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Weakly mixing and rigid rank-one
transformations preserving an infinite

measure

Rachel L. Bayless and Kelly B. Yancey

Abstract. In this paper we study the compatibility of rigidity with
various notions of weak mixing in infinite ergodic theory. We prove
that there exists an infinite measure-preserving transformation that is
spectrally weakly mixing and rigid, but not doubly ergodic. We also
construct an example to show that rigidity is compatible with rational
ergodicity. At the end of the paper we explore the structure of rigidity
sequences for infinite measure-preserving transformations that have er-
godic Cartesian square, as well as the structure of rigidity sequences for
infinite measure-preserving transformations that are rationally ergodic.
All of our constructions are via the method of cutting and stacking.
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1. Introduction

The generic transformation in the set of all invertible transformations that
preserve a finite measure is both rigid and weakly mixing [20]. There have
been many recent developments toward characterizing the possible rigidity
sequences for weakly mixing maps (see [4], [10], [16], [17]). In this paper, we
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are interested in what happens when you move from finite ergodic theory to
infinite ergodic theory (for more information see [2]). It is well-known that
there are many equivalent definitions of weak mixing for transformations
that preserve a finite measure. In infinite ergodic theory, however, these
notions are no longer equivalent. Thus, the question becomes, which notions
of weak mixing are compatible with rigidity in infinite ergodic theory? If
they are compatible, what do the constructions look like and can we analyze
their rigidity times?

For the remainder of this paper, we will be working with invertible trans-
formations that preserve an infinite measure. We will be concerned with
three types of weak mixing: spectral weak mixing, double ergodicity, and
ergodicity of the Cartesian square. In [11] it was shown that ergodicity of
the Cartesian square implies double ergodicity, which in turn implies spec-
tral weak mixing. However, the reverse implications do not hold (see [6] and
[11]).

Even though there are many nonequivalent notions of weak mixing, many
generic results still remain valid. Consider the set of all automorphisms pre-
serving an infinite measure equipped with the weak topology. In 2000 Choksi
and Nadkarni proved that the generic transformation in this space has infi-
nite ergodic index [13]. Since transformations with infinite ergodic index also
have ergodic Cartesian square, all of the types of weak mixing mentioned
above are also generic. In 2001 Ageev and Silva proved that rigidity is a
generic property within the same set of automorphisms [9]. Finally, in the
recent work of Bozgan et al. they show that rank-one transformations are
generic [12]. Thus, the typical infinite measure-preserving automorphism is
rank-one, rigid, and has ergodic Cartesian square. We will construct explicit
examples of transformations with these properties and use the constructions
to take the first step toward characterizing rigidity times for weakly mixing
transformations that preserve an infinite measure. Our constructions are
via the method of cutting and stacking.

The first main theorem of the paper cannot be obtained with categorical
methods.

Theorem A. There exists an infinite measure-preserving rank-one trans-
formation that is spectrally weakly mixing and rigid, but not doubly ergodic.

The second main theorem of this paper can be obtained via the categorical
arguments outlined above, but we give a constructive proof.

Theorem B. There exists an infinite measure-preserving rank-one trans-
formation that has ergodic Cartesian square and is rigid.

In this paper, we also explore the compatibility of rigidity with rational
ergodicity. Rational ergodicity and weak rational ergodicity were introduced
in 1977 by Aaronson [1]. When T : X → X is an invertible transformation
that preserves a probability measure, µ, the Birkhoff ergodic theorem states
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that ergodicity of T is equivalent to

(1.1)
1

N

N−1∑
k=0

µ(T kA ∩B) = µ(A)µ(B) as N →∞,

for every pair of measurable sets A,B ⊂ X. On the other hand, if X
has infinite measure, then the Cesaro averages above converge to 0 for all
sets A,B of finite measure. In [1] Aaronson showed that there exists no
sequence of normalizing constants so that (1.1) converges to µ(A)µ(B) and
introduced the definitions of rational ergodicity and weak rational ergodicity.
Recently, in [12] and [14] these notions were explored in the setting of rank-
one transformations. In [3] Aaronson proved that the set of weakly rationally
ergodic transformations is a meager subset of the set of infinite measure-
preserving transformations. In the same paper, it was shown that rational
ergodicity implies weak rational ergodicity, and the validity of the reverse
implication remains open. Thus, determining whether rational ergodicity
is compatible with rigidity must come from a construction. With that in
mind, we have the following theorem:

Theorem C. There exists an infinite measure-preserving rank-one trans-
formation that is rationally ergodic and rigid.

Finally, we use the ideas from the constructions in Theorems B and C to
prove the following theorems which give a set of conditions under which a
given sequence can be realized as a rigidity sequence for a transformation
with ergodic Cartesian square or a rationally ergodic transformation.

Theorem D. Let (nm) be an increasing sequence of natural numbers such
that nm+1

nm
→∞. There exists an infinite measure-preserving rank-one trans-

formation that has ergodic Cartesian square and is rigid along (nm).

Theorem E. Let (nm) be an increasing sequence of natural numbers such
that nm+1

nm
→ ∞. Furthermore, assume that nm+1 = 2kmnm + rm where

0 ≤ rm < nm. There exists an infinite measure-preserving rank-one trans-
formation that is rationally ergodic and rigid along (nm).

In the next section, we provide definitions and briefly review the method
of cutting and stacking. In Section 3, we discuss rank-one constructions
that are rigid and weak mixing. In Section 4, we construct an example
to show the compatibility of rigidity with rational ergodicity. Finally, in
Section 5, we analyze rigidity sequences for weakly mixing transformations
and rationally ergodic transformations.

2. Preliminaries

Let (X,B, µ) be a σ-finite measure space. We assume throughout this
paper that µ(X) =∞ and T : X → X is invertible and measure-preserving.

We begin with the definition of rigidity in this setting.
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Definition 1. The transformation T is rigid if there exists an increasing
sequence of natural numbers (nm) such that

lim
m→∞

µ(TnmA4A) = 0

for all sets A of finite positive measure.

