− 1 = 0.

Case 2. x ∈ Q. We cannot have x ∈ {0,±1} since this would imply that
y ∈ {0,±2} and z ∈ {0,±4}, contradicting the assumption that (x, y, z)
is a quadratic point on C; hence, x(x2 − 1) 6= 0. It follows that y /∈ Q,
since having x, y ∈ Q would imply that x ∈ {0,±1}, by (3.72). Similarly,
(3.73) implies that z /∈ Q. Thus, we have K = Q(y) = Q(z), so the rational
numbers −x(x2 + 1)(x2 − 2x− 1) and −x(x6 − 3x4 − 16x3 + 3x2 − 1) must
have the same squarefree part; hence, their product is a square, so there is
a rational number v such that

v2 = x2(x2 + 1)(x2 − 2x− 1)(x6 − 3x4 − 16x3 + 3x2 − 1).

Letting w = v/x we then have (x,w) ∈ X(Q). �

Corollary 3.48. In addition to the known pair (Q(
√
−15),−31/48) there

is at most one pair (K, c), with K a quadratic number field and c ∈ K, for
which G(fc,K) contains a graph of type 12(4,2). Moreover, for every such
pair we must have c ∈ Q.

Proof. Suppose that (K, c) is such a pair. By Lemma 3.45 there is a point
(x, y, z) ∈ C(K) with y(x2 − 1) 6= 0 such that

(3.74) c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
.

It follows from Theorem 3.47 that there is a rational number w such that
(x,w) ∈ X(Q); in particular, c ∈ Q. We consider two possibilities: either
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X(Q) consists of the 12 points listed in Lemma 3.46, or #X(Q) = 16 (see
the remark following the lemma).

Suppose first that #X(Q) = 12. Then we must have x = 3 or x = −1/3,
since the values x = 0,±1 are not allowed. If x = 3, then (3.74) yields
c = −31/48 and we have K = Q(y) with y2 = −60, so K = Q(

√
−15).

Thus, we recover the pair (K, c) in the statement of the corollary. With
x = −1/3 we again obtain c = −31/48 and K = Q(

√
−15).

Suppose now that #X(Q) = 16. Then there are rational numbers x0 and
w0 such that X(Q) consists of the twelve points listed in Lemma 3.46 and
the four points

(x0, w0), (−1/x0, w0/x
5
0), (x0,−w0), (−1/x0,−w0/x

5
0).

We have already determined what K and c must be if x ∈ {3,−1/3}, so
it remains only to consider the case where (x,w) is one of the four points
listed above. Each one of these points may lead via (3.68) and (3.74) to
a new pair (K, c); however, we make the following observations: first, the
expression for c given in (3.74) is invariant under the change of variables
x 7→ −1/x, so that all four points will yield the same value of c. Second, we
know that K = Q(y) and y2 = −x(x2 +1)(x2−2x−1). One can check that,
regardless of whether x = x0 or x = −1/x0, the field K remains the same,
since the value of −x(x2 + 1)(x2 − 2x − 1) only changes by a factor of x60
when we substitute x = x0 and x = −1/x0. Hence, the case #X(Q) = 16
will yield at most one other possibility for the pair (K, c). �

3.18. Graph 14(2,1,1). Our search described in §4.4 produced the pair

(K, c) =

(
Q(
√

17),−21

16

)
for which the graph G(fc,K) is of type 14(2,1,1). We will show here that
this is the only such pair (K, c) consisting of a quadratic number field K
and an element c ∈ K.

Lemma 3.49. Let C/Q be the affine curve of genus 5 defined by the equa-
tions

(3.75)

{
y2 = 2(x3 + x2 − x+ 1)

z2 = 2x(x3 + x2 + x− 1).

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y

x2 − 1
, b =

z

x2 − 1
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : x(x4 − 1)(x2 + 4x− 1) 6= 0}
to the set of all triples (a, b, c) ∈ K3 such that a and b are points of type 23
for the map fc satisfying f2c (a) = f2c (b) and fc(a) 6= fc(b).
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Figure 16. Graph type 14(2,1,1)

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
with x2 6= 1. Defining a, b, c ∈ K as in the lemma, it is a straightforward
calculation to verify f2c (a) = f2c (b), f3c (a) = f5c (a) and

fc(b)− fc(a) =
2(x2 + 1)

x2 − 1
(3.76)

f4c (a)− f3c (a) =
x2 + 4x− 1

x2 − 1

f4c (a)− f2c (a) =
4x

x2 − 1
.

It follows from these relations that if x(x2 + 1)(x2 + 4x− 1) 6= 0, then a
and b are points of type 23 for fc such that f2c (a) = f2c (b) and fc(a) 6= fc(b).
Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K satisfy the conditions
of the lemma. Then an argument given in [31, page 23] shows that there is
an element x ∈ K \ {−1, 0, 1} such that

(3.77) c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
and a2 =

2(x3 + x2 − x+ 1)

(x2 − 1)2
.

Since fc(b) = −fc(a), then b2 = −a2 − 2c, so using (3.77) we obtain

(3.78) b2 =
2x(x3 + x2 + x− 1)

(x2 − 1)2
.

Letting y = a(x2 − 1) and z = b(x2 − 1) we see that (x, y, z) ∈ C(K) and
ϕ(x, y, z) = (a, b, c). Furthermore, the relations (3.76) imply that necessarily
x(x2 + 1)(x2 + 4x− 1) 6= 0.

To see that ϕ is injective, one can verify that if ϕ(x, y, z) = (a, b, c), then

x =
fc(a)− 1

f2c (a)
, y = a(x2 − 1), z = b(x2 − 1). �

Lemma 3.50. Let X/Q be the hyperelliptic curve of genus 3 defined by the
equation

s2 = x(x3 + x2 + x− 1)(x3 + x2 − x+ 1).

Then X(Q) = {(0, 0), (±1,±2),∞}.
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Proof. The curve X has an involution given by (x, s) 7→ (−1/x,−s/x4);
the quotient of X by this involution is the curve Y of genus 2 defined by the
equation

r2 = 2u5 + 2u4 + 4u3 + 3u2 + 2u+ 1,

and the quotient map X → Y of degree 2 is given by

u =
x2 − 1

2x
, r =

s(x2 + 1)

4x3
.

Using the Magma function RankBound we find that Jac(Y )(Q) has rank 0,
so we can easily obtain the rational points on Y (for instance, using the
function Chabauty0). Carrying out this calculation, we obtain

Y (Q) = {(0,±1),∞}.
Since Y has three rational points, then X can have at most six rational
points, and we have already listed six points. �

Theorem 3.51. With C as in Lemma 3.49 we have the following:

(1) C(Q) = {(±1,±2,±2)}.
(2) If K is a quadratic field different from Q(

√
2) and Q(

√
17), then

C(K) = C(Q).
(3) For K = Q(

√
2), C(K) \ C(Q) = {(0,±

√
2, 0)}.

(4) For K = Q(
√

17),

C(K) \ C(Q) = {(x,±(4x+ 2),±(12x+ 2)) : x2 − 8x− 1 = 0}.

Proof. Let C1 be the elliptic curve defined by the equation

y2 = 2(x3 + x2 − x+ 1).

As shown in the proof of Theorem 3.32,

(3.79) C1(Q) = {∞, (±1,±2)},
since C1 is the modular curve X1(11). Now let C2 be the hyperelliptic
curve of genus 1 defined by the equation z2 = 2x(x3 + x2 + x − 1). Since
C2 has a rational point — for instance, the point (0,0) — it is an elliptic
curve; in fact, C2 is also the curve X1(11), as one can check that the map
(x, z) 7→ (−1/x, z/x2) defines a birational morphism from C2 to C1. We
conclude that C2 has exactly five rational points, and these are easily found:

(3.80) C2(Q) = {(0, 0), (±1,±2)}.
From (3.79) and (3.80) we deduce that C(Q) = {(±1,±2,±2)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2,
and let K = Q(x, y, z).

Case 1. x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2
and z = ±2, contradicting the assumption that (x, y, z) is a quadratic point
on C. It follows that y /∈ Q, since having x, y ∈ Q would imply that
x = ±1, by (3.79). If z ∈ Q, then (3.80) implies that x = z = 0, and
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then y2 = 2(x3 + x2 − x + 1) = 2. Thus, we obtain the quadratic points
(0,±

√
2, 0).

Suppose now that z /∈ Q. Then K = Q(y) = Q(z), so the rational num-
bers 2(x3+x2−x+1) and 2x(x3+x2+x−1) must have the same squarefree
part; hence, their product is a square, so there is a rational number s such
that

s2 = x(x3 + x2 + x− 1)(x3 + x2 − x+ 1).

Since x 6= ±1, Lemma 3.50 implies that x = 0, so z2 = 2x(x3+x2+x−1) = 0
and therefore z = 0 ∈ Q, a contradiction. Hence, the case z /∈ Q cannot
occur.

Thus, we have shown that the only quadratic points on C having a rational
x-coordinate are the points (0,±

√
2, 0).

Case 2. x is quadratic. Let t2 + at + b ∈ Q[t] be the minimal polynomial
of x. By Lemma 2.2 applied to the equation y2 = 2(x3 + x2 − x+ 1), there
exist a rational number v and a point (x0, y0) ∈ {(±1,±2)} such that

(3.81) a =
2x0 − v2 + 2

2
, b =

2x20 + v2x0 + 2x0 − 2y0v − 2

2
.

We now use the relation z2 = 2x(x3 + x2 + x − 1) to obtain a different
expression for a and b. Defining p := −1/x and q := z/x2 we have

q2 = 2(p3 + p2 − p+ 1)

with p quadratic, so again by Lemma 2.2, there exist a rational number w
and a point (p0, q0) ∈ {(±1,±2)} such that the minimal polynomial of p has
the form t2 + dt+ e ∈ Q[t], where

(3.82) d =
2p0 − w2 + 2

2
, e =

2p20 + w2p0 + 2p0 − 2q0w − 2

2
.

Since x and p are related by p = −1/x, it is easy to see that a = −d/e and
b = 1/e. Hence, we arrive at the system

(3.83)

{
ae+ d = 0

be− 1 = 0,

where a, b, d, e are given by (3.81) and (3.82). For each choice of the points
(x0, y0) and (p0, q0), the system (3.83) defines a 0-dimensional scheme S in
(v, w)-plane over Q, so its set of rational points can be determined. There are
a total of 16 choices of pairs of points; for each pair we use the Magma func-
tion RationalPoints to determine all rational points on the corresponding
scheme S, and we discard those rational points that lead to a polynomial
t2 + at+ b that is reducible. The result of this computation is that in every
case when a rational point on one of the 16 schemes S leads to an irreducible
polynomial t2 +at+ b, this polynomial is t2−8t−1; hence, this must be the
minimal polynomial of x. Knowing that x2 − 8x− 1 = 0, the system (3.75)
can now be solved to obtain y = ±(4x+ 2) and z = ±(12x+ 2).
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We conclude that every quadratic point on C having a quadratic x-
coordinate is defined over the field K = Q(

√
17) and has the form

(x,±(4x+ 2),±(12x+ 2)) where x2 − 8x− 1 = 0.

