
New York Journal of Mathematics
New York J. Math. 21 (2015) 273–296.

Length structures on manifolds with
continuous Riemannian metrics

Annegret Y. Burtscher

Abstract. It is well-known that the class of piecewise smooth curves
together with a smooth Riemannian metric induces a metric space struc-
ture on a manifold. However, little is known about the minimal regular-
ity needed to analyze curves and particularly to study length-minimizing
curves where neither classical techniques such as a differentiable expo-
nential map, etc., are available nor (generalized) curvature bounds are
imposed. In this paper we advance low-regularity Riemannian geom-
etry by investigating general length structures on manifolds that are
equipped with Riemannian metrics of low regularity. We generalize the
length structure by proving that the class of absolutely continuous curves
induces the standard metric space structure. The main result states that
the arc-length of absolutely continuous curves is the same as the length
induced by the metric. For the proof we use techniques from the analysis
of metric spaces and employ specific smooth approximations of continu-
ous Riemannian metrics. We thus show that when dealing with lengths
of curves, the metric approach for low-regularity Riemannnian manifolds
is still compatible with standard definitions and can successfully fill in
for lack of differentiability.
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1. Introduction

A Riemannian metric on a manifold is needed when considering geomet-
ric notions such as lengths of curves, angles, curvature and volumes. For
several of these notions it is sufficient to work with the underlying met-
ric space structure induced by the Riemannian metric and a length struc-
ture. In this paper we identify the optimal length structure on Riemannian
manifolds compatible with the usual metric space structure as the class of
absolutely continuous curves and subsequently investigate properties of the
length structure of Riemannian manifolds of low regularity. By low regu-
larity we think of Riemannian metrics of regularity less than C1,1. For such
metrics the uniqueness of solutions to the geodesic equation is just known
to hold [13], but the exponential map is already not a local diffeomorphism
anymore but only a bi-Lipschitz homeomorphism [15, 17]. This thinness
clearly effects the global structure of low-regularity Riemannian manifolds
and it is our aim to seek out other tools that can fill in for lack of differ-
entiability. For the purpose of this paper we employ techniques from the
analysis of metric spaces.

Low-regularity Riemannian manifolds have already been studied in the
literature, particularly in the context of metric geometry. A sequence of
closed connected n-dimensional Riemannian manifolds (Mi)i with sectional
curvature bounded from below and diameter bounded from above is known
to have a subsequence (with respect to the Gromov–Hausdorff distance)
converging to a metric space M , more precisely, an Alexandrov space with
the same lower curvature bound [12]. Otsu and Shioya [19] showed that
an n-dimensional Alexandrov space X inherits a C0-Riemannian structure
on X \ SX , where SX denotes the set of singular points in X. When-
ever X contains no singular points then it is an ordinary C0-Riemannian
manifold. Earlier Berestovskii already showed that locally compact length
spaces with curvature bounded from above and below and on which shortest
paths can be extended locally are C1-manifolds with a continuous Riemann-
ian metric. This result was improved to show Hölder continuity C1,α (for
0 < α < 1) of the metric components by Nikolaev using parallel translation
(for both results see, e.g., [1]). Approximations of such length spaces with



LENGTH STRUCTURES ON MANIFOLDS 275

curvature bounds by smooth Riemannian manifolds satisfying sectional cur-
vature bounds in aggregate allow one to carry certain results of Riemannian
geometry in large over to the metric situation [18]. Riemannian manifolds
with continuous Riemannian metrics have also been studied by Calabi and
Hartman. They showed in [7] that isometries in this class of metrics are in
general nondifferentiable (unless the Riemannian metrics are, for example,
uniformly Hölder continuous). The distance function on Lipschitz man-
ifolds with Lipschitz Riemannian metrics (and its relations to Finslerian
structures) has been studied by De Cecco and Palmieri [8, 9] in the 1990s.

With these results in mind we focus in this paper on manifolds with
continuous Riemannian metrics. We present results that can be formulated
using only the length structure of Riemannian manifolds.

The paper is organized as follows. In Section 2, we initiate our investiga-
tions by studying the length structure of manifolds equipped with smooth
Riemannian metrics. We recall that the induced length Ld is equal to the
arc-length L of curves in the standard setting where the exponential map
plays an important role. In Section 3, we extend this result to the class
Aac of absolutely continuous curves. We introduce the so-called variational
topology on the class of absolutely continuous paths and show that in this
topology the piecewise smooth paths are a dense subset. This implies that
the class of absolutely continuous curves defines the same length structure
as the class of piecewise smooth curves. For the sake of completeness we also
show the equivalence of various notions of absolutely continuous curves on
Riemannian manifolds used in different contexts in the literature. Finally, in
Section 4, we consider manifolds with Riemannian metrics of low regularity.
We focus here on manifolds that are equipped with a continuous Riemann-
ian metric and whose induced metric therefore still induces the manifold
topology. Our first result is that metrics induced by continuous Riemann-
ian metrics are equivalent on compact sets. We proceed by demonstrating
that the metric space structure of a manifold induced by a continuous Rie-
mannian metric can be controlled by the metric space structure induced by
smooth approximations of the Riemannian metric. In particular, we use
such approximations to establish the equivalence of the metric derivative
and the analytic derivative. This enables us to prove that L = Ld holds also
in the class Aac on any manifold with continuous Riemannian metric.

2. Background

Let M be a connected smooth manifold endowed with a smooth Riemann-
ian metric g, i.e., gp varies smoothly in p on M . Let us briefly recall the
standard construction to assign a metric d to M via g. The class of piecewise
smooth curves (with monotonous reparametrizations) on M is denoted by
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A∞. The length of a piecewise smooth curve1 γ : [0, 1]→M is defined by

(2.1) L(γ) :=

∫ 1

0
‖γ′(t)‖g dt,

where ‖v‖g =
√
gp(v, v) denotes the norm of v ∈ TpM with respect to g.

The triple (M,A∞, L) defines a length structure on the topological space
M . The intrinsic metric (or distance function) d = d(g,A∞, L) is assigned
to M by setting

(2.2) d(p, q) := inf{L(γ) | γ ∈ A∞, γ(0) = p, γ(1) = q}, p, q ∈M.

It is a standard result from Riemannian geometry that (M,d) defines a
metric space structure on M that induces the manifold topology. More
precisely, (M,d) is a length space, i.e., a metric space with intrinsic metric.