We now give three nonequivalent definitions of weak mixing for transfor-
mations that preserve an infinite measure.

Definition 2. The transformation T is spectrally weakly mixing if f ∈ L∞
and f ◦T = λf for some λ ∈ C implies that f is constant almost everywhere.

Definition 3. The transformation T is doubly ergodic if for every pair of
positive measure sets A,B, there exists a time n such that

µ(TnA ∩A) > 0 and µ(TnA ∩B) > 0.

Definition 4. The transformation T has ergodic Cartesian square if T × T
is ergodic with respect to µ× µ.

As was mentioned in the introduction, the following string of strict im-
plications was shown in [11]:

ergodic Cartesian square =⇒ double ergodicity

=⇒ spectral weak mixing.

The following notation will be used in the definition of weak rational
ergodicity. Let F ∈ B be a set of finite positive measure. The intrinsic
weight sequence of F is given by

uk(F ) =
µ(F ∩ T kF )

µ(F )2
.

Furthermore, let

an(F ) =
n−1∑
k=0

uk(F ).

The following definition introduces a property in the spirit of (1.1) that
may also be satisfied by transformations that preserve an infinite measure.

Definition 5. A conservative ergodic transformation T is weakly rationally
ergodic if there exists an F ∈ B with 0 < µ(F ) <∞ such that

1

an(F )

n−1∑
k=0

µ(A ∩ T kB)→ µ(A)µ(B) as n→∞,

for all measurable A,B ⊆ F .

Finally, rational ergodicity (defined below) is stronger than weak rational
ergodicity and requires the transformation to satisfy a Renyi inequality on
a finite measure set.
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Definition 6. A conservative ergodic transformation T is rationally ergodic
if there exists an M <∞ and F ∈ B with 0 < µ(F ) <∞ such that

(2.1)

∫
F

(
n−1∑
k=0

1F ◦ T k
)2

dµ ≤M

(∫
F

(
n−1∑
k=0

1F ◦ T k
)
dµ

)2

,

for all n ∈ N.

2.1. Basics of cutting and stacking. In this paper, we construct trans-
formations that are rigid and exhibit each of the above types of weak mixing,
as well as transformations that are rigid and rationally ergodic. All of our
examples are obtained via cutting and stacking. That is, we inductively
define a sequence of towers, Cn, each of height hn. Each Cn is a column
of hn disjoint intervals with equal measure denoted by {In,0, ..., In,hn−1}.
The elements of Cn are called levels. We often refer to In,0 as the bottom
level and In,hn−1 as the top level of Cn. A transformation, Tn, is defined on
{In,0, ..., In,hn−2} by moving up one level. That is, Tn(In,i) = In,(i+1) for all
0 ≤ i < hn − 1. Note that Tn is not defined on the top level of Cn. Thus,
we must define Cn+1 by first cutting Cn into qn subcolumns of equal width.
That is, for each 0 ≤ i ≤ hn − 1 we cut the ith level into qn pieces, and we

denote these pieces by I
[0]
n,i, I

[1]
n,i, ..., I

[qn−1]
n,i . We may then add any number

of new levels (called spacers) above each subcolumn. Now, we stack every
subcolumn of Cn above the subcolumn to its left to form Cn+1. Thus, Cn+1

consists of qn copies of Cn which may be separated by spacers. Finally, we
define T = limn→∞ Tn. The transformation T is called a rank-one map.

We now define a notion of rigidity related specifically to rank-one trans-
formations.

Definition 7. The sequence (nm) is rigid for CN if

lim
m→∞

µ(TnmE4E) = 0

for every level E of CN .

Remark 1. If (nm) is rigid for every CN , then the transformation T is rigid
along (nm). A proof of this fact can be found in [10] Lemma 3.14.

The following two approximation lemmas will be used in the proofs of the
main theorems, so we state them here for completeness. Lemma 2.1 is a
consequence of the double approximation lemma, and a proof can be found
in [11].

Lemma 2.1. Let A,B ⊂ [0,∞) be sets of positive measure and let the levels
I, J ⊂ Cn be such that

µ(I ∩A) + µ(J ∩B) > δµ(I)

with the level J distance d above the level I (that is, T dI = J). If the levels

I, J are cut into n+ 2 equal pieces, I [0], . . . , I [n+1] and J [0], . . . , J [n+1], then
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there exists k ∈ N such that

µ
(
I [k] ∩A

)
+ µ

(
J [k] ∩B

)
> δµ(I [k])

and J [k] is distance d above I [k] in Cn+1.

A higher dimensional version of the double approximation lemma can be
found in [15]. Using the same methods as [11] proves the following lemma.

Lemma 2.2. Let A,B ⊂ [0,∞)× [0,∞) be sets of positive measure and let
the levels I1, I2, J1, J2 ⊂ Cn be such that

µ× µ((I1 × J1) ∩A) + µ× µ(I2 × J2) ∩B) > δµ(I1)µ(J1)

where T d1I1 = I2 and T d2J1 = J2. If the levels I1, I2, J1, J2 are cut into

n+ 2 equal pieces, I
[0]
i , . . . , I

[n+1]
i and J

[0]
i , . . . , J

[n+1]
i for i = 1, 2, then there

exists k, l ∈ N such that

µ× µ
((
I
[k]
1 × J

[l]
1

)
∩A

)
+ µ× µ

((
I
[k]
2 × J

[l]
2

)
∩B

)
> δµ

(
I
[k]
1

)
µ
(
J
[l]
1

)
,

with I
[k]
2 distance d1 above I

[k]
1 and J

[l]
2 distance d2 above J

[l]
1 in Cn+1.

