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Misiurewicz points for polynomial maps
and transversality

Benjamin Hutz and Adam Towsley

Abstract. The behavior under iteration of the critical points of a poly-
nomial map plays an essential role in understanding its dynamics. We
study the special case where the forward orbits of the critical points are
finite. Thurston’s theorem tells us that fixing a particular critical point
portrait and degree leads to only finitely many possible polynomials (up
to equivalence) and that, in many cases, their defining equations inter-
sect transversely. We provide explicit algebraic formulae for the param-
eters where the critical points of all unicritical polynomials and of cubic
polynomials have a specified exact period. We pay particular attention
to the parameters where the critical orbits are strictly preperiodic, called
Misiurewicz points. Our main tool is the generalized dynatomic polyno-
mial. We also study the discriminants of these polynomials to examine
the failure of transversality in characteristic p > 0 for the unicritical
polynomials zd + c.
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1. Introduction and results

The behavior under iteration of the critical points of a polynomial f
plays an essential role in understanding the dynamics of f . We study the
special case where the forward orbits of the critical points are finite; such
maps are called post-critically finite (PCF). The goal of this paper is to
construct (algebraically) all the PCF polynomials of any degree with one
(affine) critical point (unicritical) and PCF polynomials of degree 3. In the
cubic case we consider the polynomials with 2 distinct affine critical points,
as the cubic polynomials with only one affine critical point is subsumed by
the unicritical case. Additionally, we study the failure of transversality for
the unicritical family in characteristic p > 0.

The unicritical polynomials are elements of the families

fd,c(z) = zd + c

with d ≥ 2 and c ∈ C with critical point 0. The cubic polynomials are
elements of the family

ga,v(z) = z3 − 3a2z + (2a3 + v)

with a, v ∈ C and critical points±a and critical value ga,v(a) = ga,v(−a) = v.
Note that if a = 0, then g0,v (z) = f3,v (z), the unicritical cubic polynomial.

Given a polynomial f we denote its n-th iterate by fn(z) = f ◦ fn−1(z).
We say z0 is a preperiodic point with period (m,n) for f if

fm+n(z0) = fm(z0).

We call m the preperiod. For a preperiodic point of period (m,n), we say
that it has exact period (m,n) if it is does not have period (k, t) for any
k ≤ m and t | n with at least one of k < m or t < n. If the preperiod m is
positive, we say that the point is strictly preperiodic. For example, a strictly
preperiodic point z0 with exact period (3, 2) has orbit

z0 • • • •// // //
55

xx

Definition. In the unicritical case, we say that c0 is a Misiurewicz point
of period (m,n) if the orbit of the critical point 0 by fd,c0 has exact period
(m,n) and m > 0. In the cubic case, we define a Misiurewicz point as a pair
of parameter values (a, v) such that both critical points, ±a, are preperiodic
with at least one strictly preperiodic for ga,v.

To analyze the Misiurewicz points algebraically, both for unicritical and
cubic polynomials, we use the generalized dynatomic polynomial [12]

Φ∗f,m,n(z) =
Φ∗f,n(fm(z))

Φ∗f,n(fm−1(z))
,
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where

Φ∗f,n(z) =
∏
k|n

(
fk(z)− z

)µ(n/k)

is the dynatomic polynomial [23, p. 149]. The function µ is the Möbius
function which satisfies µ(n) = 0 for n not squarefree, µ(1) = 1, and µ(n) =
(−1)k for squarefree n with k distinct prime factors. While the points of
exact period (m,n) are among the roots of the polynomial Φ∗f,m,n, for m 6= 0,
even in the case the roots are simple, it is not necessarily the case that the
roots are precisely the points of exact period (m,n).

Example 1.1. Let f(z) = z2 − 1. Then we compute

Φ∗f,1,2(z) = z(z − 1).

However, 0 is a preperiodic point with minimal period (0, 2).

This makes the construction of a polynomial whose roots are precisely
the Misiurewicz points of exact period (m,n) more subtle. In Section 3,
we prove an explicit algebraic construction of all Misiurewicz points for the
unicritical family.

Theorem 1.1. The c values for which fd,c(z) = zd + c is post-critically
finite with 0 having exact period (m,n) are the roots of

Gd(m,n) =


Φ∗

f,m,n(0)

Φ∗
f,0,n(0)d−1 if m 6= 0 and n | (m− 1)

Φ∗f,m,n(0) otherwise

where Φ∗f,m,n is the dynatomic polynomial. Moreover, all of the roots of

Gd(m,n) as a polynomial in c are simple.

Additionally, Theorem 1.1 leads to an explicit counting formula for Misi-
urewicz points (Corollary 3.3) and provides another proof that Misiurewicz
points are algebraic integers (Corollary 3.4). The transversality statement of
Theorem 1.1 generalizes known results due to Gleason and Epstein. Gleason
showed that

fn2,c(0) = 0

has only simple roots as a polynomial in c, since when reducing modulo 2,
(fn2,c(0))′ is always 1. Epstein [7] gives an algebraic proof of this fact for fd,c
(and for any polynomial with prime power degree).

Thurston’s rigidity theorem [4] says that, over the complex numbers, any
fixed behavior of the critical points of a PCF map will be realized by only
finitely many rational maps, up to equivalence and excepting Lattès maps.
Furthermore, in many cases, the equations defining these maps by critical
orbit relations intersect transversely [6, 7]. Theorem 1.1, gives a proof of
Thurston’s theorem for unicritical polynomials, including the transverality
conclusion. In Section 4 we examine the failure of transversality in char-
acteristic p > 0. In particular, any prime which divides a discriminant of
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Gd(m,n) for some (m,n) is a characteristic where transversality does not
hold. Silverman [25] raised the question of describing this set of primes. We
restrict to the case m = 0 and give two reformulations of the problem in
terms of periodic points of certain dynamical systems. These reformulations
allows us to prove various properties about the primes where transversality
fails and provide a connection to the dynamical Manin–Mumford problem.
Additionally, we describe how the power dividing the discriminant is related
to ramification in the number field generated by Gd(0, n).