Given an intrinsic metric d it is generally not possible to uniquely recon-
struct from knowledge of d alone the length structure from which it was
derived. However, there is a natural way to associate a length structure Ld
to a given metric d, namely by approximating paths by “polygons”.

Definition 2.1. Let (X, d) be a metric space and γ : [0, 1] → X a (contin-
uous) path in X. Then
(2.3)

Ld(γ) := sup

{
n∑
i=1

d(γ(ti−1), γ(ti))
∣∣∣n ∈ N, 0 = t0 < t1 < . . . < tn = 1

}
is called the induced length of γ.

A length structure on any metric space (X, d) is therefore obtained by
considering the class A0 of continuous curves and the induced length func-
tion Ld. This length structure gives rise to another metric d̂, the intrinsic
metric d(X,A0, Ld), which is defined analogously to (2.2). In general, d and

d̂ do not induce the same topology (for examples see [11, Ch. 1] and [5, Sec.
2.3.3]). If we start out with a length space (X, d), it is therefore interest-
ing to ask under which conditions the original length structure L and the
induced length structure Ld coincide. If L and Ld coincide wherever L is
defined, then Ld serves as a natural extension of L to A0.

Theorem 2.2. Let M be a connected manifold with smooth Riemannian
metric g. Then

L(γ) = Ld(γ), γ ∈ A∞.

Proof. (Ld ≤ L) This is true for any length space, by definition of Ld, d
and the additivity of L.

1To increase readability, we always assume that an arbitrary path γ : [a, b] → M is
reparametrized in a way that a = 0 and b = 1.
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(L ≤ Ld) Let γ : [0, 1] → M and t ∈ (0, 1) such that γ′(t) exists. The
exponential map expγ(t) defines a diffeomorphism on a neighborhood U of

γ(t). Let δ > 0 such that γ([t− δ, t+ δ]) ⊆ U . Then,

1

δ
d(γ(t), γ(t+ δ)) =

1

δ

∥∥∥exp−1
γ(t)(γ(t+ δ))

∥∥∥
gγ(t)

=

∥∥∥∥1

δ
exp−1

γ(t)(γ(t+ δ))

∥∥∥∥
gγ(t)

,

and the metric derivative of γ satisfies

lim
δ→0+

d(γ(t), γ(t+ δ))

δ
=

∥∥∥∥ d

dδ

∣∣∣∣
0

exp−1
γ(t)(γ(t+ δ))

∥∥∥∥
gγ(t)

=
∥∥∥(T0 expγ(t)︸ ︷︷ ︸

id

)−1(γ′(t))
∥∥∥
gγ(t)

=
∥∥γ′(t)∥∥

gγ(t)
.(2.4)

Moreover,

1

δ
d(γ(t), γ(t+ δ)) ≤ 1

δ
Ld(γ|[t,t+δ]) ≤

1

δ

∫ t+δ

t
‖γ′(s)‖gγ(t)ds(2.5)

by the first part of the proof. Both sides of this inequality converge to
‖γ′(t)‖gγ(t) as δ tends to 0. Similarly for t − δ. Note that the intermediate

term in (2.5) may be written as 1
δ Ld(γ|[t,t+δ]) = 1

δ

(
Ld(γ|[0,t+δ])− Ld(γ|[0,t])

)
.

Thus for almost all t ∈ (0, 1) we obtain that

d

dt
Ld(γ|[0,t]) = ‖γ′(t)‖gγ(t) .

The fundamental theorem of calculus therefore yields

Ld(γ) = Ld(γ)− Ld(γ|[0,0])︸ ︷︷ ︸
=0

=

∫ 1

0

d

dt
Ld(γ|[0,t])dt =

∫ 1

0
‖γ′(t)‖gγ(t)dt = L(γ).

�

Corollary 2.3. Under the assumptions of Theorem 2.2,

d = d̂,

where d̂ = d(M,A∞, Ld) is the induced intrinsic metric on M . �

3. More general classes of curves on Riemannian manifolds

Let (M, g) again be a connected smooth Riemannian manifold, and d be
the distance function induced by the class A∞ of piecewise smooth curves
on M . By Theorem 2.2, the length of piecewise smooth curves γ is given by

L(γ) = Ld(γ).

Note that the right hand side of this equation is well-defined for larger
classes of curves, indeed Ld(γ) makes sense for continuous curves γ on M .
We are therefore interested to also understand the left hand side in more
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general cases. In particular, we ask for what maximal class B of curves
is L(γ) well-defined and equal to Ld(γ). We will see that B is the class
of absolutely continuous curves on M , and that the metric induced by B
satisfies d(g,B, L) = d(g,A∞, L).

3.1. Rectifiable curves. A continuous path γ : I →M is called rectifiable
(or of bounded variation) if Ld(γ) < ∞. We denote the class of rectifiable
curves by Arec.

For M = R these curves are functions of bounded (pointwise) variation
and usually are denoted by BV(I). Each γ ∈ BV(I) is differentiable a.e. in
I and satisfies

L(γ) =

∫
I
|γ′(t)| dt ≤ VarI(γ) = Ld(γ),

with equality if and only if γ is absolutely continuous on I due to the fun-
damental theorem of calculus. As such, if (M, g) is Euclidean with standard
metric, the fact that d = dac is an immediate consequence. Since the fun-
damental theorem of calculus was also required in the proof of Theorem 2.2
and Corollary 2.3, the class of absolutely continuous curves is a natural can-
didate for B. Much of this Section 3, in particular Corollary 3.13, can be
seen as a generalization of the Euclidean setting to Riemannian manifolds
with metrics of low regularity.

Example 3.1. The Cantor function Γ illustrates that absolute continuity
is really necessary. Namely, the graph γ = (id,Γ) of the Cantor function
is a continuous function of bounded variation (and hence differentiable a.e.
with γ′(t) = (1, 0)), but satisfies

L(γ) =

∫ 1

0
|γ′(t)| dt = 1 6= 2 = Var[0,1](γ) = Ld(γ).

3.2. Absolutely continuous curves. The importance of absolutely con-
tinuous functions for geometric questions has already been discovered in the
second half of the last century (see [11, 20, 21] and others). There are var-
ious ways to define absolutely continuous curves on R, normed spaces, and
metric spaces in general. We will confine ourselves to the most convenient
definition for differentiable manifolds, and prove the equivalence to other
notions on smooth Riemannian manifolds at the end of this section. Our
notion of absolute continuity stems from the standard notion for real-valued
functions and a generalization to Banach space-valued functions [10, 14].