2.2. Hajian–Kakutani +1 construction is not rigid. The Hajian–
Kakutani transformation was originally constructed in [19], and it is a clas-
sical example of a rank-one map that preserves an infinite measure. A mod-
ified version called the Hajian–Kakutani +1 (denoted HK(+1) for short)
arises from adding one additional spacer to the original construction. It
was shown in [7] that the HK(+1) construction is spectrally weakly mixing.
Thus, it is natural to ask if this transformation is also rigid. It was shown in
[18] that the HK(+1) transformation is not multiply recurrent and hence not
rigid. We give a different proof (via explicit calculation) that the HK(+1)
transformation is not rigid along any sequence.

We begin by describing the steps in the construction of HK(+1). The
first stage, C0, consists of the interval [0, 1). Thus, the initial height h0 = 1.
In general, suppose we have already constructed the Cn tower, which is a
union of hn levels. To construct Cn+1 from Cn do the following:

(1) Cut Cn into 2 equal pieces.
(2) Stack the right subcolumn of Cn on top of the left subcolumn.
(3) Add 2hn + 1 spacers to the end to form Cn+1.

At each stage of the construction, notice that the total height of the tower
is hn+1 = 4hn + 1.

Proposition 2.3. The HK(+1) construction is not rigid.

Proof. To show that this construction is not rigid, it suffices to find a set
E of positive finite measure such that lim infn→∞ µ(TnE4E) > 0.

Let E = [0, 1). Suppose for a contradiction, that

lim inf
n→∞

µ(TnE4E) = 0.
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I
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.
.
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n,0
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n,1
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I
[0]
n,hn−1

I
[1]
n,0

I
[1]
n,hn−1

2hn + 1 spacers

Cn Cn+1

Figure 1. Construction of Cn+1 for the HK(+1) transformation.

Let ε > 0, and let N be such that N ∈ [hn, hn+1 − 1] and µ(TNE4E) < ε.
Before we proceed, we need some notation for how levels in Cn appear in

Cn+3. Let In,0 be the bottom level of the Cn-th tower.
Define

ej =


0, if j = 0, 2, 4, 6

2hn + 1, if j = 1, 5

10hn + 4, if j = 3.

Let kj for j = 0, 1, 2, . . . , 7 be defined by

k0 = 0, kj+1 = kj + hn + ej .

Let

Yj =

hn−1⋃
i=0

T i+kjIn+3,0

for j = 0, 1, 2, . . . , 7. Then, Yj+1 = T hn+ejYj for j = 0, 1, 2, . . . , 6.
Notice that hn+1 = 4hn + 1. Thus N = ahn + b where a = 1, 2, 3 and

0 ≤ b ≤ hn. Let

ej,a =


ej , if a = 1

ej + ej+1, if a = 2

ej + ej+1 + ej+2, if a = 3.

Then TNYj = T ahn+bYj = T b−ej,aYj+a.
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Suppose S1, S2 are two sets of positive measure. By S1
ε
≈ S2 we will mean

µ(S14S2) < ε. Thus,

TN (E ∩ Yj) = TNE ∩ TNYj
ε
≈ E ∩ T b−ej,aYj+a

for 0 ≤ j ≤ 7− a. Also notice that

TN (E ∩ Yj) = T b−ej,a(E ∩ Yj+a)
for 0 ≤ j ≤ 7− a. Putting these together we see that

E ∩ Yj+a
ε
≈ T−b+ej,aE ∩ Yj+a.

Thus E
8ε
≈ T−b+ej,aE. Since we can find j, j′ such that

∣∣ej,a − ej′,a∣∣ = 8hn+3,

we have that E
16ε
≈ T 8hn+3E.

Recall that E = [0, 1) and thus the set E is a proper subset of Yj ’s. Hence

E ∩ T 8hn+3E = ∅, which contradicts E
16ε
≈ T 8hn+3E. �

3. Weakly mixing constructions

3.1. Spectral weak mixing and rigidity. In this section, we explore
transformations that are barely weakly mixing and rigid. We do this by
constructing a transformation that is spectrally weakly mixing and rigid,
but not doubly ergodic. The existence of such a transformation does not
follow from categorical methods since the set of spectrally weakly mixing
transformations that are not doubly ergodic is of first category.

Theorem A. There exists an infinite measure-preserving rank-one trans-
formation that is spectrally weakly mixing and rigid, but not doubly ergodic.

We will begin by describing the construction. The first stage, C0, consists
of the interval [0, 1). Thus, the initial height h0 = 1. In general, suppose we
have already constructed the Cn-th tower, which is a union of hn levels. To
construct Cn+1 from Cn do the following:

(1) Cut Cn into n+ 2 equal pieces.
(2) Compute the quantity an = dn+2

3 e.
(3) Stack the subcolumns of Cn to form Cn+1 in the following order:

anhn stacks, two spacers, (n+ 2− an)hn stacks, 2hn − 1 spacers.

At each stage of the construction, notice that the total height of the tower
is hn+1 = (n + 4)hn + 1. The total number of spacers added to form Cn+1

is 2hn + 1, and this ensures that our transformation preserves an infinite
measure. That is, T : [0,∞) → [0,∞). To see this, let Sn be the union
of spacers that are added to form the n-th tower Cn. Let εn = 2hn+1

(n+4)hn+1 .

Then
µ(Sn+1)

µ(Cn+1)
=

2hn + 1

hn+1
=

2hn + 1

(n+ 4)hn + 1
= εn.

Since
∑∞

n=0 εn+1 =∞, T preserves an infinite measure.
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.

I
[0]
n,0

I
[0]
n,1

I
[an]
n,hn−1

I
[an+1]
n,0

I
[n+2]
n,hn−1

an pieces

n+ 2 pieces

.

.

.

.

.

.

.

.

.

I
[n+2]
n,hn−1

I
[an+1]
n,0

I
[an]
n,hn−1

I
[0]
n,1

I
[0]
n,0

anhn stacks

2 special spacers

(n+ 2− an)hn stacks

2hn − 1 spacers

Cn Cn+1

Figure 2. Construction of Cn+1 for a transformation that
is spectrally weakly mixing and rigid, but not doubly ergodic.