In Section 5, we prove an explicit algebraic construction of all Misiurewicz
points for the cubic family.

Definition. Define

Ta,v(m,n, z) =

{
Φ∗

g,m,n(z)

Φ∗
g,0,n(z) if m 6= 0 and n | (m− 1)

Φ∗g,m,n(z) otherwise

Note that we write g instead of ga,v for purely typographic reasons and that
Ta,v(m,n, z) is a polynomial in a, v, z.

Theorem 1.2. Let (m1, n1) and (m2, n2) be pairs of nonnegative integers.
If n1 6= n2, or if n1 = n2 and n1 does not divide at least one of (m1 − 1)
and (m2 − 1), then the points on the variety

V (Ta,v(m1, n1, a), Ta,v(m2, n2,−a)) ⊂ A2
a,v

are exactly the parameters for which ga,v is PCF with (m1, n1) and (m2, n2)
as the exact periods of the critical orbits for a and −a, respectively.

If n1 = n2 and both n1 | m1−1 and n1 | m2−1, then we have to remove all
the points (0, v) where v ranges over the parameters from Theorem 1.1, where
0 has exact period n1. In particular, the points contained in the difference

V (Ta,v(m1, n1, a), Ta,v(m2, n2,−a))− V (Ta,v(0, n1, v)) ⊂ A2
a,v

are exactly the parameters for which ga,v is PCF with (m1, n1) and (m2, n2)
as the exact periods of the critical orbits for a and −a, respectively.

Acknowledgements. The authors would like to thank Laura DeMarco for
her helpful comments on an earlier draft of this paper and the referee for
many insightful comments.

2. Background and discussion

There is a growing collection of results on the set of post-critically finite
polynomials in the moduli space of all polynomials [1, 9, 13, 14]. One ap-
proach to their study is to fix a critical portrait and to consider all of the
maps with that portrait. The critical portrait of a map is the (weighted) di-
rected graph whose vertices are the points in the orbits of the critical points
(weighted by multiplicity) and whose directed edges are defined by the map,
i.e., there is an arrow P → Q if and only if Q is the image of P .
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Example 2.1. The following is a critical portrait for a map with two critical
points P,Q, one of which if fixed, one of which is strictly preperiodic.

P • • • Q// //
55

xx ww

Any given map has finitely many critical points, so the critical portrait
of a PCF map imposes finitely many relations. Thurston’s theorem tells us
that only finitely many maps of fixed degree (up to change of coordinates
by conjugation) satisfy these relations [4]. An important consequence of
Thurston’s theorem is that, in many cases, the subvarieties defined by the
critical point relations intersect transversely [6, 7].

The quadratic family f2,c has received extensive study in both algebraic
and complex dynamical contexts. The Mandelbrot set is the set of complex
c values where the orbit of the critical point remains bounded. The values
where the critical orbit is purely periodic (fn(0) = 0 for some n) are the
centers of the hyperbolic components of the Mandelbrot set [2, 3, 16, 21].
The following are two methods to approximate the c values which are centers
of hyperbolic components:

• Apply Newton’s method to the defining polynomial relation.
• The Hubbard–Schleicher spider algorithm [11].

In particular, the Hubbard–Schleicher spider algorithm allows one to com-
pute the c values corresponding to a particular combinatorics of the crit-
ical point orbit through successive approximation and can be generalized
to both preperiodic orbits and to the higher degree unicritical polynomials
fd,c. Eberlein’s thesis addresses the details for fd,c and the Multibrot set,
the generalization of the Mandelbrot set [5].

The (algebraic) study of Misiurewicz points has relied on studying the
polynomials fm+n(0)− fn(0). These polynomials are critical orbit relations
whose roots contain the points of exact period (m,n). However, this is akin
to studying the nth-roots of unity by examining xn − 1 instead of the nth
cyclotomic polynomial. In this article we provide the equivalent of the nth
cyclotomic polynomial for Misiurewicz points. This will facilitate the study
of algebraic properties of the points with exact period (m,n), e.g., algebraic
properties of centers of hyperbolic components.

While the following is certainly not a complete review of the results on Mi-
siurewicz points, it does illustrate that while there are many results concern-
ing Misiurewicz points, few of them are algebraic in nature. Pastor–Romera–
Montoya count the real Misiurewicz points for f2,c [20] and Douady–Hubbard
show that the complex Misiurewicz points are dense on the boundary of the
Mandelbrot set and are branch tips, centers of spirals, and points where
branches meet [2, 3]. Eberlein’s thesis shows for fd,c that the corresponding
periodic cycle for Misiurewicz points are repelling [5]. Doudy–Hubbard give
a combinatorial description of the dynamics of post-critically finite poly-
nomials by associating a Hubbard tree to each filled Julia set [2]. This
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description is used by Poirier to give a complete classification of arbitrary
post-critically finite polynomials [17]. Favre–Gauthier recently studied the
distribution of Misiurewicz points with respect to the bifurcation measure
and rely on transversality in a crucial way [9].

Even less is known in the cubic case. Silverman [24] gives an algebraic
proof of transversality for ga,v with both critical points periodic or with
preperiod at most 1.

Fakkhruddin [8] recently used the simplicity of Misiurewicz points (trans-
versality) to verify the dynamical Mordell–Lang and Manin–Mumford con-
jectures for generic endomorphisms of PN .

3. Unicritical polynomials

In this section we construct a polynomial in c whose roots are exactly the
c values for which the critical point 0 has exact period (m,n) for

fd,c (z) = zd + c.

For m > 0, these are exactly the Misiurewicz points. We first need two
lemmas concerning multiplicities of roots. Let

Fk =
fm+k
d,c (0)− fmd,c(0)

fm+k−1
d,c (0)− fm−1

d,c (0)
,

which is a polynomial in c. We denote ak(c) as the multiplicity of c as a
root of Fk.

