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Infinitesimal local boundary dilatation
attained by asymptotical extremal

Guowu Yao

Abstract. In this paper, we prove the existence of an asymptotical
extremal in an infinitesimal equivalence class as a locally extremal rep-
resentative at a boundary point.
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1. Introduction

Let S be a plane domain with at least two boudary points. The Teich-
müller space T (S) is the space of equivalence classes of quasiconformal maps
f from S to a variable domain f(S). Two quasiconformal maps f from S to
f(S) and g from S to g(S) are equivalent if there is a conformal map c from
f(S) onto g(S) and a homotopy through quasiconformal maps ht mapping
S onto g(S) such that h0 = c◦f , h1 = g and ht(p) = c◦f(p) = g(p) for every
t ∈ [0, 1] and every p in the boundary of S. Denote by [f ] the Teichmüller
equivalence class of f ; also sometimes denote the equivalence class by [µ]
where µ is the Beltrami differential of f .

Denote by Bel(S) the Banach space of Beltrami differentials

µ = µ(z)dz̄/dz

on S with finite L∞-norm and by M(S) the open unit ball in Bel(S).
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The cotangent space to T (S) at the basepoint is the Banach space Q(S)
of integrable holomorphic quadratic differentials on S with L1-norm

‖ϕ‖ =

∫∫
S
|ϕ(z)| dxdy <∞.

In what follows, let Q1(S) denote the unit sphere of Q(S).
Two Beltrami differentials µ and ν in Bel(S) are said to be infinitesimally

equivalent if ∫∫
S

(µ− ν)ϕdxdy = 0, for any ϕ ∈ Q(S).

The tangent space Z(S) of T (S) at the basepoint is defined as the quo-
tient space of Bel(S) under the equivalence relations. Denote by [µ]Z the
equivalence class of µ in Z(S).
Z(S) is a Banach space and its standard sup-norm is defined by

‖[µ]Z‖ := sup
ϕ∈Q1(S)

Re

∫∫
S
µϕdxdy = inf{‖ν‖∞ : ν ∈ [µ]Z}.

Define the (infinitesimal) boundary dilatation b([µ]Z) of [µ]Z to be the
infimum over all elements in the equivalence class [µ]Z of the quantity b∗(ν).
Here b∗(ν) is the infimum over all compact subsets E contained in S of the
essential supremum of the the Beltrami differential ν as z varies over S−E.

Define h∗(µ) to be the infimum over all compact subsets E contained in S
of the essential supremum norm of the Beltrami differential µ(z) as z varies
over S\E and h([µ]) to be the infimum of h∗(ν) taken over all representatives
ν of the class [µ].

Let p be a point on ∂S and let µ ∈M(S). Define

hp([µ]) = inf
{
h∗p(ν) : ν ∈ [µ]

}
,

to be the boundary dilatation of [µ] at p, where

h∗p(µ) = inf

{
esssup
z∈U

⋂
S
|µ(z)| :

U is an open neighborhood in C containing p

}
.

If µ ∈M(S), define

hp([µ]) = inf{h∗p(ν) : ν ∈ [µ]}.

It was proved by Fehlmann [3] for the unit disk and by Lakic [5] for the
plane domains that

h([µ]) = max
p∈∂S

hp([µ]).

For µ ∈ Bel(S), we use b∗p(µ) to denote h∗p(µ) and define

bp([µ]Z ]) = inf{b∗p(ν) : ν ∈ [µ]Z}
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to be the boundary dilatation of [µ]Z at p. The parallel result

b([µ]Z) = max
p∈∂S

bp([µ]Z)

for the plane domains was proved by Lakic in [5].
The following problem was proposed by F. Gardiner and N. Lakic in ([4],

page 335) as an open problem.

Problem 1. Let p be a boundary point of a plane domain S, and let τ ∈
T (S). Is there a locally extremal Beltrami differential µ representing the
class τ at the point p? That is, can we find a Beltrami differential µ ∈M(S)
such that τ = [µ] and h∗p(µ) = hp(τ)?