Definition 3.2. Let I ⊆ R be an interval (or an open set). A function
f : I → Rn is said to be absolutely continuous on I (for short, AC on I) if
for all ε > 0 there exists δ > 0, such that for any m ∈ N and any selection
of disjoint intervals {(ai, bi)}mi=1 with [ai, bi] ⊆ I, whose overall length is
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i=1 |bi − ai| < δ, f satisfies

m∑
i=1

|f(bi)− f(ai)| < ε,

where |.| (without subindex) denotes the standard Euclidean norm on Rn.
If f : I → Rn is absolutely continuous on all closed subintervals [a, b] ⊆ I,

then it is called locally absolutely continuous on I. The spaces of AC func-
tions and locally AC functions are denoted by AC(I,Rn) and ACloc(I,Rn),
respectively.

Note that AC(I,Rn) = ACloc(I,Rn) if I is a closed interval. The func-
tion f(x) = 1

x , however, is locally absolutely continuous but not absolutely
continuous on (0, 1).

Definition 3.3. Let I ⊆ R be a closed interval and M be a connected
manifold. A path γ : I →M is called absolutely continuous on M if for any
chart (u, U) of M the composition

u ◦ γ : γ−1(γ(I) ∩ U)→ u(U) ⊆ Rn

is locally absolutely continuous.
The class of absolutely continuous curves on M (with monotonous re-

parametrizations) is denoted by Aac.

We show that Definitions 3.2 and 3.3 coincide on Rn.

Proposition 3.4. If M = Rn, then the notions of absolutely continuous
curves in 3.2 and 3.3 coincide, i.e., AC(Rn) = Aac(Rn).

Proof. (AC ⊆ Aac) Suppose γ ∈ AC(I,Rn), and let (u, U) be a chart.
Since u is smooth it is locally Lipschitz and hence u ◦ γ is locally absolutely
continuous.

(Aac ⊆ AC) Let γ ∈ Aac and {(ui, Ui)}i be a set of charts that cover
γ(I) ⊆ Rn. By definition, all concatenations ui ◦ γ|γ−1(γ(I)∩Ui) are locally

absolutely continuous. Again, u−1
i being locally Lipschitz implies that

γi := γ|γ−1(γ(I)∩Ui) = u−1
i ◦ ui ◦ γ

as functions from γ−1(γ(I) ∩ Ui) ⊆ I to Rn are (componentwise) locally
absolutely continuous. Therefore, γ ∈ AC(I,Rn) by Lemma 3.5 below. �

Lemma 3.5. Let I ⊆ R be a closed interval, f : I → Rn be a function and
J = {Ji}i be an open cover of I. If all f |Ji are locally absolutely continuous,
then f is absolutely continuous on I in the sense of Definition 3.2.

Proof. Without loss of generality we may assume that n = 1, i.e., f : I → R,
and that J consists of finitely many open intervals Ji of I (i = 1, . . . , N).
There exists a smooth partition of unity, {χi}Ni=1, subordinate to J . For
each i, in particular, χi is Lipschitz continuous and hence the product χif
absolutely continuous on I. Therefore, γ =

∑N
i=1 χif is absolutely continu-

ous as well. �
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Corollary 3.6. Let f : I → Rn. Then f is absolutely continuous if and only
if f |J is locally absolutely continuous for any open subset J ⊆ I. �

As in the case of real-valued AC functions, the standard arc-length L(γ) of
absolutely continuous curves γ as defined in (2.1) is well-defined on manifolds
with smooth (or even continuous) Riemannian metrics.

Proposition 3.7. Let M be a connected manifold equipped with a continu-
ous2 Riemannian metric g. For any absolutely continuous path γ : [0, 1] →
M the derivative γ′ exists a.e. and ‖γ′‖g ∈ L1(I). In particular,

L(γ) =

∫ 1

0
‖γ′(t)‖g dt

is a well-defined length of γ ∈ Aac.

In fact, Proposition 3.7 also holds for bounded Riemannian metrics, but
we will not consider such metrics in this paper.

Proof. Let (u, U) be a chart onM , u = (x1, . . . , xn). By Definition 3.3, each
xi ◦ γ : R ⊇ γ−1(γ(I) ∩ U)→ R is locally absolutely continuous. Therefore,
all (xi ◦ γ)′ exist a.e. and are locally integrable. Thus

‖γ′‖g =
√
g(γ′, γ′) =

∣∣∣∑
i,j

gij
d(xi ◦ γ)

dt

d(xj ◦ γ)

dt

∣∣∣1/2
is well-defined and integrable. �

Corollary 3.8. Let M be a connected manifold equipped with a smooth
Riemannian metric g. If γ ∈ Aac, then

(3.1) lim
δ→0

d(γ(t), γ(t+ δ))

|δ|
= ‖γ′(t)‖g.

Proof. This follows from (2.4) by using the exponential map expγ(t) in the
beginning of the second part of the proof for Theorem 2.2. �

The equivalence of the “metric” derivative on the left hand side of (3.1)
and the analytic derivative on the right hand side will be a crucial step when
considering Riemannian metrics of low regularity where the exponential map
is not available.

2For the first part of the paper, it is sufficient to consider smooth Riemannian metrics g.
However, some of the arguments also hold in the more general case of Riemannian metrics
that depend only continuously on the points of the manifold and which are considered in
detail in Section 4.
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3.3. Piecewise smooth vs. absolutely continuous curves. We prove
that Ld(γ) = L(γ) also holds for curves γ ∈ Aac. The main steps of our
approach are to firstly introduce a new metric on the space Aac and secondly
show that A∞ is dense in Aac with respect to this “variational topology” on
Aac. The distance between paths used in our approach below is similar to the
distance used in [16], which includes an extra energy term. The denseness
of A∞ in Aac in turn implies that the intrinsic metric dac = d(M,Aac, L)
associated to the class of absolutely continuous curves,

(3.2) dac(p, q) := inf{L(γ) | γ ∈ Aac, γ(0) = p, γ(1) = q}, p, q ∈M,

is identical to the standard intrinsic metric d as defined in (2.2). As a result
we obtain an extension of Theorem 2.2 for absolutely continuous curves.

Definition 3.9. Let M be a connected manifold with continuous Riemann-
ian metric g and induced metric d (2.2). The variational metric on the class
of absolutely continuous paths is defined by

(3.3) Dac(γ, σ) := sup
t∈I

d(γ(t), σ(t)) +

∫
I

∣∣‖γ′(t)‖g − ‖σ′(t)‖g∣∣ dt,
for γ, σ : I →M absolutely continuous paths.

