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A prime number theorem for finite Galois
extensions

Andrew J. Hetzel and Eric B. Morgan

Abstract. Let F be an algebraic number field and let PF (r) denote
the number of nonassociated prime elements of absolute field norm less
than or equal to r in the corresponding ring of integers. Using informa-
tion about the absolute field norms of prime elements and Chebotarev’s
density theorem, we readily show that when F is a Galois extension of
Q, it is the case that PF is asymptotic to 1

h
π, where π is the standard

prime-counting function and h is the class number of F . Along the way,
we pick up some well-known facts on the realizability of certain prime
numbers in terms of those binary quadratic forms associated with the
field norm over a ring of integers that is a unique factorization domain.
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1. Introduction

Since the establishment of the prime number theorem (PNT) in 1896 by
Jacques Hadamard [2] and Charles Jean de la Vallée-Poussin [8], mathemati-
cians have sought to develop analogues of PNT in other venues where the
notion of “prime element” is well-defined. In fact, analogues of PNT have
been produced all the way from algebraic function fields in one variable over
a finite field [3] to additive number systems [1] to geodesics on a compact
surface with a Riemannian metric of curvature −1 [5]. However, for the
classical context of rings of integers of algebraic number fields, the standard
analogue of PNT, due to Edmund Landau [4], has been the “prime ideal
theorem”: in a ring of integers O of an algebraic number field, the number
of prime ideals of O grows asymptotically as π, the standard prime-counting
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function. While such an analogue concerns prime elements in the context
of the groups of divisors of such rings, it does not directly address prime
elements in the rings themselves, that is, elements α ∈ O with the property
that for all β, γ ∈ O, it is the case that α |βγ → α |β or α | γ.

In this short note, we seek to partially remedy this issue by establishing a
similar asymptotic result as in the prime ideal theorem for a function PF (r)
that counts the number of nonassociated prime elements of absolute field
norm ≤ r in a given ring of integers O of a finite Galois extension F of
Q. Most certainly, PF (r) is bounded above by the number of prime ideals
of O of norm ≤ r, where the norm of the prime ideal P of O is defined
to be the cardinality of the factor ring O/P. However, our main theorem,
Theorem 2.9, reveals that in fact PF is asymptotic to 1

hπ, where h is the
class number of F . Along the way, we pick up several well-known facts about
field norms and certain binary quadratic forms.

2. Results

We begin with a proposition that provides the essential information on
field norms for the achievement of the titular goal of this paper.

Proposition 2.1. Let F/Q be a finite field extension with corresponding
field norm N and let O be the ring of integers of F . Let α ∈ O. If |N(α)| =
p, where p is a prime, then α is a prime element of O. Conversely, if α
is a prime element of O, then for some prime p, it must be the case that
|N(α)| = pm, where m is a positive divisor of the degree of the normal
closure of F over Q. Moreover, if F/Q is itself a Galois extension, this p
uniquely determines m and uniquely determines α up to conjugates, in the
sense that if β is a prime element of O such that |N(β)| = pr for some
natural number r, then r = m and β is a conjugate of α.

Proof. Let α ∈ O and suppose that |N(α)| = p for some prime p. Note
that |N(α)| = |O/αO| and that αO = Pe1

1 Pe2
2 · · · Pes

s , where P1,P2, . . . ,Ps

are distinct prime ideals of O and the ei’s are natural numbers. But then
p = Πs

i=1|O/P
ei
i |, whence s = 1 and e1 = 1. Therefore, α is a prime element

of O.
The “conversely” statement follows from basic information concerning in-

ertial degrees within Galois extensions and the “moreover” statement follows
from the fact that any two principal prime ideals of O the lie above the same
prime p must be Galois conjugates of each other. �

We pause briefly in the next several results to consider the special sit-
uation of Galois extensions of prime degree, particularly where the corre-
sponding ring of integers is a unique factorization domain. In this context,
Corollary 2.2 below reveals that the prime elements of such a ring of inte-
gers may be completely characterized in terms of the absolute value of the
associated field norm.
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Corollary 2.2. Let F/Q be a Galois extension of prime degree with corre-
sponding field norm N and let O be the ring of integers of F . Let α ∈ O.
If α is a prime element of O, then one of the following must hold:

(1) |N(α)| is prime.
(2) α = pu, where u is a unit of O and p is a prime not of the form
|N(β)| for some β ∈ O.

If O is further assumed to be a unique factorization domain, then the
converse is true, as well.

Proof. Put q = [F : Q]. For the forward direction, by Proposition 2.1, it
suffices to show that if α is a prime element of O such that |N(α)| = pq,
where p is prime, then α = pu, where u is a unit of O, and p is not of the
form |N(β)| for some β ∈ O. Let α be such an element. Since the inertial
degree of p in O must be q, it follows that p is inert in O. As such, pO = αO,
and we have that α = pu, where u is a unit of O. Moreover, if p = |N(β)|
for some β ∈ O, then the above proposition asserts that β would be a prime
element of O. But then the inertial degree of p in O would be 1 and not q.