The problem was partly solved by Cui and Qi in [2] and the answer is
affirmative when S is the unit disk ∆. Recently, the author strengthened
their result in [7] by showing that h∗p(µ) = hp(τ) can be attained by an
asymptotically extremal representative µ ∈ τ . Naturally, the problem has
its counterpart in the infinitesimal case. That is:

Problem 2. Let p be a boundary point of a plane domain S, and let τ ∈
Z(S). Is there a locally extremal Beltrami differential µ representing the
class τ at the point p? That is, can we find a Beltrami differential µ ∈ Bel(S)
such that τ = [µ]Z and b∗p(µ) = bp(τ)?

Generally, µ ∈ Bel(S) is called an asymptotical extremal in [µ]Z if

b∗(µ) = b([µ]Z).

In this paper, we prove that the local boundary dilatation can be attained
by an asymptotical extremal which gives an affirmative answer to Problem 2
in a stronger sense.

Theorem 1. Let p be a boundary point of the unit disk ∆ and let τ ∈ Z(∆).
Then for any given ε > 0, there is an asymptotically extremal Beltrami
differential µ ∈ τ such that ‖µ‖∞ < ‖τ‖+ ε and b∗p(µ) = bp(τ).

The method used here can also be used to deal with some more general
cases.

2. Deformation of Beltrami differentials

In this section, we deform a Beltrami differential to obtain a new equiva-
lent Beltrami differential whose essential supremum can be controlled prop-
erly. The following infinitesimal main inequality (see [1]) is needed.

Theorem A. Let µ, ν ∈M(S). Suppose µ and ν are infinitesimally equiv-
alent. Then

(2.1)

∫∫
S
|ϕ|(1− |µ|2)dxdy ≤

∫∫
S
|ϕ|
∣∣∣∣1− µ ϕ

|ϕ|

∣∣∣∣2
∣∣∣∣1 + ν ϕ

|ϕ|
1−µ̄ ϕ

|ϕ|
1−µ ϕ

|ϕ|

∣∣∣∣2
1− |ν|2

dxdy

for all ϕ ∈ Q(S).
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The following lemma is Proposition 1 of Chapter 15 in [4].

Lemma 2.1. For every τ ∈ Z(S) and every ε > 0 there exists a represen-
tative η in τ such that ‖η‖∞ < ‖τ‖+ ε and b∗(η) = b(τ).

Suppose {Jn : n ∈ N} is a sequence of Jordan domains in ∆ with the
properties:

(1) ∆\J̄ is simply-connected where J = J0.
(2) Jn+1 $ Jn and Jn\J̄n+1 is simply-connected for all n ≥ 0.
(3) limn→∞ J̄n is a boundary point ζ ∈ ∂∆.

Set Un = ∆\J̄n for n ∈ N. It is easy to see that Un is simply-connected.

Theorem 2. Let ν ∈ Bel(∆) and let J , Jn given as the above. Then for
every given ε > 0, there exists some n ∈ N and µ ∈ Bel(∆) such that:

(1) µ ∈ [ν]Z .
(2) µ(z) = ν(z) restricted on Jn.
(3) ‖µ|Un‖∞ ≤ max{‖[ν]Z‖, ‖ν|J‖∞}+ ε.

Proof. Since Z(∆) is a Banach space, without loss of generality, we can
assume that ‖ν‖∞ < 1 − ε for small ε > 0. Regard [ν|Un ]Z as a point in
the space Z(Un). Then there is an infinitesimal extremal µn in [ν|Un ]Z such
that ‖µn‖∞ = ‖[ν|Un ]Z‖. It is obvious that ‖µn‖∞ ≤ ‖ν‖∞ < 1. If for some
n, ‖µn‖∞ ≤ max{‖[ν]Z‖, ‖ν|J‖∞}+ ε, then

(2.2) µ̃n(z) :=

{
µn(z), z ∈ Un,
ν(z), z ∈ J̄n

is the required Beltrami differential.
Now, we assume that ‖µn‖∞ > max{‖[ν]Z‖, ‖ν|J‖∞} + ε holds for all

n ∈ N. Then ‖[ν|Un ]Z‖ > b([ν|Un ]Z) and consequently by the infinitesimal
frame mapping theorem (see Theorem 2.4 in [6]) of Reich, µn is a Teichmüller
differential, i.e., µn = knϕn/|ϕn| (0 < kn < 1), where ϕn ∈ Q1(Un).