The theorem now follows immediately. �

Corollary 3.52. Let c ∈ K with K a quadratic field. Suppose that G(fc,K)
contains a graph of type 14(2,1,1). Then c = −21/16 and K = Q(

√
17).

Proof. By Lemma 3.49, there is a point (x, y, z) ∈ C(K) with x(x2−1) 6= 0
such that

(3.84) c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

It follows from Theorem 3.51 that K = Q(
√

17) and that x ∈ K satisfies
x2 − 8x− 1 = 0. Using (3.84) we then obtain c = −21/16. �

3.19. Graph 14(3,1,1). Our search described in §4.4 produced the pair

(K, c) =

(
Q(
√

33),−29

16

)
for which the graph G(fc,K) is of type 14(3,1,1). We will show here that
this is the only such pair (K, c) consisting of a quadratic number field K
and an element c ∈ K.

Lemma 3.53. Let C/Q be the affine curve of genus 9 defined by the equa-
tions

(3.85)

{
y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1

z2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1.

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y + x2 + x

2x(x+ 1)
,

b =
z

2x(x+ 1)
,

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : x(x+ 1)(x2 + x+ 1)(x3 + 2x2 + x+ 1) 6= 0}

to the set of all triples (a, b, c) ∈ K3 such that a is a fixed point for the map
fc and b is a point of type 32.
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Figure 17. Graph type 14(3,1,1)

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
satisfying x(x+ 1) 6= 0. Defining a, b, c ∈ K as in the lemma, it is a routine
calculation to verify that fc(a) = a, f5c (b) = f2c (b), and

(3.86) f2c (b)− f3c (b) =
x2 + x+ 1

x+ 1
, f4c (b)− fc(b) =

x3 + 2x2 + x+ 1

x2 + x
.

It follows that if (x2 +x+ 1)(x3 + 2x2 +x+ 1) 6= 0, then b is a point of type
32 for fc. Hence, ϕ gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K satisfy the conditions
of the lemma. Since a is a fixed point for fc, then by Proposition 3.4 there
is an element ρ ∈ K such that

(3.87) a = ρ+ 1/2, c = 1/4− ρ2.

Since b is a point of type 32 for fc, it follows from the discussion in [31, page
23–24] that there is an element x ∈ K \ {−1, 0} such that

b2 =
x6 − 2x4 + 2x3 + 5x2 + 2x+ 1

4x2(x+ 1)2
,(3.88)

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Letting z = 2x(x+ 1)b we then have the relation

z2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1.

Equating the two expressions for c given in (3.87) and (3.88), and defining
y = 2x(x+ 1)ρ, we obtain the equation

y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.

Note that

a =
1

2
+ ρ =

1

2
+

y

2x(x+ 1)
=
y + x2 + x

2x(x+ 1)
.

Thus, we have a point (x, y, z) ∈ C(K) such that ϕ(x, y, z) = (a, b, c) and
x(x+1) 6= 0. Furthermore, (3.86) implies that (x2+x+1)(x3+2x2+x+1) 6=
0.
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To see that ϕ is injective, one can verify that if ϕ(x, y, z) = (a, b, c), then

x = f2c (b)− fc(b), y = x(x+ 1)(2a− 1), z = 2x(x+ 1)b. �

Lemma 3.54. Let X/Q be the hyperelliptic curve defined by the equation

33v2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1.

Then X(Q) = {(−2,±1)}.

Proof. Using the Magma functions RankBounds and TorsionSubgroup we
find that Jac(X)(Q) ∼= Z; thus, we may apply the method of Chabauty and
Coleman to bound the number of rational points on X. We will in fact be
able to determine all rational points on X by using the method outlined
in [3, §4.4], which is available in Magma via the function Chabauty. This
function will use a Mordell–Weil sieve and Chabauty’s method in order to
compute X(Q). The required input is a rational point on X and a generator
for J(Q), where J = Jac(X). For purposes of working with Magma it will
be convenient to use a slightly different equation for X, namely

y2 = 33(x6 − 2x4 + 2x3 + 5x2 + 2x+ 1);

we will then show that the only rational points on this curve are the points
P0 = (−2, 33) and P1 = (−2,−33).

Let D ∈ J(Q) be the divisor class of P1 − P0; we claim that D generates
J(Q). Assuming this for the moment, we use the Chabauty function with
input D ∈ J(Q) and P1 ∈ X(Q) to obtain as output the complete list of
rational points on X, which consists of the two points we have listed.

In order to show that D generates J(Q) we will use the method proposed

by Stoll in [36, §7]. Let h and ĥ denote the naive and canonical heights on
J(Q), respectively. (See [12, page 335] for the definitions.) Using Magma’s

Height function we find that ĥ(D) = 4.91745.... In particular, D has infinite
order in J(Q). We claim that D is not divisible in J(Q). Suppose that
it is, and let Q ∈ J(Q) be a point such that [n]Q = D for some n >

1. Then n2ĥ(Q) = ĥ(D) = 4.91745..., so ĥ(Q) < 4.92/4 = 1.23. The
HeightConstant function applied to J yields the number c = 3.34897... with

the property that h(P )− ĥ(P ) ≤ c for every point P ∈ J(Q). In particular,
we have h(Q) < 1.23 + c < 4.58. Using Stoll’s j-points program, which is
available in Magma via the function Points, we compute all points in J(Q)
whose naive height does not exceed 4.6. The result is that there is only one
such point, namely the trivial point. Thus, we conclude that Q = 0, and
hence D = [n]Q = 0, a contradiction. This shows that D is not divisible in
J(Q), and since it has infinite order, it must therefore generate J(Q). This
completes the proof. �

Theorem 3.55. With C as in Lemma 3.53 we have the following:

(1) C(Q) = {(0,±1,±1), (−1,±1,±1)}.
(2) If K is a quadratic field different from Q(

√
33), then C(K) = C(Q).
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(3) For K = Q(
√

33), we have
C(K) \ C(Q) = {(1,±

√
33,±3), (−2,±

√
33,±

√
33)}.

Proof. As noted in §2.3, the curve y2 = x6+2x5+5x4+10x3+10x2+4x+1 is
an affine model for the modular curve X1(18), which has exactly six rational
points, namely ∞+,∞−, (0,±1), (−1,±1). The curve

z2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1

was studied by Poonen in [31, §4], where it is shown that its only affine
rational points are (−1,±1), (0,±1), and (1,±3). Thus, we know all ratio-
nal solutions to each of the defining equations of C, and we conclude that
C(Q) = {(0,±1,±1), (−1,±1,±1)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2,
and let K = Q(x, y, z).

Case 1. x is quadratic. In the terminology of §2, the point (x, y) is then a
nonobvious quadratic point on X1(18), so Theorem 2.4 implies that x is a
primitive cube root of unity, and in particular K = Q(

√
−3). However, in

this case one can check that the equation z2 = x6− 2x4 + 2x3 + 5x2 + 2x+ 1
has no solution z ∈ K. This is a contradiction, so we conclude that x cannot
be quadratic.

Case 2. x ∈ Q. We cannot have y ∈ Q, since this would imply that x ∈
{−1, 0}, which in turn implies that z = ±1, contradicting the assumption
that (x, y, z) is a quadratic point on C. If z ∈ Q, then x ∈ {−1, 0, 1};
however x cannot equal −1 or 0, since this would imply that y = ±1 ∈ Q.
Therefore, if z ∈ Q, then x = 1. The system (3.85) can then be solved to
obtain y = ±

√
33, z = ±3. Thus, we have shown that the only quadratic

points on C having z ∈ Q are (1,±
√

33,±3).
We assume henceforth that z is quadratic. Define polynomials f(t), g(t) ∈

Q[t] by

f(t) = t6 + 2t5 + 5t4 + 10t3 + 10t2 + 4t+ 1,

g(t) = t6 − 2t4 + 2t3 + 5t2 + 2t+ 1.

Since both y and z are quadratic, then K = Q(y) = Q(z), so the rational
numbers f(x) and g(x) must have the same squarefree part d; hence, there
are rational numbers u, v such that

(3.89)

{
du2 = f(x)

dv2 = g(x).

Suppose that p is a prime number dividing d. The above equations imply
that u, v, and x all lie in the local ring Z(p), so we may reduce (3.89) modulo
p to obtain f(x) ≡ g(x) ≡ 0 mod p. Hence, the polynomials f(t) and g(t)
have a common root modulo p, so their resultant, which is 4521 = 3 ·11 ·137,
must be divisible by p. Therefore, d can only be divisible by primes in the
set {3, 11, 137}. Furthermore, the polynomial function f : R → R induced
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by f(t) only takes positive values, so the first equation in (3.89) implies that

d > 0. Finally, since K = Q(
√
d) is a quadratic field, we cannot have d = 1.

Therefore, we conclude that

d ∈ {3, 11, 137, 33, 411, 1507, 4521}.

We proceed now to narrow down the possible values of d. For each number
d in the above set, we can check whether the hyperelliptic curves du2 =
f(x) and dv2 = g(x) have points over all completions of Q; the Magma
function HasPointsEverywhereLocally can be used for this. Carrying out
this computation we find that in all cases, except when d = 33, at least one
of these curves fails to have 2-adic or 3-adic points; in particular, for these
values of d the system (3.89) cannot have a rational solution. Therefore, we
must have d = 33. It follows from (3.89) that (x, v) ∈ X(Q), where X is
the curve defined in Lemma 3.54, so the lemma implies that x = −2. The
system (3.85) can then be solved to obtain (x, y, z) = (−2,±

√
33,±

√
33).

Thus, we have shown that the only quadratic points on C are the points
(1,±

√
33,±3) and (−2,±

√
33,±

√
33). �

Corollary 3.56. Let c ∈ K with K a quadratic field. Suppose that G(fc,K)
contains a graph of type 14(3,1,1). Then c = −29/16 and K = Q(

√
33).