Lemma 3.1. For k | n

ak(c) =

{
d− 1 f `d,c(0) = 0 and ` | k and ` | m− 1

1 otherwise.

Proof. Since fd,c(z) = zd + c we can write

fm+k
d,c (0)− fmd,c(0) = (fm+k−1

d,c (0))d − (fm−1
d,c (0))d

so we have
Fk =

∏
0<j<d

(fm+k−1
d,c (0)− ζjfm−1

d,c (0))

where ζ is a primitive dth root of unity. Any common zero of

(fm+k−1
d,c (0)− ζifm−1

d,c (0)) and (fm+k−1
d,c (0)− ζjfm−1

d,c (0))

for i 6= j must be zeros of fm+k−1
d,c (0) and fm−1

d,c (0). In other words, 0 is

periodic of period dividing both (m− 1) and (m+ k− 1), i.e., both (m− 1)
and k. Such a common zero will, therefore, occur in each of the (d − 1)

factors (fm+k−1
d,c (0)− ζjfm−1

d,c (0)), and this is the only way that

Fk =
fm+k
d,c (0)− fmd,c(0)

fm+k−1
d,c (0)− fm−1

d,c (0)
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has a nonsimple zero. From Epstein [7], the zeros of (fm+k−1
d,c (0)−ζjfm−1

d,c (0))

are simple and the zeros of f `d,c(0) are simple. Thus, the multiplicities of
zeros of

Fk =
∏

ζj 6=−1

(fm+k−1
d,c (0)− ζjfm−1

d,c (0))

for f `d,c(0) = 0, ` | k and ` | m− 1 are

(d− 1).

Otherwise, the zeros are simple zeros. �

Lemma 3.2. If k | n and ak(c) 6= 0, then ak(c) = an(c).

Proof. We have two cases. If ak(c) = (d − 1), then f `d,c(0) = 0 for some

` | k and ` | m− 1. Thus, ` | n and an(c) = d− 1.

If ak(c) = 1, then c is a zero of fm+k
d,c (0)− fmd,c(0) and 0 has period (m, k)

for fd,c. Since k | n, it follows that c also has period (m,n). Now assume

that there is an ` such that f `d,c(0) = 0 and ` | n and ` | m−1. Since 0 is also

period (m, k) we also have ` | k. But that is a contradiction to ak(c) = 1,
so we must have an(c) = 1. �

Proof of Theorem 1.1. Assume first that m = 0. Then we have

Gd(0, n) = Φ∗f,0,n(0) = Φ∗f,n(0) =
∏
k|n

fkd,c(0)µ(n/k).

We write the principal divisor associated to Gd(0, n) as roots and multiplic-
ities as

Γf (0, n, c) =
∑
k|n

µ(n/k)ak(c)(c).

By Epstein [7], each fkd,c(0) = 0 has only simple roots so that ak(c) = 1 for
all k where 0 has period k for fd,c and 0 otherwise. A standard property of
the Möbius function is that

(3.1)
∑
k|n

µ(n/k) =

{
0 n 6= 1

1 n = 1.

Thus, by (3.1) we have∑
k|n

µ(n/k)ak(c) =

{
0 if 0 does not have exact period n for fd,c

1 if 0 has exact period n for fd,c.

Now assume that m 6= 0. We use the definition of generalized dynatomic
polynomials from [12] as

Φ∗f,m,n(0) =
∏
k|n

(
fm+k
d,c (0)− fmd,c(0)

fm+k−1
d,c (0)− fm−1

d,c (0)

)µ(n/k)

=
∏
k|n

F
µ(n/k)
k .
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We notate the principal divisor of Fk as Γk as a zero cycle of roots and
multiplicities.

Γk :=
∑

Fk(c)=0

ak(c)(c)

where ak(c) is the multiplicity of c in Fk.
We can then write the zero cycle associated to Φ∗f,m,n as∑

k|n

µ(n/k)Γk.

We need to consider the following sum of multiplicities for every c with
Fn(c) = 0

(3.2)
∑
k|n

µ(n/k)ak(c)

and show that the only nonzero values are those for 0 with exact period
(m,n) for fd,c and that multiplicity is 1.

By Lemmas 3.1 and 3.2 (and possibly scaling n), (3.2) is a sum of con-
stants (either 1 or (d− 1)). By (3.1) we have (3.2) is 0 unless the sum has a
single nonzero term. That occurs in the multiplicity (d− 1) case when n is
the exact period of 0 for fd,c and in the simple root case when 0 has exact
period (m,n) for fd,c. In particular, we have∑

k|n

µ(n/k)ak(c) =

{
d− 1 if 0 has exact period n and n | m− 1

1 if 0 has exact period (m,n).

In the multiplicity (d − 1) case, this c value has 0 with exact period (0, n),
so by the m = 0 case we must divide by

(Φ∗f,0,n)d−1. �

From the formula in Theorem 1.1, it is straightforward to count the Mi-
siurewicz points for fd,c(z) = zd + c. However, note that for d > 2, the
form fd,c provides a (d − 1)-to-1 cover of the moduli space of unicritical
polynomials of degree d.

Corollary 3.3. The number of (m,n) Misiurewicz points for fd,c is

Mm,n =


∑

k|d µ(n/k)dk−1 m = 0

(dm − dm−1 − d+ 1)
∑

k|d µ(n/k)dk−1 m 6= 0 and n | (m− 1)

(dm − dm−1)
∑

k|d µ(n/k)dk−1 otherwise.

Proof. We take Φf,m,n(0) = fm+n
d,c (0)− fmd,c(0) so that

deg(Φf,m,n(0)) = dm+n−1.

Notice the −1 in the exponent, which occurs since the first iterate only
contains c, and the second iterate cd, etc.
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If m = 0, then

deg(Φ∗f,0,n(0)) =
∑
k|n

µ(n/k) deg(Φf,0,k)

=
∑
k|n

µ(n/k)dk−1.