Since (M,d) is a metric space3, so is (Aac(M), Dac). We call the topology
on Aac induced by Dac the variational topology of Aac.

Whenever (M,d) is complete, then (Aac(M), Dac) is a complete metric
space, too. A proof for this is given later in Section 3.5.

Lemma 3.10. Let M be a connected manifold with continuous Riemannian
metric g. The length functional L : Aac → R is Lipschitz continuous with
respect to Dac.

Proof. For γ, σ ∈ Aac,

|L(γ)− L(σ)| =
∣∣∣∣∫ 1

0
‖γ′‖g − ‖σ′‖g

∣∣∣∣ ≤ ∫ 1

0

∣∣‖γ′‖g − ‖σ′‖g∣∣ ≤ Dac(γ, σ). �

Theorem 3.11. Let M be a connected manifold with continuous Riemann-
ian metric g. Then the class A∞ of piecewise smooth curves is dense in
the class Aac of absolutely continuous curves with respect to the variational
topology defined in 3.9.

The idea of the proof is straightforward, but the proof itself is lengthy
and technical. On a finite number of chart neighborhoods one approximates
the absolutely continuous curve by piecewise smooth curves generated by
convolution with mollifiers. Since the end points then do not coincide with
the end points of the initial curve, they have to be joined up in a suitable
way (namely by sufficiently short curves).

3For continuous Riemannian metrics, this is shown in Proposition 4.1 below.
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Proof. Let γ : [0, 1] → M be a curve in Aac. We may cover the image of
the curve γ(I) by finitely many charts (ui, Ui) and assume without loss of
generality that each ui(Ui) is convex in Rn and Ui ⊂⊂ M . Since the set⋃
i Ui is compact in M , the Riemannian norm ‖.‖g can be estimated by a

multiple of the Euclidean norm |.| (see proof of Proposition 4.1). Without
loss of generality we consider them equal in all computations. Furthermore,
we pick a partition 0 = t0 < t1 < ... < tN = 1 of [0, 1] such that the image
of γ|[tj−1,tj ]

is contained in one chart (ui, Ui). We consider a fixed interval

[tj−1, tj ] and omit the index i from now on.
Let η > 0. Since γ is absolutely continuous, ‖γ′‖g is in L1

loc by Proposi-
tion 3.7. By the fundamental theorem of calculus for absolutely continuous
functions, and continuity of γ, there exists δ ∈ (0, 1

2 |tj− tj−1|) such that the
following inequalities hold:

sup
s,t∈[tj−1,tj ]
|s−t|<2δ

d(γ(s), γ(t)) < η,(3.4a)

sup
s,t∈[tj−1,tj ]
|s−t|<2δ

∫ t

s
‖γ′‖g < η,(3.4b)

sup
s,t∈[tj−1,tj ]
|s−t|<2δ

|u(γ(s))− u(γ(t))| < η.(3.4c)

By convolution with a mollifier ρ we obtain a componentwise regulariza-
tion of u ◦ γ|[tj−1,tj ]. Thus for sufficiently small ε > 0 the smooth approxi-

mation γε := u−1((u ◦ γ) ∗ ρε) ∈ A∞ on [tj−1, tj ] satisfies

sup
t∈[tj−1,tj ]

|u(γ(t))− u(γε(t))| < η,(3.5a) ∥∥(u ◦ γε)′ − (u ◦ γ)′
∥∥
L1([tj−1,tj ])

< η,(3.5b)

and thus on M

sup
t∈[tj−1,tj ]

d(γ(t), γε(t)) < η,(3.6a) ∫ tj

tj−1

∣∣‖γ′‖g − ‖γ′ε‖g∣∣ < η.(3.6b)

Since u(U) is a convex subset of Rn we can join the points u(γ(tj−1)) and
u(γε(tj−1 + δ)) by a straight line ν̂j−1 in u(U):

ν̂j−1 : [tj−1, tj−1 + δ]→ u(U) ⊆ Rn,

ν̂j−1(t) = u(γ(tj−1)) +
t− tj−1

δ
(u(γε(tj−1 + δ))− u(γ(tj−1))) .

Similarly we obtain a straight line µ̂j that connects u(γε(tj−δ)) to u(γ(tj)).
These straight lines are mapped to (smooth) curves νj−1 and µj in M by
pulling back ν̂j−1 and µ̂j with u−1, respectively.
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Let us compute the lengths of νj−1 and µj . We estimate

‖ν ′j−1(t)‖g = |ν̂ ′j−1(t)| =
∣∣∣∣1δ (u(γε(tj−1 + δ))− u(γ(tj−1)))

∣∣∣∣
≤ 1

δ
(|u(γε(tj−1 + δ))− u(γ(tj−1 + δ))|︸ ︷︷ ︸

<η
for ε sufficiently small by (3.5a)

+ |u(γ(tj−1 + δ))− u(γ(tj−1))|︸ ︷︷ ︸
<η

for δ sufficiently small by (3.4c)

)

< 2
η

δ
.

Therefore,

L(νj−1) =

∫ tj−1+δ

tj−1

‖ν ′j−1(t)‖g dt ≤ δ2
η

δ
= 2η,(3.7)

and, in a similar fashion, L(µj) ≤ 2η.
Each point on νj−1(t) and µj(t) is less than 3η away from the corre-

sponding point γ(t) on γ. For example, by (3.4a) and (3.7) we obtain for
t ∈ [tj−1, tj−1 + δ],

d(γ(t), νj−1(t)) ≤ d(γ(t), γ(tj−1)) + d( γ(tj−1)︸ ︷︷ ︸
νj−1(tj−1)

, νj−1(t)) < η + 2η = 3η.
(3.8)

Furthermore we can control the length difference of γ and νj−1 by (3.4b)
and (3.7)∫ tj−1+δ

tj−1

∣∣‖γ′‖g − ‖ν ′j−1‖g
∣∣ ≤ ∫ tj−1+δ

tj−1

‖γ′‖g +

∫ tj−1+δ

tj−1

‖ν ′j−1‖g(3.9)

< η + 2η = 3η.

The same procedure is applied to all N subintervals [tj−1, tj ] of [0, 1]. We
choose δ and ε sufficiently small so that the above estimates hold on all
subintervals. Summing up, we have approximated γ on all of [0, 1] by a new
path λη, defined by

λη(t) :=


νj−1(t) t ∈ [tj−1, tj−1 + δ]

γε(t) t ∈ [tj−1 + δ, tj − δ]
µj(t) t ∈ [tj − δ, tj ].