Intuitively, the “special spacers” (i.e., the two spacers placed over the an-
th subcolumn of Cn) are what allow us to prove spectral weak mixing, while
at the same time not destroying rigidity. Also, the fact that the number of
special spacers is two is what precludes double ergodicity. Before proving
Theorem A, we need the following two lemmas.

Lemma 3.1. Suppose I is an interval and A is a set of positive measure such
that µ(A ∩ I) > 11

12µ(I). Furthermore suppose that the interval I is divided
into three equal pieces I1, I2, I3. Then there exists a positive measure set A′

such that A′, A′ + 1
3µ(I) ⊂ A where A′ ⊂ I1. Moreover, µ(A′) > 1

10µ(I).

Proof. To begin, suppose that µ(I) = 1. Let Ai = A∩ Ii for i = 1, 2. Since
the µ(A ∩ I) > 11

12 we have that

µ(Ai) ≥ µ(A ∩ I)− µ(I1)− µ(I2) >
11

12
− 2

3
=

1

4
.

Let A′ = A1 ∩
(
A2 − 1

3

)
. It remains to show that µ(A′) > 1

10 . Suppose

for a contradiction that µ(A′) ≤ 1
10 . Then,
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1

3
= µ (I1) ≥ µ (A1) + µ

(
A2 −

1

3

)
− µ

(
A1 ∩

(
A2 −

1

3

))
>

1

4
+

1

4
− 1

10
=

2

5

which is a contradiction. Therefore A′ is our desired set. �

Lemma 3.2. The map T 2 is ergodic.

Proof. Let A and B be subsets of [0,∞) of positive measure. To prove
ergodicity of T 2 we must find a time m such that µ(T 2mA ∩B) > 0. Let n
be large enough so that µ(A ∩ I) > 23

24µ(I) and µ(B ∩ J) > 23
24µ(J) where

I, J are levels of Cn. Suppose J is above I in Cn and specifically T dI = J .
We now have two cases that depend on the parity of d.

Case 1. d is even. Let d = 2m. Then µ(T 2m(A ∩ I) ∩ (B ∩ J)) > 0 since I
and J are both 11

12 full of A and B respectively.

Case 2. d is odd. Let d = 2` + 1. Let Cn+M be the next stage in the
construction such that n+M + 2 is an odd multiple of 3. Apply the double
approximation lemma (Lemma 2.1) to the levels I and J of Cn, M consec-
utive times to obtain levels I, J of Cn+M such that T dI = J and

µ(A ∩ I) + µ(B ∩ J) >

(
2− 1

12

)
µ(I).

Note that µ(I) = µ(J). Then,

µ(A ∩ I) >
11

12
µ(I)

µ(B ∩ J) >
11

12
µ(J).

Tower Cn+M is cut into n + M + 2 = 3an+M pieces and the subcolumn
an+M has 2 special spacers added above it to form the tower Cn+M+1. Let
n + M + 2 = 3k where k is odd. Since the levels I and J are 11

12 -full of
the sets A and B respectively, by Lemma 3.1 there exists sets A1 ⊂ A and
B1 ⊂ B of positive measure such that A1 belongs to the left third of the
level I and T d(A1 + 1

3µ(I)) = B1.
Consider the quantity khn+M + 2 + d. Since k, hn+M , and d are odd

integers, the sum khn+M + 2 + d is even. Let khn+M + 2 + d = 2m. Then,

µ(T 2mA1 ∩B1) = µ(T khn+M+2+dA1 ∩B1) = µ(B1) > 0. �

The proof of Theorem A is given in the form of the following three lemmas,
where each lemma highlights the individual properties that the transforma-
tion, T , exhibits.

Lemma 3.3. The map T is spectrally weakly mixing.
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Proof. Suppose for a contradiction that f ∈ L∞([0,∞)) is a nonconstant
eigenfunction with eigenvalue λ. Thus f ◦ T = λf . Our plan is to restrict
the eigenfunction to a set of finite measure and apply standard arguments.

Let f = f �[0,1), and let x ∈ [0, 1). If k is such that T kx ∈ [0, 1), then

f(T kx) = f(T kx) = λkf(x) = λkf(x).

Note that f ∈ L2([0, 1)). Thus, we may approximate f be a linear combina-
tion of characteristic functions. Let ε > 0. Let g ∈ L2([0, 1)) be such that∥∥g − f∥∥

2
< ε where g is a linear combination of characteristic functions of

the levels of some Cn. Note that g is only defined on the levels of Cn that
belong to [0, 1). Also, assume that ‖g‖2 = 1.

Now, let E1 ⊂ Cn be the rn := anhn bottom stacks of tower Cn+1

intersected with [0, 1). That is, E1 =
(⋃anhn−1

i=0 In+1,i

)
∩ [0, 1). Then

µ(E1) = an
n+2 >

1
4 . Notice that g �E1= g ◦ T rn+2 �E1 and∥∥g ◦ T rn+2 �E1 −λrn+2g �E1

∥∥
2
≤
∥∥g ◦ T rn+2 �E1 −f ◦ T rn+2 �E1

∥∥
2

+
∥∥f ◦ T rn+2 �E1 −λrn+2f �E1

∥∥
2

+
∥∥λrn+2f �E1 −λrn+2g �E1

∥∥
2

≤ 2
∥∥g − f∥∥

2

< 2ε.

Putting these together, we see that∥∥g �E1 −λrn+2g �E1

∥∥
2
< 2ε

which implies ∣∣λrn+2 − 1
∣∣ ‖g �E1‖2 < 2ε.

Thus, ∣∣λrn+2 − 1
∣∣ < 2ε

‖g �E1‖2
=

2ε√
µ(E1)

< 4ε.

Let E2 ⊂ Cn be the rn stacks of Cn+1 that follow the special spacer,
intersected with [0, 1). In a similar manner, you can show that |λrn − 1| <
4ε. Therefore, ∣∣λ2 − 1

∣∣ =
∣∣λrn+2 − λrn

∣∣ < 8ε

and λ2 = 1. Consider,

f(T 2x) = λ2f(x) = f(x).