If m 6= 0, then

deg(Φ∗f,m,n(0)) =
∑
k|n

µ(n/k) (deg(Φf,m,k)− deg(Φf,m−1,k))

=
∑
k|n

µ(n/k)
(
dm+k−1 − dm+k−2

)
= (dm − dm−1)

∑
k|n

µ(n/k)dk−1.

If in addition n | (m− 1), then we must subtract

(d− 1) deg(Φ∗f,0,n) = (d− 1)
∑
k|n

µ(n/k)dk−1. �

While it is a simple deduction from the fact that Misiurewicz points are
roots of the monic polynomials fnd,c (0) − fmd,c (0), it is worth emphasizing
that Misiurewicz points are algebraic integers.

Corollary 3.4. All Misiurewicz points are algebraic integers.

Proof. The polynomials Gd(m,n) are monic. �

While it is believed that for d = 2, G2(0, n) is irreducible for all n, it is
not clear what happens for m > 0 or for d > 2. Table 1 shows that the
irreducibility behavior appears quite complicated and it would interesting
to understand for which (m,n) and d that Gd(m,n) is irreducible. We can
say a little about the factors of Gd(m,n). It is known that the set of PCF
polynomials is a set of bounded height [13, 14]. Consequently, the Northcott
property immediately yields, for any fixed (positive) integer D, there can
only be finitely many (m,n) where Gd(m,n) has a factor of degree ≤ D.
Since this bound is effectively computable, the set of c values is effectively
computable and so then is the finite set of (m,n). Note that for the family
fd,c, we could use the model from Section 4.4 to produce an explicit bound.

4. Failure of transversality over finite fields for unicritical
polynomials

For the maps fd,c(z), Theorem 1.1 says that Gd(m,n) has only simple
roots, realizing Thurston’s tranversality statement. Since Gd(m,n) is a poly-
nomial in c, we can compute its discriminant. A polynomial discriminant is
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Table 1. Irreducibility of Gd(m,n) For Pairs (m,n)

d Irreducible Reducible
2 {(m,n) | 0 ≤ m ≤ 4, 1 ≤ n ≤ 4} ∅
3 {(m,n) | 0 ≤ m ≤ 3, 1 ≤ n ≤ 3} ∪ (4, 2) ∅
4 (0, 3), (2, 3), (3, 2) (0, 2), (2, 1), (2, 2), (3, 1), (4, 1)

(2 factors)
5 (0, 2), (0, 3), (2, 1), (3, 1), (2, 2) ∅
6 (0,3) (0,2),(2,1),(3,1),(2,2)

(3 factors)
7 (2,1), (3,1), (2,2) (0,2), (0,3)

(3 factors)
8 (0,3) (0,2),(2,1)
9 (0,2),(0,3) (2,1)
10 (0,3) (0,2), (2,1)

nonzero if and only if the polynomial has simple roots. Since the discrimi-
nant is an integer it will have prime divisors, unless of course it is 0,±1.

Definition. Dd(m,n) = Disc(Gd(m,n)).

Thus, for each n we will get some set of primes that divide Dd(m,n) and,
hence, primes where transversality fails over Fp. The problem originally
posed by Silverman [25] was to examine the primes dividing the discrimi-
nants of fnd,c(0). The two problems are in fact equivalent. We provide the
first steps towards a resolution by translating the problem into a problem
about periodic points of dynamical systems in two different ways, one of
which is related to the dynamical Manin–Mumford problem.

4.1. Power of p dividing Dd(m,n). We first recall a little algebraic
number theory.

Theorem 4.1 ([15, §III.3]). Let K/Q be an algebraic number field of degree
n with ring of integers OK and discriminant DK . Let ω ∈ OK with minimal
polynomial w(x). Then

Disc(w(x)) = [OK :Z[ω]]2DK .

Definition. A prime p which divides the index i(ω) = [OK :Z[ω]] for all
ω ∈ OK is called an inessential discriminant divisor.

An inessential discriminant divisor is an obstruction to K being mono-
genic, i.e., having an integral power basis. This is important since, in the
monogenic case, we have Dedekind’s theorem for how rational primes split
in number fields (see [15], Chapter 1, Proposition 25). It is interesting to
note that all computed examples of field extensions generated by irreducible
factors of Gd(m,n) were monogenic.
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Proposition 4.2. Let g(c) be an irreducible component of Gd(m,n) with
discriminant D. Let K be the extension of Q by g(c) with ring of integer
OK . Assume that pk | D and p - i(c0) = [OK :Z[c0]], where c0 is a root of
g(c). Then,

k ≥
∑
i

(ei − 1)fi

where the ei are the ramification indices and deg(qi) = fi are the residue
degrees for K.

Proof. This follows from [22, III §6]. �

It is well known that the discriminant of a product has the following form

(4.1) Disc(fg) = Disc(f) Disc(g) Res(f, g)2.

Thus, we can use Proposition 4.2 to examine the powers of p dividing
Gd(m,n) by examining each irreducible factor, see Example 4.3.

Remark. While it is believed that G2(0, n) is irreducible, it is clear from
Table 1 that Gd(m,n) is not always irreducible. Thus, it is possible that
there can be contributions from the resultant terms, see Example 4.3.

Example 4.1. 132 | D2(0, 6) since G2(0, 6) has a multiple root over F132 .
In particular, there are 4 primes that lie above 13 for n = 6. Three of them
have e = 1 and the fourth has e = 2 and f = 2. Giving a total exponent of
2. Or, we could see that

G2(0, 6) ≡ (c+ 9)(c2 + 3c+ 1)2(c4 + c3 + 4c2 + 12c+ 3)

(c18 + 10c17 + 3c16 + 8c15 + 2c14 + c13 + 10c12 + 3c11 + 2c10

+ 10c9 + 11c8 + 9c7 + 5c6 + 11c5 + 4c4 + 6c3 + 4c2 + 12c+ 1)

(mod 13).

