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L∞ spaces and derived loop spaces

Ryan Grady and Owen Gwilliam

Abstract. We develop further the approach to derived differential ge-
ometry introduced in Costello’s work on the Witten genus (arXiv, 2011).
In particular, we introduce several new examples of L∞ spaces, discuss
vector bundles and shifted symplectic structures on L∞ spaces, and ex-
amine in some detail the example of derived loop spaces. This paper
is background for a forthcoming paper in which we define a quantum
field theory on a derived stack, building upon Costello’s definition of an
effective field theory (AMS Monographs, 2011).
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1. Introduction and overview

In his work constructing the Witten genus with a two-dimensional sigma
model [Cos11], Costello introduces a framework for derived differential ge-
ometry. His approach is functorial in nature: he defines a derived stack as
a functor from a category of test objects to the category of simplicial sets,
satisfying some conditions familiar from geometry. His test objects are a
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modest enlargement of smooth manifolds to include nilpotent and derived-
nilpotent directions, which is why this approach is a version of derived differ-
ential geometry. The conditions characterizing his derived stacks are mild.1

Moreover, he points out a nice subset of derived stacks that have a kind
of “ringed space” description, which he calls L∞ spaces, that exploit the
intimate relationship between dg Lie algebras and deformation theory. The
appeal of L∞ spaces is that they allow one to do explicit computations very
efficiently, particularly computations that appear in (perturbative) quantum
field theory (QFT).

Our goal here is to verify some simple properties of Costello’s formal-
ism and to point out some appealing features. Much of the paper simply
elaborates on Costello’s work in [Cos11]. In a companion paper [GG], we ar-
ticulate how these definitions allow one to extend the reach of his formalism
for perturbative quantum field theory to encompass less-perturbative QFT,
developing explicitly some ideas that are implicit in Costello’s work.

1.1. An overview of the paper. We begin by developing the definition
of a derived stack, in Costello’s sense. We then introduce a special class
of derived stacks, the L∞ spaces, which can be thought of as families of
formal moduli problems parametrized by smooth manifolds. Thereafter, we
introduce some simple examples of L∞ spaces and a modicum of geometry on
L∞ spaces (notably vector bundles and shifted symplectic forms). Finally,
we discuss various kinds of derived loop spaces that are relevant to our work
on a 1-dimensional sigma model [GG14].

1.2. The motivation from physics. Before delving into the text itself,
we remark on the motivations behind this approach. The immediate impetus
arose from Costello’s goal of encoding a nonlinear sigma model into his
formalism for quantum field theory [Cos11b]. The reader interested just
in derived geometry is welcome to skip this short discussion. As we have
not yet defined any of the principal objects of our formalism, we will speak
loosely in geometric language.

Let M be the smooth manifold on which the fields of our field theory will
live. In his book, Costello defined families of field theories over nilpotent
dg manifolds. More explicitly, for N a nilpotent dg manifold, suppose we
have an M -fiber bundle M ↪→ P → N and a relative vector bundle V →
P . Costello’s formalism of renormalization works in this relative situation,
where for each point x in N , we have a field theory on Vx → Mx whose
underlying fields are the smooth sections of the fiberwise vector bundle.

1It would be interesting to work out the analogs of Deligne–Mumford and Artin stacks
in this setting, as Costello’s conditions simply pick out homotopy sheaves and hence en-
compass functors that are not very geometric. It would also be quite useful and interesting
to compare this approach to the approaches of Carchedi–Roytenberg [CarR13], Borisov–
Noel [BorN], Lurie [Lura], Spivak [Spi10], Schreiber [Sch], and Joyce [Joy].
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Thus Costello needed to rephrase a nonlinear sigma model — a field
theory whose fields are Maps(M,X), the space of smooth maps from M
into a manifold X — within such a framework, where fields are sections
of a vector bundles. There is a standard idea from physics that suggests
how to do this, and L∞ spaces allow one to formulate it as a mathematical
procedure.

We would like to compute the path integral

∫
φ∈Maps(M,X)

e−S(φ)/~ Dφ,

or — more accurately — provide an asymptotic expansion for this integral
in the regime where ~ is infinitesimally small. For very small ~, the measure
should be concentrated in a small tubular neighborhood Tub of Sol, the
subspace cut out by the solutions to the equations of motion. Thus, the
integral can be well-approximated by pulling back the measure to the neigh-
borhood Tub. We then identify this tubular neighborhood with the normal
bundle N to Sol and compute the approximate integral in two steps. First,
we use perturbative methods to compute the fiberwise integral and obtain
a measure on Sol. Second, we integrate over Sol itself. This integral over
Sol breaks up into a sum over the connected components of Sol.

Among the connected components of Sol, the lowest-energy solutions for
a sigma model are given typically by the constant maps, and this component
of the space of solutions looks like a copy of the target manifoldX itself. This
component usually provides the dominant term in the sum over components.
Hence, our path integral should be well-approximated by integrating over a
tubular neighborhood T just of the constant maps X ↪→ Maps(M,X). Note
that a really small perturbation of such a constant map x : M → x ∈ X can
be viewed as a map from M to a small ball in X around x.

In physics, one often applies this heuristic idea as follows. One views T as
a vector bundle over X whose fiber at x ∈ X is Γ(M,x∗TxX)/TxX. (This
vector space takes the quotient of all the smooth sections of the pullback
tangent bundle — which are the ways of wiggling the constant map x — by
the subspace of sections that just move to a nearby constant map.) Formal
derived geometry provides a nice mathematical language for describing the
formal neighborhood T of the constant maps inside Maps(M,X). Indeed,
Costello showed that T is an L∞ space. He then showed that his pertur-
bative formalism interacted cleanly with L∞ spaces to realize the two-step
process of integration. In the language of [Cos11], the quantum BV theory
he produces out of T provides a projective volume form.

In our companion paper, we explain in more depth both the heuristic
picture of path integral quantization of the nonlinear sigma model and the
precise realization of that idea using Costello’s pair of formalisms (for QFT
and derived geometry).
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1.3. A comment on our imagined audience. Our primary purpose for
this formalism is the construction of quantum field theories, and we imagine
that some of our audience has a working knowledge of homological algebra
and category theory at the level of Weibel [Wei94] and some familiarity with
the language of L∞ algebras, due to their role in deformation quantization
à la Kontsevich [Kon03]. We have thus sought to explain constructions or
concepts, like homotopy limits, that we use that fall outside those references.
Those readers comfortable with homotopical algebra are encouraged to skip
over such discussions.

1.4. Acknowledgements. First and foremost, we thank Kevin Costello
for many helpful conversations and for introducing us to these ideas in the
context of field theory. Our understanding on derived geometry, however
limited, is rooted in discussions with John Francis, David Nadler, Ana-
toly Preygel, and Nick Rozenblyum. The influence of the ideas of Dennis
Gaitsgory, Jacob Lurie, Bertrand Toën, and Gabriele Vezzosi should also be
clear: we thank them for their inspiring ideas, lectures, and texts. We have
also benefited from conversations with many people on this topic, includ-
ing David Ayala, David Carchedi, Lee Cohn, Vasiliy Dolgushev, Si Li, Thel
Seraphim, Yuan Shen, Jim Stasheff, Mathieu Stienon, Stephan Stolz, Peter
Teichner, Ping Xu, and Brian Williams.

1.5. Notation.

• For M a smooth manifold, let Ω∗M denote the sheaf of differential
forms on M as a sheaf of commutative dg algebras. Let CM denote
the locally constant sheaf assigning C to any connected open.
• For C a category, we denote the set of morphisms from x to y by
C(x, y).
• For A a cochain complex, A] denotes the underlying graded vector

space. If A is a cochain complex whose degree k space is Ak, then
A[1] is the cochain complex where A[1]k = Ak+1.
• For A a dg module over a dg algebra R, the dual of A, denoted A∨,

means the graded dual, whose kth component (A∨)k is the set of
degree −k elements of HomR](A

], R]). The differential is determined
by requiring that the evaluation pairing ev : A∨ ⊗R] A → R be a
map of R-modules.
• Let Sets denote the category whose objects are sets and whose mor-

phisms are functions between sets.
• Let ∆ denote the (finite) ordinal category, in which an object is a

totally ordered finite set and a morphism is a nondecreasing function.
We will usually restrict attention to the skeletal subcategory with
objects

[n] := {0 < 1 < · · · < n}
and morphisms f : [m]→ [n] such that f(i) ≤ f(j) for i ≤ j.



L∞ SPACES AND DERIVED LOOP SPACES 235

• Let sSets denote the category of simplicial sets, namely the category
of functors Fun(∆op,Sets). A simplicial set X will often be written
as X•, and Xn := X([n]) denotes the “set of n-simplices of X.”
• We denote by 4[m] the simplicial set ∆(−, [m]). Under the Yoneda

lemma, this is the functor represented by the object [m].2

• Let cSets denote the category cosimplicial sets Fun(∆,Sets). A
cosimplicial set Y will often be written as Y •, and Y n := Y ([n])
denotes the “set of n-cosimplices of Y .”
• Let csSets denote the category of cosimplicial simplicial sets

Fun(∆×∆op, Sets).

We will often denote a cosimplicial simplicial set Z by Z•• , and Zn•
is the simplicial set of n-cosimplices and Z•n is the cosimplicial set of
n-simplices.
• By 4n we mean the standard n-simplex in Rn.
• To indicate the end of an example or remark, we use the symbol ♦,

just as we use � to indicate the end of a proof.

2. The category of test objects

Let Man denote the category of smooth, finite-dimensional manifolds
(without boundary) and smooth morphisms. From here on, manifold will
mean smooth and finite-dimensional.

We “enlarge” the category Man by allowing a certain class of structure
sheaves following ideas and constructions of Costello [Cos11b], [Cos11].

Definition 2.1. On a smooth manifold M , let

Sym(T ∗M [−1]) =

dimM⊕
n=0

n∧
T ∗M [−n]

denote the Z-graded vector bundle whose smooth sections are the differ-
ential forms on M (with their usual cohomological degree). Note that
Sym(T ∗M [−1]) is a graded-commutative algebra in the category of vector
bundles on M by (fiberwise) wedge product. This product induces the
wedge product on its smooth sections, namely the wedge product of differ-
ential forms.

Definition 2.2. A nilpotent dg manifold M is a triple (M,OM,IM) con-
sisting of the following data and conditions.

(1) A manifold M .
(2) A Z-graded vector bundle A→M of total finite rank equipped with:

a) The structure of a module over Sym(T ∗M [−1]).

2Note that we use the Greek letter ∆ to denote the category and the triangle symbol
4 to denote a simplex.
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b) A fiberwise multiplication map m : A⊗ A → A making A into
a unital graded-commutative algebra in vector bundles on M ,3

so that (A,m) is an algebra over Sym(T ∗M [−1]).
c) There is a short exact sequence of vector bundles

I ↪→ A→ A/I ∼= C×M

(i.e., the quotient is the trivial rank 1 bundle) that respects the
multiplication m and an associated chain of vector bundles

0 = In+1 ⊂ In ⊂ In−1 ⊂ · · · ⊂ I

compatible with multiplication (i.e., Ik · I` ⊂ Ik+`). That is, I
forms a nilpotent ideal in A.

Let OM denote the sheaf of smooth sections of the algebra bundle
A. We equip OM with a derivation of cohomological degree 1 so that
it is a sheaf of unital commutative dg Ω∗M -algebras.

(3) A map q : OM → C∞M of sheaves of Ω∗M -algebras whose kernel is the
sheaf IM of smooth sections of I. This sheaf IM forms a nilpotent
dg ideal.4

(4) We require the cohomology of OM(U) to be concentrated in nonpos-
itive degrees for sufficiently small open sets U ⊂M .