(3.10)
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Indeed,

Dac(γ, λη) = sup
t∈[0,1]

d(γ(t), λη(t))︸ ︷︷ ︸
≤3η

by (3.6a) and (3.8)

+

∫ 1

0

∣∣‖γ′‖ − ‖λ′η‖∣∣︸ ︷︷ ︸
≤7Nη

by (3.6b) and (3.9)

≤ 10Nη(3.11)

for any η > 0 (where N is the finite number of open subintervals necessary
to cover [0, 1] and hence γ([0, 1]) by convex neighborhoods). �

Remark 3.12. In the case of smooth Riemannian manifolds, the proof of
Theorem 3.11 can be simplified. There, one may cover γ([0, 1]) by a finite
number of geodesically convex chart neighborhoods. The approximative
curves γε are constructed just as in the proof of Theorem 3.11, but for
the joining curves νj−1 and µj one may simply use radial geodesics that
minimize the distance between two points in a chart neighborhood. Thus any
absolutely continuous path can be approximated by a sequence of piecewise
smooth paths.

Corollary 3.13. Let M be a connected manifold with continuous Riemann-
ian metric g and with induced distance functions d and dac as defined in
(2.2) and (3.2), respectively. Then d = dac.

Proof. Since A∞ ⊆ Aac, it is clear that dac ≤ d. On the other hand, d ≤ dac

follows from the denseness of A∞ in Aac with respect to the variational
topology. �

The equality of the induced distance functions d and dac is crucial for
answering two questions. We will see that this implies the extension of
Theorem 2.2 to the set Aac (see Section 3.4). Moreover, we can prove that
various notions of absolutely continuous curves on Riemannian manifolds
are in fact equal (see Section 3.5 below).

3.4. Length structure with respect to absolutely continuous curves
on manifolds with smooth Riemannian metrics.

Lemma 3.14. Let M be a manifold with continuous Riemannian metric
g and let γ : [0, 1] → M be absolutely continuous. Then the function t 7→
Ld(γ|[0,t]) is absolutely continuous on [0, 1].

Proof. Let ε > 0 and let {(ti, ti+1)}Ni=0 be disjoint intervals of [0, 1]. Recall
that the length Ld(γ) of an absolutely continuous curve γ is defined as
the variation of γ with respect to d = dac (see Definition (2.3)). Since

Ld(γ|[ti,ti+1]) ≤
∫ ti+1

ti
‖γ′‖g it follows that

N∑
i=0

∣∣Ld(γ|[0,ti+1])− Ld(γ|[0,ti])
∣∣ ≤ N∑

i=0

∣∣∣∣∫ ti+1

0
‖γ′‖g −

∫ ti

0
‖γ′‖g

∣∣∣∣ .
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The function F (t) :=
∫ t

0 ‖γ
′‖g is absolutely continuous on [0, 1]. Thus if the

partition {(ti, ti+1)}Ni=0 satisfies
∑N

i=0 |ti − ti+1| < δ, then

N∑
i=0

|F (ti+1)− F (ti)| < ε.

Consequently, t 7→ Ld(γ|[0,t]) is absolutely continuous as well. �

We are now in a position to prove one of the main results in this section,
so far only for manifolds with smooth Riemannian metrics.

Theorem 3.15. Let M be a connected manifold with smooth Riemannian
metric g. Then

L(γ) = Ld(γ), γ ∈ Aac.

Proof. For γ : [0, 1] → M a piecewise smooth curve this is Theorem 2.2.
For γ ∈ Aac \ A we have to make some minor adjustments to the proof of
Theorem 2.2:

(Ld ≤ L) is always true since d = dac by Corollary 3.13.
(L ≤ Ld) For all t ∈ (0, 1) such that γ′(t) exists (hence almost everywhere)

and since g is smooth we obtain in the same way that

d

dt
Ld(γ|[0,t]) = ‖γ′(t)‖g.

By Lemma 3.14, Ld is absolutely continuous, and therefore we can also apply
the fundamental theorem of calculus which yields

Ld(γ) =

∫ b

a

d

dt
Ld(γ|[0,t]) dt =

∫ b

a
‖γ′(t)‖g dt = L(γ). �

3.5. Absolutely continuous curves revisited. We have seen that the
set of absolutely continuous curves Aac induces the same metric structure
on a Riemannian manifold (M, g) as the set of piecewise smooth curves A∞.
Recall that absolute continuity in Definition 3.3 was defined locally, in par-
ticular, without using the Riemannian or induced metric space structure.
We will now see that, since the equality of the length spaces (M,d) and
(M,dac) has been shown in Corollary 3.13, the definition of absolute conti-
nuity used above coincides with the general metric space definition as well
as the measure theoretic approach for absolute continuity as, for example,
used in [2, 22].

Definition 3.16. Let I ⊆ R be an interval and (X, d) be a metric space.
A path γ : I → X is called metric absolutely continuous if for all ε > 0
there is a δ > 0 so that for any n ∈ N and any selection of disjoint intervals
{(ai, bi)}ni=1 with [ai, bi] ⊆ I whose length satisfies

∑n
i=1 |bi − ai| < δ, γ

satisfies
n∑
i=1

d(γ(ai), γ(bi)) < ε.

The class of metric absolutely continuous curves on X is denoted by Bac.
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Definition 3.17. Let I ⊆ R be an interval and (X, d) be a metric space.
A path γ : I → X is called measure absolutely continuous if there exists a
function l ∈ L1(I) such that for all intermediate times a < b in I,

d(γ(a), γ(b)) ≤
∫ b

a
l(t) dt.

The class of measure absolutely continuous curves on X is denoted by Cac.

Note that we usually consider I to be a closed interval, and thus do not
have to distinguish between local and global concepts of absolute continuity.

Proposition 3.18. Let M be a connected manifold with continuous Rie-
mannian metric g and with distance function d induced by the admissible
class A∞ of piecewise smooth curves. Then all three notions of absolute
continuity coincide,

Aac = Bac = Cac.

Proof. (Cac ⊆ Bac) Let γ : [0, 1]→M be a path in Cac and l ∈ L1([0, 1]) as in
Definition 3.17. Then F (s) : =

∫ s
0 l(t) dt is an absolutely continuous function

in R and therefore, for any subinterval [a, b] ⊆ [0, 1], by Definition 3.17,

d(γ(a), γ(b)) ≤
∫ b

a
l(t) dt ≤ |F (b)− F (a)|.

