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A sequence of inclusions whose colimit is
not a homotopy colimit

Benjamin Branman, Igor Kriz and Aleš Pultr

Abstract. It is known that the homotopy colimit of a sequence of in-
clusions of T1 spaces is weakly equivalent with the actual colimit. We
show that the assumption of T1 is essential by providing a counterex-
ample for non-T1 spaces.
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1. Introduction

It is well known that the canonical map from the homotopy colimit (tele-
scope, [1]) of a sequence of inclusions

X1 ⊆ · · · ⊆ Xn ⊆ . . .

of T1 topological spaces to the actual colimit is a weak equivalence:

(1) hocolimnXn
∼ //

⋃
nXn.

The reason is simply that for any compact space K (using the covering
definition, regardless of separation axioms), the image of a continuous map

f : K →
⋃
n

Xn

is contained in one of the spaces Xn. This is easily seen as follows: Assume
otherwise and pick points sn ∈ f(K) rXn. Let

Sm = {sm, sm+1, . . . }.
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Then Sm ∩ Xn is closed in Xn for each n, since the spaces are T1, and
hence Sm is closed in

⋃
Xn. Hence, the sets f−1(Sm) are closed in K,

f−1(Sm) ⊇ f−1(Sm+1), while⋂
m

f−1(Sm) = f−1

(⋂
m

Sm

)
= f−1(∅) = ∅.

This is a contradiction to K being compact.

The authors do not know an original reference for this simple argument,
which however plays a key role in homotopy theory (cf. [2]). Clearly, the
assumption that the spaces Xn are T1 is essential to the argument.

The first author noticed, however, that (1) also holds for so-called quasi-
discrete spaces, which means spaces in which an intersection of any (possibly
infinite) number of open sets is open. Finite spaces are examples of qua-
sidiscrete spaces. Quasi-discrete spaces are, in some sense, the opposites of
T1 spaces. For any T0 space X, there is a partial ordering on the set X
where x ≤ y if and only if the closure of x contains y. For T1 spaces, this
partial ordering is trivial. On the other hand, for quasidiscrete spaces, the
ordering determines the topology completely: For a quasidiscrete space X,
a subset S ⊆ X is closed if and only if

x ∈ S, x ≤ y ⇒ y ∈ S.
McCord [3] exhibited, for a quasi-discrete space X, a continuous map from
the classifying space of the poset (Xdisc,≤) (where Xdisc denotes X with the
discrete topology) to X which is a weak equivalence, and is functorial under
inclusions. This implies (1).

The authors then began asking whether (1) is true for all topological
spaces. Eventually, they found a counterexample, which is the subject of the
present note. It remains an open problem if (1) is true for some reasonable
separation axiom weaker than T1, such as TD spaces (a space is TD if every
point x contains an open neighborhood U such that Ur{x} is open). While
such follow-up questions may fall into the realm of curiosities, the example
presented here is an important cautionary tale on the role of the T1 axiom
in the foundations of homotopy theory.

2. The example

For m ∈ N, let Qm ⊆ R2 be defined as

({0} × [−1, 1]) ∪
{(

x, sin

(
1

x

))
: x ∈

(
0,

1

m

)}
,

with the subspace topology induced by R2. Observe that for i ≤ j, Qj ⊆ Qi,
and Qj is open in Qi. Also observe that

∞⋂
i=1

Qi = {0} × [−1, 1].
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Let X be the set

{x1, x2, . . . , y} ×Q1

with topology generated by the basis

β = {({xk} × U) ∪ ({xk+1, xk+2, . . .} ×Qk) ∪ ({y} × V ) :

k ∈ N and V ⊆ U ⊆ Qk and U and V are open in Qk}

We must check that β is actually a basis of topology.

Lemma 1. β is closed under finite intersections.

Proof. We consider two separate cases. In the first case, let

A = ({xk} × U) ∪ ({xk+1, . . .} ×Qk) ∪ ({y} × V )

B = ({xk} ×W ) ∪ ({xk+1, . . .} ×Qk) ∪ ({y} × Z)

for some k ∈ N, and some open sets U, V,W , and Z such that V ⊆ U ⊆ Qk

and Z ⊆W ⊆ Qk. Then

A ∩B = ({xk} × U ∩W ) ∪ ({xk+1, . . .} ×Qk) ∪ ({y} × V ∩ Z)

U ∩W and V ∩ Z are both open subsets of Qk, and (V ∩ Z) ⊆ (U ∩W ).
Hence A ∩B is in β.