Note that the conditions on the sheaf OM imply that its global cohomol-
ogy OM(M) lives in finitely many cohomological degrees. We call OM the
structure sheaf of the nilpotent dg manifold M.

Definition 2.3. Let N be a nilpotent dg manifold with underlying manifold
N and graded vector bundle B, and let M be a nilpotent dg manifold with
underlying manifold M and graded vector bundle A. A map of nilpotent dg
manifolds F : N →M is a pair (f, φ) where f is a smooth map from N to M
and φ is a map of graded vector bundles from the pullback bundle f−1A to B
such that there is a commuting diagram of commutative dg f−1ΩM -algebra
sheaves (on N)

f−1OM
φ
//

��

ON

��

f−1C∞M
// C∞N .

(In other words, the map of bundles is compatible with the graded algebra
structure on the bundles, the differentials on the sheaf of sections, and the
filtrations by the nilpotent dg ideal sheaves.)

There is one last construction that we will need.

3That is, m is a map of vector bundles from the Whitney tensor product A⊗A to A.
4We will generally suppress the map q from notation as it is nearly always obvious from

context.
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Definition 2.4. Let M = (M,OM) and N = (N,ON ) be nilpotent dg
manifolds. The product M×N is the nilpotent dg manifold

(M ×N,OM×N ,IM×N ),

where
OM×N := lim

←−
i,j

(
π−1
M OM/I

i
M
)
⊗Ω∗M×N

(
π−1
N ON /I

j
N

)
equipped with the nilpotent ideal

IM×N =
(
π−1
M IM ⊗Ω∗M×N

π−1
N ON

)
⊕
(
π−1
M OM ⊗Ω∗M×N

π−1
N IN

)
.

This definition arises by requiring the natural compatibility with the fil-
trations.

Remark 2.5. Our structure sheaves are always given as sections of graded
vector bundles, equipped with extra structure, although it might seem more
natural to work immediately with sheaves. This vector bundle condition
appears in large part to ensure compatibility with the quantum field theory
constructions in [Cos11b]. In our future work, [GG], we use the present
results to construct effective field theories and quantization in families, where
the parameterizing spaces are exactly the nilpotent dg manifolds we just
defined.

2.1. Relation to smooth manifolds, formal geometry, complex ge-
ometry, and foliations. To give a sense of this new category dgMan of
nilpotent dg manifolds, we now describe some important examples.

Example 2.6. ForM a smooth manifold, the nilpotent dg manifold (M,Ω∗M )
is known as the de Rham space of M and is denoted by MdR. By defini-
tion, ever other nilpotent dg manifoldM with M as the underlying smooth
manifold possesses a distinguished map M→MdR. ♦

Remark 2.7. There are several ways to think about the role of MdR. Ob-
serve that the simplest natural sheaf of algebras to put on M is CM , the
locally constant sheaf, but this sheaf is not soft and not well-suited to the
techniques of differential geometry. The de Rham complex is then a pleasant
replacement for CM , since it locally recovers CM as its cohomology. Note
that the structure sheaves of nilpotent dg manifolds are algebras over the de
Rham complex, and thus well-behaved replacements for algebras over the
constant sheaf.

Another aspect is more categorical in nature. If we were to define a cate-
gory of O-modules over MdR (although we will not develop such a formalism
here), it should be equivalent to the category of D-modules on M . Heuris-
tically, this relationship is clearest when one thinks about vector bundles on
MdR: these are essentially vector bundles with flat connection on the smooth
manifold M . The role of MdR is to provide the natural space over which
live all “things with a flat connection over M” (or more accurately, things
with a system of differential equations over M). Indeed, we view the work
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of Block and collaborators [Blo10], [BenbB13], [BloS14] as an approach to
this question. (Works of Kapranov [Kap91] and of Simpson–Teleman [SiT]
are also highly relevant here.)

Finally, in Lemma 4.11, we indicate how this notion of de Rham space
connects with the de Rham space in algebraic geometry. ♦

Example 2.8. Let M be a smooth manifold. Then (M,C∞M ) is a nilpotent
dg manifold where C∞M is viewed as an Ω∗M module by the quotient map
Ω∗M → Ω0

M whose kernel is the differential ideal generated by the 1-forms.
We denote it by Msm. ♦

It is straightforward to see the following, which explains why dgMan is
an enlargement of the natural test objects for smooth geometry.

Proposition 2.9. The inclusion functor i : Man→ dgMan where

M 7→Msm = (M,C∞M )

is fully faithful.

In dgMan, the de Rham space of a smooth manifold M represents the set
of constant maps. More precisely we have the following.

Proposition 2.10. Let N and M be smooth manifolds. The set of maps
dgMan(NdR,Msm) is in bijection with the underlying set of M (viewed as
the constant maps from N to M).

Proof. A map of nilpotent dg manifolds NdR → (M,C∞M ) consists of a
smooth map f : N → M and a map of sheaves of dg f−1ΩM algebras
φ : f−1C∞M → Ω∗N such that

f−1C∞M
φ
//

Id
��

Ω∗N

��

f−1C∞M
// C∞N

commutes. In particular, the map φ commutes with differentials. The dif-
ferential on the structure sheaf (M,C∞M ) is trivial, and hence we see that
the pullback of a smooth function on M must be a constant function. �

Remark 2.11. By definition, every nilpotent dg manifold M = (M,OM)
“lives between” Msm and MdR in the sense that we have canonical maps

Msm →M→MdR,

where the underlying map of manifolds is the identity and the algebra maps
are provided by definition. ♦

Example 2.12. Let R be an artinian algebra over C, such as the dual
numbers C[ε]/(ε2). Then (pt, R) is a nilpotent dg manifold. ♦
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Let ArtC denote the category of artinian algebras over C. The opposite
category Artop

C encodes “fat points.” It’s easy to see that as the underlying
manifold is just a point we have a full and faithful embedding.

Proposition 2.13. The Spec functor

Artop
C → dgMan

A 7→ SpecA = (pt, A)

is fully faithful.

We can also include with dg artinian algebras concentrated in nonpositive
degrees, such as the shifted dual numbers C[ε]/(ε2) where ε has negative
cohomological degree. Thus, dgMan includes the basic ingredient of derived
deformation theory.

This proposition also indicates one way that formal deformation theory
will relate to dgMan, since we can fatten any manifold this way. For any
smooth manifold M , we can “thicken” M by a “SpecR-bundle” to obtain
an interesting nilpotent dg manifold. (That is, let the structure sheaf be
sections of an R-bundle over M .)

Example 2.14. Given a complex structure on a smooth manifold M , there
is a nilpotent dg manifold encoding the complex manifold, namely (M,Ω0,∗

M ),

where Ω0,∗
M is the Dolbeault complex for this complex structure. We view

Ω0,∗
M as the quotient of Ω∗M by the differential ideal generated by the (1, ∗)-

forms. ♦

Proposition 2.15. The inclusion functor is a fully faithful embedding from
the category of complex manifolds into dgMan.

Example 2.16. Let F be a (regular) foliation of M . Equivalently, let
ρ : TF ↪→ TM be a subbundle of the tangent bundle that is integrable: the
Lie bracket of any two sections of TF is always a section of TF . Thus, F
provides a Lie algebroid TF , and a standard construction for the theory of
Lie algebroids then provides a nilpotent dg manifold, as follows. (See, for
example, [Rin63], [Mac05], [Meh09], [AC12].)

The Chevalley–Eilenberg cochain complex of TF is a sheaf of commutative
dg algebras determined by the Lie algebroid. We denote it C∗TF . The un-
derlying sheaf of graded algebras C]TF is given by the smooth sections of the
bundle Sym(T ∗F [−1])), and multiplication is the pointwise wedge product.
Hence it is a graded algebra over C∞, but we equip it with a differential
that is not C∞-linear.5 The differential d is determined by the following
conditions. First, for any function f , viewed as an element of C0TF (M), we
have that

d(f)(X) = ρ(X)(f)

5The differential is determined by the Lie bracket, which is not C∞-linear.
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for every X ∈ Γ(M,TF ). Second for any α ∈ C1TF (M),

d(α)(X ∧ Y ) = ρ(X)(α(Y ))− ρ(Y )(α(X))− α([X,Y ]),

for all X,Y ∈ Γ(M,TF ). Third, we require that d2 = 0 and

d(α ∧ β) = (dα) ∧ β + (−1)αα ∧ (dβ)

for all elements α and β.6 Observe that for U an open on which the foliation
decomposes as U ∼= Rp×RdimM−p, where the leaves are codimension p, then

Hk(C∗TF (U)) =

{
C∞(Rp), k = 0,

0, else.

(This is a direct consequence of the usual Poincaré lemma.) Note that C∗TF
has a nilpotent dg ideal given by C≥1TF . Lastly, note that C∗TF is a dg
Ω∗M -algebra — indeed a quotient algebra — via the algebra map determined
by the dual to the anchor map ρ∗ : T ∗M → T ∗F .

Let MF denote the nilpotent dg manifold (M,C∗TF ). It provides a dg
manifold describing the “derived leaf space” of the foliation, as the Lie al-
gebroid cohomology is precisely the derived functor for taking invariants of
functions along leaves.

This construction encompasses several earlier examples: when TF = 0, we
recover Msm; when TF = TM , we recover MdR; and when M is a complex
manifold, M∂̄ is associated to the foliation given by T 0,1

M . ♦

Proposition 2.17. The functor from the category of regular foliations to
dgMan sending F to MF is a fully faithful embedding.

2.2. A notion of weak equivalence. Costello introduces an interesting
notion of weak equivalence between nilpotent dg manifolds. His notion re-
lies on the existence of a natural filtration on the structure sheaf OM of a
nilpotent dg manifoldM. In particular, let IM = ker q denote the sheaf of
nilpotent dg ideals in OM. We have the filtration

F kOM = I k
M.

Let Gr OM denote the associated graded dg algebra.

Definition 2.18. A map F :M→N in dgMan is a weak equivalence if:

(1) The smooth map f : M → N is a diffeomorphism.
(2) The map of commutative dg algebras Grφ : f−1 Gr ON → Gr OM is

a quasi-isomorphism.

This definition provides a well-behaved notion of weak equivalence be-
cause:

• Every isomorphism of nilpotent dg manifolds (i.e., a diffeomorphism
with a strict isomorphism of structure sheaves) is a weak equivalence.

6This construction is a systematic generalization of the de Rham complex: when TF =
TM , the Chevalley–Eilenberg complex is precisely Ω∗(M).
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• The notion satisfies the 2-out-of-3 property because diffeomorphism
and quasi-isomorphism do.

Nonetheless, this definition might look a little strange because of the role
played by the associated graded algebra. Observe, however, that it implies
that φ is a quasi-isomorphism: φ preserves the natural filtration on the
structure sheaves and hence induces a map of spectral sequences that is a
quasi-isomorphism on the first page. Thus the definition is stronger than
requiring that φ is a quasi-isomorphism, which might be the first defini-
tion that comes to mind. This stronger condition depends crucially on the
filtration.

As further motivation for the definition, we note that the role of nilpotent
dg manifolds here is supposed to parallel the role of artinian algebras in
formal deformation theory. Arguments in deformation theory often proceed
by artinian induction: every local artinian C-algebra (A,m) possesses a
canonical tower of quotients

A→ A/mn → · · · → A/m2 → A/m ∼= C,

and at each step we extend an artinian algebra by a square-zero ideal so it
suffices to prove some property holds for such small extensions

I ↪→ B � A,

where I is the kernel of a ring map and I2 = 0 inside B. The filtration on
OM is our substitute for this canonical tower of quotients, and we will prove
our main theorem by using a version of artinian induction.

3. Derived stacks

Our notion of “derived stack” or “derived space” will be, as usual, a kind
of sheaf of simplicial sets on the site of “test objects” (cf. [TV05]). Thus we
need to equip dgMan with a site structure.