(Bac ⊆ Aac) Let γ ∈ Bac and (u, U) be any chart on M . Since u is a
diffeomorphism, it is Lipschitz on any set γ([a, b]) ⊆ U . Thus

|u(γ(b))− u(γ(a))| ≤ Cd(γ(a), γ(b))

for some constant C > 0. Since γ is absolutely continuous with respect to
the induced metric d, u ◦ γ is locally absolutely continuous with respect to
the Euclidean norm |.|.

(Aac ⊆ Cac) For γ ∈ Aac, consider l : = ‖γ′‖g ∈ L1 (see Proposition 3.7).
Since d = dac by Corollary 3.13, it follows that for any a < b in [0, 1],

d(γ(a), γ(b)) ≤
∫ b

a
l(t) dt. �

We are now in a position to prove completeness of the metric space
(Aac(M), Dac) introduced above.

Proposition 3.19. Let M be a connected manifold with a continuous Rie-
mannian metric g. If (M,d) is complete as a metric space, then so is the
space Aac(M) of absolutely continuous paths together with the variational
metric Dac introduced in Definition 3.9.

Proof. Since (M,d) is a metric space, so is (Aac(M), Dac). Suppose (γn)n is
a Cauchy sequence of absolutely continuous paths γn : I →M with respect
to the variational topology given by Dac. Since (M,d) is complete and



LENGTH STRUCTURES ON MANIFOLDS 287

because of uniform convergence of continuous curves, the pointwise defined
limit

γ(t) := lim
n→∞

γn(t)

is a continuous curve in M . Moreover, for any a, b ∈ I,

d(γ(a), γ(b)) = lim
n→∞

d(γn(a), γn(b)) ≤ lim
n→∞

∫ b

a
‖γ′n(t)‖g dt

=

∫ b

a
lim
n→∞

‖γ′n(t)‖g dt.

Thus by Definition 3.17 with l = limn→∞ ‖γ′n‖g ∈ L1(I) the limiting curve
γ is absolutely continuous. �

3.6. Relations between classes of curves. Let A1 and A0 denote the
class of piecewise C1 and continuous curves, respectively, and let Alip denote
the class of Lipschitz curves and AH1 the class of H1 curves (see, e.g., [14,
Sec. 2.3]). On any differentiable manifold, the following inclusions hold

A∞ ⊆ A1 ⊆ Alip ⊆ AH1 ⊆ Aac ⊆ Arec ⊆ A0.

We have seen that the class Aac of absolutely continuous curves on a Rie-
mannian manifold induce the same metric space structure as A∞, thus so
do A1, Alip and AH1 . In fact, by [2, Lem. 1.1.4], absolutely continuous
curves are just Lipschitz curves if one uses reparametrizations that are in-
creasing and absolutely continuous. The length of rectifiable curves Arec

and continuous curves A0 can only be defined if a metric space structure
is already present, since the arc-length definition is not meaningful in this
setting (recall Example 3.1).

4. Manifolds with continuous Riemannian metrics

In Proposition 3.7 we proved that the arc-length of absolutely continuous
curves is well-defined even if the Riemannian metric g is only continuous
(or even bounded). In this case, however, we do not have the usual tools
of Riemannian geometry at hand, e.g., geodesic equations, the exponential
map, curvature and so on. Despite this handicap we will see that the metric
space structure of such Riemannian manifolds of low regularity is not so
different from those of smooth Riemannian manifolds. By gathering and
introducing new tools, we will also see that Theorem 2.2 holds in the low-
regularity situation.

Throughout we call any pointwise defined positive definite, symmetric
(0, 2)-tensor field g on a differentiable connected manifold M a Riemannian
metric. In other words, g should be seen as a positive definite symmetric
tensor field that is not necessarily smooth. Moreover, we assume that the
arc-length L(γ) for γ ∈ A∞ is well-defined for g. We will motivate why
continuity of g is desirable.
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4.1. Metric space structure. Suppose that g is a Riemannian metric of
low regularity. Let Aac, L and d = d(g,Aac, L) be defined as in Section 2.
The triple (M,Aac, L) should define a length structure on M and induce
a metric d on M . From Definition (2.2) we immediately deduce that d is
symmetric, nonnegative and satisfies the triangle inequality. Thus d is a
pseudo-metric on M . Continuity of the Riemannian metric implies more.

Proposition 4.1. Let M be a connected manifold with continuous Riemann-
ian metric g. The following properties hold:

(i) (M,Aac, L) is an admissible length structure on M , that is, the
length of paths is additive, continuous on segments, invariant under
reparametrizations and agrees with the topology on M in the sense
that for a neighborhood U of a point p the length of paths connecting
p with the complement of U is bounded away from 0.

(ii) The distance function d as defined in (2.2) induces the manifold
topology on M .

In particular, (M,d) is a length space.

Proof. (i) The class Aac of absolutely continuous paths is closed under re-
strictions, concatenations and monotonous reparametrizations. The length
L of paths,

L(γ) =

∫
I
‖γ′‖g, γ ∈ Aac,

is additive, continuous on segments and invariant under reparametrizations.
It remains to be shown that the length structure is compatible with the

topology on M . Let p ∈M and (u, U) be a chart of M at p with u(p) = 0,

u = (x1, ..., xn). Pick r > 0 such that Br(0) = {x ∈ Rn | |x| ≤ r} ⊆ u(U)

and let K := u−1(Br(0)). The Euclidean metric with respect to U is given
by

eU := δij dx
i ⊗ dxj .

Both metrics g and eU are nondegenerate and thus induce isomorphisms
TM → T ∗M . Let η1, ..., ηn denote the (positive) eigenvalues and v1, ..., vn
the eigenvectors of the symmetric tensor e−1

U ◦ g, i.e.,

g(vi, .) = ηi eU (vi, .).

By η, η we denote the smallest and largest eigenvalues, respectively, and

define λ, µ : U → R+ by λ :=
√
nη and µ :=

√
nη. Thus for all q ∈ U ,

v ∈ TqM ,

λ(q) ‖v‖eU ≤ ‖v‖g ≤ µ(q) ‖v‖eU .