Notice the degree 2 polynomial which occurs to the power 2.

Proposition 4.3. For each prime divisor pk | Dd(0, n), such that p - i(c0)
for all roots c0 of Gd(0, n), we have (d− 1) | k. Furthermore, the number of
multiple roots is the determined by the factorization of xd−1 − 1 modulo p,
i.e., the (d− 1)st roots of unity modulo p.

Proof. Replacing cd−1 with t we can write fnd,c(0)/c as a polynomial h(t).

So any multiple root of fnd,c(0) is a multiple root of h(t) and we apply the

methods of Proposition 4.2 to h(t). Finally, we take the resulting power and
multiply by (d − 1), (undoing the cd−1 7→ t substitution). Thus, the power
of p dividing Dd(0, n) must be a multiple of d− 1.

Each root of h(t) upon reverting to c corresponds to some number of
roots of fnd,c(0). Those roots are determined by the factorization of cd−1− 1
modulo p.

By Corollary 4.7
∏
k|nDd(0, k) = Disc

(
fnd,c(0)

)
, so we have the statement

of the proposition. �
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Remark. In particular, this implies that p always occurs to the power at
least d− 1 in the discriminant, so it either ramifies to high degree, or has a
high residue field degree.

Example 4.2. Consider f5,c(x) = x5 + c. Then we have

D5(0, 3) = 248 · 1014 · 4314.

So we look at the factorization of G5(0, 3) mod p for p = 101, 431. We have
for p = 101

(c+ 6)2(c+ 41)2(c+ 60)2(c+ 95)2 · g(c)

where g(c) has only simple roots. For p = 431 we have

(c2 + 54c+ 165)2(c2 + 377c+ 165)2 · h(c)

where h(c) has only simple roots. This phenomenon is because if we replace
cd−1 by t in Gd(0, n), then as polynomial in t it has a single double root.
Then the final splitting depends on the roots of unity in Fp. For p = 101 we

have four 4th roots of unity

(c4 − 1) ≡ (c+ 1)(c+ 10)(c+ 91)(c+ 100) (mod 101)

and for p = 431 has only two 4th roots of unity

(c4 − 1) ≡ (c+ 1)(c+ 430)(c2 + 1) (mod 431).

Example 4.3. Consider f7,c = x7 + c. Then G7(0, 3) is reducible over Q,
so we expect exponents larger than d− 1. In particular, we have

G7(0, 3) = (c6 − c3 + 1)(c6 + c3 + 1)(c36 + 6c30 + 14c24 + 15c18 + 6c12 + 1)

and

D7(0, 3) = 248 · 354 · 1912 · 147316.

Using Corollary 4.7 and Equation (4.1) we can explain the powers that occur
in D7(0, 3). The discriminants of the three irreducible factors of G7(0, 3)
respectively are

−39, −39, 236 · 336 · 147316.

The three pairs of resultants are

26, 193, 193.

The fact that all exponents in D7(0, 3) are multiples of 6 is from Propo-
sition 4.3 and the high powers of 2 and 3 are from Corollary 4.6 with the
extra powers of 3 occurring from the inequality of Proposition 4.3 since in
that case gcd(ei, p) 6= 1.

This example emphasizes yet again, that the exponent 2 for p = 13 for
d = 2, n = 6 in Example 4.1 is special.
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4.2. Reformulation as a dynamical system I. We consider the follow-
ing family of 2 dimensional dynamical systems.

Definition.

Fd,c : A2 → A2

(x, y) 7→ [xd + c, dxd−1y + 1]

We show that p dividing Dd(0, n) is equivalent to (0, 0) having minimal
period n for Fd,c modulo p. This allows for several immediate consequences.
First we clarify the implications of p dividing the discriminant Dd(0, n).

Theorem 4.4. p | Dd(0, n) if and only if (0, 0) is periodic of minimal period
n for Fd,c(x, y) for some c ∈ Fp.

Proof. Assume that (0, 0) is periodic of minimal period n for some c in
Fp. Then there is some k so that c ∈ Fpk and that fnd,c(0) ≡ 0 so that 0 is
periodic of period dividing n for fd,c. Assume that the period of 0 is strictly
smaller than n, then we have the orbit

(0, 0) 7→ (c, 1) 7→ · · · 7→ (0, α) 7→ (c, 1) 7→ · · ·
so that α = 0 and 0 must be minimal period n. So the question is then of
the derivatives. We have

fd,n(0) = fdd,n−1(0) + c

so that
dfnd,c(0)

dc
= d(fn−1

d,c (0))d−1(fn−1
d,c (0))′ + 1.

Labelling fd,n−1 = x and its derivative y, we see that

(4.2) Fnd,c(0, 0) = (fnd,c(0), (fnd,c(0))′).

Thus, if the minimal period of (0, 0) is n in Fpk , then by (4.2), n is the
smallest integer such that both fnd,c(0) and (fnd,c(0))′ are 0 mod p and p |
Dd(0, n)

If p | Dd(0, n), then there is some k and some c ∈ Fpk such that

fnd,c(0) ≡ (fnd,c)
′(0) ≡ 0 (mod p)

with 0 minimal period n for fd,c. Thus (0, 0) is at least minimal period n
for Fd,c(x, y). We again consider the orbit of (0, 0)

(0, 0) 7→ (c, 1) 7→ · · · 7→ (0, α) 7→ (c, 1) 7→ · · ·
for some α. Since p | Dd(0, n) and

Fnd,c(0, 0) = (fnd,c(0), (fnd,c(0))′),

we must have α = 0, so that (0, 0) is periodic with minimal period at most
n. Thus, (0, 0) is periodic with minimal period n. �

Similar to Gleason’s original proof of transversality we can show that
primes dividing d, never divide the discriminant:



310 BENJAMIN HUTZ AND ADAM TOWSLEY

Corollary 4.5. For all p | d, p - Dd(0, n) for all n.