Recall that the category Man has a site structure where a covering is
simply an open cover in the usual sense. A covering of M = (M,OM) in
dgMan is a collection {Ui = (Ui,Oi)} of nilpotent dg manifolds with maps
{Fi : Ui → M} such that the collection {Ui} forms a cover of M in Man
and the maps of structure sheaves φi : f−1

i OM → Oi are isomorphisms.

Definition 3.1. A derived stack is a functor X : dgManop → sSets satisfy-
ing:

(1) X sends weak equivalences of nilpotent dg manifolds to weak equiv-
alences of simplicial sets.

(2) X satisfies Čech descent (see below for a reminder on what this
means).

Note that a derived stack is merely a homotopical kind of sheaf, and thus
the definition does not capture any particularly geometric properties. For
instance, we do not require X to locally resemble a ringed space or orbifold.



242 RYAN GRADY AND OWEN GWILLIAM

Our focus in this paper is on a class of examples, the L∞ spaces, that do have
a very geometric flavor. (It would be interesting to work out the analogs of
orbifold or Artin stack in this context.)

Definition 3.2. Let X,Y : dgManop → sSets be derived stacks. A map of
stacks α : X→ Y is just a natural transformation between the functors. A
weak equivalence of stacks is a map of stacks α such that

α(M) : X(M)→ Y(M)

is a weak equivalence for every nilpotent dg manifold M.

Let dSt denote the category of derived stacks. Hence, we will denote the
morphisms from a derived stack X to Y by dSt(X,Y).

3.1. Čech descent and homotopy sheaves. We recall the usual notion
of a sheaf before giving the souped-up version we need.

Let X be a topological space and let OpensX denote the poset category
whose objects are opens in X and whose morphisms are inclusions of opens.
A presheaf on X with values in the category C is a functor F : Opensop

X → C .
A sheaf is a presheaf such that for any open U and any cover V = {Vi} of
U , we have

F(U) ∼= eq

∏
i

F(Vi) ⇒
∏
i,j

F(Vi ∩ Vj)

 ,

where eq denotes “equalizer” and the two arrows are the two natural restric-
tion maps for F .

In our setting, the value category C is the category sSets, and we want
to view two simplicial sets as the same if they are weakly equivalent. Thus,
wherever we would ordinarily compute (co)limits, we should work with ho-
motopy (co)limits instead. Moreover, we don’t merely want to require agree-
ment on overlaps; we want to coherently agree on overlaps-of-overlaps and
so on.

These desires indicate how we should refine the notion of sheaf.

Definition 3.3. Let M = (M,OM) be a nilpotent dg manifold. Let V =
{Vi, : i ∈ I} be a cover for the underlying smooth manifold M . We also use
V to denote, abusively, the nilpotent dg manifold

∐
i∈I(Vi,OM|Vi), given by

disjoint union over the opens in the cover. Let ČV• denote the simplicial
nilpotent dg manifold whose n-simplices are

ČVn := V×M · · · ×M V,

where the fiber product is taken n + 1 times, and the simplicial maps are
the usual ones. We call ČV• the Čech nerve of the cover V.

A homotopy sheaf will be a simplicial presheaf that satisfies homotopical
descent for every such cover.
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Definition 3.4. A simplicial presheaf F on a nilpotent dg manifoldM is a
homotopy sheaf if for every open U of M and every cover V of U , we have

F(U)
'−→ holimČV F ,

where ' denotes weak equivalence of simplicial sets and holim denotes the
homotopy limit.

We provide a concise introduction to homotopy limits, with a focus on
the case of interest, in Appendix A.

3.2. The road not (yet) taken. So far we have given the basic skeleton
of an approach to geometry, but much remains to be fleshed out. We wish
here to point out a few possibilities that we find particularly interesting and
then to explain some choices made in [Cos11].

First, we only spell out categories with weak equivalences here, both of
nilpotent dg manifolds and of derived stacks. Many constructions would un-
doubtedly work more easily if one carefully constructed simplicially-enriched
or quasi-categories of these objects. (We expect that for doing serious work
in this setting, there might be more geometrically natural ways of construct-
ing these ∞-categories than taking the Dwyer–Kan localization.)

Second, it would be useful to construct categories of OX -modules, quasi-
coherent sheaves, and so on over these spaces. In general, there are many
techniques and examples in derived algebraic geometry whose analogues
would be very useful in our setting. For example, for applications to field
theory, it would be nice to have stacks like the moduli of Riemann surfaces
or the moduli of holomorphic G-bundles on a complex manifold.

Finally, we note that nilpotent dg manifolds appear already in Costello’s
approach to quantum field theory, where he shows that renormalization and
Feynman diagram computations behave well in families over nilpotent dg
manifolds (see Section 13 of Chapter 2 of [Cos11b]). There, he relies crucially
on the fact that any constant or linear terms in the action functional are a
multiple of the nilpotent ideal. It would be interesting to see if one could
modify that analysis to work over dg manifolds whose structure sheaves are
cohomologically artinian (and not already artinian at the cochain level),
as these test objects are possibly more natural from the derived geometry
perspective.

4. L∞ spaces

In deformation theory, there is a governing, heuristic principle: every de-
formation functor is given by a dg Lie algebra.7 In other words, we can de-
scribe the “formal neighborhood of a point in some space” using Lie-theoretic

7This idea has a long history, which we will not trace here. See Hinich’s paper [Hin01]
for one treatment of this idea that is quite close to what we do here. In [Lurb], Lurie
proves a theorem that makes this principle precise and connects it with global derived
geometry. Hennion [Hen] extends Lurie’s result to a relative context, working over a base
derived Artin stack.
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constructions, rather than commutative algebra constructions. (One re-
covers the functions on the formal neighborhood by taking the Chevalley–
Eilenberg cochain complex that computes the cohomology of the dg Lie
algebra.) Often, this perspective is incredibly helpful, partly because the
manipulations on the Lie side may be simpler.

Our primary interest is in families of deformation problems parametrized
by smooth manifolds, so we might hope we get a nice kind of derived stack
by equipping a smooth manifold with a sheaf of dg Lie algebras. We make
this idea precise via the notion of an L∞ space.

4.1. Curved L∞ algebras. It is convenient to enlarge the Lie-theoretic
side to make it more flexible. We will work with curved L∞ algebras rather
than dg Lie algebras.

Definition 4.1. Let A be a commutative dg algebra with a nilpotent dg
ideal I. A curved L∞ algebra over A consists of:

(1) A locally free, Z-graded A]-module V .
(2) A linear map of cohomological degree 1

d : Sym(V [1])→ Sym(V [1])

satisfying:

(i) d2 = 0.
(ii) (Sym(V [1]), d) is a cocommutative dg coalgebra over A (i.e., d is a

coderivation).
(iii) Modulo I, the coderivation d vanishes on the constants (i.e., on

Sym0).

The notation Sym(V [1]) indicates the graded vector space known as the
symmetric algebra over the graded algebra A] underlying the dg algebra A.
We only remember its natural coalgebra structure in this setting. To re-
duce notation, we use C∗(V ) to denote the cocommutative dg coalgebra
(Sym(V [1]), d). We use this notation because we call it the Chevalley–
Eilenberg homology complex of V , as we are extending the usual notions
of Lie algebra homology.

Recall that we obtain a sequence of maps

`n : (ΛnV )[n− 2]→ V,

the n-fold bracket on V , from the composition

Symn(V [1]) ↪→ C∗(V )
d→ C∗(V )

π
� Sym1(V [1]) = V [1],

by shifting by 1. Thinking of V equipped with these brackets is why we use
the terminology L∞ algebra; it is often easier to work with the Chevalley–
Eilenberg homology complex, which assembles all the brackets into a single
map.
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There is also a natural Chevalley–Eilenberg cohomology complex C∗(V ).

It is (Ŝym(V ∨[−1]), d), where the notation Ŝym(V ∨[−1]) indicates the com-
pleted symmetric algebra over the graded algebra A] underlying the dg al-
gebra A. The differential d is the “dual” differential to that on C∗(V ). In
particular, it makes C∗(V ) into a commutative dg algebra, so d is a deriva-
tion.

We usually think of a curved L∞ algebra g over A as describing a de-
rived space Bg over SpecA. The algebra of functions of Bg is precisely
its Chevalley–Eilenberg cohomology complex C∗(g). Thanks to the natural
pairing between the cohomology and homology complexes, we view C∗(g) as
the coalgebra of distributions on Bg.

Definition 4.2. A map of curved L∞ algebras φ : V → W is a map of co-
commutative dg coalgebras φ∗ : C∗(V )→ C∗(W ) respecting the cofiltration
by I. A map is a weak equivalence if φ∗ is a quasi-isomorphism.

4.1.1. Commentary on curving. A curious aspect of this definition is
the curving, since the uncurved case is discussed far more often. Indeed,
“flat” L∞ algebras (i.e., with zero curving) are usually understood as de-
scribing pointed formal moduli problems (see, for example, Lurie’s ICM talk
[Lur10] for a recent discussion). If g is the flat L∞ algebra over a commu-
tative dg algebra R, the moduli problem Bg has a marked point. On the
commutative algebra side, this appears as the fact that C∗g is augmented:
there is a distinguished map C∗g→ R. The derived space Bg = SpecC∗g is
thus pointed by the augmentation map SpecR → SpecC∗g. A curved L∞
algebra g then corresponds to a nonpointed formal moduli spaces, because
C∗g is not augmented. We now elaborate on this idea.

Let R be a commutative dg algebra with nilpotent ideal I and let S denote
R/I. Given a curved L∞ algebra g̃ over R, let g denote the reduction modulo
I, which is a flat L∞ algebra over S. Let Bg̃ denote the space associated to
the algebra C∗Rg̃, which is a semi-free algebra over R, and let Bg denote the
space associated to C∗Sg, which is a semi-free algebra over S. The space Bg̃
encodes a fattening of the pointed space Bg, where we cannot extend the
map p : SpecS → SpecC∗Rg̃ to an R-point p̃ : SpecR→ SpecC∗Rg̃.

Bg

��

// Bg̃

��

SpecS //

p
99

SpecR

The curving is the obstruction to such an extension.

Remark 4.3. Here is a different way of concocting such a situation. Con-
sider a map of commutative dg algebras f : A → B, which we view as a
map of “derived spaces” SpecB → SpecA. This map makes B an A-algebra
and so we can find a semi-free resolution SymA(M) of B as an A-algebra.
This replacement SymA(M) expresses B as a kind of L∞ algebra over A,
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namely gB = M∨[−1].8 Note that if f factors through a quotient A/I of
A, then gB will be curved. (The differential for the semi-free resolution will
produce I as the image of the differential’s Taylor component mapping to
Sym0

A(M) = A.) This curving appears because SpecB really only lives over
the subscheme SpecA/I ⊂ SpecA, and extending it over the rest of SpecA
is obstructed. ♦

This kind of situation appears in the category of nilpotent dg manifolds.
For anyM = (M,OM), we see thatM “lives between” the smooth manifold
Msm and its de Rham space MdR because we have algebra maps

Ω∗M → OM
q→ C∞M

by definition. These maps induce maps of nilpotent dg manifolds

Msm →M→MdR,

where the underlying map of manifolds is simply the identity. We will see
that we can often find a “replacement” of M as a kind of L∞ algebra over
MdR.

4.2. The Maurer–Cartan equation. For an element α of degree 1 in a
curved L∞ algebra g, let the Maurer–Cartan element be

mc(α) :=
∞∑
n=0

1

n!
`n(α⊗n).