Since g is a continuous Riemannian metric, the functions λ, µ : U → R+ are
continuous, and thus on the compact set K,

λ0 := min
K

λ > 0 and µ0 := max
K

µ <∞.
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Therefore,

λ0 ‖v‖eU ≤ ‖v‖g ≤ µ0 ‖v‖eU , v ∈ TqM, q ∈ K.(4.1)

Let y ∈ M \ int(K) be connected to p by a path γ : I → M . Choose t0 ∈ I
such that γ(t0) ∈ ∂K ∩ γ(I) then

0 < rλ0 = λ0|(u ◦ γ)(t0)| ≤
∫ t0

0
λ0‖γ′(t)‖eU dt

(4.1)

≤
∫ t0

0
‖γ′(t)‖g dt ≤ Lg(γ),

where the first inequality is due to the fact that d = dac in Euclidean space.
Hence the length of paths connecting p with M \ int(K) is bounded away
from 0.

(ii) The calculation in (i) implies that (M,d) is a metric space. A short
calculation based on (4.1) implies that d—since locally Euclidean—also in-
duces the topology of M (cf. the proof of [20, Ch. 5.3, Thm. 12]). �

The following examples further motivate the study of manifolds that are
equipped with continuous Riemannian metrics.

Example 4.2. Alexandrov spaces with curvature bounded from below (and
above) are connected complete locally compact length spaces with finite
Hausdorff dimension that satisfy a triangle comparison condition to obtain
a notion of curvature bounds (see, e.g., [1, 6]). They were introduced as
generalizations of Riemannian manifolds with sectional curvature bounds by
turning Toponogov’s theorem into a definition. Otsu and Shioya [19] proved
that an n-dimensional Alexandrov space X of curvature bounded from below
carries—minus some singular points—a C0-Riemannian structure. X is a C0-
Riemannian manifold in the ordinary sense whenever X contains no singular
points.

Example 4.3. A Busemann G-space is a finitely compact metric space
with an intrinsic metric, in which the conditions of local prolongability of
segments and of the nonoverlapping of segments are satisfied. Such spaces
are geodesically complete. G-spaces satisfying an additional axiom related
to boundedness of curvature generalize complete Riemannian manifolds of
class Ck for k ≥ 2. It can be shown that they are in fact C1-manifolds with
continuous Riemannian metrics [4].

In general, different Riemannian metrics will not induce the same length
structure. However, we can prove equivalence on compact sets for metrics
induced by continuous Riemannian structures.

Lemma 4.4. Let M be a compact connected manifold and g and h two
continuous Riemannian metrics on M . Then there exist constants c, C > 0
such that

c dh(p, q) ≤ dg(p, q) ≤ C dh(p, q), p, q ∈M.
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Proof. By (4.1) there exist positive functions λg0, µ
g
0 and λh0 , µ

h
0 on M such

that

λg0λ
h
0‖v‖h ≤ λh0µh0‖v‖g ≤ µ

g
0µ

h
0‖v‖h.(4.2)

Compactness of M furthermore implies the existence of length-minimizing
curves with respect to dg and dh [11, Lem. 1.12], and thus concludes the
proof. �

The noncompact analogue of Lemma 4.4—even on compact subsets—is
more involved because in the general situation little is known about the
existence of (locally) length-minimizing curves. We now show that paths
whose length approximates the distance d are trapped in certain neighbor-
hoods U of compact subsets K. There is no need to even assume geodesic
completeness.

Theorem 4.5. Let M be a connected manifold and g and h two continuous
Riemannian metrics on M . Then on every compact set K in M , there exist
constants c, C > 0 such that

c dh(p, q) ≤ dg(p, q) ≤ C dh(p, q), p, q ∈ K.

Proof. We argue by contradiction. Suppose that for all n ∈ N there are
pn, qn ∈ K such that

dg(pn, qn) > ndh(pn, qn).(4.3)

By passing on to subsequences we can assume that (pn)n and (qn)n conver-
gence to the same p ∈ K.

Let us analyze neighborhoods of p. Open balls at p ∈ M with radius
r > 0 with respect to the distance function dh induced by the Riemannian
metric h will be denoted by

Bh
r (p) := {q ∈M | dh(p, q) < r}.

Since M is locally compact and, by Proposition 4.1, dh induces the manifold

topology, there exists an r0 > 0 such that Bh
r0(p) is compact. Let r = r0

4

and x, y ∈ Bh
r (p). By definition (2.2), for all ε ∈ (0, r), there exists a path

γε : [0, 1]→M in A1 between x and y such that

L(γε) < dh(x, y) + ε.

These paths γε are mapped to the open neighborhood Bh
r0(p) of p since for

t ∈ [0, 1],

dh(p, γε(t)) ≤ dh(p, x) + dh(x, γε(t)) ≤ dh(p, x) + Lh(γε)

≤ dh(p, x) + dh(x, y) + ε < 4r = r0

Continuity of g and h imply that the same inequalities as in (4.2) hold on

Bh
r0(p). In particular, for C =

µg0
λh0
> 0,

dg(x, y) ≤ Lg(γε) ≤ CLh(γε) < Cdh(x, y) + Cε.
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Since C is independent of ε as well as x and y, this implies

dg(x, y) ≤ C dh(x, y), x, y ∈ Bh
r (p).(4.4)

By construction both sequences (pn)n and (qn)n converge to p and thus, by
(4.4), for sufficiently large n,

dg(pn, qn) ≤ C dh(pn, qn).

This contradicts (4.3). �

Remark 4.6. Theorem 4.5 is a very specific property of Riemannian man-
ifolds. It does not hold on arbitrary (compact) metric spaces. For example,
on the interval [0, 1] the two metrics

d1(x, y) = |x− y| and d2(x, y) =
√
|x− y|

induce the same topology. By inserting x = 0 and yn = 1
n , however, it

becomes clear that d1 and d2 are not metrically equivalent since

lim
n→∞

d2(x, yn)

d1(x, yn)
=∞.

4.2. Length structure on manifolds with continuous Riemannian
metrics. On a manifold M with smooth Riemannian metric g, the expo-
nential map is a local diffeomorphism. This fact has been used in the proof
of Theorem 2.2 and Theorem 3.15 to conclude that L = Ld for both, the
class A∞ of piecewise smooth curves as well as the class Aac of absolutely
continuous curves. On manifolds with a Riemannian metric of low regularity,
more precisely below C1,1, the geodesic equation cannot be solved uniquely
[13] and thus the exponential map is not available. We will see that we can
make use of the metric space structure in such general situations.

Definition 4.7. Let (X, d) be a metric space. For any path γ : I → X we
denote the metric derivative of γ by

|γ̇|(t) := lim
δ→0

d(γ(t+ δ), γ(t))

|δ|
, t ∈ I,(4.5)

whenever the limit exists.

This is the quantity that arises in the proof of Theorem 2.2.