Claim. ϕn converges to 0 uniformly on any compact subset of ∆ as n→∞.

Note the condition limn→∞ J̄n=ζ ∈ ∂∆. We may assume, by contradic-
tion, that there is ϕ0 ∈ Q(∆), ϕ0 6≡ 0 and a subsequence {nj} of N with
nj < nj+1 such that ϕnj → ϕ0 as j → ∞. We may choose a subsequence
of µnj , also denoted by itself, such that knj → k0 as j → ∞. Thus, the
Teichmüller differential µnj converges to µ0 = k0ϕ0/|ϕ0| in ∆.

Observe that ‖µ̃nj‖∞ ≤ ‖ν‖∞ for all j > 0. We have µ0 ∈ [ν]Z and hence
µ0 is a Teichmüller extremal in [ν]Z . On the other hand, the assumption that
‖µn‖∞ > max{‖[ν]Z‖, ‖ν|J‖∞}+ε holds for all n ∈ N implies k0 ≥ ‖[ν]Z‖+ε.
This gives rise to a contradiction. The proof of Claim is completed.

Fix a positive integer N . By the definition of boundary dilatation, we
have

b([ν|UN
]Z) ≤ max{‖[ν]Z‖, ‖ν|J‖∞}.
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By Lemma 2.1, there exists a Beltrami differential νN ∈ [ν|UN
]Z such that

b∗(νN ) = b([ν|UN
]Z). So, there is a compact subset E ⊂ UN such that

|νN (z)| ≤ max{‖[ν]Z‖, ‖ν|J‖∞}+
ε

2

for almost all z ∈ UN\E.
For any n > N , let

ν̃n(z) :=

{
νN (z), z ∈ UN ,
ν(z), z ∈ Un\UN .

Then ν̃n ∈ [ν|Un ]Z (= [µn|Un ]Z). We apply the infinitesimal main inequality
(2.1) on Un and get∫∫

Un

|ϕn|(1− |µn|2)dxdy

≤
∫∫

Un

|ϕn|
∣∣∣∣1− µn ϕn|ϕn|

∣∣∣∣2
∣∣∣∣1 + ν̃n

ϕn

|ϕn|
1−µ̄n ϕn

|ϕn|
1−µn ϕn

|ϕn|

∣∣∣∣2
1− |ν̃n|2

dxdy

≤
∫∫

Un

|ϕn|
∣∣∣∣1− µn ϕn|ϕn|

∣∣∣∣2 1 + |ν̃n|
1− |ν̃n|

dxdy.

Notice that µn = knϕn/|ϕn|. We have∫∫
Un

|ϕn|(1− k2
n)dxdy ≤

∫∫
Un

|ϕn|(1− kn)2 1 + |ν̃n|
1− |ν̃n|

dxdy.

Thus,

1 + kn
1− kn

≤
∫∫

Un

|ϕn|
1 + |ν̃n|
1− |ν̃n|

dxdy

≤
∫∫

E
|ϕn|

1 + |ν̃n|
1− |ν̃n|

dxdy +

∫∫
Un\E

|ϕn|
1 + |ν̃n|
1− |ν̃n|

dxdy.

Choose ε̃ > 0 such that

1 + (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)

1− (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)
+ ε̃ ≤ 1 + (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε)

1− (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε)
.