Proof. By Lemma 3.53 there is a point P = (x, y, z) ∈ C(K) with x(x+1) 6=
0 such that

(3.90) c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Since x /∈ {0,−1}, then P cannot be a rational point on C. It follows from
Theorem 3.55 that K = Q(

√
33) and that x = 1 or x = −2. Substituting

these values of x into (3.90) we obtain c = −29/16 in both cases. �

3.20. Graph 14(3,2). Our search described in §4.4 found the pair

(K, c) =
(
Q(
√

17),−29/16
)

for which the graph G(fc,K) is of type 14(3,2). We will show here that this
is the only such pair (K, c) consisting of a quadratic number field K and an
element c ∈ K.

Lemma 3.57. Let C/Q be the affine curve of genus 9 defined by the equa-
tions

(3.91)

{
y2 = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1

z2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1.
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Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y − x2 − x
2x(x+ 1)

,

b =
z

2x(x+ 1)
,

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

For every number field K, the map ϕ induces a bijection from the set

{(x, y, z) ∈ C(K) : xy(x+ 1)(x2 + x+ 1)(x3 + 2x2 + x+ 1) 6= 0}

to the set of all triples (a, b, c) ∈ K3 such that a is a point of period 2 and b
is a point of type 32 for the map fc.

Figure 18. Graph type 14(3,2)

Proof. Fix a number field K and suppose that (x, y, z) ∈ C(K) is a point
satisfying x(x + 1) 6= 0. Defining a, b, c ∈ K as in the lemma, it is a
straightforward calculation to verify that f2c (a) = a, f5c (b) = f2c (b), and

a− fc(a) =
y

x(x+ 1)
(3.92)

f2c (b)− f3c (b) =
x2 + x+ 1

x+ 1

f4c (b)− fc(b) =
x3 + 2x2 + x+ 1

x2 + x
.

It follows from these relations that if y(x2 + x + 1)(x3 + 2x2 + x + 1) 6= 0,
then a is a point of period 2 for fc and b is a point of type 32. Hence, ϕ
gives a well-defined map.

To see that ϕ is surjective, suppose that a, b, c ∈ K satisfy the conditions
of the lemma. Since a is a point of period 2 for fc, Proposition 3.4 implies
that there is an element σ ∈ K such that

(3.93) a = σ − 1/2, c = −3/4− σ2.
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Since b is a point of type 32 for fc, it follows from the discussion in [31, page
23–24] that there is an element x ∈ K \ {−1, 0} such that

b2 =
x6 − 2x4 + 2x3 + 5x2 + 2x+ 1

4x2(x+ 1)2
(3.94)

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

In particular, letting z = 2x(x+ 1)b we have the relation

z2 = x6 − 2x4 + 2x3 + 5x2 + 2x+ 1.

Equating the two expressions for c given in (3.93) and (3.94), and defining
y = 2x(x+1)σ, we obtain the equation y2 = x6+2x5+x4+2x3+6x2+4x+1.
Note that

a = σ − 1

2
=

y

2x(x+ 1)
− 1

2
=
y − x2 − x
2x(x+ 1)

.

Thus, we have a point (x, y, z) ∈ C(K) such that ϕ(x, y, z) = (a, b, c) and
x(x+ 1) 6= 0. Finally, the relations (3.92) imply that

y(x2 + x+ 1)(x3 + 2x2 + x+ 1) 6= 0.

To see that ϕ is injective, one can verify that if ϕ(x, y, z) = (a, b, c), then

x = f2c (b)− fc(b), y = x(x+ 1)(2a+ 1), z = 2x(x+ 1)b. �

Theorem 3.58. With C as in Lemma 3.57 we have the following:

(1) C(Q) = {(0,±1,±1), (−1,±1,±1)}.
(2) If K is a quadratic field different from Q(

√
17), then C(K) = C(Q).

(3) For K = Q(
√

17), C(K) \ C(Q) = {(1,±
√

17,±3)}.

Proof. As noted in the proof of Theorem 3.28, the only rational solutions to
the equation y2 = x6+2x5+x4+2x3+6x2+4x+1 are (0,±1) and (−1,±1),
since the hyperelliptic curve defined by this equation is the modular curve
X1(13). The curve z2 = x6−2x4 +2x3 +5x2 +2x+1 was studied in [31, §4],
where it is shown that its only affine rational points are (−1,±1), (0,±1),
and (1,±3). We conclude that C(Q) = {(0,±1,±1), (−1,±1,±1)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2,
and let K = Q(x, y, z). We claim that x must be rational. Indeed, if x were
quadratic, then (x, y) would be a nonobvious quadratic point on X1(13),
and such points do not exist, by Theorem 2.4; hence, x ∈ Q. We cannot
have y ∈ Q, since this would imply that x ∈ {−1, 0}, which in turn implies
that z = ±1, thus contradicting the assumption that (x, y, z) is a quadratic
point on C; hence, y /∈ Q.

Case 1. z ∈ Q. Since x ∈ Q, then x ∈ {−1, 0, 1}. However, x cannot equal
−1 or 0 since this would imply that y = ±1 ∈ Q; therefore, x = 1. The
system (3.91) can then be solved to obtain y = ±

√
17, z = ±3. Thus, we

obtain the quadratic points (1,±
√

17,±3).
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Case 2. z is quadratic. Define polynomials f(t), g(t) ∈ Q[t] by

f(t) = t6 + 2t5 + t4 + 2t3 + 6t2 + 4t+ 1,

g(t) = t6 − 2t4 + 2t3 + 5t2 + 2t+ 1.

Since both y and z are quadratic, then K = Q(y) = Q(z), so the rational
numbers f(x) and g(x) must have the same squarefree part d; hence, there
are rational numbers u, v such that

(3.95)

{
du2 = f(x)

dv2 = g(x).

The polynomial function f : R → R induced by f(t) only takes positive
values, so the first equation in (3.95) implies that d > 0. Moreover, since

K = Q(
√
d) is a quadratic field, we cannot have d = 1. Let p be a prime

number dividing d. The above equations imply that u, v, and x all lie in
the local ring Z(p), so we may reduce (3.95) modulo p to obtain f(x) ≡
g(x) ≡ 0 mod p. Hence, the polynomials f(t) and g(t) have a common root
modulo p, so their resultant, which is 4321 = 29 · 149, must be divisible by
p. Therefore, d can only be divisible by primes in the set {29, 149}, and so

d ∈ {29, 149, 4321}.
For the values d = 29 and 149 one can check that the hyperelliptic curves
du2 = f(x) and dv2 = g(x) have no 2-adic point, and hence have no rational
point; therefore, d must equal 4321.

Let X be the hyperelliptic curve defined by the equation 4321u2 = f(x).
Using the Magma functions RankBound and TorsionSubgroup we find that
Jac(X)(Q) is trivial. Since X has no rational Weierstrass point, the number
of rational points on X must be even. However, any two points in X(Q)
would yield a nontrivial point in Jac(X)(Q), so we must have X(Q) = ∅.
This is a contradiction since (x, u) ∈ X(Q).

Since the assumption that z is quadratic has led to a contradiction, we
conclude that this case cannot occur, so the analysis done in the case z ∈ Q
shows that the only quadratic points on C are (1,±

√
17,±3). �

Corollary 3.59. Let K be a quadratic field and let c ∈ K. Suppose that
G(fc,K) contains a graph of type 14(3,2). Then c = −29/16 and K =
Q(
√

17).

Proof. By Lemma 3.57 there is a point P = (x, y, z) ∈ C(K) with x(x+1) 6=
0 such that

(3.96) c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Since x /∈ {0,−1}, Theorem 3.58 implies that P cannot be a rational point
on C and is therefore quadratic. It follows from Theorem 3.58 that K =
Q(
√

17) and P ∈ {(1,±
√

17,±3)}. In particular, x = 1, so (3.96) yields
c = −29/16. �
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4. Computation of preperiodic points

We explain in this section the method by which we gathered the data
summarized in Appendices B and C. The idea is to systematically choose
a collection of number fields of fixed degree, and a list of quadratic polyno-
mials defined over these fields, and then compute the rational preperiodic
points for all the chosen polynomials. More precisely, the steps we take for
gathering data on preperiodic points over number fields of a fixed degree n
are the following:

(1) Choose a bound D and find all number fields K of degree n whose
discriminant satisfies |∆K | ≤ D.

(2) Choose a bound B and for each number field K from the previous
step, find all elements c ∈ K such that HK(c) ≤ B. Here, HK

denotes the relative height function on K (see §4.2 below).
(3) For each number field K, and for all c ∈ K from the previous step,

determine the set PrePer(fc,K).

The list of fields from step (1) is known to be finite (see [28, §III.2])
and can be obtained for small n and D, for instance, from Jones’s online
database [20]. For step (2) we use the main algorithm discussed in [8] for
listing elements of bounded height in a given number field. The method
used to carry out step (3) will be developed in §4.1–§4.3 below. Finally, in
§4.4 we describe a specific computation done following the above steps in
the case of quadratic fields.

Remark. Hutz [17, 18] has designed a suite of algorithms for studying
arithmetic dynamics in Sage, including an alternate approach to computing
preperiodic points for morphisms of projective space over Q.

4.1. Filled Julia sets. In this section we include proofs of the theoretical
results upon which the algorithms in §4.3 are based. Let K be a number
field and let c ∈ K. The properties of the filled Julia sets of the map fc
at places of K can be used to deduce bounds on the heights of preperiodic
points for fc, as well as to create simple tests for eliminating many points
P ∈ K as possible elements of the set PrePer(fc,K). In some cases these
tests can even show that fc has no (finite) K-rational preperiodic point at
all — see Lemmas 4.7 and 4.8 in §4.3. Further discussion of filled Julia sets,
along with proofs of some closely related results, may be found in [4, §6].

Let MK denote the set of nontrivial places of K, and let M∞K and M0
K

denote the sets of archimedean (infinite) places and nonArchimedean (finite)
places, respectively. For each v ∈ M∞K there is an embedding σv : K ↪→ C
such that |x|v = |σv(x)|C, where | |C is the usual complex absolute value.
For each v ∈ M0

K there is a maximal ideal p in the ring of integers OK
such that |x|v = (N(p))− ordp(x)/(e(p)f(p)), where N(p), e(p), and f(p) are
the norm, ramification index, and residue degree of p, respectively. When
it is clear from the context which place v is being considered, we write the
corresponding absolute value simply as | |.
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For a place v ∈ MK , we denote by Kv the completion of K with respect
to v, and we denote by Cv the completion of an algebraic closure of Kv. For
a ∈ Cv and r ∈ R≥0, we denote by D(a, r) the closed disk (in Cv) of radius
r centered at a. For all subsequent uses of the notation D(a, r), it will be
clear which place v is being considered.