This is a contradiction since T 2 is ergodic by Lemma 3.2. �

Lemma 3.4. The map T is rigid along the height sequence.

Proof. To see that T is rigid consider the sequence of heights (hn). Let L
be a level of CN . Recall that L is cut into N + 2 equal pieces before being

stacked to form CN+1. Observe, µ(T hnL4L) ≤ 2µ(L)
n+2 for all n ≥ N . Hence

T is rigid along (hn). �
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Lemma 3.5. The map T is not doubly ergodic.

Proof. To show that T is not doubly ergodic we need to find two sets of
positive measure, A and B, such that there does not exist a time n ∈ N
where µ(TnA ∩A) > 0 and µ(TnA ∩B) > 0 simultaneously.

Let A = I1,0 and B = I1,1, that is A and B are the bottom two levels of
C1. Define NA,A and NA,B by

NA,A = {n ∈ N : µ(TnA ∩A) > 0}
NA,B = {n ∈ N : µ(TnA ∩B) > 0}.

Thus, we need to show that NA,A ∩NA,B = ∅. Since A and B are one level
apart, that is TA = B, it suffices to prove that the set of differences of NA,A

does not contain the element one. Hence, we need to show 1 6∈ (NA,A−NA,A).
Let Nn

A,A = NA,A ∩ {1, 2, . . . , hn − 1}. Then NA,A =
⋃∞
n=2N

n
A,A. We will

show that 2 is the smallest positive number in NA,A −NA,A by inductively
analyzing Nn

A,A −Nn
A,A.

First consider the tower C2. Let d1 = h1 + 2 and d2 = h1. Note that d1
and d2 are consecutive differences between the levels of A in C2. Then,

N2
A,A =

{
k′∑
i=k

di : 1 ≤ k ≤ k′ ≤ 2

}
.

Clearly the smallest possible positive difference between elements of N2
A,A is

2.
Now consider the tower Cn for some n ≥ 2. Let d1, d2, . . . , dmn be con-

secutive differences between the levels of A in Cn, where mn = (n+1)!
2 − 1.

Then

Nn
A,A =

{
k′∑
i=k

di : 1 ≤ k ≤ k′ ≤ mn

}
.

By our inductive hypothesis, we can assume that the smallest positive dif-
ference between elements of Nn

A,A is 2.
Consider the tower Cn+1. There are mn+1 + 1 levels of A in Cn+1. Let

d1, . . . , dmn+1 represent consecutive differences between the levels of A in
Cn+1. Notice that

d1+j = d1, d2+j = d2, . . . dmn+j = dmn ,

where j has the form j = k(mn+ 1) (k a nonnegative integer) and mn+ j ≤
mn+1. Also,

dk(mn+1) =

{
hn − (d1 + · · ·+ dmn) + 2, if k = an = dn+2

3 e
hn − (d1 + · · ·+ dmn), otherwise.

Thus, the smallest positive difference between elements of Nn+1
A,A is also 2.

This completes our inductive argument. �
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Remark 2. In the above construction, if we instead added only one special
spacer after the first anhn stacks and 2hn spacers at the end, then an ar-
gument almost identical to the one in Lemma 3.3 shows that the resulting
transformation is spectrally weakly mixing. It can also be shown that this
construction is doubly ergodic on the levels. That is, if I, J are levels of some
CN , then there exists a time n such that µ(TnI∩I) > 0 and µ(TnI∩J) > 0.
It was, however, shown in [11] that there exist transformations that are dou-
bly ergodic on intervals but not doubly ergodic, and the question of whether
this transformation is doubly ergodic remains open.

3.2. Ergodicity of the Cartesian square and rigidity. In this section,
we give a constructive proof of the following theorem.

Theorem B. There exists an infinite measure-preserving rank-one trans-
formation that has ergodic Cartesian square and is rigid.

Let us begin by describing the construction. The first stage, C0, consists
of the interval [0, 1). Thus, the initial height is h0 = 1. Define the sequence
(sn) by s0 = 1, s1 = 2, s2 = 1, s3 = 2, s4 = 3, s5 = 1, . . .. It is clear that (sn)
cycles through every natural number infinitely often. In general, suppose
we have already constructed the Cn tower, which is a union of hn levels. To
construct Cn+1 from Cn do the following:

(1) Cut Cn into n+ 2 equal pieces.
(2) Compute the quantity an = dn+2

3 e.
(3) Stack the subcolumns of Cn to form Cn+1 in the following order:

anhn stacks, sn spacers, (n+ 2− an)hn stacks, 2hn + 1− sn spacers.

This construction is very similar to the previous construction in Sec-
tion 3.1. In particular, the number of total number of spacers added to
form Cn+1 is still 2hn + 1. Thus, as before, hn+1 = (n + 4)hn + 1, and T
preserves an infinite measure. The two constructions differ in the amount of
special spacers that we place over the an-th subcolumn. Intuitively, allowing
the number of spacers added above the an-th subcolumn to cycle through
every number infinitely often is what allows us to prove ergodicity of the
Cartesian square, while at the same time not destroying rigidity.

Before we prove Theorem B, we prove the following proposition.

Proposition 3.6. The transformation T is doubly ergodic and rigid.

Proposition 3.6 is indeed implied by our main result (Theorem B), as
ergodicity of the Cartesian square implies double ergodicity. We have, how-
ever, chosen to include a separate statement and proof because the proof
technique is similar to that in Theorem B but much cleaner. Upon conclu-
sion of the proof of Proposition 3.6, we will prove Theorem B.

The following counting lemma will be used in the proof of Proposition 3.6.

Lemma 3.7. Suppose I is an interval and A is a set of positive measure
such that µ(A ∩ I) > 11

12µ(I). Furthermore suppose that the interval I is
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divided into three equal pieces I1, I2, I3. Then there exists a positive measure
set A′ such that A′, A′ + 1

3µ(I), A′ + 2
3µ(I) ⊂ A.