In the second case, let

A = ({xj} × U) ∪ ({xj+1, . . .} ×Qj) ∪ ({y} × V )

B = ({xk} ×W ) ∪ ({xk+1, . . .} ×Qk) ∪ ({y} × Z)

for some j, k ∈ N, and some open sets U, V,W , and Z such that V ⊆ U ⊆ Qj

and Z ⊆W ⊆ Qk. Without loss of generality we may assume j < k. Then

A ∩B =
(
({xj+1, . . .} ×Qj) ∩ ({xk} ×W )

)
∪
(
({xj+1, . . .} ×Qj) ∩ ({xk+1, . . .} ×Qk)

)
∪
(
({y} × V ) ∩ ({y} × Z)

)
= ({xk} ×W ) ∪ ({xk+1, . . .} ×Qk) ∪ ({y} × Z ∩ V ),

so A ∩B is in β. �

Let Xn be the set {x1, . . . , xn, y}×Q1, with the subspace topology inher-
ited from X. Observe that Xn has basis

βn = {({xk} × U) ∪ ({xk+1, xk+2, . . . , xn} ×Qk) ∪ ({y} × V ) :

k ∈ N, k ≤ n and V ⊆ U ⊆ Qk and U and V are open in Qk}

Also observe that Xn has the subspace topology inherited from Xn+1.

Theorem 2. X =

∞⋃
n=1

Xn, and X has the union topology, i.e., a subset

U ⊆ X is open if and only if for every n, U ∩Xn is open in Xn.
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Proof. We want to show that a set U is open in X if and only if U ∩Xn is
open in Xn for all n ∈ N.

One direction is trivial: if U is open in X, then by definition U ∩Xn is
open in Xn n ∈ N.

Now suppose that U ⊆ X, and that U ∩Xn is open in Xn for all n ∈ N.
Fix a point q ∈ U . We will exhibit an X-open neighborhood of q in U . Note
that q is either of the form (xk, z) or (y, z), for some k ∈ N and z ∈ Q1, and
these two cases need to be handled separately.

Case 1. Suppose q = (xk, z). Either z ∈ Qk, or z ∈ Q1\Qk. These subcases
again need to be handled separately.

Subcase 1a. Suppose z ∈ Qk. Then for m ≥ k + 1, any basis element of βm
containing q = (xk, z) also contains {xk+1, . . . , xm}×Qk. Furthermore, there
exists an open neighborhood V of z such that V ⊂ Qk and {xk}×V ⊂ U∩Xk.
Thus U contains ({xk}× V )∪ ({xk+1, . . .}×Qk), which is an open set in X
containing q.

Subcase 1b. Suppose z /∈ Qk. Let j < k be the unique integer such that
z ∈ Qj\Qj+1. Then for m > k, every element of βm which contains (xk, z)
also contains {xj+1, . . . , xm}×Qj . Hence U contains {xj+1, . . .}×Qj , which
is an open set in X containing q.

Case 2. Suppose q = (y, z). Again, we must distinguish two subcases:

Subcase 2a. z ∈ {0} × [−1, 1]. By hypothesis U ∩ X1 is open in X1, so it
contains {y} × V for some V open in Q1 and z ∈ V . Because V is open in
Q1, it must contain points not in {0} × [−1, 1]. Thus, there exists a k ∈ N
such that V ⊆ Qk but V * Qk+1. Let t be a point in V ∩ (Qk\Qk+1). Now,
for m ≥ k, U ∩Xm is open in Xm by hypothesis. But the definition of βm
implies that any open set in Xm containing (y, t) must also contain

{xk+1, . . . , xm} ×Qk.

Thus U contains

({xk+1, . . .} ×Qk) ∪ ({y} × (V ∩Qk+1)),

which is open in X and contains q.

Subcase 2b. z ∈ Qk\Qk+1 for some k ∈ N. Then any element of βk contain-
ing q = (y, z) contains a set of the form

({xk} × U) ∪ ({y} × V )

for some V ⊆ U ⊆ Qk open, z ∈ V . On the other hand, any element of βm
for m ≥ k which contains q = (y, z) also contains

{xk+1, . . . , xm} ×Qk.

Hence, U contains

({xk} × U) ∪ ({xk+1, xk+1, . . . } ×Qk) ∪ ({y} × V )
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which is open in X and contains q. �

3. Proof that X is not the homotopy colimit of Xn

Theorem 3. The weak equivalence (1) is false for the spaces Xn constructed
in the previous section.

The theorem is a consequence of the following two propositions.

Proposition 4. There exists a continuous path in X from (x1, (0, 0)) to
(y, (0, 0)).