The Maurer–Cartan equation is then mc(α) = 0. There are many useful
interpretations of this equation (and we discuss some in Appendix B).9

Here we will emphasize that a map of commutative dg algebras a :
C∗(g)→ A is determined by a cochain map a : Sym1(g∨[−1]) = g∨[−1]→ A,
since a map of algebras is determined by where the generators go. Consider
the element α ∈ g∨∨[1] ⊗ A that is dual to a ∈ Hom(g∨[−1], A). Then the
condition of a being a cochain map is precisely the Maurer–Cartan equa-
tion. on α (under the finiteness condition that g∨∨ ∼= g). In sum, if we view
g as encoding some kind of space Bg, the Maurer–Cartan equation lets us
understand its A-points.

We now construct a simplicial set of solutions to the Maurer–Cartan equa-
tion. (As explained in Appendix B, Getzler’s paper [Get09] is a wonderful
reference for this Maurer–Cartan functor and much more.)

8This is not strictly true, because we are not working with the completed symmetric
algebra, but we’re simply providing motivation here.

9Something that might rightly bother the reader is that the equation involves an infinite
sum, which will not be well-defined in most cases. We will only work with nilpotent
elements α, so that the sum is actually finite. Indeed, we use g and mc to construct a
functor on artinian algebras: tensoring g with the maximal ideal of an artinian algebra
gives us a nilpotent L∞ algebra on which mc is well-behaved.
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Definition 4.4. Let g be a curved L∞ algebra. The Maurer–Cartan space
MC•(g) is the simplicial set whose n-simplices are solutions to the Maurer–
Cartan equation in the curved L∞ algebra g⊗ Ω∗(4n).

This space MC•(g) has several nice properties when g is nilpotent: for
instance, it is a Kan complex. See Appendix B for more discussion and
references.

4.3. L∞ spaces. We now describe the version of “families of curved L∞
algebras parametrized by a smooth manifold” appropriate to our context.

Definition 4.5. Let X be a smooth manifold.

(1) A curved L∞ algebra over Ω∗X consists of a Z-graded topological10

vector bundle π : V → X and the structure of a curved L∞ algebra
structure on its sheaf of smooth sections, denoted g, where the base
algebra is Ω∗X with nilpotent ideal I = Ω≥1

X .
(2) An L∞ space is a pair (X, g), where g is a curved L∞ algebra over

Ω∗X .

We now explain how every L∞ space defines a derived stack. Let Bg :=
(X, g) denote an L∞ space. Given a smooth map f : Y → X, we obtain a
curved L∞ algebra over Ω∗Y by

f∗g := f−1g⊗f−1Ω∗X
Ω∗Y ,

where f−1g denotes sheaf of smooth sections of the pullback vector bundle
f−1V .

Definition 4.6. For Bg = (X, g) an L∞ space, its functor of points is the
functor

Bg : dgManop → sSets

for which an n-simplex of Bg(M) is a pair (f, α): a smooth map f : M → X
and a solution α to the Maurer–Cartan equation in f∗g⊗Ω∗M

IM⊗RΩ∗(4n).

The basic idea of the definition is hopefully clear, but we want to remark
upon several choices made in this definition. First, note that we use the
nilpotent ideal IM, not the whole algebra OM. This restriction ensures
that we have a nilpotent curved L∞ algebra, and hence a Kan complex. It
also encodes the idea that we are deforming in the nilpotent direction away
from an underlying map. Second, note that we are not allowing the smooth

10That is, the fibers are topological vector spaces and the gluing maps are continuous
linear maps. In examples, the fibers will be nuclear Fréchet spaces, typically smooth
sections of a vector bundle on some manifold. For instance, consider a smooth fiber
bundle p : T → X where the fiber is diffeomorphic to some fixed manifold M and consider
a relative vector bundle E on T , so that we have a vector bundle on each fiber of T over
X. Then the vector bundle V might be relative sections of this relative vector bundle:
to a point x ∈ X, we associate the vector space of smooth sections of the vector bundle
Ex → p−1(x) ∼= M .
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map to vary over the n-simplices. In other words, Bg(M) is the disjoint
union ⊔

f∈C∞(M,X)

MC•(f
∗g⊗Ω∗M

IM),

where the union is over the set of smooth maps C∞(M,X).

Remark 4.7. If we view C∗g as the structure sheaf of the L∞ space, then
a vertex of Bg(M) is a map of the underlying manifolds f : M → X and
a map of commutative dg algebras f−1C∗g → OM. In other words, it is a
map of dg ringed spaces. ♦

Theorem 4.8. The functor Bg associated to an L∞ space Bg defines a
derived stack.

As the proof of this theorem is lengthy and somewhat technical, we banish
it to Appendix C to maintain our narrative flow.

Remark 4.9. A few interpretive comments are in order.
First, one can view an L∞ space (X, g) as a (nonnilpotent) dg manifold

whose structure sheaf C∗g is a cofibrant commutative dg algebra over Ω∗X .
These are particularly well-behaved class of manifolds equipped with sheaves
of commutative algebras, although we do not develop that formalism here.
Note that every nilpotent dg manifold (M,A ) has a “replacement” by an
L∞ space, precisely by taking a semi-free resolution of its structure sheaf A
over Ω∗M . See remark 4.13 for more discussion of this point.

Second, as previously noted, there is a well-known correspondence be-
tween L∞ algebras and formal moduli spaces. An L∞ space is a relative
version of this idea: we have a family of formal moduli spaces parametrized
by a smooth manifold. For a recent and enlightening treatment of an anal-
ogous idea in derived algebraic geometry, see [Hen], which also gives a clear
explanation of how such relative formal stacks compare to derived Artin
stacks. ♦

4.4. Examples.

4.4.1. The functor of points evaluated on a smooth manifold. Let
Msm = (M,C∞M ) be a smooth manifold viewed as a nilpotent dg manifold.
Note that the nilpotent ideal IM = 0 here. Then we have the following
simple observation.

Lemma 4.10. For any L∞ space Bg = (X, g), Bg(M) is the discrete sim-
plicial set given by the set C∞(M,X) of smooth maps from M to X.

Proof. For any smooth map f : M → X, we see that f∗g ⊗Ω∗M
IM =

0. Hence there is exactly one solution to the Maurer–Cartan equation:
zero. �
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4.4.2. The de Rham space XdR. Let X be a smooth manifold. Consider
the zero vector bundle, equipped with the trivial Ω∗X structure. This L∞
space (X, 0) has associated structure sheaf C∗g = Ω∗X : we are recovering
the de Rham complex itself. Thus, this L∞ space provides a derived stack
associated to the de Rham space XdR. Abusively, we will also denote this
derived stack by XdR.

Lemma 4.11. For M = (M,OM) a nilpotent dg manifold, XdR(M) is the
discrete simplicial set of smooth maps Maps(M,X).

In other words, XdR(M) = XdR(Msm) for any nilpotent dg manifold: the
derived stack only cares about the underlying smooth manifold and not the
structure sheaf. Note that this behavior agrees with the definition of the de
Rham stack in algebraic geometry.11

Proof. For f : M → X a smooth map, we note that f−10 = 0, so that we
have the trivial L∞ algebra on M , no matter the structure sheaf onM, and
so there is only the zero solution to the Maurer–Cartan equation. �

4.4.3. An L∞ space encoding a smooth manifold. Finally, we turn
to our main example of an L∞ space: the one that encodes the smooth
geometry of a manifold X. More precisely, we have the following existence
lemma from [GG14]. We include the proof here to illustrate how ∞-jet
bundles allow us to find a “Koszul dual” L∞ space to an actual manifold.

Recall that the ∞-jet bundle J for the trivial bundle is a pro-vector bun-
dle, whose fiber at a point x ∈ X encodes the “Taylor series around x”
for smooth functions. The bundle J comes equipped with a canonical flat
connection, whose horizontal sections are exactly the smooth functions on
X. We denote the sheaf of smooth sections of J by J . The de Rham
complex for J , whose differential is given by the canonical flat connection,
is denoted dR(J ), to lessen the profusion of Ω throughout this paper.

Lemma 4.12. Let X be a smooth manifold. There is a curved L∞ algebra
gX over ΩX , with nilpotent ideal Ω>0

X , such that:

(a) gX ∼= Ω]
X(TX [−1]) as an Ω]

X module.
(b) dR(J ) ∼= C∗(gX) as commutative ΩX algebras.
(c) The map sending a smooth function to its ∞-jet

C∞X ↪→ dR(J ) ∼= C∗(gX)

is a quasi-isomorphism of ΩX-algebras.

Proof. We need to show that we can equip ŜymC∞X
(T∨X) ⊗C∞X ΩX with a

degree 1 derivation d such that d2 = 0 (this is the curved L∞ structure) and

11In algebraic geometry, the de Rham stack XdR of a stack X is given by the sheafi-
fication of the functor XdR(R) = X(R/Nil(R)), where Nil(R) denotes the nilradical. In
short, the de Rham stack does not “see” nilpotent directions, only the underlying reduced
scheme. For further discussion, see [GaR].
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such that this Chevalley–Eilenberg complex is quasi-isomorphic to C∞X as
an ΩX module. In this process we will see property (b) explicitly.

We start by working with DX modules and then use the de Rham functor
to translate our constructions to ΩX modules. Consider the sheaf J of
infinite jets of smooth functions. Observe that there is a natural descending
filtration on J by “order of vanishing.” To see this explicitly, note that
the fiber of J at a point x is isomorphic (after picking local coordinates
(x1, . . . , xn) to C[[x1, . . . , xn]], and we can filter this vector space by powers
of the ideal m = (x1, . . . , xn). We define F kJ to be those sections of J
which live in mk for every point. This filtration is not preserved by the flat
connection, but the connection does send a section in F kJ to a section of
F k−1J ⊗C∞X Ω1

X .

Observe that F 1J /F 2J ∼= Ω1
X , because the first-order jets of a function

encode its exterior derivative. Moreover, F kJ /F k+1J ∼= Symk(Ω1
x) for

similar reasons. Pick a splitting of the map F 1J → Ω1
X as C∞X modules;

we denote the splitting by σ. (Note that there is a contractible space of such
splittings, see the following subsection.) By the universal property of the
symmetric algebra, we get a map of nonunital C∞X algebras that is, in fact,
an isomorphism

Sym>0
C∞X

(Ω1
X)

∼=−→ F 1J .

Now both ŜymC∞X
(Ω1

x) and J are augmented C∞X algebras with augmenta-

tions

p : ŜymC∞X
(Ω1

X)→ Sym0 = C∞X and q : J →J /F 1J ∼= C∞X .

Further, Sym>0
C∞X

(Ω1
X) = ker p and F 1J = ker q, so we obtain an isomor-

phism of C∞X algebras

ŜymC∞X
(Ω1

X)
∼=σ−−→J

by extending the previous isomorphism by the identity on Sym0
C∞X

and

J /F 1J . The preceding discussion is just one instance of the equivalence
of categories between commutative nonunital A algebras and commutative
augmented A algebras for A any commutative algebra.

We then equip Ŝym(Ω1
X) with the flat connection for J , via the isomor-

phism, thus making it into a DX algebra. Applying the de Rham functor
dR, we get an isomorphism of ΩX algebras

ŜymC∞X
(Ω1

X)⊗C∞X ΩX
∼=σ−−→J ⊗C∞X ΩX .

Recall that the symmetric algebra is compatible with base change, that is

ŜymC∞X
(Ω1

X)⊗C∞X Ω]
X = Ŝym

Ω]X
(Ω1

X ⊗C∞X Ω]
X)

∼= Ŝym
Ω]X

(
(TX [−1]⊗C∞X Ω]

X)∨[−1]
)
,



L∞ SPACES AND DERIVED LOOP SPACES 251

where we dualize over Ω]
X . Via the de Rham functor we have constructed a

derivation on this completed symmetric algebra defining the L∞ structure
over ΩX .