For c ∈ Kv, we define the filled Julia set of fc at v to be the set

Kv,c := {x ∈ Cv : {fnc (x)}n≥0 is a bounded set in Cv}.
The following properties of Kv,c may be deduced immediately from the def-
inition:

• The filled Julia set Kv,c is totally invariant under fc; that is,
f−1c (Kv,c) = Kv,c = fc(Kv,c).
• The set Kv,c is invariant under the map z 7→ −z.
• All of the preperiodic points for fc — with the exception of the fixed

point at ∞ — lie in Kv,c.
It is this third property which motivates our consideration of filled Julia

sets, as it implies that

PrePer(fc,K) ⊆
⋂

v∈MK

(Kv,c ∩K).

(Equality actually holds; the reverse containment may be proved using the
theory of canonical heights.) In particular, we can in many cases show that,
for some v ∈MK , the v-adic filled Julia set of fc has an empty intersection
with K, in which case we may conclude that fc has no K-rational preperiodic
point.

We collect now a series of results giving precise bounds on filled Julia sets.

Infinite places. Recall that if v is an infinite place of K, there is a corre-
sponding embedding σv : K ↪→ C which extends to an embedding σv : Kv ↪→
C. The image of Kv is either R or C, depending on whether σv embeds K
into R. For convenience of notation, throughout this section we will denote
by | | the absolute value corresponding to v, given by |x| = |σv(x)|C, and we
identify Kv with its image under σv.

Proposition 4.1. Let v be an infinite place of the number field K, and let
c ∈ Kv ⊆ C. Then

Kv,c ⊆ D

(
0,

1

2
+

√
1

4
+ |c|

)
.

Proof. Suppose |x| > 1
2 +

√
1
4 + |c|, and choose ε > 0 such that

|x| > 1

2
+

√
1

4
+ |c|+ ε.

Then |x|2 − |c| > |x| + ε, so |fc(x)| > |x| + ε. By induction, we have
|fnc (x)| > |x|+ nε, so |fnc (x)| → ∞. Therefore x 6∈ Kv,c. �
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In the case that Kv = R it may happen that Kv,c does not intersect Kv.
More precisely, we have the following trichotomy:

Proposition 4.2. Let v be a real place of the number field K, and suppose
c ∈ Kv = R.

(1) If c > 1
4 , then Kv,c ∩ R = ∅.

(2) If −2 ≤ c ≤ 1
4 , then Kv,c ∩R = [−a, a], where a = 1

2 +
√

1
4 − c is the

larger of the two real fixed points of fc.
(3) If c < −2, then −a− c ≥ 0, and

Kv,c ∩ R ⊆ [−a,−
√
−a− c] ∪ [

√
−a− c, a].

Proof. We start with (1). For any x ∈ R we have

fc(x) =

(
x− 1

2

)2

+ x+

(
c− 1

4

)
≥ x+

(
c− 1

4

)
.

It follows by induction that fnc (x) ≥ x + n
(
c− 1

4

)
, and since c > 1

4 this
grows without bound as n→∞.

Next we prove (2). Suppose |x| > a. Choosing ε > 0 such that |x| >
1
2 +

√
1
4 − c+ ε we see that

|x| − 1

2
>

√
1

4
− c+ ε =⇒ x2 − |x|+ 1

4
>

1

4
− c+ ε

=⇒ fc(x) = x2 + c > |x|+ ε.

By induction it follows that fnc (x) > |x|+ nε for all n ≥ 1, so |fnc (x)| → ∞.
Therefore Kv,c ⊆ [−a, a].

Now suppose that |x| ≤ a. Then

(4.1) 0 ≤ x2 ≤ a2 =⇒ c ≤ x2 + c ≤ a2 + c =⇒ c ≤ fc(x) ≤ fc(a) = a.

We now claim that −a ≤ c. Indeed,

−2 ≤ c ≤ 1

4
=⇒ 0 ≤ 1

4
− c ≤ 9

4
(4.2)

=⇒
√

1

4
− c ≤ 3

2

=⇒ −1 ≤ 1

2
−
√

1

4
− c = 1− a

=⇒ −a ≤ a− a2 = c.

Combining (4.1) and (4.2) shows that if |x| ≤ a, then |fc(x)| ≤ a, and
therefore |fnc (x)| ≤ a for all n ≥ 1. It follows that [−a, a] ⊆ Kv,c ∩R, which
completes the proof of statement (2).

Finally, we prove (3). If |x| <
√
−a− c, then x2 < −a − c, and hence

fc(x) < −a. Therefore |fc(x)| > a, and the argument used to prove state-
ment (2) shows that |fc(x)| → ∞. �
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Finite places. As in the case of infinite places, for finite places v of K we
can bound the filled Julia set Kv,c and in some cases give obstructions to
having Kv-rational points in it.

Proposition 4.3. Let v be a finite place of the number field K, and let
c ∈ Kv.

(1) If |c| ≤ 1, then Kv,c = D(0, 1).

(2) If |c| > 1, then Kv,c ⊆
{
x ∈ Cv : |x| = |c|1/2

}
.

Proof. We begin with the proof of (1). If |x| ≤ 1, then

|fc(x)| = |x2 + c| ≤ max{|x|2, |c|} ≤ 1.

On the other hand, if |x| > 1, then |fc(x)| = |x|2 > 1. By induction we have
|fnc (x)| = |x|2n , so |fnc (x)| → ∞.

For the proof of (2), if |x| > |c|1/2, then |fc(x)| = |x|2 > |c| > |c|1/2. By

induction, |fnc (x)| = |x|2n , so |fnc (x)| → ∞. If instead we have |x| < |c|1/2,
then |fc(x)| = |c| > |c|1/2, and we reduce to the previous case to show that
|fnc (x)| → ∞. �

Corollary 4.4. Let v be a finite place of the number field K. Suppose
c ∈ Kv is such that |c| > 1 and |c| 6∈ |K×v |2. Then Kv,c ∩Kv = ∅.

If we assume that v is a finite place that lies above an odd prime in Z,
we can improve the statement of Corollary 4.4 by weakening the hypothesis
that |c| 6∈ |K×v |2.

Proposition 4.5. Let v be a finite place of the number field K corresponding
to a maximal ideal p ⊂ OK that lies above an odd rational prime. Suppose
c ∈ Kv is such that |c| > 1 and −c is not a square in Kv. Then Kv,c∩Kv = ∅.

Proof. Assume for the sake of a contradiction that there exists some x ∈
Kv,c ∩Kv. The invariance of the filled Julia set implies that fc(x) ∈ Kv,c as

well, so by Proposition 4.3 we have |x2 + c| = |c|1/2, and therefore

(4.3)

∣∣∣∣ x2−c − 1

∣∣∣∣ =
1

|c|1/2
< 1.

Let π be a uniformizer for the valuation ring Rv ⊂ Kv, and write −c = πru,
where r < 0 is an integer and u ∈ R×v . Similarly, write x = πsw, with s ∈ Z
and w ∈ R×v . Then (4.3) implies that π2s−r w

2

u ∈ R
×
v , so that r = 2s. We

can therefore rewrite (4.3) as |w2−u| < 1. Since p lies above an odd prime,
it follows by Hensel’s Lemma that u must be a square in Kv, so −c = π2su
is a square as well. �

Remark. The same statement does not necessarily hold for places v lying
above 2. For example, suppose K = Q and c = −3

4 . Then −c is not a square

in Q2, but the map fc admits ±1
2 as preperiodic points, and therefore the

2-adic filled Julia set of fc contains Q2-rational points.
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4.2. Height bounds on preperiodic points. Continue with the notation
from §4.1. The relative height function on K is the map HK : K → R≥1
defined by

HK(x) =
∏

v∈MK

max{|x|v, 1}nv ,

where nv = [Kv : Qv] is the local degree of K at the place v.
It is a well-known fact (see [33, §3.1]) that for any bound B, the set

{x ∈ K : HK(x) ≤ B} is finite. Fix an element c ∈ K. The standard way
of showing that the set PrePer(fc,K) is finite is to prove the existence of
a constant B(K, c) such that for all points P ∈ PrePer(fc,K), HK(P ) ≤
B(K, c). Since any set of points of bounded height is finite, this observation
yields a finite search space for determining all preperiodic points for fc. The
standard technique using canonical heights yields the weak bound B(K, c) =

2[K:Q]HK(c). (See, e.g., the proofs of Theorems 3.11 and 3.20 in [33].) Our
analysis of filled Julia sets in the previous section allows us to improve
this bound significantly, and therefore make the search space substantially
smaller when the height of c is large.

Theorem 4.6. Let K be a number field and let c ∈ K. For all points
P ∈ PrePer(fc,K) we have

(4.4) HK(P ) ≤

(
1 +
√

5

2

)[K:Q]

HK(c)1/2.

Proof. Let P be a preperiodic point for fc. Then P ∈ Kv,c for all places v
of K. Applying Proposition 4.1 to the infinite places of K yields

(4.5) |P |v ≤
1

2
+

√
1

4
+ |c|v

for all v ∈M∞K . Similarly, for finite places v we use Proposition 4.3 to obtain

(4.6) |P |v ≤ 1 if |c|v ≤ 1 and |P |v = |c|1/2v if |c|v > 1

for all v ∈ M0
K . By combining (4.5) and (4.6), we arrive at the following

upper bound for HK(P ):

HK(P ) =
∏

v∈MK

max{|P |v, 1}nv

≤
∏

v∈M∞
K

(
1

2
+

√
1

4
+ |c|v

)nv

·
∏

v∈M0
K

max{|c|1/2v , 1}nv

= HK(c)1/2
∏

v∈M∞
K

 1
2 +

√
1
4 + |c|v

max{|c|1/2v , 1}

nv

.
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The maximum value of the function

y 7→
1
2 +

√
1
4 + y2

max{y, 1}
, y ∈ [0,∞)

is 1+
√
5

2 (attained at y = 1). Therefore,

HK(P ) ≤ HK(c)1/2 ·
∏

v∈M∞
K

(
1 +
√

5

2

)nv

=

(
1 +
√

5

2

)[K:Q]

HK(c)1/2. �

4.3. Algorithm for computing preperiodic points. Using results from
the previous sections we discuss here a method for computing the set of K-
rational preperiodic points for a collection of maps fc defined over a number
field K. We let OK denote the ring of integers in K. For convenience in
computations we will work with the valuations v(·) = ordp(·) rather than
their corresponding nonarchimedean absolute values | |v.

We begin by combining the statements of Propositions 4.3 and 4.5 and
rephrasing them in terms of these valuations on K, using also the fact that
preperiodic points belong to every filled Julia set of fc.