Proof. Let f : [0, 1] → X f(0) = (x1, (0, 0)), f(t) = (xn+1, (0, 0)), for
n ∈ (1− 1

n , 1−
1

n+1 ], n ∈ N, and f(1) = (y, (0, 0)).

If U is open in X and (xn, (0, 0)) ∈ U , then for all k ≥ n, (xk, (0, 0)) ∈ U .
Hence, if y ∈ U , then f−1(U) is either {1}, all of [0, 1], or of the form(

1− 1

n
, 1

]
for some n ∈ N. On the other hand, if y 6∈ U , then f−1(U), [0, 1), or of the
form (

1− 1

n
, 1

)
for some n ∈ N. Hence f is continuous. �

Proposition 5. For n ∈ N, there does not exist a continuous path in Xn

from (x1, (0, 0)) to (y, (0, 0)).

This proposition will be proved in a sequence of lemmas.

Lemma 6. Let A be the set {y}×{0}× [−1, 1]. Then for n ∈ N, A is closed
in Xn.

Proof. Observe that the complement of A in Xn is the union

({x1, . . . , xn} ×Q1) ∪ ({x1, . . . , xn, y} × (Q1\({0} × [−1, 1])))

= ({x1} ×Q1) ∪ ({x2, . . . , xn} ×Q1)

∪ ({x1, . . . , xn, y} × (Q1\({0} × [−1, 1]))).

This is a basis element in Xn, hence A is closed in Xn. �

Lemma 7. For all n ∈ N, the space {y} × Q1 with the subspace topology
inherited from Xn is homeomorphic to Q1.

Proof. Taking the intersection of each element of βn with {y} ×Q1 gives

{{y} × U : U is an open subset of Q1}
as a basis for the inherited topology. Thus, the map sending (y, z) to z, for
z ∈ Q1, is trivially a homeomorphism from {y} ×Q1 onto Q1. �
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Lemma 8. For n ∈ N, the set A is a path-component of Xn.

Proof. The set A = {y} × {0} × [−1, 1] is clearly path-connected. Now
suppose ω : [0, 1] → Xn is a path such that ω(0) = (y, (0, 0)). We wish
to show that ω([0, 1]) ⊆ A. By Lemma 6, A is closed in Qn, so ω−1(A)
is closed in [−1, 1]. Observe from the definition of βn that {y} × Qn+1 is
open in Xn. Thus ω−1({y} ×Qn+1) is an open subset of [−1, 1], and hence
a disjoint union of relatively open intervals. By Lemma 7, A is a path-
component of {y} × Qn+1. Thus ω−1(A) is a union of path components of
ω−1({y} × Qn+1). But the path-components of ω−1({y} × Qn+1) are just
disjoint relatively open intervals in [0, 1], hence ω−1(A) is also a disjoint
union of relatively open intervals in [0, 1], so ω−1(A) is open in [0, 1]

By hypothesis, ω(0) ∈ A, so ω−1(A) is nonempty. Thus ω−1(A) is a
nonempty, closed, and open subset of [−1, 1], hence it is all of [−1, 1]. �

Note that Proposition 5 is a formal consequence of Lemma 8.

Remark. The spaces Xn are, in fact, compact and hence they, and the
space X, are compactly generated. Therefore, our example also applies to
the version of the category of compactly generated spaces [4] without the
T1 axiom.
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(Aleš Pultr) KAM, MFF Charles University, Malostranske nam.25, 11800 Praha
1, Czech Republic
pultr@kam.mff.cuni.cz

This paper is available via http://nyjm.albany.edu/j/2015/21-15.html.

http://www.ams.org/mathscinet-getitem?mr=1324104
http://zbmath.org/?q=an:0309.55016
http://www.ams.org/mathscinet-getitem?mr=0866482
http://zbmath.org/?q=an:0611.55001
http://dx.doi.org/10.1007/BFb0075778
http://www.ams.org/mathscinet-getitem?mr=0196744
http://zbmath.org/?q=an:0142.21503
http://zbmath.org/?q=an:0142.21503
http://dx.doi.org/10.1215/S0012-7094-66-03352-7
http://www.ams.org/mathscinet-getitem?mr=0210075
http://zbmath.org/?q=an:0145.43002
http://dx.doi.org/10.1307/mmj/1028999711
mailto:bbranman@umich.edu
mailto:ikriz@umich.edu
mailto:pultr@kam.mff.cuni.cz
http://nyjm.albany.edu/j/2015/21-15.html

	1. Introduction
	2. The example
	3. Proof that X is not the homotopy colimit of Xn
	References