Property (c) follows from a standard argument; see [CFT02] for an explicit
contracting homotopy. �

Note that we pick a splitting σ in the proof but that the space of splittings
is contractible, and that all the associated L∞ algebras are strictly isomor-
phic. We thus make no fuss over the choice of σ and denote the resulting
L∞ space (X, gX) by BgX .

Remark 4.13. We view BgX as a natural derived enhancement of the
smooth manifold X for the following reason. From the functor of points
perspective, any sheaf of sets on the site Man of smooth manifolds

M : Manop → Sets

is a kind of “generalized smooth manifold.” The representable functor X =
Man(−, X) is such a sheaf. Similarly, a homotopy sheaf of simplicial sets
M on Man is then a smooth stack.12 A derived enhancement of a smooth
stack M is a derived stack

M̃ : dgManop → sSets

such that the restriction to the subsite Man ⊂ dgMan agrees with M.13

By Lemma 4.10, (the derived stack of) any L∞ space (X, g) is a derived
enhancement of X, since the restriction to Man does not care about g.
But Lemma 4.12 above shows that BgX essentially provides a “cofibrant
replacement” for the smooth manifold X: we have replaced the structure
sheaf C∞X with a semi-free resolution over ΩX . In this sense, it is the most
natural derived enhancement. ♦

4.4.4. An L∞ space encoding a complex manifold. The construction
of the L∞ space BgX is inspired by Costello’s work in the holomorphic
setting. If Y is a complex manifold, then there exists an L∞ space Y∂ =
(Y, gY∂ ) with the following properties.

Proposition 4.14 (Lemma 3.1.1 of [Cos10]). Let Y be a complex manifold.
The L∞ space Y∂ is well defined up to contractible choice. Further:

(a) As an Ω]
Y -module, gY∂ is isomorphic to Ω]

Y (T 1,0
Y [−1]).

(b) The derived stack BgY∂ represents the moduli problem of holomor-

phic maps into Y : for any complex manifold X (viewed as a nilpotent
dg manifold), BgY∂ (X) is the discrete simplicial set of holomorphic
maps from X to Y .

12A generalized smooth manifold M defines a smooth stack by taking the discrete
simplicial set M(Y ) on every manifold Y . The argument parallels Lemma C.6.

13This perspective is standard in the setting of derived geometry. See for instance
[SchuTV] or [Toë09].
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5. Geometry with L∞ spaces

Especially important for us will be that we can thus define shifted sym-
plectic structures on L∞ spaces, which play a crucial role in the classical
Batalin–Vilkovisky formalism.

5.1. Vector bundles on L∞ spaces. The notion of L∞ space is suffi-
ciently geometric to admit notions of vector bundles, in particular, (co)tan-
gent bundles.

Definition 5.1. Let Bg := (X, g) be an L∞ space. A vector bundle on Bg
is a Z-graded topological vector bundle π : V → X for which its sheaf of

smooth sections V over X has the structure of an Ω]
X -module and for which

g⊕ V has the structure of a curved L∞ algebra over Ω∗X such that:

(1) The inclusion g ↪→ g⊕ V and the projection g⊕ V → g are maps of
L∞ algebras.

(2) The Taylor coefficients `n of the L∞ structure vanish on tensors
containing two or more sections of V.

The sheaf of sections of V over Bg is given by the sheaf on X of dg C∗(g)-
modules C∗(g,V[1]), the Chevalley–Eilenberg complex for an g-module. The
total space for the vector bundle V over Bg is the L∞ space (X, g⊕ V).

In particular, forX a point, we recover the usual notion of a representation
of g. Note that we have merely picked out a class of well-behaved sheaves
of g-modules.

We now pick out two important examples. Recall that for a semi-free

commutative dg algebra A = (Ŝym(V ), d), the derivations are the module

DerA := (Ŝym(V )⊗ V ∨, d). We view the derivations as the vector fields —
the sections of the tangent bundle TA — on the space corresponding to A.
By this correspondence, we obtain the following.

Definition 5.2. The tangent bundle TBg is given by g[1] equipped with the
(shifted) adjoint action of g. Likewise, the cotangent bundle T ∗Bg is given by

g∨[−1] equipped with the (shifted) coadjoint action of g.

There are also shifted (co)tangent bundles. For instance, we let T [k]Bg
denote the L∞ space (X, g⊕ g[k+ 1]), which is the total space of the vector
bundle TBg[k].

Sections of T ∗Bg over Bg are the Kähler differentials Ω1
Bg of OBg = C∗g.

They are Ŝym(g∨[−1])⊗k (g∨[−1]) equipped with the differential

dΩ1 : f ⊗ x 7→ dgf ⊗ x+ (−1)|f |f · ddR(dgx),

where f ∈ OBg and x ∈ g∨[−1]. Here dg denotes the differential on C∗g and
ddR : OBg → Ω1

Bg denotes the universal derivation

ddR : x 7→ 1⊗ x
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for x ∈ g∨[−1]. Note that dΩ ◦ ddR = ddR ◦ ∂. From hereon, we will denote
1⊗ x by dx and f ⊗ x by f dx.

There is a natural analog of the de Rham complex DRBg where Ωk
Bg :=

C∗(g,∧kg[−k]) and

DRBg :=
⊕
k≥0

Ωk
Bg[−k]

with total differential dDR given by adding the “internal” differential of
Ωk as a g-module to the “exterior derivative” ddR (the universal derivation
described in the preceding paragraph).

5.2. Shifted symplectic structures. We now formulate the analog of a
symplectic form ω on an L∞ space Bg = (X, g). Recall that on a smooth
manifold M , a 2-form ω ∈ Ω2(M) is symplectic if ω is closed and provides
an isomorphism of vector bundles ω : TM → T ∗M . We must provide derived
versions of these two conditions. (For a more sophisticated and thorough
treatment of derived symplectic geometry, see [PTVV13]. Our definitions
are essentially L∞ space versions of theirs.)14

As described above, we have an analog of the de Rham complex. A closed
2-form is then a cocycle in the truncated de Rham complex

Ω2
cl :=

⊕
k≥2

Ωk
Bg[−k + 2], dDR

 ,

shifted to put Ω2 “in degree 0.” Observe that there is a natural map

i : Ω2
cl → Ω2

Bg

by forgetting components living in Ω>2. Hence being closed is data, not
a property: given a 2-form ω ∈ Ω2

Bg, one must find a lift to some cocycle

ω̃ ∈ Ω2
cl to have a closed 2-form.

As usual, every element of the g-module V∨ ⊗W determines an element
of the module Homg(V,W). Given a 2-form ω of cohomological degree n,
we thus obtain a bundle morphism ω : TBg → T ∗Bg of cohomological degree
−n. We say ω is nondegenerate if the morphism ω is a quasi-isomorphism
from TBg to T ∗Bg[−n].

Definition 5.3. An n-shifted symplectic L∞ space is an L∞ space Bg =
(X, g) equipped with a closed 2-form ω ∈ Ω2

cl of cohomological degree −n
such that i(ω) is nondegenerate.

The shifted cotangent bundle T ∗[n]Bg is equipped with a natural n-shifted
symplectic structure by antisymmetrizing the (shifted) evaluation pairing.

14As in the case of the Lie-theoretic perspective on deformation theory, there is a
long history to these ideas. Our approach grows directly out of the work of Schwarz
and Kontsevich and their various collaborators (see, for instance, [Schw93], [MS06], and
[ASZK97]).



254 RYAN GRADY AND OWEN GWILLIAM

6. The derived loop space

We now discuss an interesting collection of examples — derived loop
spaces — whose analogs in derived algebraic geometry provide new perspec-
tives on important constructions in representation theory and homological
algebra (see, for instance, [BenzN12] and [TV09]). In our work [GG14], their
geometry describes the classical field theory that we quantize.

Recall the usual free loop space LX, where

LX = Man(S1, X) = {smooth maps f : S1 → X}.

There are various ways to view LX as a topological space or even an ∞-
dimensional smooth manifold. For us, the functor of points approach to
geometry suggests that we view LX as the functor

LsmX : Manop → Sets

M 7→ Man(S1 ×M,X)

where the right hand side is simply the set of smooth maps S1 ×M → X.
Note that this functor is, in fact, a sheaf on the site Man.

When we move to the derived setting, we can ask for a derived enhance-
ment of LsmX, but we can also ask about other kinds of loop spaces using
other circles. In particular, two other “circles” besides S1 are:

(1) the de Rham circle S1
dR = (S1,Ω∗S1),

(2) the “Betti circle” S1
B = (pt,R[ε]) with ε of degree 1 (i.e., the functions

are the cohomology ring of the circle).

The de Rham circle is a nilpotent dg manifold but the Betti circle is not,
strictly speaking, because the algebra does not sit in nonpositive degrees.
Nonetheless, it is a reasonable ringed space to consider. In essence, S1

dR

knows about the smooth topology of S1 and S1
B knows about the real ho-

motopy type of S1.
We now describe derived stacks that are natural loop spaces for these

various circles. Note that we will always be discussing some version of a
loop space for a manifold X, but our constructions work for an arbitrary
L∞ space by replacing BgX by an arbitrary Bg.

6.1. Enhancing LsmX. Lemma 4.12 gives us a natural derived enhance-
ment of X itself: use the L∞ space BgX . We piggyback on that result to
enhance LsmX.

Definition 6.1. Let LsmX denote the functor

LsmX : dgManop → sSets

M 7→ BgX(S1 ×M).

This functor is, in fact, a derived stack because BgX is.
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6.2. The Betti loop space LBX. Let X be a smooth manifold and let
BgX = (X, gX) be the associated L∞ space. Let LBX denote the L∞ space
(X,R[ε]⊗ gX). We call it the Betti loop space of X.

Remark 6.2. If S1
B were a nilpotent dg manifold, the functor BLBX would

agree with BgX(S1
B × −). Hence this definition is motivated by the same

logic as LsmX or LsmX. ♦

The Betti loop space has another description: it is just the L∞ space
T [−1]BgX .15 Explicitly, this L∞ space is

(X, gX ⊕ gX [−1]),

where gX [−1] denotes Ω∗X(T ∗X [−2]) viewed as an gX -module by the shifted
adjoint action.

Observe that there is a natural quasi-isomorphism⊕
k≥0

Ωk
X [k]

'
↪→ C∗(gX ⊕ gX [−1]),

extending the quasi-isomorphism from Lemma 4.12. This equivalence says
that “the functions on the Betti loop space are the (regraded) de Rham forms
of X,” that is, O(LBX) '

⊕
k≥0 Ωk

X [k]. This description meshes nicely
with the Hochschild–Kostant–Rosenberg theorem and its interpretation in
derived geometry: the Betti loop space encodes the derived self-intersection
of X as the diagonal in X × X, and hence its algebra of functions should
be the Hochschild homology of functions on X. (See [TV11] and [BenzN12]
for a lot more on this topic.)

Remark 6.3. The Betti loop space, and the de Rham loop space defined
below, only become interesting when evaluated on interesting nilpotent dg
manifolds. When restricted to the subcategory Man of ordinary manifolds,
these functors are isomorphic to the underlying smooth manifold X. ♦

6.3. The de Rham loop space LdRX and its completion along con-
stant maps. Following the pattern so far, we define the de Rham loop space
of X as follows.

Definition 6.4. Let LdRX denote the functor

LdRX : dgManop → sSets

M 7→ BgX(S1
dR ×M).

This functor is again a derived stack.
Our main interest in [GG14], however, lies with a simpler space: we focus

on maps out of S1
dR×M where the underlying smooth map S1×M → X is

constant along S1. Thanks to a result of Costello, this subfunctor is, in fact,

15This statement is the manifestation, in our formalism, of the fact that the derived
loop space of a scheme X is T [−1]X. See [BenzN12] for some discussion of this fact.
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given by an L∞ space. We start with his general result before discussing its
use in our context.