Lemma 4.8. Let M be a connected manifold with continuous Riemannian
metric g and let γ : I → M be an absolutely continuous path in M . Then
the metric derivative |γ̇| of γ exists a.e. on I. Moreover, it is the minimal
L1(I) function in the Definition 3.17 of Cac, i.e., if l ∈ L1(I) satisfies

d(γ(a), γ(b)) ≤
∫ b

a
l(t) dt, a < b in I,

then |γ̇| ≤ l a.e.
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Proof. Lemma 4.8 holds in any metric space with absolutely continuous
curves (and ACp curves, p ∈ [1,∞]) as defined in Definition 3.17. A proof
may be found in [2, Thm. 1.1.2]. For further reference, we recall the main
arguments:

Since γ is continuous, γ(I) is compact and hence separable. Thus we may
choose a dense sequence (xn)n in γ(I). The functions

ϕn(t) := d(γ(t), xn), n ∈ N, t ∈ I

are absolutely continuous, and therefore their derivatives ϕ′n exist a.e. and
are integrable. Since countable unions of null sets are null, the function

ϕ(t) := sup
n∈N
|ϕ′n(t)|(4.6)

is a.e. absolutely continuous and integrable by the Lemma of Fatou. It can
be shown, that, whenever ϕ and the metric derivative of γ exist,

ϕ(t) = |γ̇|(t), t ∈ I a.e.(4.7)

holds. �

Proposition 4.9. Let M be a connected manifold with continuous Riemann-
ian metric g. Then there exists a sequence of smooth Riemannian metrics
(gn)n such that:

(i) gn converge uniformly to g.
(ii) The induced distance functions dn converge uniformly to d on M .

Proof. (i) Let p ∈M and Kp a compact neighborhood of p. By convolution
with mollifiers, we can locally approximate g by a sequence of smooth Rie-
mannian metrics hpn (positive definiteness is an open condition, symmetry
can be obtained by construction). By using the same arguments as in the
proof of Proposition 4.1, that is by considering the eigenvalues of g−1◦hpn (all
of which are converging to 1 uniformly on Kp) and by restricting ourselves
to a subsequence of (hpn)n, we may assume that

n− 1

n
‖v‖g ≤ ‖v‖hpn ≤

n+ 1

n
‖v‖g, v ∈ TqM, q ∈ Kp.

Since (M,d) is a metric space, M is paracompact. A partition of unity
{αp}p∈M subordinate to the cover {int(Kp)}p∈M is used to patch these local
approximations hpn of g together and obtain a sequence of approximating
smooth Riemannian metrics gn :=

∑
p∈M αph

p
n on M satisfying the above

estimate globally, i.e.,

n− 1

n
‖v‖g ≤ ‖v‖gn ≤

n+ 1

n
‖v‖g, v ∈ TpM,p ∈M.(4.8)

(ii) Let p, q ∈M . By definition of d, for every ε > 0 there exist curves γε

between p and q satisfying L(γε) < d(p, q) + ε, and thus by (4.8),

d(p, q) + ε > L(γε) ≥ n

n+ 1
Ln(γε) ≥ n

n+ 1
dn(p, q),
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hence
n+ 1

n
d(p, q) ≥ dn(p, q), p, q ∈M.

Similarly, for every dn we have curves γεn satisfying Ln(γεn) < dn(p, q) + ε,
which leads to

n− 1

n
d(p, q) ≤ dn(p, q), p, q ∈M. �

In the proof of Theorem 2.2 it was essential to show equivalence of the
derivative and the metric derivative of paths. The application of the expo-
nential map was used for determining this equivalence, however in the low
regularity setting we do not have this tool at hand. We now establish the
same result for manifolds with continuous Riemannian metrics by combining
the metric and analytic world.

Proposition 4.10. Let M be a manifold with continuous Riemannian met-
ric g. For any absolutely continuous path γ ∈ Aac, γ : I → M , the analytic
and metric derivatives coincide, i.e.,

‖γ′(t)‖g = |γ̇|(t), t ∈ I a.e.

This is Corollary 3.8 for smooth Riemannian metrics and whenever the
exponential map is a local diffeomorphisms. For general continuous Rie-
mannian metrics, the (≥) inequality is also easy to see. By Proposition 3.7,
‖γ′‖g ∈ L1(I), and since d = dac by Corollary 3.13,

d(γ(a), γ(b)) ≤
∫ b

a
‖γ′(t)‖g dt, a < b in I.

By Lemma 4.8, |γ̇| is the smallest such L1-function. The proof for equality
makes use of the convergence properties obtained in Proposition 4.9.

Proof. By Proposition 4.9 we can approximate g by smooth metrics gn
such that dn converges to d uniformly on M . Moreover, by Theorem 2.2,
the metric derivative with respect to dn exists and equals the norm of the
analytic derivative,

lim
δ→0

dn(γ(t+ δ), γ(t))

|δ|
= ‖γ′(t)‖gn .

Therefore we may interchange the limits, and by also make use of the con-
vergence obtained in (i) and (ii) of Proposition 4.9, obtain

|γ̇|(t) = lim
δ→0

lim
n→∞

dn(γ(t+ δ), γ(t))

|δ|
= lim

n→∞
|γ̇|n(t) = lim

n→∞
‖γ′(t)‖gn = ‖γ′(t)‖g. �

Proposition 4.10 puts the tools out for proving the main result of this
section. We show equality of the arc-length L and the induced length Ld as
defined in (2.1) and (2.3), respectively, for absolutely continuous curves on



294 ANNEGRET Y. BURTSCHER

manifolds equipped with continuous Riemannian metrics. The proof makes
use of techniques that arise from the metric space structure (M,d) only.

Let us define the metric arc-length L̃ of a path γ : I →M by

L̃(γ) :=

∫
I
|γ̇|(t) dt.

Theorem 4.11. Let M be a manifold with continuous Riemannian metric
g. Then

L(γ) = Ld(γ) = L̃(γ), γ ∈ Aac.

Proof. (Ld = L̃) Let γ : [0, 1] → M be an absolutely continuous curves.
Consider ϕ as defined in (4.6). Together with Fatou’s Lemma, equality
(4.7) implies that

Ld(γ) =

∫ 1

0
|γ̇|(t) dt.(4.9)

holds for all absolutely continuous paths (cf. [3, Thm. 4.1.6]).

(L = L̃) By Proposition 4.10, |γ̇| = ‖γ′‖g for a.e. t ∈ [0, 1]. �
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