Proof. To begin, suppose that µ(I) = 1. Let Ai = A ∩ Ii for i = 1, 2, 3.
Since the µ(A ∩ I) > 11

12 we have that

µ(Ai) ≥ µ(A ∩ I)− µ(I1)− µ(I2) >
11

12
− 2

3
=

1

4
.

Let A′ = (A1) ∩
(
A2 − 1

3

)
∩
(
A3 − 2

3

)
. It remains to show that A′ has

positive measure. Suppose for a contradiction that µ(A′) = 0. First observe
that

µ

((
A2 −

1

3

)
∩
(
A3 −

1

3

))
≤ µ (I1)− µ (A1) <

1

3
− 1

4
=

1

12
.

Now,

6

12
< µ

(
A2 −

1

3

)
+ µ

(
A3 −

2

3

)
≤ µ

((
A2 −

1

3

)
∪
(
A3 −

2

3

))
+ µ

((
A2 −

1

3

)
∩
(
A3 −

2

3

))
< µ (I1) +

1

12
=

5

12

which is a contradiction. Therefore A′ is our desired set. �

Proof of Proposition 3.6. Similar to the construction in Section 3.1, T
is rigid by Lemma 3.4. Thus, we need only show double ergodicity. To that
end, let A,B ⊂ [0,∞) be sets of positive measure. Our goal is show that
there exists a time m such that µ(TmA∩A) > 0 and µ(TmA∩B) > 0. Let
n be large enough so that µ(A ∩ I) ≥ 23

24µ(I) and µ(B ∩ J) ≥ 23
24µ(J) where

I, J are levels of Cn. Without loss of generality, suppose that the level J is
d levels above I in Cn. That is, T dI = J .

Let Cn+M be the next stage in the construction such that the tower Cn+M
has d special spacers added above the an+M -th subcolumn to form Cn+M+1.
Apply the double approximation lemma (Lemma 2.1) to the levels I and J
of Cn, M consecutive times to obtain levels I, J of Cn+M such that T dI = J
and

µ(A ∩ I) + µ(B ∩ J) > (2− 1

12
)µ(I).

Note that µ(I) = µ(J), so

µ(A ∩ I) >
11

12
µ(I)

µ(B ∩ J) >
11

12
µ(J).

To make the picture more clear, assume that n + M + 2 is divisible by
3. That is, the tower Cn+M is cut into 3an+M pieces, and the an+M -th
subcolumn has d special spacers added above it to form the tower Cn+M+1.
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Since the levels I and J are 11
12 -full of the sets A and B respectively, by

Lemma 3.7 there exists sets A1 ⊂ A, A2 ⊂ A, and B ⊂ B of positive measure
such that A1 belongs to the left third of the level I, A1 + 1

3µ(I) = A2, and

T d(A2 + 1
3µ(I)) = B.

.

.

.
d special spacers added to construct Cn+M+1

.

.

.

.

.

.

.

.

.
I

J

In+M,0

In+M,hn+M−1

A1 A2

B

an+M pieces

T d(I) = Jhn+M levels

Cn+M

Figure 3. Illustration of I and J in Cn+M along with the
placement of sets A1, A2, and B.

Now observe the following:

T an+Mhn+M+dA1 = A2

T an+Mhn+M+dA2 = T d(A2 +
1

3
µ(I)) = B.

If we let m = an+Mhn+M + d, then we have the result. �

We are now ready to prove Theorem B. Similar to the proof of double er-
godicity, finding levels in an advantageous location to approximate arbitrary
sets is a critical element of the proof.

Proof of Theorem B. Again, the argument in Lemma 3.4 shows that T
is rigid. Thus, our goal is to show that the map T × T is ergodic. That is,
given sets of positive measure, E1, E2 ⊂ [0,∞)× [0,∞), there exists a time
m such that µ× µ((T × T )mE1 ∩ E2) > 0.

Let n be large enough so that µ× µ(E1 ∩ (I1 × J1)) > 199
200µ(I1)µ(J1) and

µ × µ(E2 ∩ (I2 × J2)) > 199
200µ(I2)µ(J2) where I1, I2, J1, J2 are levels of Cn.

Without loss of generality, suppose that I2 is above I1 and J2 is above J1
in Cn. Let d1, d2 be such that T d1I1 = I2 and T d2J1 = J2. Suppose that
d1 > d2, and let k be such that d1 = d2 + k.
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Let Cn+M be the next stage in the construction such that the tower Cn+M
has k special spacers added above the an+M -th subcolumn to form Cn+M+1.
Apply Lemma 2.2 to the squares I1 × J1 and I2 × J2, M consecutive times
to obtain squares I1× J1 and I2× J2 where I1, I2, J1, J2 are levels in Cn+M ,
T d1I1 = I2 and T d2J1 = J2, and

µ× µ
(
E1 ∩

(
I1 × J1

))
+ µ× µ

(
E2 ∩

(
I2 × J2

))
>

(
2− 1

100

)
µ
(
I1
)
µ
(
J1
)
.

Then,

µ× µ
(
E1 ∩

(
I1 × J1

))
>

99

100
µ
(
I1
)
µ
(
J1
)

µ× µ
(
E2 ∩

(
I2 × J2

))
>

99

100
µ
(
I1
)
µ
(
J1
)
.

Let πi be the projection map onto the i-th coordinate. Notice that since
µ× µ(Ei ∩ (Ii × Ji)) > 99

100µ(Ii)µ(Ji), we have that

µ(π1(Ei) ∩ Ii) >
99

100
µ(Ii) >

11

12
µ(Ii),

µ(π2(Ei) ∩ Ji) >
99

100
µ(Ji) >

11

12
µ(Ji)

for i = 1, 2.
To make the picture more clear, assume that n + M + 2 is divisible by

3. That is, the tower Cn+M is cut into 3an+M pieces, and the subcolumn
an+M has k special spacers added above it to form the tower Cn+M+1. Since
the levels J1 and J2 are 11

12 -full of the sets π2(E1) and π2(E2) respectively,
by Lemma 3.1 there exists sets A2 ⊂ π2(E1) and B2 ⊂ π2(E2) of measure
at least 1

10µ(J1) such that A2 belongs to the left third of the level J1 and

T d2(A2 + 1
3µ(J1)) = B2.