Lemma 4.7. Let K be a number field and let P, c ∈ K.

(1) If ordp(P ) < 0 ≤ ordp(c) for some maximal ideal p in OK , then P
is not preperiodic for fc.

(2) If ordp(c) < 0 and ordp(P ) 6= 1
2 ordp(c) for some maximal ideal p

in OK , then P is not preperiodic for fc. In particular, if ordp(c)
is negative and odd for some maximal ideal p, then fc has no finite
K-rational preperiodic point.

(3) If there exists a maximal ideal p in OK , lying above an odd rational
prime, such that ordp(c) < 0 and −c is not a square in Kp, then fc
has no finite K-rational preperiodic point.

We also record the dynamical consequences of Propositions 4.1 and 4.2.

Lemma 4.8. Let K be a number field and let P, c ∈ K.

(1) If |σ(P )| > 1
2 +

√
1
4 + |σ(c)| for some σ : K ↪→ C, then P is not

preperiodic for fc.
(2) If σ(c) > 1

4 for some σ : K ↪→ R, then fc has no finite K-rational
preperiodic point.

(3) Suppose σ is a real embedding such that σ(c) ≤ 1
4 , and set a =

1
2 +

√
1
4 − σ(c). If |σ(P )| > a, then P is not preperiodic for fc.

(4) Suppose σ is a real embedding such that σ(c) < −2, and set a =
1
2 +

√
1
4 − σ(c). If

σ(P ) 6∈
[
−a,−

√
−a− σ(c)

]
∪
[√
−a− σ(c), a

]
,

then P is not preperiodic for fc.
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Remark. In the case σ(c) < −2, we still have σ(P ) ∈ [−a, a] for all prepe-

riodic points P . However, the set [−a,−
√
−a− σ(c)]∪ [

√
−a− σ(c), a] has

length at most 4, making it much smaller than [−a, a] for large values of
|σ(c)|. Therefore, if c ∈ K satisfies σ(c) < −2 for some real embedding
σ : K ↪→ R, Lemma 4.8(4) provides a considerable reduction in our search
space for K-rational preperiodic points for fc.

We now give the details of a procedure for finding all the preperiodic
points for a sample space of quadratic polynomials fc over an arbitrary
number field K. To construct this sample space we fix a positive height
bound B and set

C := {c ∈ K : HK(c) ≤ B}.

We then take our sample space to be {fc : c ∈ C}.
By Theorem 4.6, any preperiodic point P for a given map fc satisfies

HK(P ) ≤
(
1+
√
5

2

)[K:Q]
HK(c)1/2. Therefore, the set

P :=

P ∈ K : HK(P ) ≤

(
1 +
√

5

2

)[K:Q]

B1/2


contains all finite preperiodic points for all of the maps in our sample space.
The sets C and P can be computed using the main algorithm in [8]. However,
the output of this algorithm is modified in two ways:

• We delete elements c ∈ C for which we can check that fc has no
K-rational preperiodic point, by performing the following steps:
(1) For each embedding σ : K ↪→ R, determine whether σ(c) > 1

4 .
If this occurs for some σ, then fc has no preperiodic point (Lem-
ma 4.8(2)), so we remove c from C.

(2) For each maximal ideal p such that ordp(c) < 0: if ordp(c) is
odd, then fc has no preperiodic point (Lemma 4.7(2)), and c is
removed from C. If ordp(c) is even and p lies over an odd prime,
determine whether −c is a square in the completion Kp. If it
is not, then fc has no preperiodic point (Lemma 4.7(3)), so we
remove c from C.

The last test can be done by working in the finite field Rp

/
pRp,

where Rp is the valuation ring of Kp: assuming that p is a prime of
OK lying over an odd rational prime, and that ordp(c) is negative
and even, we let π be a uniformizer in Rp, and write −c = π2su for
some integer s < 0 and some unit u ∈ R×p . Then −c is a square in
Kp if and only if u is a square in Rp, which happens if and only if u
is a square modulo pRp, by Hensel’s Lemma.
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• We reorder the elements of P by increasing height. For a given map
fc, every K-rational preperiodic point P of fc satisfies

HK(P ) ≤

(
1 +
√

5

2

)[K:Q]

HK(c)1/2.

Rather than searching through every element P ∈ P to determine
whether P is preperiodic for fc, the ordering by height allows us to
search through elements of P until the height bound(

1 +
√

5

2

)[K:Q]

HK(c)1/2

is exceeded, and then stop.

Having modified the sets C and P as explained above, we proceed to
determine, for every c ∈ C, the set of K-rational preperiodic points of the
map fc. First of all, we need not consider all points in P, but only those
meeting the height bound of Theorem 4.6. More importantly, Lemmas 4.7
and 4.8 give us a series of simple tests that can be applied to a point P
to conclude that it is not preperiodic. By doing this we quickly eliminate
from consideration many elements from the list P, at which point the naive
approach of iterating fc on each element of P at most #P times becomes
reasonable. This is, with small adjustments, the method provided in the
algorithms below.

Algorithm 1 (Preperiodicity tests).
Input: A number field K, a number c ∈ K, and a point P ∈ K.
Output: The string “NO” or “MAYBE”, depending on whether P failed
one of the tests and is therefore not preperiodic, or P passed all of the tests
and is therefore potentially preperiodic.

(1) For each prime ideal p such that ordp(P ) < 0: if ordp(c) ≥ 0, return
“NO” (Lemma 4.7(1)).

(2) For each prime ideal p such that ordp(c) < 0: if ordp(P ) 6= 1
2 ordp(c),

return “NO” (Lemma 4.7(2)).

(3) For each embedding σ : K ↪→ C: if |σ(P )| > 1
2 +
√

1
4 + |σ(c)|, return

“NO” (Lemma 4.8(1)).

(4) For each embedding σ : K ↪→ R: set a = 1
2 +

√
1
4 − σ(c).

(a) If |σ(P )| > a, return “NO” (Lemma 4.8(3)).

(b) If σ(c) < −2 and |σ(P )| <
√
−a− σ(c), return “NO” (Lem-

ma 4.8(4)).
(5) If it has not yet been determined whether P is preperiodic for fc,

return “MAYBE”.
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The next algorithm goes through the list C and, for each c ∈ C, uses
Algorithm 1 to find points from the list P that are definitely not preperi-
odic for fc. After this, a relatively small number of points remain whose
preperiodicity has not been determined. Each of these is then classified by
iterating a number of times which is not greater than the size of the list of
undetermined points.

Algorithm 2 (Determining all preperiodic points).
Input: A number field K, and lists C and P as described above.
Output: A list whose elements are of the form {c, {P1, . . . , Pm}} for all
c ∈ C such that fc has a K-rational preperiodic point, and {P1, . . . , Pm} =
PrePer(fc,K)

(1) Create an empty list L.
(2) For each c ∈ C:

(a) Create two empty lists, Y and M .

(b) For all P ∈ P with HK(P ) ≤
(
1+
√
5

2

)[K:Q]
HK(c)1/2 : apply

Algorithm 1 to P and c. If the output is “MAYBE”, append
the point P to the list M .

(c) While M is nonempty:
(i) Let P be the first element of M .
(ii) Construct a list I = {P} to contain iterates of P , and set

Q := fc(P ).
(iii) While preperiodicity of P has not been determined:

(A) if Q ∈ Y , then P is preperiodic; append all elements
of I to the list Y and delete them from M .

(B) If Q ∈ I, then P is preperiodic; append all elements
of I to the list Y and delete them from M .

(C) If Q 6∈ M , then P is not preperiodic; delete all ele-
ments of I from M .

(D) If no action was taken in steps (A) through (C), ap-
pend Q to I, and replace Q with fc(Q).

(d) If Y is nonempty, append {c, Y } to the list L.
(3) Return L.

Remark. The while loop in step 2c (iii) will necessarily terminate in at
most #M steps because, for a given P ∈M the first #M iterates (together
with P ) determine preperiodicity: if P is preperiodic, then either one of
these iterates falls in Y (and then the loop terminates in step A), or they
all lie in M ; but then at least two of them must be equal (and the loop
terminates in step B). Similarly, if P is not preperiodic, then none of these
iterates lies in Y , and since they are all distinct, at least one is not in M
(hence the loop will terminate in step C).

4.4. Application to quadratic fields. The algorithms developed in the
previous section give us a systematic way of computing preperiodic points
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for a sample space of quadratic polynomials defined over a given number
field. In this section we apply those algorithms in the context of quadratic
fields, following — with minor modifications — the steps outlined at the
beginning of §4.

For every quadratic field K with discriminant satisfying |∆K | ≤ 327 (a
total of 200 fields) we computed the set PrePer(fc,K) for a collection of
elements c ∈ K chosen as follows: a bound BK was fixed, and using the main
algorithm in [8] we computed all elements c ∈ K satisfying HK(c) ≤ BK .
Rather than choosing the same bound BK for every field K, we varied BK
between 1,000 and 2,200, increasing together with the discriminant of K
in order to keep the quantity of c values considered roughly uniform as K
varied. In addition we computed, for each field K, the set PrePer(fc,K) for
every c ∈ Q of relative height ≤ B′K , where B′K varied between 3002 and
6002.

In total, the set PrePer(fc,K) was computed for 256, 588 pairs (K, c); this
count does not include millions of values of c for which it was determined by
local methods that fc has no K-rational preperiodic point (other than the
point at infinity). The resulting 256, 588 directed graphs were then classified
by isomorphism to arrive at a list of 45 graphs. These graphs — and one
additional graph — are displayed in Appendix B, and a representative pair
(K, fc) for each graph is given in Appendix C.

There are three items appearing in the appendices which were not found
by the computations described above: the graph 10(3,1,1); an example of
the graph 10(2) over a real quadratic field; and an example of the graph
8(4) over an imaginary quadratic field. These examples occur over number
fields of large enough discriminant, or for polynomials fc with the height of
c large enough, that they are beyond the search range used for our main
computation. For more information we refer the reader to the discussion of
these graphs in §3.

5. PCF maps and maps with a unique fixed point

In this section we determine all rational and quadratic algebraic numbers
c such that the polynomial fc has one of two properties: either it is post-
critically finite, or it has a unique fixed point. Furthermore, for every such
number c we show that all possible graphs G(fc,K), with K a quadratic
field, appear in Appendix B. Recall that a rational function ϕ ∈ K(z) is
called postcritically finite (or PCF) if all of its critical points are preperiodic
for ϕ. In particular, a polynomial of the form f(z) = z2 + c is PCF if and
only if 0 is preperiodic for f(z).