For the converse, assume further that O is a unique factorization domain.
By the above proposition, it suffices to show that if α ∈ O meets condition
(2) of the corollary, then α is a prime element of O. Suppose that α is
such an element. If α is not prime, then by the assumption on O, it is
reducible. Moreover, α = π1π2 · · · πs, where each πi is prime and s ≥ 2.
Then ±pq = N(α) = Πs

i=1N(πi). By the first part of the corollary, it must
be the case that, for any given πi, either |N(πi)| = p or πi = pu for some
unit u in O. However, if πi = pu for some unit u in O, then N(πi) = ±pq,
whence s = 1. Thus, for each i = 1, 2, . . . , s, we must have that |N(πi)| = p,
a contradiction to the hypothesis on p given in condition (2). Therefore, α
must be a prime element of O. �

In the further specialized circumstance of rings of integers that are unique
factorization domains in quadratic extensions over Q, Proposition 2.3 shows
that for almost all prime numbers, the property of being a quadratic residue
is sufficient to guarantee that the prime number is of the first type indicated
in Corollary 2.2. For the sake of generality, Proposition 2.3 is couched in
terms of “prime integers”, which are simply prime elements in the ring Z.

Proposition 2.3. Let O be the ring of integers of a quadratic algebraic
number field with radicand D and p be a (possibly negative) prime integer
such that (p,D) = 1.

(a) If p = N(α) for some α ∈ O, then p is a quadratic residue modulo
|D|.

(b) If D ≡ 3 (mod 4) and p is an odd prime for which p = N(α) for
some α ∈ O, then p is a quadratic residue modulo 4|D|.

If O is further assumed to be a unique factorization domain and p a (pos-
sibly negative) prime integer such that |p| > |D|, then we have the following:
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(c) If D ≡ 1 (mod 4) and p is a quadratic residue modulo |D|, then
|p| = |N(α)| for some α ∈ O.

(d) If D ≡ 2 (mod 4) and p is a quadratic residue modulo 4|D|, then
|p| = |N(α)| for some α ∈ O.

(e) If D ≡ 3 (mod 4) and p is a quadratic residue modulo 4|D|, then
|p| = |N(α)| for some α ∈ O.

Proof. (a),(b) Straightforward.
(c) Observe that quadratic reciprocity guarantees that D is a quadratic

residue modulo |p|. As such, p is not a prime element of O. Since O is
a unique factorization domain, p is reducible, whence there exist nonunits
α, β ∈ O such that p = αβ. But then p2 = N(p) = N(α)N(β), and the
result follows.

(d),(e) These proofs are similar to the proof of part (c). �

From Proposition 2.3, we readily obtain a well-known result concerning
the representability of certain prime numbers in terms of particular binary
quadratic forms.

Corollary 2.4. Let p be a prime. Then we have the following:

(a) p = a2 + b2 for some a, b ∈ Z if and only if either p = 2 or p is a
quadratic residue modulo 4.

(b) p = a2 + 2b2 for some a, b ∈ Z if and only if either p = 2 or p ≡ 1, 3
(mod 8).

(c) For each of D = 3, 7, 11, 19, 43, 67, 163, we have that

p = a2 + ab+
1 +D

4
b2

for some a, b ∈ Z if and only if either p = D or p is a quadratic
residue modulo D.

Proof. Note that the (positive definite) binary quadratic forms indicated
in the statement of the corollary correspond to the norms on OF , where
F = Q(

√
D) with D = −1,−2,−3,−7,−11,−19,−43,−67,−163, respec-

tively. Moreover, it is well-known that each such ring of integers is a unique
factorization domain (in fact, these are all the quadratic rings of integers
with negative radicand that are unique factorization domains). Therefore,
save a straightforward check that |D| (or 2 in the case of D = −1), and all
primes p < |D| that are quadratic residues modulo |D| (or 4|D| in the case
of D = −1) are representable by the corresponding binary form, all parts
except (b) follow from Proposition 2.3. The equivalence in (b), however, is
well-known. �

We return now to the major goal of this paper, the asymptotics of the
prime-counting function for finite Galois extensions of Q. To this end, we
provide the appropriate notation below.
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Notation 2.5. Let OF be the ring of integers of an algebraic number field
F and N the field norm for F . Let r be a positive real number. Then

PF (r) = |{[α] | α is a prime element of OF and |N(α)| ≤ r}|

where the indicated equivalence class is determined by the associates equiva-
lence relation. Less formally, PF (r) will denote the number of nonassociated
prime elements α of OF for which |N(α)| ≤ r.