A similar calculation can be carried out with levels I1 and I2 to obtain
sets A1 ⊂ π1(E1) and B1 ⊂ π1(E2) of measure at least 1

10µ(I1) such that A1

belongs to the middle third of the level I1 and T d1(A1 + 1
3µ(I1)) = B1.

Now observe the following

T an+Mhn+M+d1A1 = T d1
(
A1 +

1

3
µ(I1)

)
= B1

T an+Mhn+M+d1A2 = T d2
(
A2 +

1

3
µ(J1)

)
= B2.

Let m = an+Mhn+M + d1. Note that µ × µ(A1 × A2) >
1

100µ(I1)µ(J1)

and (T ×T )m(A1×A2) = B1×B2. Since Ei is at least 199
200 -full of Ii×Ji we

have that µ×µ((A1×A2)∩E1) > 0 and µ×µ((B1×B2)∩E2) > 0. Hence,
µ× µ((T × T )mE1 ∩ E2) > 0. �

Recently, we learned of the work of Adams and Silva who produced an
example of an infinite measure-preserving rank-one transformation that has
ergodic Cartesian square and is rigid [8].
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.

.

.
k special spacers added to construct Cn+M+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I1

I2

J1

J2

In+M,0

In+M,hn+M−1

T d1(I1) = I2

T d2(J1) = J2

A1

B1

A2

B2

an+M pieces

hn+M levels

Cn+M

Figure 4. Illustration of I1, I2, J1, and J2 in Cn+M along
with an example placement of sets A1, A2, B1, and B2.

4. Rationally ergodic construction

In this section, we will show that rigidity is compatible with rational er-
godicity. Recall that rational ergodicity implies weak rational ergodicity,
which is a meager subset of the set of infinite measure-preserving transfor-
mations [3]. Thus, we cannot establish compatibility through categorical
arguments, and instead prove the following theorem.

Theorem C. There exists an infinite measure-preserving transformation
that is rationally ergodic and rigid.

A recent theorem proved independently by Aaronson et al. [5] and Bozgan
et al. [12] shows that all rank-one transformations with a bounded number
of cuts are boundedly rationally ergodic. Bounded rational ergodicity is
stronger than rational ergodicity, and we will appeal to this theorem to prove
rational ergodicity of our construction. Note that the rigidity of our previous
constructions hinged on the number of cuts going to infinity. Thus, in an
effort to reconcile two seemingly contradictory properties, we will realize
a rank-one construction with an unbounded number of cuts as a rank-one
construction with a bounded number of cuts by rarely adding spacers.

Now, let us describe our construction. Begin with the interval [0, 1) as
the first stage, C0. The initial height is then h0 = 1. Define the sequence
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(sn) by

sn =

{
2hn if n = 2k for some k ∈ {0, 1, 2, . . .}
0 otherwise.

In general, suppose we have already constructed the Cn-th tower. To con-
struct Cn+1 do the following:

(1) Cut Cn into 2 equal pieces.
(2) Stack the subcolumns of Cn to form Cn+1 in the following order:

2hn stacks, sn spacers.

The construction resembles the Hajian–Kakutani transformation from 1970
[19], but spacers are only added when the stage of the construction is a
power of 2.

Proof of Theorem C. It is clear from the description that T is a rank-one
transformation with 1 cut. Appealing to the above mentioned theorem in
[5] or [12], we immediately obtain that T is rationally ergodic.

We now show that T is rigid along the sequence (nm) where nm =
h2m−1+1. This sequence was obtained from the heights of the towers that
directly follow the addition of spacers. Let E be a level of CN . Let M be the
smallest positive integer such that hN ≤ nM . Notice that to obtain C2M−1+1

from C2M−1 we cut the h2M−1 levels of C2M−1 into 2 equal pieces, stack the
two subcolumns right on left, and then add s2M−1 = 2h2M−1 spacers at the
top. We wish to observe what happens to the set E under nM iterations of
T . Recall that nM is the height of tower C2M−1+1. Since there are no spacers

added again until the 2M stage of the construction, to analyze TnME \E it
is best to consider E in the C2M+1 tower. Here we observe,

µ(TnME \ E) ≤ 1

22M−2M−1 µ(E) =
1

22M−1 µ(E).

Similarly, for all m such that hN ≤ nm we have

µ(TnmE4E) ≤ 2

22m−2m−1 µ(E) =
2

22m−1 µ(E) =
1

22m−1−1µ(E).

Since 1

22m−1−1
→ 0 as m→∞ we have rigidity. �

Remark 3. Intuitively, the above construction can be thought of as a rank-
one construction where the Cm-th tower is of height nm. To obtain Cm+1

from Cm, you cut Cm into 22
m−1

equal pieces and then stack as follows:

22
m−1

nm stacks and 2h2m spacers.

5. Rigidity sequences

In this section we will explore which sequences can be realized as rigidity
sequences for two different types of transformations preserving an infinite
measure. First, we prove a theorem on rigidity sequences for weakly mixing
transformations (inspired by a proposition in [10]). Second, we prove a
theorem on rigidity sequences for rationally ergodic transformations.
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Theorem D. Let (nm) be an increasing sequence of natural numbers such
that nm+1

nm
→∞. There exists a rank-one, infinite measure-preserving trans-

formation that has ergodic Cartesian square and is rigid along (nm).