We will need two preliminary results concerning heights of algebraic num-
bers. Recall that the absolute height function H : Q→ R≥1 is defined by

H(α) = HK(α)1/[K:Q],
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where K is any number field containing α. Here HK is the relative height
function on K defined in §4.2. The following result is an immediate conse-
quence of Theorem 4.6.

Lemma 5.1. Let K be a quadratic number field and let c ∈ K. If x ∈ K is
preperiodic for the map f(z) = z2 + c, then

H(x) ≤

(
1 +
√

5

2

)
H(c)1/2.

Lemma 5.2. Let x ∈ Q be a quadratic algebraic integer such that H(x) ≤ B.
Then x satisfies an equation

x2 + a1x+ a0 = 0,

where a0, a1 are integers with |a0| ≤ B2 and |a1| ≤ 2B2.

Proof. Let K = Q(x). The minimal polynomial of x has the form

m(t) = t2 + a1t+ a0

for some integers a0, a1. Factor m(t) over K as m(t) = (t − x)(t − y). For
every place v of K we have

|a0|v = |x|v|y|v ≤ max(1, |x|v) ·max(1, |y|v),
so

|a0|2 = HK(a0) =
∏
v|∞

max(1, |a0|nv
v ) ≤

∏
v|∞

max(1, |x|nv
v ) ·max(1, |y|nv

v )

= HK(x)HK(y) ≤ B4

and therefore |a0| ≤ B2. Similarly, for every place v we have

|a1|v ≤ |x|v + |y|v ≤ 2 ·max(|x|v, |y|v) ≤ 2 ·max(1, |x|v) ·max(1, |y|v),
so

|a1|2 = HK(a1) =
∏
v|∞

max(1, |a1|nv
v ) ≤

∏
v|∞

2nv ·max(1, |x|nv
v ) ·max(1, |y|nv

v )

= 22HK(x)HK(y),

and therefore |a1| ≤ 2B2. �

5.1. PCF maps. Using the above results, we now determine all rational
and quadratic numbers c such that the map fc is PCF. As a result of our
analysis, we will be able to list all pairs (K, c) consisting of a quadratic
number field K and an element c ∈ K for which the graph G(fc,K) has an
odd number of vertices.

Proposition 5.3. Let c ∈ Q satisfy [Q(c) : Q] ≤ 2, and suppose that the
map f(z) = z2 + c is PCF. Then c ∈ {0,−1,−2,±i}, where i denotes a
square root of −1. Moreover, for every quadratic field K containing c, the
graph G(f,K) is isomorphic to one of the graphs listed in Appendix B.
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Proof. Let K be a quadratic number field containing c. Since 0 is preperi-
odic for f , then also c = f(0) is preperiodic. Hence, c satisfies an equation
fm(c) = fn(c) for some m < n, so c is integral over Z. In particular, |c|v ≤ 1
for every nonArchimedean place v of K. As 0 is preperiodic and therefore
in the filled Julia set Kv,c for each Archimedean place v, we find |c|v ≤ 2
(Lemma 4.8(2,4)).

Hence, we have

(5.1) H(c) =

∏
v|∞

max{1, |c|v}nv

1/2

≤ 2.

Moreover, since 0 is preperiodic for f(z), then by Lemma 5.1 we have the
following for all n ≥ 0:

(5.2) H (fn(0)) ≤

(
1 +
√

5

2

)
H(c)1/2 < 2.29.

If c ∈ Q, then (5.1) implies c ∈ {0,±1,±2} and (5.2) with n = 3 eliminates
c = 1 and 2, so c ∈ {0,−1,−2}. If c is quadratic, we claim that c = ±i.
Using Lemma 5.2 we compute the set S of all quadratic algebraic integers
of height at most 2. For every element c ∈ S we then check whether (5.2) is
satisfied for n = 5 in order to eliminate values of c. After this process, the
only possibilities left for c are ±i; this proves the first part of the proposition.

For the second statement, we begin by computing the full list of rational
and quadratic preperiodic points for the map f(z) = z2 + c for each c ∈
{0,−1,−2,±i}. Note that, since c is an algebraic integer, every preperiodic
point for f(z) must also be an algebraic integer.

Consider first the case c = i. Since c ∈ K, we must have K = Q(i).
By Lemma 5.1, every element x ∈ PrePer(f,K) must satisfy H(x) < 1.62.
Writing x = a + bi with a, b ∈ Z, we then have a2 + b2 < 2.63, so a, b ∈
{0,±1}. This shows that PrePer(f,K) ⊆ {0,±1,±i,±1± i}. The numbers
0,±i,±(1 − i) are easily seen to be preperiodic; the remaining numbers,
namely ±1 and ±(1 + i), are not preperiodic because their orbits under f
are not contained in the set {0,±1,±i,±1± i}. Therefore, we conclude that

PrePer(z2 + i,Q(i)) = {0,±i,±(1− i)}.

One can easily check that the corresponding graph G(f,K) appears in the
appendix with the label 5(2)a.

We consider now the values c = 0,−1,−2. Let PrePer2(f) denote the set
of all preperiodic points for f in Q of degree at most 2 over Q. Since c has
very small height, we can quickly compute the set PrePer2(f) as follows:
first, we use Lemma 5.2 to compute the set S of all algebraic integers x
satisfying the height bound in Lemma 5.1, so that PrePer2(f) ⊆ S. We now
iterate each element s ∈ S until a value in its orbit is repeated, in which
case s is preperiodic, or its orbit leaves the set S, in which case it is not
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preperiodic. This will require at most 1 + #S iterations of s. The results
of these calculations are summarized in the table below. Here, ω denotes a
primitive cube root of unity.

c x ∈ Q is preperiodic for f and [Q(x) : Q] ≤ 2

0 0,±1,±i,±ω,±ω2

−1 0, ±1, ±
√

2, ±1
2(1 +

√
5), ±1

2(1−
√

5)

−2 0, ±1, ±2, ±
√

2, ±
√

3, ±1
2(1 +

√
5), ±1

2(1−
√

5)

For each of the above values of c we can now determine the structure of
the graphs G(f,K) as K ranges over all quadratic fields. In every case, we
find that the graph is one of those listed in the appendix; the corresponding
labels are given below.

For c = 0 we obtain

G(fc,K) =


5(1,1)b if K = Q(i)

7(2,1,1)a if K = Q(ω)

3(1,1) otherwise.

For c = −1 :

G(fc,K) =


5(2)b if K = Q(

√
2)

7(2,1,1)b if K = Q(
√

5)

3(2) otherwise.

For c = −2 :

G(fc,K) =


7(1,1)a if K = Q(

√
2)

7(1,1)b if K = Q(
√

3)

9(2,1,1) if K = Q(
√

5)

5(1,1)a otherwise.

This completes the proof of the proposition. �

Corollary 5.4. Let K be a quadratic field and let c ∈ K. If the graph
G(fc,K) has an odd number of vertices, then it is isomorphic to one of the
graphs listed in Appendix B.

Proof. Note that an element x ∈ K is preperiodic for fc if and only if −x is
preperiodic. Hence, the preperiodic points for fc in K can be grouped into
pairs (x,−x). If the number of such points is odd, this means that there is
some point x such that x = −x; in other words, 0 is preperiodic for fc. By
definition, this means that fc is PCF, and now the conclusion follows from
Proposition 5.3. �

Remark. Proposition 5.3 and its proof achieve, for graphs G with an odd
number of vertices, our main classification goal stated in §3; namely, an
explicit description of all pairs (K, c) such that G(fc,K) ∼= G.
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5.2. Maps with a unique fixed point. Having classified the preperiodic
graph structures with an odd number of vertices, we consider now the three
graphs in our list that have a unique 1-cycle. The following result will give,
for each one of these graphs, a complete list of all pairs (K, c) giving rise to
the graph.

Proposition 5.5. Let K be a quadratic field, and suppose that c ∈ K is such
that the map f(z) = z2 + c has a unique fixed point in K. Then G(f,K) is
one of the graphs listed in Appendix B. More precisely, c = 1/4 and:

G(f,K) =


6(2, 1) if K = Q(i)

4(1) if K = Q(
√
−3)

2(1) otherwise.

Proof. If f(z) has a unique fixed point, then the equation z2 − z + c = 0
has exactly one solution, so c = 1/4. The set PrePer(f,Q) is easily seen
to be equal to {±1

2}: by Lemma 5.1, any rational preperiodic point for f
has height at most 3; this gives a short list of possible preperiodic points,
and the preperiodicity of each point is decided within a few iterations. The
corresponding graph G(f,Q) is the graph 2(1). We will now determine all
the quadratic fields K where f might have preperiodic points that are not
rational.

Suppose that x ∈ Q is a quadratic preperiodic point for f , and let K =
Q(x). It follows from Lemma 4.7 that for every nonArchimedean place v of
K we have

|x|v

{
= 2 if v|2
≤ 1 otherwise.

Hence, 2x is an algebraic integer. Since x is preperiodic, Lemma 4.8(1) gives

|x|v ≤
1

2
+

√
1

4
+

1

4
< 1.21

for each v | ∞. Hence

H(2x) =

∏
v|∞

max {1, |2x|v}nv

1/2

(5.3)

≤

∏
v|∞

2nv ·max {1, |x|v}nv

1/2

< 2.42.

Write m(t) = t2 + a1t + a0 for the minimal polynomial of 2x, where
a0, a1 ∈ Z. Applying Lemma 5.2 with the bound in (5.3), we find that

|a1| ≤ 2(2.42)2 < 11.7 and |a0| ≤ (2.42)2 < 5.9.

Since all iterates of x under f are preperiodic, we have H(fn(x)) < 3.24
for all n (Lemma 5.1). Using Sage we consider all quadratic numbers x
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satisfying these properties (with n ≤ 3), and find that the only possibilities
have a1 = 0, a0 = 3 and a1 = ±2, a0 = 5. This leads to the preperiodic
points

±
√
−3

2
, ±1

2
± i,

and the result now follows easily. �

Appendix A. Proof of Lemma 3.5

Let H : Q → R≥1 be the standard multiplicative height function on Q
given by H(a/b) = max{|a|, |b|} if a and b are coprime integers. Given real
numbers α < β, define a counting function on R≥1 by

N(T ;α, β) = #{r ∈ Q∗ : α ≤ r ≤ β and H(r) ≤ T}.

To prove Lemma 3.5 we will need the following asymptotic estimate for
N(T ;α, β).

Proposition A.1. There is a constant c = c(α, β) such that

N(T ;α, β) ∼ cT 2.

Proof. We begin by making a series of reductions. The relation H(r) =
H(−r) for r ∈ Q implies that

N(T ;α, β) =

{
N(T ;−β,−α) if α < β ≤ 0

N(T ; 0,−α) +N(T ; 0, β) if α < 0 < β.