Notation 2.6. Let OF be the ring of integers of an algebraic number field
F over Q and N the field norm for F . Let r be a positive real number.
Then AF (r) will denote the number of primes p such that |N(α)| = p ≤ r
for some α ∈ OF , and BF (r) will denote the number of primes p such that
|N(α)| = pm ≤ r, where m > 1, for some prime element α ∈ OF .

Exploiting the information on prime elements given in Proposition 2.1,
Proposition 2.7 below provides some useful bounds on the PF function.

Proposition 2.7. Let F/Q be a Galois extension of degree n. Then there
exists a positive constant C such that for all r > 0,

n [AF (r)− C] ≤ PF (r) ≤ n [AF (r) + BF (r)]

Proof. Let α be a prime element of OF such that |N(α)| ≤ r. By Proposi-
tion 2.1, it must be the case that |N(α)| = pm for some prime p and positive
divisor m of n. Moreover, this p uniquely determines m and uniquely deter-
mines α up to conjugates. Since there are at most n pairwise nonassociated
conjugates of α, we have that PF (r) ≤ n[AF (r) + BF (r)].

Now, also by Proposition 2.1, if p is a prime for which there exists α ∈ OF

such that |N(α)| = p, then α is a prime element of OF . Moreover, since
F/Q is a Galois extension, such a p is either ramified or completely split as
a product of exactly n principal prime ideals in OF . Note that there are
only finitely many primes that are ramified in F (in particular, p is ramified
in F if and only if p |∆F , where ∆F is the discriminant of F ). Put C equal
to the number of ramified primes p for which |N(α)| = p for some α ∈ OF ,
so that for any r, the quantity AF (r)−C is a lower bound on the number of
primes p ≤ r that completely split as a product of n principal prime ideals
in OF . The inequality n [AF (r)− C] ≤ PF (r) now follows. �

One of the critical pieces of information that we will need for our main
theorem is Chebotarev’s density theorem [7], which we record below. While
Chebotarev’s density theorem was originally couched in terms of Dirichlet
density, it is important to note that it is equally as valid for natural density
(see [6, p. 31]). This fact allows for its utility here.

Chebotarev’s Density Theorem. Let F/Q be a finite Galois extension
with Galois group G. Then for any conjugacy class C of G, the (natural)
density of the set of primes p for which the Frobenius automorphism σp ∈ C
is |C|/|G|.
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Thanks to Chebotarev’s density theorem, we may now give an asymptotic
result for the AF function in terms of the standard prime-counting function
π and, consequently, the desired asymptotic result for the PF function.

Proposition 2.8. Let F/Q be a Galois extension of degree n. Then

AF ∼
1

nh
π,

where h is the class number of F .

Proof. Let K be the Hilbert class field of F and let OF be the ring of
integers of F . Note that K is Galois over Q of degree nh. Let S(r) be the
number of primes p ≤ r that completely split in K. Observe that if σp is
the Frobenius automorphism for the prime p, then p is completely split in
K if and only if σp is an element of the trivial conjugacy class of Gal(K/Q).
As such, Chebotarev’s density theorem implies that S ∼ 1

nhπ.
Now, the Hilbert class field K has the property that a prime ideal P of

OF is principal if and only if P splits completely in K. Furthermore, observe
that an unramified prime p (in F ) is counted by the AF function if and only
if p splits completely in F as a product of principal prime ideals of OF . Thus,
if C is equal to the number of ramified primes in F , then AF (r)−C ≤ S(r).
Now, assume p is completely split in K. Then the inertial degree of p in K/Q
must be 1, and so the inertial degree of any prime factor of p in F in K/F
must also be 1. As such, since K/F is unramified, it must be the case that
any prime factor of p in F is completely split in K, whence any prime factor
of p in F must be principal. Combined with the fact that the inertial degree
of p in F/Q is also necessarily 1, it follows that p is a prime counted by the
AF function. In particular, S(r) ≤ AF (r). Therefore, AF ∼ S ∼ 1

nhπ. �

Theorem 2.9. Let F/Q be a finite Galois extension. Then

PF ∼
1

h
π,

where h is the class number of F .

Proof. By Propositions 2.7 and 2.8, it suffices to show that BF = o(π).
However, by Proposition 2.1, it follows that BF (r) ≤ π(

√
r) for all r > 1.

Since the prime number theorem itself guarantees that

lim
r→∞

π(
√
r)/π(r) = 0,

it must be the case that BF = o(π), and the proof is complete. �
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Math. Intelligencer 18 (1996), no. 2, 26–37. MR1395088 (97e:11144), Zbl 0885.11005,
doi: 10.1007/BF03027290.

[7] Tschebotareff, N. Die Bestimmung der Dichtigkeit einer Menge von Primzahlen,
welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann. 95 (1926), no. 1,
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