Proof. If there is c value for which (0, 0) is periodic of minimal period n
over Fp, then it must also be periodic modulo p. But

Fd,c(x, y) ≡ (xd + c, 1) (mod p)

so that y 6= 0 for all n. Thus, (0, 0) is never periodic. �

Corollary 4.6. If p | d− 1, then pk | Dd(0, n) for all n ≥ 2 where

k ≥
∑
t|n

µ(n/t)dt−1.

Proof. The powers of c in fnd,c(0) are all congruent to 1 (mod d − 1), so
that after factoring out c, they are all divisible by d − 1. Since p divides
d− 1 we see that

fnd,c(0)

c
≡ h(c)d−1 (mod p)

for some polynomial h. Thus, every root is a multiple root. Since

gcd(d− 1, p) > 1

we have a strict inequality in Proposition 4.2 [22, III §6], so that

k ≥
∑
i

eifi = deg(Gd(0, n)).

Thus, the power of p dividing Dd(0, n) is at least the degree of Gd(0, n)
which by the m = 0 case of Corollary 3.3 is∑

k|n

µ(n/k)dk−1. �

Corollary 4.7. Res(Gd(0, n), Gd(0,m)) = ±1 for all n 6= m. Moreover,
Disc(fnd,c(0)) =

∏
k|nDd(0, k).

Proof. The statement

Res(Gd(0, n), Gd(0,m)) = ±1

for n 6= m is the same as saying there is no prime such that Gd(0, n) and
Gd(0,m) have a common root. By Theorem 4.4 this would mean that there
is some c value over Fp for which (0, 0) is minimal period n and m, which
cannot happen if n 6= m.

For the second part, we know that

fnd,c(0) =
∏
k|n

Gd(0, k)

and that

Disc(fg) = Disc(f) Disc(g) Res(f, g)2. �
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Table 2. Factorization of D2(0, n)

n D2(0, n)
1 1
2 1
3 −1 · 23
4 23 · 2551
5 13 · 24554691821639909
6 −1 · 132 · 949818439 · 6488190752068386528993226361
7 −1 · 8291 · 9137 · 420221 · 189946395389·

4813162343551332730513 · 2837919018511214750008829·
1858730157152877176856713108209153714699601

A sequence, {an}, of integers is called a divisibility sequence if whenever
m|n then am|an.

Since the sequence fnd,c(0) is a divisibility sequence, so is the sequence
of its discriminants. Corollary 4.7 provides an alternative proof that this
sequence of discriminants is a divisibility sequence.

Corollary 4.8. Let An := Disc (fnc (0)). The sequence {An} is a divisibility
sequence.

Proof. From Corollary 4.7 we know that Am =
∏
k|mDd(0, k). So if k|m

then Dd(0, k)|Am. Also, if k|m then k|n, thus

Am =
∏
k|m

Dd(0, k)|An =
∏
k|n

Dd(0, k). �

4.3. Applying the model. The first few D2(0, n) are computed in Ta-
ble 2. Computing the discriminant and factoring could be computed for a
few more n, but certainly n = 15 is already out of reach of reasonable com-
puting power since the discriminant is growing with the degree of Dd(m,n)
which is growing doubly exponentially. Further data was generated using
the reformulating as a dynamical system from Section 4.2 and the computer
algebra system Sage [26]. For example, Table 3 lists all primes p < 10000
with n < 100 and p || D2(0, n), i.e., p | D2(0, n) and p2 - D2(0, n). Notice
that an entry for n = 6 and p = 13 is missing from Table 3. This is because
the repeated roots are defined over F132 and not over F13 so we will have
p2 | D2(0, 6). Such primes are not included in the table since it was infeasible
to extend the brute-force search over field extensions for large primes.

From this computational data, there are several things that seem to be
true. It seems there is a primitive prime divisor for every n ≥ 3, i.e., a
prime which appears for n but not for any i < n, and that the density of
primes which occurs is 0. However, both of these statements seem quite
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Table 3. Irreducibility of Gd(m,n) For Pairs (m,n)

n p n p
3 23 24 2087, 3973
4 24, 2551 25 1289, 6449
5 13 27 2287
7 8291, 9137 31 3467, 2358
8 1433 32 1097
9 137 33 2153
11 547, 1613 35 1777
12 211 36 2953
13 317 37 5023
14 431, 2179 49 8693
19 251, 1249 63 5581

difficult to prove due mainly to the possibility of the c value occurring in
some arbitrarily large algebraic extension. Silverman proposed an addition
question: Fix a prime p and consider the set

Sp = {n : Disc(fnd,c(0)) ≡ 0 (mod p)}.

Since fnd,c(0) | fknd,c(0) for all k (since they divide in Z[c]) is Sp multiplicatively

finitely generated? In other words, is there a finite set {n1, . . . , nr} such that
Sp = ∪iniN. The difficulty with the question is that as n increases so does
the degree of the extension Fpk where the double root would be defined.
While it seems possible that a double root could exist over a very large
extension, the probability that it occurs decreases with k. We show that
the power of p dividing Dd(0, n) is a multiple of d − 1, so that d − 1 is
the typical occurrence, and the particular field extensions where the double
roots occur depends on how xn − 1 splits in Fp. Surprisingly, p = 13 for
n = 6 and d = 2 (Example 4.1) is the only example we have, other than the
special primes p | d − 1 described in Corollary 4.6, for which the power is
t(d−1) for t > 1. Perhaps this is merely reflection of probability, or perhaps,
there are only finitely many exceptions. If one could bound t for which
pt(d−1) divides Dd(0, n), then the answer to Silverman’s original question
would be yes, each prime divides only finitely many Dd(0, n). However,
it is unclear whether such a bound should exist. To illustrate that pd−1

phenomenon, Table 4 shows the first few Dd(0, n) for d = 3. The powers
of 2 are explained by Corollary 4.6 and the exponents of 2 = (d − 1) are
explained by Proposition 4.3.