Let Bg = (X, g) be an L∞ space and let N = (N,ON ) be a nilpotent dg
manifold. We define a new simplicial presheaf BgN on the site dgMan by

BgN : dgManop → sSets

M 7→ Bg(N ×M).

Consider the sub-simplicial presheaf B̂gN ⊂ BgN given by Maurer–Cartan
solutions where the underlying map of manifolds N×M → X is independent
of N . That is, for M a nilpotent dg manifold

B̂gN (M) ⊂ BgN (M)

consists of Maurer–Cartan elements (f, α) such that the underlying smooth
map f factors through the projection onto M :

N ×M
πM
��

f
// X

M

;; .

Costello shows that this subfunctor is itself an L∞ space, under certain
conditions.

Every nilpotent dg manifold N = (N,ON ) has a natural filtration

F kON = I k
N

by powers of its nilpotent ideal IN . Let Grk ON = F kON /F
k+1ON denote

the kth component of the associated graded sheaf of algebras.

Proposition 6.5 (Proposition 5.0.1 of [Cos10]). Let N = (N,ON ) be a
nilpotent dg manifold such that the cohomology of Grk ON is concentrated in
strictly positive degrees for k ≥ 1. Further, let Bg = (X, g) be an L∞ space
such that the cohomology of the sheaf of L∞ algebras

gred := g/Ω>0
X

is concentrated in strictly positive degrees. Then, the simplicial presheaf

B̂gN is weakly equivalent to the functor of points for the L∞ space h :=
(X, g⊗R ON (N)), where ON (N) denotes the global sections of the structure
sheaf ON . In other words, we have a natural transformation of functors

Bh
'−→ B̂gN

that is an objectwise weak equivalence.

Let us apply this result to the case of interest, where the L∞ space is
BgX = (X, gX) and the nilpotent dg manifold is S1

dR = (S1,ΩS1). Then

LdRX is precisely the derived space Bg
S1
dR
X . Moreover, our spaces satisfy the
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hypotheses of the proposition, since the sheaves Grk(Ω∗S1) = Ωk
S1 are soft

(and hence have vanishing higher cohomologies) and since gredX is already
concentrated in positive degrees. Hence, we have the following.

Definition/Lemma 6.6. The L∞ space

L̂dRX := (X,Ω∗(S1)⊗ gX)

encodes the derived stack
̂
Bg

S1
dR
X .

Finally, we note the following, which makes this space particularly easy
to understand.

Lemma 6.7. The L∞ spaces LBX and L̂dRX determine weakly equivalent
derived stacks. In fact, any volume form ω on S1 induces a natural transfor-

mation ω : LBX ⇒ L̂dRX that is a homotopy equivalence on every nilpotent
dg manifold.

Proof. The first statement directly follows from the second. Note that a
choice of ω gives a quasi-isomorphism of commutative dg algebras

φω : R[ε]→ Ω∗(S1)

a+ bε 7→ a+ bω.

Hence we obtain a map of L∞ spaces

(idX , φω) : LBX = (X, gX ⊗ R[ε])→ (X, gX ⊗ Ω∗(S1)) = L̂dRX
that is a quasi-isomorphism of sheaves of curved L∞ algebras. This map
induces the desired natural transformation between their Maurer–Cartan
functors. In particular, given a nilpotent dg manifold M = (M,OM), for
each smooth map f : M → X, we obtain a quasi-isomorphism of nilpotent
curved L∞ algebras

f∗φω : f∗(gX ⊗ R[ε])⊗Ω∗M
IM → f∗(gX ⊗ Ω∗(S1))⊗Ω∗M

IM

and hence a homotopy equivalence of Maurer–Cartan spaces (see Appen-
dix B). �

6.4. Symplectic structures and the AKSZ construction. We now

explain how to equip L̂dRX with a (−1)-symplectic structure when X is 0-
symplectic. Our approach is a version of the AKSZ construction of Alexan-
drov, Kontsevich, Schwarz, and Zaboronsky [ASZK97], who introduced a
general method for constructing shifted symplectic structures on mapping
spaces. Their motivation was to produce “classical Batalin–Vilkovisky the-
ories,” where the BV (Batalin–Vilkovisky) formalism is a homological ap-
proach to field theory. The language of L∞ spaces is well-suited to applying
the AKSZ approach, as we will demonstrate in the case of the derived loop

space L̂dRX. Indeed, in [GG14], we start with this space and then quantize
it using the BV formalism, as developed in [Cos11b].



258 RYAN GRADY AND OWEN GWILLIAM

Before equipping the derived loop space with a (−1)-symplectic structure,
we provide a quick gloss of the AKSZ construction as motivation. The basic
idea is simple. Let the d-dimensional source dg manifold Σ of a sigma model
come equipped with a volume form dvol and let the target dg manifold X
come equipped with a k-symplectic structure ω. Then the mapping space
(aka fields) F := Maps(Σ, X) obtains a k−d-symplectic structure as follows.
For a fixed map φ : Σ → X, the tangent space TφF = Γ(Σ, φ∗TX) has a
natural pairing

〈ζ, ζ ′〉φ :=

∫
s∈Σ

φ∗ω(s)(ζ(s), ζ ′(s)) dvol,

with ζ, ζ ∈ TφF ; and 〈−,−〉φ has cohomological degree n − d by construc-
tion and is skew-symmetric thanks to the skew-symmetry of ω. In many
situations, it will be closed and nondegenerate, as well.

This construction can be realized in our context. Suppose X is a 0-
symplectic manifold (i.e., a symplectic manifold in the standard sense) with
symplectic form ω ∈ Ω2(X). Suppose we fix a 1-form ν ∈ Ω1(S1) that is not
exact, i.e.,

∫
S1 ν 6= 0.

By Corollary 11.3 of [GG14], we know that the∞-jet J(ω) is a cocycle in
both Ω2(BgX) and Ω2

cl(BgX). (This is a special feature of this situation.)
Consider the pairing

Ωω,ν : [gX ⊗ Ω∗(S1)]⊗2 → Ω∗(X)

(Z ⊗ α)⊗ (Z ′ ⊗ α′) 7→
∫
θ∈S1

J(ω)(Z ⊗ α(θ), Z ′ ⊗ α′(θ)) ∧ ν(θ),

which is a direct application of the AKSZ approach. Note that it is a cocycle
in Ω2(gX ⊗ Ω∗(S1)) by construction.

Lemma 6.8. The 2-form Ωω,ν is a (−1)-symplectic form on L̂dRX.

Proof. Checking that it is a closed 2-form is a direct computation. It re-
mains to show that the pairing is nondegenerate. Observe that J(ω) is a
nondegenerate pairing on TBgX , thanks to Corollary 11.3 of [GG14]. (In-
deed, the horizontal sections of jets of vector fields on X is precisely the
sheaf of smooth vector fields on X.) As ν is cohomological nontrivial on S1,
we see that Ωω,ν is nontrivial at the level of cohomology as well. �

Similar arguments should work for many L∞ spaces of this form (i.e.,
an L∞ space that arises as completion of a mapping stack along some set
of maps). Thus, this formalism is a natural place to deploy the AKSZ
construction.
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Appendix A. Homotopy limits and cosimplicial simplicial
sets

In a category with a notion of weak equivalence (such as topological
spaces with weak homotopy equivalence or chain complexes with quasi-
isomorphism), the homotopy limit of a diagram is better behaved than the
ordinary limit with regards to questions about objects up to weak equiva-
lence. There is an extensive literature that motivates, defines, and constructs
homotopy limits in a variety of contexts, and we recommend [Dug] and [Shu]
as nice places to start reading. (For a more succinct discussion close to the
style of our overview, see [Dou14].)

In our context, we can take advantage of the existence of several explicit,
well-behaved formulas for the homotopy limit of a diagram in simplicial
sets.16 A standard source is the foundational work of Bousfield and Kan
[BouK72] (a recent, thorough source is [Hir03]). Of course, it is not always
obvious how the different formulas are related. We give a quick discussion
of the ideas behind the formulas we use.

To motivate all this formalism, we remind the reader of its appearance in
this paper. Let F be a simplicial presheaf and V = {Vi : i ∈ I} a cover of
U . Applying the presheaf F levelwise to the Čech nerve ČV•, we obtain a
cosimplicial simplicial set Č•(V;F) given by

∏
i0
F(Vi0∈I)

d0 //

d1
//

∏
i0,i1∈I F(Vi0i1)

d0 //
d1 //

d2
//

∏
i0,i1,i2∈I F(Vi0i1i2)

d0 //
d1 //
d2 //

d3
//
. . . ,

called the Čech cosimplicial diagram associated to V with coefficients in F .
The standard notation is

Čp(V;F) :=
∏
i0···ip

F(Vi0···ip),

where Vi0···ip = Vi0 ∩ · · · ∩ Vip . We want to compute

holim∆ Č
•(V;F),

so we need to define a homotopy limit over a cosimplicial diagram.

A.1. A quick overview of the big picture. Let I denote a small cat-
egory, and let Fun(I, C) denote the category of functors from this index
category I to C. We call such a functor X an I-diagram in C and so call
Fun(I, C) a diagram category. Recall that the limit of a diagram X arises
from an adjunction

C : C � Fun(I, C) : lim
I

16We emphasize that a homotopy limit should be defined by a homotopic version of
the usual universal property for a limit. These formulas provide an explicit means for
constructing an object that provides such a homotopy limit.
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where for x ∈ C, Cx denotes the diagram

i 7→ x and (i→ i′) 7→ (x
1x→ x),

aka the constant diagram with value x. It is straightforward to unravel this
definition to the definition by the terminal cone.

Now suppose C is a category with a notion of weak equivalence. Let Ho(C)
denote the homotopy category given by localizing at these weak equivalences.
We equip Fun(I, C) with an associated notion of weak equivalence: a map
of diagrams f : X → Y is a weakly equivalence if the map on each object
f(i) : X(i) → Y (i) is a weak equivalence. Let Ho(Fun(I, C)) denote the
associated homotopy category.

Observe that the constant functor C preserves weak equivalences and
hence induces a functor

Ho(C) : Ho(C)→ Ho(Fun(I, C)).
We denote the right adjoint of Ho(C) — if it exists — by Ho− limI .

17 Note
that Ho− limI does not arise from limI — it is not “Ho(limI)” — except in
very special situations, because limI need not preserve weak equivalences.

Not only do we want to construct Ho− limI , but we want to go a step
further and produce a functor holimI : Fun(I, C)→ C that induces Ho− limI

at the level of homotopy categories.
Model categories are a well-established approach (among others) to ac-

complishing such goals.18 One useful feature of model categories is that they
provide another tool for constructing functors between homotopy categories:
given a Quillen adjunction

L : C � D : R

between model categories, one obtains an adjunction

LL : Ho(C) � HoD : RR
between the homotopy categories. We now use this tool to find our desired
functor holimI , following Bousfield and Kan.

We are only interested here in the case where C is the category sSets of
simplicial sets, with the standard aka Quillen model structure. Bousfield and
Kan introduced a model structure on the diagram category Fun(I, sSets),
now known as the projective model structure, where weak equivalences and
fibrations are both objectwise.

The trick to making holimI is to find a functor C′ : sSets→ Fun(I, sSets)
such that:

(1) There is a Quillen adjunction C′ : sSets � Fun(I, sSets) : F .
(2) C′ is not C but LC′ = Ho(C), so they agree at the level of homotopy

categories.

17We use this ugly notation to avoid conflicting with commonly-used notations.
18Our discussion only assumes a basic familiarity with model categories. For more

extensive discussion, there are many lovely expositions, such as [DwS95] or [Hov99].
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We then know that RF is Ho− limI , so we can view the right adjoint F as
the desired holimI . In particular, on an objectwise-fibrant diagram X, we
know that holimI X is a simplicial set with the correct homotopy type.