This shows that in order to prove the result it suffices to consider the case
0 ≤ α. Making this assumption, the relation H(r) = H(1/r) for r ∈ Q∗
implies that

N(T ;α, β) =

{
N(T ;β−1, α−1) if 1 < α < β

N(T ;α, 1) +N(T ;β−1, 1) if α ≤ 1 < β.

Therefore, it suffices to prove the result when 0 ≤ α < β ≤ 1. Finally,
making this assumption we have N(T ;α, β) = N(T ; 0, β) if α = 0, and
otherwise N(T ;α, β) = N(T ; 0, β)−N(T ; 0, α) + ε, where ε ∈ {0, 1}; hence,
it suffices to prove that for any real number η ∈ (0, 1] there is a constant
c = c(η) such that N(T ; 0, η) ∼ cT 2. The following estimate will be needed
to prove this.

Lemma A.2. Let η ∈ (0, 1] be a real number, and define a function S :
[1,∞)→ Z≥0 by

S(X) = #{(x, y) ∈ Z2 : 1 ≤ y ≤ X and 1 ≤ x ≤ ηy}.

Then, setting g(X) = ηX(X + 1)/2 − S(X), we have 0 ≤ g(X) < 2X for
every X ≥ 1.
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Proof. Note that

(A.1) S(X) =
∑

1≤y≤X
#{x ∈ Z : 1 ≤ x ≤ ηy} =

∑
1≤y≤X

bηyc.

Applying the trivial bound bηyc ≤ ηy we obtain S(X) ≤ ηX(X + 1)/2,
and the inequality g(X) ≥ 0 follows immediately. To show that g(X) < 2X,
write ηy = bηyc+ {ηy} with 0 ≤ {ηy} < 1. Then (A.1) yields

S(X) =
∑

1≤y≤X
ηy −

∑
1≤y≤X

{ηy} > η ·
∑

1≤y≤X
y −

∑
1≤y≤X

1

= ηbXc(bXc+ 1)/2− bXc.

Using the inequalities X − 1 < bXc ≤ X and η ≤ 1 we have

ηbXc(bXc+ 1)/2− bXc > η(X − 1)X/2−X
= ηX(X + 1)/2− ηX −X
≥ ηX(X + 1)/2− 2X.

Therefore, S(X) > ηX(X + 1)/2− 2X, and hence g(X) < 2X. �

Fix a real number η ∈ (0, 1]. In order to complete the proof of the
proposition we need to show that N(T ; 0, η) ∼ cT 2 for some constant c
depending only on η. For any real number T ≥ 1 we have

N(T ; 0, η) = #{r ∈ Q : 0 < r ≤ η and H(r) ≤ T}
= #{(x, y) ∈ N2 : gcd(x, y) = 1, y ≤ T, x ≤ ηy}

=
∑

1≤y≤T
#{x ∈ N : gcd(x, y) = 1, x ≤ ηy}.

We recall the following facts concerning the Möbius function µ (see [14,
Thms. 263, 287]).

(A.2)
∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1
and

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
, s > 1.

Here, ζ denotes the Riemann zeta function. Using the first property of µ we
can now write

N(T ; 0, η) =
∑
y≤T

∑
x≤ηy

∑
d| gcd(x,y)

µ(d)

=
∑

1≤d≤T
µ(d) ·#{(x, y) ∈ N2 : d|x, d|y, y ≤ T, x ≤ ηy}

=
∑

1≤d≤T
µ(d) ·#{(a, b) ∈ N2 : b ≤ T/d, a ≤ ηb}

=
∑

1≤d≤T
µ(d) · S(T/d),
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where S is the function defined in Lemma A.2. With the notation used in
the lemma, we have

N(T ; 0, η) =
∑

1≤d≤T
µ(d) · (η(T/d)(1 + T/d)/2− g(T/d))

= (ηT 2/2) ·
∑

1≤d≤T

µ(d)

d2
+ (ηT/2) ·

∑
1≤d≤T

µ(d)

d

−
∑

1≤d≤T
µ(d) · g(T/d).

Let P (T ) =
∑

1≤d≤T µ(d)/d2, so that by (A.2), P (T )→ 1/ζ(2) as T →∞.
We have

(A.3)
2 · ζ(2) ·N(T ; 0, η)

ηT 2

= ζ(2) · P (T ) ·

(
1 +

∑
1≤d≤T

µ(d)
d

T · P (T )
−

2 ·
∑

1≤d≤T µ(d)g(T/d)

ηT 2 · P (T )

)
.

The bounds 0 ≤ g(T/d) < 2T/d proved in Lemma A.2 imply that∣∣∣∣∣∣
∑

1≤d≤T
µ(d)g(T/d)

∣∣∣∣∣∣ ≤ 2T ·
∑

1≤d≤T

1

d
< 2T (log T + 1).

Hence,

lim
T→∞

∑
1≤d≤T µ(d)g(T/d)

T 2
= 0.

Using the fact that
∑∞

d=1 µ(d)/d = 0 we see that the right-hand side of
(A.3) converges to 1. Therefore,

N(T ; 0, η) ∼
(

η

2 · ζ(2)

)
· T 2,

and this completes the proof of the proposition. �

The final ingredient needed in the proof of Lemma 3.5 is the following
special case of [16, Thm. B.6.1].

Theorem A.3. Let X/Q be a curve of genus g > 0 with X(Q) 6= ∅. Let
HX be a multiplicative Weil height on X(Q) and define a counting function
on X(Q) by

N(X(Q), T ) = #{P ∈ X(Q) : HX(P ) ≤ T}.

Then there are constants a and b such that

N(X(Q), T ) ∼

{
a(log T )b if g = 1 (a > 0, b ≥ 0)

a if g ≥ 2.
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Recall the statement of Lemma 3.5: Let p(x) ∈ Q[x] have nonzero dis-
criminant and degree ≥ 3. For every rational number r, define a field Kr

by

Kr := Q
(√

p(r)
)
.

Then, for every interval I ⊂ R of positive length, the set

Σ(I, p) = {Kr : r ∈ Q ∩ I}

contains infinitely many quadratic fields.

Proof of Lemma 3.5. Let C be the hyperelliptic curve defined by the
equation y2 = p(x). If d is a squarefree integer, we denote by Cd the qua-
dratic twist of C by d, i.e., the curve defined by dy2 = p(x). Note that
in order to prove the lemma it suffices to consider finite closed intervals I;
hence, we fix an interval I = [α, β].

Let d1, . . . , dn be squarefree integers, and define d0 = 1. We will show
that Σ(I, p) must contain a field different from Q(

√
di) for every i, which

will prove the lemma. For T ∈ R≥1 define

N (T ) = #{r ∈ Q ∩ I : H(r) ≤ T and Kr = Q(
√
di) for some i}.

For any fixed d ∈ {d0, . . . , dn}, we define a height function on the curve
X = Cd by HX(x, y) = H(x); this is the naive Weil height on Cd. It follows
from Theorem A.3 that (in particular)

(A.4)
n∑
d=0

N(Cd(Q), T )� T (T →∞).

Note that if r ∈ Q ∩ I is such that the field Kr is equal to Q(
√
d), then

there is a rational number s such that (r, s) ∈ Cd(Q). Thus, for every real
number T ,

#{r ∈ Q ∩ I : H(r) ≤ T and Kr = Q(
√
d)} ≤ N(Cd(Q), T ).

Therefore, by (A.4) we have N (T )� T . Now, by Proposition A.1 we know
that

#{r ∈ Q ∩ I : H(r) ≤ T} ∼ cT 2

for some constant c depending on α and β. Hence,

N (T ) < #{r ∈ Q ∩ I : H(r) ≤ T} for T � 0.

By choosing T large enough, this shows that there is a rational number
r ∈ I for which the field Kr is different from all the fields Q(

√
di). Hence, as

claimed, the set Σ(I, p) contains a field different from Q(
√
di) for every i. �
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Appendix B. Preperiodic graph structures

We present 46 graphs representing preperiodic structures discovered via
the methods described in §4, applied to the case of quadratic number fields
as explained in §4.4. The label of each graph is in the form N(`1, `2, . . .),
where N denotes the number of vertices in the graph and `1, `2, . . . are the
lengths of the directed cycles in the graph in nonincreasing order. If more
than one isomorphism class of graphs with this data was observed, we add a
lowercase roman letter to distinguish them. For example, the labels 5(1,1)a
and 5(1,1)b correspond to the two isomorphism classes of graphs observed
that have five vertices and two fixed points. In all figures below we omit the
connected component corresponding to the point at infinity.

We remark that all of the graphs from Poonen’s paper [31] appear below,
with the labels 0, 2(1), 3(1,1), 3(2), 4(1,1), 4(2), 5(1,1)a, 6(1,1), 6(2), 6(3),
8(2,1,1), and 8(3).

0 2(1) 3(1,1)

3(2) 4(1) 4(1,1)

4(2) 5(1,1)a 5(1,1)b

5(2)a 5(2)b

6(1,1) 6(2) 6(2,1)

6(3) 7(1,1)a
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7(1,1)b 7(2,1,1)a

7(2,1,1)b 8(1,1)a

8(1,1)b 8(2)a

8(2)b 8(2,1,1)

8(3) 8(4)

9(2,1,1) 10(1,1)a

10(1,1)b 10(2)

10(2,1,1)a 10(2,1,1)b
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10(3)a 10(3)b 10(3,1,1)

10(3,2) 12(2)

12(2,1,1)a 12(2,1,1)b

12(3) 12(4) 12(4,2)

12(6) 14(2,1,1)
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14(3,1,1) 14(3,2)

Appendix C. Representative data

We give here a representative set of data for each graph in Appendix B.
Each item in the list below includes the following information:

K, p(t), c,PrePer(fc,K)′.

Here K = Q(
√
D) is a quadratic field over which this preperiodic structure

was observed; p(t) is a defining polynomial for K with a root g ∈ K; c
is an element of K such that the set PrePer(fc,K)\{∞}, when endowed
with the structure of a directed graph, is isomorphic to the given graph;
and PrePer(fc,K)′ is an abbreviated form of the full set of finite K-rational
preperiodic points for fc: since x ∈ PrePer(fc,K) if and only if −x ∈
PrePer(fc,K), we list only one of x and −x in the set PrePer(fc,K)′. We
do not make explicit the correspondence between individual elements of this
set and vertices of the graph. If a particular graph was observed over both
real and imaginary quadratic fields, we give a representative set of data for
each case.

0.