We finish this section with a remark on Silverman’s multiplicatively finite
generation question.
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Table 4. Factorization of D3(0, n)

n D3(0, n)
1 1
2 −1 · 22

3 28 · 2292

4 224 · 412 · 1012 · 11632 · 21362872

5 280 · 232·
4327254999324420968973567587108723004299697413515251127508767912

Corollary 4.9. Fix a prime p. If the powers of p appearing in the sequence
Dd(0, n) are bounded, then the set

Sp := {n : Disc(fnc (0)) := An ≡ 0 mod p}
is multiplicatively finitely generated.

Proof. If the powers of p that divide Dd(0, n) are bounded, then there is
some k such that every multiple root c is in Fpk . Since this is a finite set, the
possible (minimal) period of (0, 0) is bounded, so that p divides only finitely
many Dd(0, n), call then Dd(0, n1), . . . , Dd(0, nr). Then Sp is generated by
{n1, . . . , nr}. �

4.4. Reformulation as a dynamical system II. Manin–Mumford.
The reformulation of Section 4.2 restated the problem in terms of an infinite
family of dynamical systems. In this section, we instead reformulate the
problem in terms of a single 3 dimensional dynamical system. However,
instead of having to consider only the orbit of the point (0, 0), we now have
to consider the orbits of the points (0, c, 0) for any c value. So we trade
an infinite family of functions on a single point, to a single function on a
subvariety of points. Using this system we could prove many of the same
corollaries as in Section 4.2 in much the same way. Instead, we content
ourselves with showing the connection to the dynamical Manin–Mumford
conjecture.

The Manin–Mumford conjecture, proved by Raynaud [18, 19], states that
a subvariety of an abelian variety contains a dense set of torsion points
if and only if it is a torsion translate. Zhang stated a dynamical version
for polarized dynamical systems: A subvariety is preperiodic if and only
if it contains a Zariski dense set of preperiodic points. Unfortunately, the
conjecture is not true in this form [10]. The conjecture is reformulated
for endomorphisms and there are a few special cases known [10], but the
problem over Fp and for rational maps remains open.

Theorem 4.10. A prime p divides Dd(0, n) if and only if the map

Rd(x, y, z) = [y, yd + y − xd, dxd−1z + 1]
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has a periodic point in Fp of the form (0, c, 0) with minimal period n.

Proof. The orbit of (0, c, z0) for any z0 under F (x, y, z) is

Rnd (0, c, z0) = (Gd(0, n), Gd(0, n+ 1), G′d(0, n)).

By Theorem 4.4, p | Dd(0, n) if and only if there is a c ∈ Fp such that 0
is minimal period n for Fd,c. �

The map Rd appears to be an example where the dynamical Manin–
Mumford conjecture does not hold, at least for periodic points and subvari-
eties.

Corollary 4.11. Fix a prime p. If {n : p | Dd(0, n)} is infinite, then Rd has
a nonperiodic subvariety with a Zariski-dense subset of periodic points over
Fp.

Proof. If {n : p | Dd(0, n)} is infinite, then there are infinitely many periodic
points on the line {x = z = 0}. However, that line is not preperiodic since

(0, 0, 0)→ (0, 0, 1)→ (0, 0, 1)→ · · · . �

5. Cubic polynomials

Now we turn to the case of cubic polynomials with 2 distinct affine
critical points. We use the following monic centered form:

ga,v(z) = z3 − 3a2z + (2a3 + v),

which has critical points ±a and marked critical value ga,v(a) = v. Note
that if a = 0, then this form is z3 +v, which we discussed above. The goal is
to determine the pairs (a, v) for which a and −a have finite (forward) orbit.
These pairs are the cubic Misiurewicz points together with the pairs (a, v)
where the critical points are purely periodic. In Theorem 1.2 we construct
the PCF cubic polynomials as the set where both a and −a have finite orbits.

A simple division calculation using the definition of ga,v yields the follow-
ing lemma.

Lemma 5.1.

gm+k
a,v (z)− gma,v(z)

gm+k−1
a,v (z)− gm−1

a,v (z)
= gm+k−1

a,v (z)2 + gm+k−1
a,v (z)gm−1

a,v (z) + gm−1
a,v (z)2− 3a2.

Using the lemma, we can determine when the zeros of Φ∗g,m,n(a) fail to be
the values (a, v) for which a does not have exact period (m,n) for ga,v.

Proposition 5.2. The only zeros, (a, v), of Φ∗g,m,n(a) that do not have a
with exact period (m,n) for ga,v have m ≥ 1 and are in one of the following
cases:

(1) a = 0 and n | m− 1.
(2) (m,n) has m 6= 0, n | m− 1, and a has exact period (0, n). Further-

more, Φ∗g,0,n(a) || Φ∗g,m,n(a).
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(3) (m,n) has m 6= 0, gm−1
a,v (a) = −a, and −a does not have exact period

(1, n).

Proof. If m = 0, then by Silverman [24] all the multiplicities are 1 and
multiplicity 1 roots of dynatomic polynomials with m = 0 have exact period
(0, n). So we may assume that m ≥ 1.

Assume first that a = 0. We are working with the map z3 + v and we
know when it is post-critically finite from Theorem 1.1. In particular, the
only situation where the exact period of a is not the formal period (m,n) is
for n | m− 1 since

Φ∗g,0,n(0)2 || Φ∗g,m,n(0),

but the denominator of Ta,v(m,n, 0) only contains Φ∗g,0,n(0).
We now assume that a 6= 0. By Lemma 5.1

Fk(z) :=
gm+k
a,v (z)− gma,v(z)

gm+k−1
a,v (z)− gm−1

a,v (z)
(5.1)

= gm+k−1
a,v (z)2 + gm+k−1

a,v (z)gm−1
a,v (z) + gm−1

a,v (z)2 − 3a2.(5.2)

The zeros (a, v) of Fk(a) which do not have a with exact period (m, k) are the
zeros of the denominator that are higher multiplicity zeros of the numerator,
i.e., zeros of (5.2) that are also zeros of the denominator of (5.1).