We now construct C′. For any i ∈ I, we denote its over-category by I/i.
Let N(I/i) denote the nerve of I/i, which is a contractible simplicial set. We
define a functor

C′ = I/− ×− : sSets→ Fun(I, sSets)

x 7→ (i 7→ x×N(I/i)).

By construction, the diagram C′(x) assigns to every i ∈ I a simplicial set
C′(x)(i) = x × N(I/i) that is weakly equivalent to x. Indeed, there is a

canonical natural transformation η : C⇒ C′ because N(I/i) has a canonical
basepoint ∗ coming from the terminal object i → i in I/i and so η(x) is
the canonical map x ↪→ x × ∗ ⊂ x ×N(I/i). Then η is an objectwise weak
equivalence.

Recall that sSets is enriched over itself, and there is an inner hom that
we denote Maps, so

sSets(x× y, z) ∼= sSets(x,Maps(y, z)).

It is immediate from this adjunction that the set of n-simplices of Maps(y, z)
is sSets(4[n] × y, z). Piggybacking on this construction, we obtain a right
adjoint to the functor C′:

Maps(I/−,−) : Fun(I, sSets)→ sSets

X 7→ ([n] 7→ Nat(I/− × C′4[n], X),

where Nat(A,B) denotes the set of natural transformations between the
diagrams A and B.

Proposition A.1. The adjunction

C′ = I/− ×− : sSets � Fun(I, sSets) : Maps(I/−,−)

is a Quillen adjunction, using the projective model structure on the right
hand side.

We thus define the homotopy limit holimI to be Maps(I/−,−). Its right
derived functor is Ho− limI .

Our main interest is when I = ∆, so that Fun(I, sSets) is precisely csSets,
the cosimplicial simplicial sets.

Definition A.2. The homotopy limit of a cosimplicial diagram of simplicial
sets X ∈ csSets is

holim∆X = Maps(∆/−, X).

We emphasize that this is not the only definition used in the literature, but
any construction/definition should provide a weakly equivalent simplicial set
(so long as we agree on the notion of weak equivalence of diagrams).
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A.2. An alternative approach: fat totalization. When I = ∆, one can
give a different functor, known as fat totalization and denoted Tot, whose
right derived functor RTot is Ho− lim∆. In other words, we will recall a
different approach to the homotopy limit which has its foundations in the
work of Segal [Seg74]. Costello uses this version of holim in his proof, which
is why we include this brief discussion.

Let ∆inj denote the subcategory of ∆ with the same objects but whose
morphisms are just the injections. The superscript inj is to indicate that it
is generated by the face inclusions [n − 1] ↪→ [n]. Let ι : ∆inj → ∆ denote
the inclusion functor. We immediately obtain a Quillen adjunction

ι! : Fun(∆inj, sSets) � Fun(∆, sSets) : ι∗

where ι! is the left Kan extension along ι. Note that it is a Quillen adjunction
for the projective model structures because the forgetful functor ι clearly
preserves objectwise fibrations and weak equivalences.

By our work above, we already have a Quillen adjunction

∆inj
/− : sSets � Fun(∆inj, sSets) : Maps(∆inj

/−,−).

Let Tot be the composition Maps(∆inj
/−,−) ◦ ι∗. Composing these Quillen

adjunctions, we obtain a Quillen adjunction

ι! ◦∆inj
/− : sSets � Fun(∆, sSets) : Tot .

One can check that ι! ◦∆inj
/− is weakly equivalent to C, and hence Tot is

weakly equivalent to holim∆.
This construction is called fat totalization to contrast it with totalization.

The totalization of X•• ∈ csSets is the simplicial set given by

TotX•• := Maps(4••, X•• ).

where 4•• is the cosimplicial standard simplex whose simplicial set of n-
cosimplices 4n

• is the standard n-simplex 4[n]. Totalization is thus the
dual notion to geometric realization.

A.3. Yet another definition and its use in the linear setting. There
is another model category structure that is often used on cosimplicial sim-
plicial sets, known as the Reedy model structure (Bousfield and Kan also
work with this structure). For X•• ∈ csSets that is (co)fibrant in this model
structure, we say X•• is Reedy-(co)fibrant. The cosimplicial standard simplex
4•• is a cofibrant replacement for the constant functor C in csSets, so we
use it to define yet another version the homotopy limit, which we denote by
holimR

∆.

Proposition A.3 (XI.4.5, [BouK72]). For X•• a Reedy-fibrant cosimplicial
simplicial set, the natural map ∆/− →4•• induces a weak equivalence

TotX•• → holimR
∆X

•
• .
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Moreover, Bousfield and Kan prove that every cosimplicial simplicial
group is Reedy-fibrant (see X.4.9, [BouK72]). Hence, we can compute ho-
motopy limits using totalization, which is sometimes simpler.

These results are particularly helpful in connecting the Čech complex for
a sheaf of chain complexes to Čech descent using holimR. We use this result
to prove our main theorem about L∞ spaces, so we explain what we need.

There is a conormalization functor N∗ : cAb→ Ch+ that turns a cosim-
plicial abelian group into a nonnegatively-graded cochain complex of abelian
groups. It is the cosimplicial twin of the normalization functor N∗ : sAb→
Ch+ appearing in the Dold–Kan correspondence between simplicial abelian
groups and nonnegatively-graded chain complexes. Let DK : Ch+ → sAb
denote the adjoint functor appearing in the Dold–Kan correspondence.

Given a cosimplicial simplicial abelian group A••, let TA denote the total
chain complex of the double complex N∗N∗A

•
• (we use the product of groups

in making the total complex). Let TotA denote the simplicial abelian group
given by totalization as a cosimplicial simplicial set. Note that this computes
holimR

∆A, as A is fibrant.

Proposition A.4 (Lemma 2.2 [Bou89]). There is a natural quasi-isomor-
phism φ : N∗TotA → TA. Equivalently, under the Dold–Kan correspon-
dence, there is a natural weak equivalence φ′ : TotA→ DK(TA).

Given a simplicial presheaf F such that F(U) is a simplicial abelian group
for every open U , we thus see that holimR

ČV
F is equivalent to the usual Čech

complex for F .

Appendix B. Brief overview of the Maurer–Cartan functor

We collect here some definitions and theorems about the Maurer–Cartan
space MC• that we use in understanding the derived stack Bg from an L∞
space Bg := (X, g). The elegant paper of Getzler [Get09] is the primary
reference. Look there for the proofs and many further insights.

Definition B.1. The lower central series of a L∞ algebra g over a commu-
tative dg algebra A is the decreasing filtration F kg with F 1g = g and

F kg =
∑

i1+···+in=k

`k(F
i1g, . . . , F ing)

for k > 1. (This expression means “take the span of elements produced
by applying the bracket `k to elements from the appropriate level of the
filtrations.”)

A L∞ algebra g is nilpotent if there is some positive integer N such that
FNg = 0. In other words, any sufficiently long sequence of brackets vanishes.

For g a nilpotent L∞ algebra, the Maurer–Cartan equation mc(α) = 0
is well-posed, since the infinite sum — which is a priori ill-defined — is
actually a finite sum.
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Let g denote a nilpotent L∞ algebra. Getzler proves several properties
that are useful for us:

(1) MC•(g) is a Kan complex.
(2) For f : g→ h a levelwise surjective map of nilpotent L∞ algebras, the

induced map MC•(f) : MC•(g)→ MC•(h) is a fibration of simplicial
sets.

(3) For g an abelian L∞ algebra (i.e., merely a cochain complex), MC•(g)
is homotopy equivalent to DK•(τ≤0(g[1])), where τ≤0(g[1]) denotes
the brutal truncation where we drop all positive-degree elements of
a cochain complex.

These results extend to the nilpotent curved L∞ algebras that we work with.
It might help to know what the Maurer–Cartan space MC•(g) means

when g is a nilpotent Lie algebra, in the classical sense, in order to inter-
pret the general construction. The introduction to [Get09] gives a beauti-
ful explanation, with connections to many topics. He shows, for instance,
that for G a simply-connected, nilpotent Lie group and g = Lie(G) its
associated nilpotent Lie algebra, there is a natural homotopy equivalence
N•G → MC• g. (Getzler, in fact, goes further and finds a replacement for
the Maurer–Cartan functor that “integrates” a nilpotent L∞ algebra to its
“group.” For a nilpotent Lie algebra, his functor recovers the nerve of the
group on the nose.)

Appendix C. Proof of Theorem 4.8

We follow the structure of Costello’s argument in [Cos11], reworking and
elaborating on several steps of the argument. Let Bg = (X, g) be an L∞
space. Recall that Bg denotes the associated functor of points.

The essential idea is to exploit the nilpotent ideal IN = ker q inside ON
for any nilpotent dg manifold N on which we evaluate Bg. Let n be the
integer such that I n+1

N = 0. Then we have a tower of commutative dg
Ω∗N -algebras

O → O/I n → O/I n−1 → · · · → O/I 2 → O/I ∼= C∞N

and an associated tower of nilpotent dg manifolds

N = N1 → N2 → · · · → Nn → N ,
where Nk = (N,ON /I

k
N ). We also obtain a tower of simplicial sets

Bg(N )→ Bg(Nn)→ · · · → Bg(N2)→ Bg(N1) = Bg(N)

for any nilpotent dg manifold N .
Our arguments will proceed by induction up this tower (this is a direct

analog of artinian induction). For instance, we will show that weak equiva-
lences go to weak equivalences stage by stage along the tower.

Remark C.1. There is an important feature of the functor Bg that we wish
to emphasize: the simplicial set Bg(N ) is a disjoint union of simplicial sets
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over the set of the smooth maps f : N → X. In the construction of the
k-simplices Bg(N )k, we solve for solutions of the Maurer–Cartan equation
in an algebra depending on Ω∗(4k) but where the underlying smooth map
is independent of 4k. From hereon in the proof of the theorem, we fix a
map f and simply study solutions over that f . We remind the reader of this
assumption periodically, for clarity’s sake. ♦

We start with the base case for the induction.

Lemma C.2. For any smooth manifold N , the simplicial set Bg(N) is the
discrete simplicial set of smooth maps C∞(N,X). It is, in particular, a Kan
complex.

Proof. See Lemma 4.10 above. �

We now show that each stage of the induction is well-behaved homotopi-
cally.

Lemma C.3. The map

q : Bg(Nk+1)→ Bg(Nk)
is a fibration.

Proof. Recall that q is a Kan fibration if for any map of an m-simplex
s : 4m → Bg(Nk) and any map of a m-horn t : Λmj → Bg(Nk+1) such that

Λmj
t //

ι

��

Bg(Nk+1)

q

��

4m
s
// Bg(Nk)

is a commutative diagram, we can lift to a map s̃ : 4m → Bg(Nk+1) such
that t = s̃ ◦ ι and s = q ◦ s̃.

As explained in remark C.1, we are free to fix the underlying smooth map
f : N → X in all these constructions. Let f : N → X denote that fixed
map from hereon.

Now suppose we have an m-simplex (f, α) of Bg(Nk) and an m-horn of
Bg(Nk+1) agreeing with (f, α) modulo I k. We want to extend to a full
m-simplex.

As a first step, we consider the problem of lifting α simply as an element
of graded vector spaces, ignoring the Maurer–Cartan equation. We have a
short exact sequence

0→ (I k/I k+1)](N)⊗ Ω](4m)→ (O/I k+1)](N)⊗ Ω](4m)

Q→ (O/I k)](N)⊗ Ω](4m)→ 0

of graded vector spaces. We denote this sequence

0→ K → B
Q→ A→ 0
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for simplicity. Note that K is a square-zero ideal of B and hence a very
simple nonunital commutative dg algebra. We eventually want to study
solutions to the Maurer–Cartan equation when we tensor f∗g with each
term in this sequence. Ignoring the differentials for now, observe that we
get a sequence of graded vector spaces

0→ f∗g⊗K → f∗g⊗B Id⊗Q−−−→ f∗g⊗A→ 0.