Proof. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. Without loss of generality, define n0 = 1 and suppose that

nm+1

nm
≥ 4 for all m ≥ 0. Our construction will be a variant of the construc-

tion in Section 3.2.
Write nm+1 as nm+1 = qmnm + rm where 0 ≤ rm < nm. Let pm be the

least positive integer such that pmnm+rm
nm+1

≥ 1
m+1 for all m ≥ 0. If we let

εm = pmnm+rm
nm+1

, then
∑∞

m=0 εm = ∞ and εm → 0. Also notice that nm+1

can be written as nm+1 = (qm − pm)nm + pmnm + rm where qm − pm ≥ 2
for all m ≥ 0 and qm − pm →∞.

Now we will describe the construction. The sequence nm will be the
height of the Cm tower, that is hm = nm. The first stage, C0, consists of
the interval [0, 1). Thus the initial height h0 = 1 = n0. Define the sequence
(sm) by s0 = 1, s1 = 2, s2 = 1, s3 = 2, s4 = 3, s5 = 1, . . .. It is clear that (sm)
cycles through every natural number infinitely often. In general, suppose
we have already constructed the Cm tower, which is a union of hm = nm
levels. To construct Cm+1 from Cm do the following:

(1) Cut Cm into qm − pm equal pieces.
(2) Compute the quantity am = d qm−pm3 e.
(3) Stack the subcolumns of Cm to form Cm+1 in the following order:

amhm stacks, sm spacers, (qm−pm−am)hm stacks, pmhm+rm−sm
spacers.

Notice that since pmhm = pmnm > m+ 1 for all m ≥ 0 and sm ≤ m+ 1,
there are a positive number of spacers placed at the end of the Cm+1 tower.
A proof similar to that of Theorem B shows that this construction has
ergodic Cartesian square and is rigid along the sequence of heights, which is
(nm). Also similar to before, the fact that

∑∞
m=0 εm = ∞ guarantees that

T preserves an infinite measure. �

Remark 4. Is there an example of an infinite measure-preserving rank-one
transformation that is weakly mixing and rigid along a sequence (nm) where
the ratios do not tend to infinity? More specifically, does there exist a rank-
one transformation preserving an infinite measure that is weakly mixing and
rigid along nm = 2m?

Motivated by the construction in Theorem C, we now generalize possible
rigidity sequences for rationally ergodic transformations.

Theorem E. Let (nm) be an increasing sequence of natural numbers such
that nm+1

nm
→∞. Furthermore, assume that nm+1 = 2kmnm + rm where 0 ≤

rm < nm. Then there exists an infinite measure-preserving transformation
that is rationally ergodic and rigid along (nm).
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Proof. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. Without loss of generality, define n0 = 1 and suppose that

nm+1

nm
≥ 5 for all m ≥ 0. Suppose that nm+1 can be written as nm+1 =

2kmnm + rm where 0 ≤ rm < nm.
Let pm = 2km−1 and εm = pmnm+rm

nm+1
. Then εm > 1

4 for all m ≥ 0.

Therefore,
∑∞

m=0 εm = ∞. Before we explicitly describe the construction,
we will try to give the intuition. If we were to proceed in a manner similar
to the previous theorem, then we would cut the nm levels of Cm into 2km −
pm = 2km−1 equal pieces, stack them left to right and add pmnm + rm =
2km−1nm + rm spacers to the end. However, this would not produce a rank-
one transformation with a bounded number of cuts, which is what we need
in order to guarantee rational ergodicity. With that in mind, we will cut the
tower into 2 equal pieces and stack left to right. This process will continue
km− 1 times, at which point we will add the appropriate number of spacers
to double the measure. Now we will describe the construction explicitly.

Begin with the interval [0, 1) as the first stage, C0. The initial height is
then h0 = 1. Define the sequence (sn) by

sn =

{
2km−1nm + rm if n = km + km−1 + · · ·+ k0 − (m+ 2)

0 otherwise.

In general, suppose we have already constructed the Cn tower. To construct
Cn+1 do the following:

(1) Cut Cn into 2 equal pieces.
(2) Stack the subcolumns of Cn to form Cn+1 in the following order:

2hn stacks, sn spacers.

The first thing to notice about the construction is that most of the time
you are simply cutting the existing tower into two pieces and stacking them,
much like an odometer. However at certain times, namely along the se-
quence of times when sn is nonzero, spacers are being added. The fact that∑∞

m=0 εm = ∞ guarantees that T preserves an infinite measure. Also, it is
clear that the number of cuts is bounded and thus by a theorem in [5] or
[12], T is rationally ergodic.

We now show that T is rigid along the sequence (nm). Note that n0 =
1 = h0 and in general nm = hkm−1+···+k0−m for m ≥ 1. Let E be a level of
CN . Let M be the smallest positive integer such that hN ≤ nM . We wish
to observe what happens to the set E under nM iterations of T . Similar to
the proof of rigidity in Section 4, since there are no spacers added after the
stage that has height nM until the kM + · · · + k0 − (M + 2) stage of the
construction, it is best to view E as a union of levels in CkM+···+k0−(M+1).
Observe,

µ(TnME \ E) ≤ 1

2kM−1
µ(E).
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Similarly, for all m such that hN ≤ nm we have

µ(TnmE4E) ≤ 2

2km−1
µ(E).

Since 1
2km−1 → 0 as m→∞ we have rigidity. �

Remark 5. In the above proof the key ingredients are that the ratios of
the sequence go to infinity and that we can realize the corresponding rank-
one construction with the number of cuts tending to infinity as a rank-one
construction with a bounded number of cuts. This observation leads to a
generalization of the above theorem.

Theorem 5.1. Suppose (nm) is an increasing sequence of natural numbers
such that nm+1

nm
→ ∞ and write nm+1 = qmnm + rm. If there exists K > 0

such that for all m ≥ 0 we can find numbers a1, . . . , a`m with ai ≤ K where
d qm2 e = a1 · · · a`m then there exists an infinite measure-preserving transfor-
mation that is rationally ergodic and rigid along (nm).
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