Consider Fk(z) symbolically with F = gm+k−1
a,v (z) and G = gm−1

a,v (z).
Then (5.2) is

(5.3) F 2 + FG+G2 − 3a2.

Since we are looking for zeros of (5.3) which are also zeros of the denominator
of (5.1), we consider F = G. Then (5.3) is zero when

F 2 = G2 = a2.

Using z = a, we have two possibilities:

gm−1
a,v (a) = gm+k−1

a,v (a) = a or gm−1
a,v (a) = gm+k−1

a,v (a) = −a.

Notice that

ga,v(z)− ga,v(a) = (z − a)2(z + 2a).

Working modulo (gm−1
a,v (a)− a), we also have

(5.4) ga,v(z)− gma,v(a) ≡ (z − a)2(z + 2a) (mod (gm−1
a,v (a)− a)).

Assume that gm−1
a,v (a) = gm+k−1

a,v (a) = a so that there is a t such that t | k,

t | (m− 1), and gta,v(a) = a. If we consider

F̃k(z) :=
gm+k
a,v (z)− gma,v(a)

gm+k−1
a,v (z)− gm−1

a,v (a)
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then we can apply (5.4) with z = gm+k−1
a,v to have

F̃k(z) ≡
(gm+k−1
a,v (z)− a)2(gm+k−1

a,v (a) + 2a)

gm+k−1
a,v (z)− a

(mod (gm−1
a,v (a)− a))

≡ (gm+k−1
a,v (z)− a)(gm+k−1

a,v (z) + 2a) (mod (gm−1
a,v (a)− a)).

By Epstein [7, Corollary 2] for any `, if (a, v) is a point on g`a,v(z)− a, then
it is a simple point, i.e., the curve is smooth at that point. Since a 6= 0, then
(gm+k−1
a,v (a)+2a) 6= 0. So we have each zero (a, v) of gta,v(a) = a occurs with

multiplicity 1 in F̃k and, thus, multiplicity 1 in Fk. Recall that

Φ∗g,m,n(a) =
∏
k|n

F
µ(n/k)
k (a).

Thus, by (3.1), to have a zero of Φ∗g,m,n(a) with gka,v(a) = a we must have
the exact period of a is n, and n | (m−1). Thus, we see that the pairs (a, v)
where a is strictly periodic are also zeros of Φ∗g,m,n(a) of multiplicity 1 and
from Silverman [24] they are multiplicity 1, in Φ∗g,0,n(a). Therefore, we have
the exact divisibility as required.

If gm−1
a,v (a) = gm+k−1

a,v (a) = −a, then

gm+k−1
a,v (a) = gka,v(−a) = −a.

We can apply the same argument as the previous case to see that −a must
have exact period n with n | (m − 1). Our assumption has the orbit of a
intersecting the orbit of −a; in particular, a is in the strictly preperiodic
portion of the orbit of −a. Then, a has exact period (m,n) if and only if
−a has exact period (1, n). �

Proof of Theorem 1.2. From the construction of Ta,v(m,n, z) with dy-
natomic polynomials, it is clear that all the pairs (a, v) with the appropriate
critical point orbits are on the variety. What we need to see is that no ad-
ditional points, points with “smaller” exact period (except possibly a = 0),
are on the variety.

By Proposition 5.2 we have four cases to consider:

(1) a = 0, n1 = n2 and both n1 | m1 − 1 and n1 | m2 − 1.
(2) (m1, n1) have m1 6= 0 and n1 | m1−1 and a has exact period (0, n1).
(3) (m2, n2) have m2 6= 0 and n2 | m2 − 1 and −a has exact period

(0, n2).
(4) (m1, n1) have m1 6= 0 and gm1−1

a,v (a) = −a, and −a does not have
exact period (1, n1).

We address each case separately.

(1) In this case, there is a zero of Ta,v(m1, n1, 0) and Ta,v(m2, n2, 0) that
has a with exact period (0, n1). If a = 0, then this is the map
ga,v(z) = z3 + v, and we can compute exactly which such maps have
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0 with given period from Theorem 1.1. These are exactly the points
described in the statement of the theorem.

(2) By the exact divisibility Φ∗g,0,n(a) || Φ∗g,m,n(a) from Proposition 5.2,

the construction of Ta,v(m,n, z) excludes all such points from the
variety.

(3) Same as the previous case using −a in place of a.
(4) If −a does not have the correct period (1, n1) = (m2, n2), then the

point (a, v) is not on the variety V (Ta,v(m1, n1, a), Ta,v(m2, n2,−a))
since Ta,v(m,n, z) is a dynatomic polynomial and its root will have
period (m,n). If −a does have the correct period, then the point
(a, v) is on the variety. �

Silverman [24] proves the transversality statement of Thurston’s Theorem
for ga,v(z) when m1,m2 ≤ 1. We do not address the extension of this
problem here other than to mention that one needs to be careful about
choosing the “correct” equations for a Thurston rigidity result. For example,
when the two critical points, ±a, both belong to the same cycle, we need a
different set of equations than when they are part of separate cycles.

Example 5.1. Consider

(m1, n1) = (2, 2) and (m2, n2) = (1, 2).

Consider

a =
i
3
√

4
and v = − i

3
√

4
.

Then we have the portrait

a −a • •// //
55

xx

We compute the jacobians to see that (a, v) has multiplicity > 1 for the
variety

V (Ta,v(2, 2, a), Ta,v(1, 2,−a))

but multiplicity 1 for the variety

V (ga,v(a) + a, Ta,v(1, 2,−a)).
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