Since ϕn converges to 0 on E as n→∞,∫∫
E
|ϕn|

1 + |ν̃n|
1− |ν̃n|

dxdy ≤ ε̃

holds for all sufficiently large n. On the other hand, by the definition of ν̃n,
we have∫∫

Un\E
|ϕn|

1 + |ν̃n|
1− |ν̃n|

dxdy ≤ 1 + (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)

1− (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)
.
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Hence we get

1 + kn
1− kn

≤ 1 + (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)

1− (max{‖[ν]Z‖, ‖ν|J‖∞}+ ε/2)
+ ε̃

and consequently,

kn ≤ max{‖[ν]Z‖, ‖ν|J‖∞}+ ε,

which completes the proof of Theorem 2. �

Unlike the Teichmüller equivalence class, the notion of the boundary map
is lost for the infinitesimal equivalence classes. The gluing method used in
[2] does not apply to prove our Theorem 2.

3. Proof of Theorem 1

We prove Theorem 1 by gluing Beltrami differentials in a suitable way. By
Lemma 2.1, we only need to prove Theorem 1 in the case bp(τ) < b(τ) := b.
Put δ = b(τ)− bp(τ). Define Jr = {z ∈ ∆ : |z − p| < r} for small r ∈ (0, 2)
and Ur = ∆\J̄r.

Step 1. By the definition of boundary dilatation, there is a Beltrami differ-
ential ν1 ∈ τ such that

b∗p(ν1) ≤ bp(τ) +
δ

23
.

By the definition of b∗p(ν1), there is some r1 > 0 such that

|ν1(z)| ≤ bp(τ) +
δ

2
< b, a.e. z ∈ Jr1 .

Applying Theorem 2, we can find some r′1 < r1 and a Beltrami differential

µ1 ∈ τ such that, µ1(z) = ν1(z) restricted on Jr′1 , ‖ν1|Jr′1‖∞ ≤ bp(τ) + δ
22

and

‖µ1|Ur′1
‖∞ < max{‖τ‖, ‖ν1|Jr1‖∞}+

ε

2
= ‖τ‖+

ε

2
.

It is not hard to see that b∗([µ1|Ur′1
]Z) = b. By Lemma 2.1, we can choose

η1 ∈ [µ1|Ur′1
]Z such that b∗(η1) = b and ‖η1‖∞ < ‖τ‖+ ε.

Step 2. Consider ν1(z) on Jr′1 and choose a Beltrami differential ν2 ∈ [ν1|Jr′1 ]Z

such that

b∗p(ν2) ≤ bp(τ) +
δ

24
.

There is some r2 < r′1 such that

|ν2(z)| ≤ bp(τ) +
δ

22
, a.e. z ∈ Jr2 .
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Again applying Theorem 2 on Jr′1 , we can find some r′2 < r2 and a Beltrami

differential µ2 ∈ [ν2|Jr′1 ]Z such that, µ2(z) = ν2(z) restricted on Jr′2 and

‖ν2|Jr′2‖∞ ≤ bp(τ) +
δ

23
,

‖µ2|Jr′1\Jr′2
‖∞ ≤ max{‖[ν2|Jr′1 ]Z‖, ‖ν2|Jr2‖∞}+

δ

22

= max{‖[ν1|Jr′1 ]Z‖, ‖ν2|Jr2‖∞}+
δ

22

≤ bp(τ) +
δ

22
+

δ

22
= bp(τ) +

δ

2
.

Step 3. Following the construction in Step 2, we get two sequences {rn} and
{r′n} and two sequences of Beltrami differentials {µn} and {νn} (n ≥ 2) with
the following conditions:

(i) rn < r′n−1 < rn−1 and limn→∞ rn = limn→∞ r
′
n = 0.