Thus, given a solution α to the Maurer–Cartan equation in f∗g ⊗ A, there
exist lifts α̃ in f∗g⊗B such that Q◦ α̃ = α because we can split Q as a map
of vector spaces. These lifts form a torsor for f∗g⊗K.

We now ask when such a lift α̃ satisfies the Maurer–Cartan equation.
We know α does, so the failure to satisfy the Maurer–Cartan equation lives
in f∗g ⊗ K. In other words, we have an obstruction living in the second
cohomology group of f∗g⊗K. By hypothesis, we know that α̃ satisfies the
Maurer–Cartan equation when restricted to the horn. As

Ω∗(Λmj )→ Ω∗(4m)

is a quasi-isomorphism, we see that the obstruction must vanish. �

This tower of fibrations gives us a procedure for checking a property
by working our way up the tower and simply working with I k/I k+1 at
each stage. As this is simply a cochain complex, rather than a nontrivial
commutative dg algebra, the problem has become more tractable.

Proposition C.4. Let F : N → N ′ be a weak equivalence of nilpotent dg
manifolds. Then the map F ∗ : Bg(N ′) → Bg(N ) is a weak equivalence of
simplicial sets.

Proof. We have a diffeomorphism f : N → N ′ and a map of commutative
dg algebras φ : f−1ON ′ → ON that is compatible with the filtration. Our
plan is to show we have a weak equivalence

F ∗k : Bg(N ′k)→ Bg(Nk)

for each level k of the tower of nilpotent dg manifolds.
The base case is straightforward:

F ∗1 = f∗ : Bg(N ′)→ Bg(N)

is an isomorphism because f is a diffeomorphism.
Now suppose F ∗k−1 is a weak equivalence. To show F ∗k is a weak equiva-

lence, it suffices to show that the induced map on fibers is a weak equivalence
by the long exact sequence in homotopy groups. Here we use remark C.1:
it suffices to study the problem for each distinct smooth map g : N ′ → C.
This choice then fixes the smooth map g ◦ f : N → X. We will compare the
fibers over g and h = g ◦ f but suppress them from discussion.
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The fiber for N is then the Maurer–Cartan space for h∗g⊗Ω∗N
I k−1
N /I k

N .

This curved L∞ algebra is, in fact, abelian because the I k−1/I k is square-
zero, so this simplicial set has another name: it arises from the cochain
complex h∗g⊗Ω∗N

I k−1
N /I k

N [1] under the Dold–Kan correspondence.
By the hypothesis, we know that Grφ is a quasi-isomorphism. This means

that the cochain complex I k−1
N /I k

N is quasi-isomorphic to I k−1
N ′ /I

k
N ′ for

every k. Hence the fibers — as simplicial sets constructed by the Dold–Kan
correspondence — are weakly equivalent. �

It remains to show that Bg satisfies Čech descent. This argument is the
trickiest because it involves homotopy limits.

Proposition C.5. The simplicial presheaf Bg satisfies Čech descent. That
is, for V any cover of N , the map

Bg(N )→ holimČV Bg = holim Č•(V,Bg)

is a weak equivalence.

This argument also proceeds by artinian induction. We fix useful no-
tation. Let V = {Vi} denote a cover of a smooth manifold N , and let
Vk = {(Vi,ONk |Vi)} denote the associated cover of the nilpotent dg mani-
fold Nk.

The base case of the argument is the following standard fact.

Lemma C.6. The natural map Bg(N)→ holimČV Bg is a weak equivalence
of simplicial sets.

Proof. By Lemma C.2, we know that all the simplicial sets here are discrete.
In particular, there is the associated map of sets

C∞(N,X)→ holim Č(V, C∞(−, X)).

Hence the homotopy limit agrees with the limit, and we know that C∞(−, X)
is a sheaf of sets on Man, so that map of sets is an isomorphism. �

With the base case behind us, we tackle the induction step. Observe that
we have a commuting square of simplicial sets

Bg(Nk)

��

// holimČVk
Bg

��

Bg(Nk−1) // holimČVk−1
Bg

where the left vertical map is a fibration and the bottom horizontal map is
a weak equivalence. We will show that the right vertical map is a fibration
and that the induced map on fibers is a weak equivalence. This then implies
that the top horizontal map is a weak equivalence, finishing the induction
step.
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Lemma C.7. The map

Č(Vk,Bg)→ Č(Vk−1,Bg)

is a fibration of cosimplicial simplicial sets. As holim∆ : csSets → sSets
preserves fibrations,19 we see that

holimČVk
Bg→ holimČVk−1

Bg

is a fibration of simplicial sets.

Proof. We already showed in Lemma C.3 that Bg is a fibration along any
square-zero extension. Hence, we know the map of Čech diagrams is an
objectwise fibration and hence a fibration in the projective model structure
on csSets. Thus, the homotopy limit, as a right Quillen adjoint, gives us a
fibration of simplicial sets. �

It remains to show that the map of fibers is a weak equivalence. We know
that the fiber of the map Bg(Nk)→ Bg(Nk−1) is simply

MC•(g⊗I k−1/I k(N)),

the Maurer–Cartan space for the L∞ algebra g⊗I k−1/I k(N). (We include
the notation “(N)” to emphasize that we are taking global sections of this
sheaf of L∞ algebras.) On the other side of the square above, we know
that holim preserves fibrations, so that the fiber of the map holimČVk

Bg→
holimČVk−1

Bg is given by

holim Č•(V,MC•(g⊗I k−1/I k)),

namely the Čech cosimplicial diagram for the cover V with respect to the
simplicial presheaf that assigns the Maurer–Cartan space for the sheaf of
L∞ algebras g⊗I k−1/I k.

Lemma C.8. The map between the fibers

MC(g⊗I k−1/I k)(N)→ holim Č•(V,MC(g⊗I k−1/I k))

is a weak equivalence.

This lemma concludes the proof of Proposition C.5.

Proof. Recall that for an abelian L∞ algebra h, the Maurer–Cartan space
MC•(h) is just the Dold–Kan space DK•(τ≤0(h[1])). Note that the Dold–
Kan space only depends on the truncation τ≤0(h[1]), where all components
of h of degree greater than 1 are eliminated. In particular, we see that

MC•(g⊗I k−1/I k(N)) = DK•(τ≤0(g⊗I k−1/I k(N)[1])),

so that the fiber is determined by a cochain complex.

19It is the right adjoint in a Quillen adjunction

c : sSets � csSets : holim

as discussed in Proposition A.1.
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As g⊗I k−1/I k is a sheaf of abelian L∞ algebras, we are simply applying
DK• to the value on every open. Hence Č•(V,DK•(τ≤0(g⊗I k−1/I k[1])))
is a cosimplicial simplicial abelian group. By Proposition A.4, we know that
holim Č•(V,MC•(g⊗I k−1/I k)) is thus weakly equivalent to the Dold–Kan
simplicial set of

TČ(V, τ≤0(g⊗I k−1/I k[1])),

the total complex formed from the Čech double complex for the sheaf τ≤0(g⊗
I k−1/I k[1]) on the cover V.

Thus, to prove the lemma, we verify instead that

τ≤0(g⊗I k−1/I k)(N)[1])→ TČ(V, τ≤0(g⊗I k−1/I k[1]))

is a quasi-isomorphism, as this implies that the Dold–Kan simplicial sets are
weakly equivalent.

This map is a quasi-isomorphism because g⊗I k−1/I k consists of smooth
sections of a vector bundle on N , so the usual partition of unity arguments
apply. �
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[SchuTV] Schürg, Timo; Toën, Bertrand; Vezzosi, Gabriele. Derived algebraic
geometry, determinants of perfect complexes, and applications to obstruc-
tion theories for maps and complexes. J. Reine Angew. Math. 679 (2013).
arXiv:1102.1150.

[Schw93] Schwarz, Albert. Geometry of Batalin–Vilkovisky quantization. Comm.
Math. Phys. 155 (1993), no. 2, 249–260. MR1230027 (95f:81095), Zbl
0786.58017, arXiv:hep-th/9205088, doi: 10.1007/BF02097392.

[Seg74] Segal, Graeme. Categories and cohomology theories. Topology 13 (1974),
293–312. MR0353298 (50 #5782), Zbl 0284.55016, doi: 10.1016/0040-
9383(74)90022-6.

[Shu] Shulman, Michael. Homotopy limits and colimits and enriched homotopy
theory. Preprint, 2006. arXiv:math/0610194.

[SiT] Simpson, Carlos; Teleman, Constantin. De Rham’s theorem for∞-stacks.
Preprint. http://math.berkeley.edu/~teleman/math/simpson.pdf.

http://people.maths.ox.ac.uk/~joyce/dmanifolds.html
http://people.maths.ox.ac.uk/~joyce/dmanifolds.html
http://www.ams.org/mathscinet-getitem?mr=1181207
http://zbmath.org/?q=an:0757.14010
http://zbmath.org/?q=an:0757.14010
http://dx.doi.org/10.1007/BFb0086264
http://www.ams.org/mathscinet-getitem?mr=2062626
http://zbmath.org/?q=an:1058.53065
http://zbmath.org/?q=an:1058.53065
http://arXiv.org/abs/q-alg/9709040
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://arXiv.org/abs/0905.0459
http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf
http://www.ams.org/mathscinet-getitem?mr=2827833
http://zbmath.org/?q=an:1244.55007
http://dx.doi.org/10.1142/9789814324359_0088
http://www.ams.org/mathscinet-getitem?mr=2157566
http://zbmath.org/?q=an:1078.58011
http://dx.doi.org/10.1112/blms/bdp115
http://www.ams.org/mathscinet-getitem?mr=2534186
http://zbmath.org/?q=an:1215.22002
http://arXiv.org/abs/math/0703234
http://dx.doi.org/10.4310/JSG.2009.v7.n3.a1
http://www.ams.org/mathscinet-getitem?mr=2181815
http://zbmath.org/?q=an:1229.81281
http://arXiv.org/abs/hep-th/0404183
http://dx.doi.org/10.1007/0-8176-4467-9_14
http://www.ams.org/mathscinet-getitem?mr=3090262
http://zbmath.org/?q=an:06185246
http://arXiv.org/abs/1111.3209
http://dx.doi.org/10.1007/s10240-013-0054-1
http://dx.doi.org/10.1007/s10240-013-0054-1
http://www.ams.org/mathscinet-getitem?mr=0154906
http://zbmath.org/?q=an:0113.26204
http://zbmath.org/?q=an:0113.26204
http://dx.doi.org/10.2307/1993603
http://arXiv.org/abs/1310.7930
http://arXiv.org/abs/1102.1150
http://www.ams.org/mathscinet-getitem?mr=1230027
http://zbmath.org/?q=an:0786.58017
http://zbmath.org/?q=an:0786.58017
http://arXiv.org/abs/hep-th/9205088
http://dx.doi.org/10.1007/BF02097392
http://www.ams.org/mathscinet-getitem?mr=0353298
http://zbmath.org/?q=an:0284.55016
http://dx.doi.org/10.1016/0040-9383(74)90022-6
http://dx.doi.org/10.1016/0040-9383(74)90022-6
http://arXiv.org/abs/math/0610194
http://math.berkeley.edu/~teleman/math/simpson.pdf


272 RYAN GRADY AND OWEN GWILLIAM

[Spi10] Spivak, David I. Derived smooth manifolds. Duke Math. J. 153 (2010),
no. 1, 55–128. MR2641940 (2012a:57043), Zbl 05717812, arXiv:0810.5174,
doi: 10.1215/00127094-2010-021.
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