Q(
√

5), t2 − t− 1, 1, ∅
Q(
√
−3), t2 − t+ 1, 2, ∅

2(1).

Q(
√

5), t2 − t− 1, 1
4 ,
{
1
2

}
Q(
√
−7), t2 − t+ 2, 1

4 ,
{
1
2

}
3(1,1).

Q(
√

5), t2 − t− 1, 0, {0, 1}
Q(
√
−7), t2 − t+ 2, 0, {0, 1}

3(2).

Q(
√

3), t2 − 3, −1, {0, 1}
Q(
√
−3), t2 − t+ 1, −1, {0, 1}
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4(1).

Q(
√
−3), t2 − t+ 1, 1

4 ,
{
1
2 , g −

1
2

}
4(1,1).

Q(
√

5), t2 − t− 1, 1
5 ,
{
1
5g + 2

5 ,
1
5g −

3
5

}
Q(
√
−3), t2 − t+ 1, 1, {g, g − 1}

4(2).

Q(
√

5), t2 − t− 1, −4
5 ,
{
1
5g + 2

5 ,
1
5g −

3
5

}
Q(
√
−3), t2 − t+ 1, −2

3 ,
{
1
3g −

2
3 ,

1
3g + 1

3

}
5(1,1)a.

Q(
√

13), t2 − t− 3, −2, {0, 2, 1}
Q(
√
−3), t2 − t+ 1, −2, {0, 2, 1}

5(1,1)b.

Q(
√
−1), t2 + 1, 0, {0, 1, g}

5(2)a.

Q(
√
−1), t2 + 1, g, {0, g, g − 1}

5(2)b.

Q(
√

2), t2 − 2, −1, {0, 1, g}

6(1,1).

Q(
√

5), t2 − t− 1, −3
4 ,
{
1
2 , g −

1
2 ,

3
2

}
Q(
√
−3), t2 − t+ 1, −3

4 ,
{
1
2 ,

3
2 , g −

1
2

}
6(2).

Q(
√

5), t2 − t− 1, −3, {1, 2, 2g − 1}
Q(
√
−3), t2 − t+ 1, −13

9 ,
{
1
3 ,

4
3 ,

5
3

}
6(2,1).

Q(
√
−1), t2 + 1, 1

4 ,
{
1
2 , g −

1
2 , g + 1

2

}
6(3).

Q(
√

33), t2 − t− 8, −301
144 ,

{
5
12 ,

19
12 ,

23
12

}
Q(
√
−67), t2 − t+ 17, −301

144 ,
{

5
12 ,

19
12 ,

23
12

}
7(1,1)a.

Q(
√

2), t2 − 2, −2, {0, 1, 2, g}
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7(1,1)b.

Q(
√

3), t2 − 3, −2, {0, 1, 2, g}

7(2,1,1)a.

Q(
√
−3), t2 − t+ 1, 0, {0, 1, g, g − 1}

7(2,1,1)b.

Q(
√

5), t2 − t− 1, −1, {0, 1, g, g − 1}

8(1,1)a.

Q(
√

13), t2 − t− 3, −289
144 ,

{
5
6g + 1

12 ,
1
2g −

13
12 ,

1
2g + 7

12 ,
5
6g −

11
12

}
Q(
√
−15), t2 − t+ 4, − 5

16 ,
{
1
4 ,

3
4 ,

5
4 ,

1
2g −

1
4

}
8(1,1)b.

Q(
√

13), t2 − t− 3, −40
9 ,

{
4
3 ,

8
3 ,

5
3 ,

4
3g −

2
3

}
Q(
√
−2), t2 + 2, −10

9 ,
{
2
3 ,

1
3g,

4
3 ,

5
3

}
8(2)a.

Q(
√

10), t2 − 10, −13
9 ,

{
1
3 ,

1
3g,

4
3 ,

5
3

}
Q(
√
−3), t2 − t+ 1, − 5

12 ,
{
2
3g −

5
6 ,

2
3g + 1

6 ,
1
3g + 5

6 ,
1
3g −

7
6

}
8(2)b.

Q(
√

13), t2 − t− 3, −37
9 ,

{
4
3 ,

5
3 ,

7
3 ,

4
3g −

2
3

}
Q(
√
−7), t2 − t+ 2, −13

16 ,
{
1
4 ,

3
4 ,

1
2g −

1
4 ,

5
4

}
8(2,1,1).

Q(
√

5), t2 − t− 1, −12, {3, 3g − 1, 3g − 2, 4}
Q(
√
−3), t2 − t+ 1, 7

12 ,
{
2
3g + 1

6 ,
2
3g −

5
6 ,

4
3g −

7
6 ,

4
3g −

1
6

}
8(3).

Q(
√

5), t2 − t− 1, −29
16 ,

{
1
4 ,

5
4 ,

3
4 ,

7
4

}
Q(
√
−3), t2 − t+ 1, −29

16 ,
{
1
4 ,

5
4 ,

3
4 ,

7
4

}
8(4).

Q(
√

10), t2 − 10, −155
72 ,

{
1
4g −

1
6 ,

1
4g + 1

6 ,
1
12g −

3
2 ,

1
12g + 3

2

}
Q(
√
−455), t2− t+ 114, 199

720 ,
{

1
10g + 17

60 ,
1
15g −

47
60 ,

1
10g −

23
60 ,

1
15g + 43

60

}
9(2,1,1).

Q(
√

5), t2 − t− 1, −2, {0, 1, 2, g, g − 1}
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10(1,1)a.

Q(
√
−7), t2 − t+ 2, 3

16 ,
{
1
4 ,

1
2g + 1

4 ,
1
2g −

1
4 ,

1
2g −

3
4 ,

3
4

}
10(1,1)b.

Q(
√

17), t2 − t− 4, −1
2g −

13
16 ,

{
1
4 ,

1
2g + 3

4 ,
3
4 ,

1
2g −

1
4 ,

1
2g + 1

4

}
10(2).

Q(
√

73), t2−t−18, 1
9g−

205
144 ,

{
1
6g + 1

12 ,
1
6g −

11
12 ,

1
6g + 7

12 ,
1
3g −

7
12 ,

1
3g −

1
12

}
Q(
√
−7), t2 − t+ 2, −1

2g −
5
16 ,

{
1
4 ,

1
2g −

1
4 ,

1
2g + 1

4 ,
3
4 ,

1
2g + 3

4

}
10(2,1,1)a.

Q(
√

17), t2 − t− 4, −273
64 ,

{
11
8 ,

13
8 ,

19
8 ,

5
4g −

5
8 ,

21
8

}
Q(
√
−1), t2 + 1, 3

8g −
1
4 ,
{
3
4g + 1

4 ,
3
4g −

3
4 ,

1
4g −

1
4 ,

1
4g + 3

4 ,
1
4g −

5
4

}
10(2,1,1)b.

Q(
√

13), t2 − t− 3, −10
9 ,

{
2
3 ,

4
3 ,

5
3 ,

1
3g −

2
3 ,

1
3g + 1

3

}
Q(
√
−7), t2 − t+ 2, −21

16 ,
{
1
4 ,

7
4 ,

1
2g −

1
4 ,

3
4 ,

5
4

}
10(3)a.

Q(
√

41), t2 − t− 10, −29
16 ,

{
1
4 ,

5
4 ,

3
4 ,

1
2g −

1
4 ,

7
4

}
10(3)b.

Q(
√

57), t2 − t− 14, −29
16 ,

{
1
4 ,

3
4 ,

5
4 ,

7
4 ,

1
2g −

1
4

}
10(3,1,1)

Q(
√

337), t2 − t− 84, −301
144 ,

{
5
12 ,

19
12 ,

23
12 ,

1
6g + 5

12 ,
1
6g −

7
12

}
10(3,2).

Q(
√

193), t2 − t− 48, −301
144 ,

{
5
12 ,

19
12 ,

23
12 ,

1
6g + 5

12 ,
1
6g −

7
12

}
12(2).

Q(
√

2), t2 − 2, −15
8 ,

{
3
4g + 1

2 ,
3
4g −

1
2 ,

1
4g + 1

2 ,
1
4g −

3
2 ,

1
4g −

1
2 ,

1
4g + 3

2

}
12(2,1,1)a.

Q(
√

17), t2 − t− 4, −13
16 ,

{
1
4 ,

3
4 ,

5
4 ,

1
2g + 1

4 ,
1
2g −

3
4 ,

1
2g −

1
4

}
12(2,1,1)b.

Q(
√

33), t2 − t− 8, −45
16 ,

{
3
4 ,

9
4 ,

5
4 ,

1
2g −

3
4 ,

1
2g + 1

4 ,
1
2g −

1
4

}
Q(
√
−7), t2 − t+ 2, − 5

16 ,
{
1
4 ,

3
4 ,

5
4 ,

1
2g + 1

4 ,
1
2g −

3
4 ,

1
2g −

1
4

}
12(3).

Q(
√

73), t2 − t− 18, −301
144 ,

{
1
6g −

1
12 ,

5
12 ,

19
12 ,

1
3g + 1

12 ,
1
3g −

5
12 ,

23
12

}
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12(4).

Q(
√

105), t2 − t− 26, −95
48 ,
{
1
6g −

13
12 ,

1
6g + 11

12 ,
1
3g −

5
12 ,

1
6g + 5

12 ,
1
6g −

7
12 ,

1
3g + 1

12

}
12(4,2).

Q(
√
−15), t2 − t+ 4, −31

48 ,
{
1
3g + 1

12 ,
1
6g −

13
12 ,

1
3g −

5
12 ,

1
6g + 5

12 ,
1
6g −

7
12 ,

1
6g + 11

12

}
12(6).

Q(
√

33), t2−t−8, −71
48 ,
{
1
6g−

13
12 ,

1
6g−

7
12 ,

1
3g−

5
12 ,

1
6g+ 5

12 ,
1
3g+ 1

12 ,
1
6g+ 11

12

}
14(2,1,1).

Q(
√

17), t2 − t− 4, −21
16 ,

{
1
4 ,

3
4 ,

5
4 ,

7
4 ,

1
2g −

1
4 ,

1
2g −

3
4 ,

1
2g + 1

4

}
14(3,1,1).

Q(
√

33), t2 − t− 8, −29
16 ,

{
1
4 ,

5
4 ,

3
4 ,

1
2g −

3
4 ,

1
2g + 1

4 ,
1
2g −

1
4 ,

7
4

}
14(3,2).

Q(
√

17), t2 − t− 4, −29
16 ,

{
1
4 ,

5
4 ,

3
4 ,

1
2g −

1
4 ,

1
2g −

3
4 ,

1
2g + 1

4 ,
7
4

}
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