(ii) νn ∈ [νn−1|Jr′n−1
]Z and

b∗p(νn) ≤ bp(τ) +
δ

2n+2
,(3.1)

|νn(z)| ≤ bp(τ) +
δ

2n
, a.e. z ∈ Jrn .(3.2)

(iii) µn ∈ [νn−1|Jr′n−1
]Z , µn(z) = νn(z) restricted on Jr′n and

(3.3) ‖νn|Jr′n‖∞ ≤ bp(τ) +
δ

2n+1
,

‖µn|Jr′n−1
\Jr′n
‖∞ ≤ max{‖[νn|Jr′n−1

]Z‖, ‖νn|Jrn‖∞}+
δ

2n
(3.4)

= max{‖[νn−1|Jr′n−1
]Z‖, ‖νn|Jrn‖∞}+

δ

2n

≤ bp(τ) +
δ

2n
+

δ

2n
= bp(τ) +

δ

2n−1
.

Finally, we define

µ(z) :=



η1(z), z ∈ ∆\J̄r′1 ,
µ2(z), z ∈ J̄r′1\Jr′2 ,

...

µn(z), z ∈ J̄r′n−1
\Jr′n ,

...

Then µ ∈ τ . Inequality (3.4) indicates that b∗p(µ) = bp(τ). The choice of η1

together with (3.4) gives ‖µ‖∞ < ‖τ‖+ ε. It is clear that b∗(µ) = b(τ) and
hence µ is an asymptotical extremal.
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The proof of Theorem 1 is completed. �
At last, we note that the following corollary follows from the above proof

readily.

Corollary 3.1. Let p1, p2, · · · , pn be boundary points of the unit disk ∆ and
let τ ∈ Z(∆). Then for any given ε > 0, there is an asymptotically extremal
Beltrami differential µ ∈ τ such that ‖µ‖∞ < ‖τ‖ + ε and b∗pj (µ) = bpj (τ)

for all 1 ≤ j ≤ n.

There even exists an asymptotical extremal in [µ]Z assuming local ex-
tremal boundary dilatations at infinitely many boundary points whose es-
sential supremum is properly controlled as well.

Theorem 3. Let {pm} be a sequence of mutually different boundary points
of the unit disk ∆ and let τ ∈ Z(∆). Then for any given ε > 0, there is an
asymptotically extremal Beltrami differential µ ∈ τ such that ‖µ‖∞ < ‖τ‖+ε
and b∗pm(µ) = bpm(τ) for all m.

Proof. We use an inductive procedure. Let m ≥ 1. For any given ε > 0, by
Corollary 3.1 (actually by Theorem 1), there is an asymptotically extremal
Beltrami differential µm ∈ τ such that

‖µm‖∞ < ‖τ‖+
m∑
j=1

ε

2j
(3.5)

and b∗pj (µm) = bpj (τ) for all 1 ≤ j ≤ m.

Choose a small neighborhood of pm+1 in ∆, say

Bm+1 := {z ∈ ∆ : |z − pm+1| < ρm+1},
where ρm+1 is sufficiently small such that pm+1 is the only point of {pn}
that is contained in Bm+1.

Restrict µm on Bm+1. By Theorem 1, there is an asymptotically extremal
Beltrami differential µ̃m ∈ [µm|Bm+1 ]Z such that

‖µ̃m‖∞ < ‖[µm|Bm+1 ]Z‖+
ε

2m+1
(3.6)

and b∗pm+1
(µ̃m) = bpm+1([µm|Bm+1 ]Z).

Combining (3.5) and (3.6), we have

‖µ̃m‖∞ < ‖τ‖+
m+1∑
j=1

ε

2j
.(3.7)

Put

µm+1(z) :=

{
µm(z), z ∈ ∆\Bm+1,

µ̃m(z), z ∈ Bm+1.

It is easy to check that

‖µm+1‖∞ < ‖τ‖+
m+1∑
j=1

ε

2j
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and b∗pj (µm+1) = bpj (τ) for all 1 ≤ j ≤ m+ 1.

Thus, we can obtain two sequences {µm} and {Bm} with the above con-
ditions. Let

µ(z) :=



µ1(z), z ∈ ∆\
⋃∞
j=2Bj ,

µ2(z), z ∈ B2,
...

µm(z), z ∈ Bm,
...

Then µ ∈ τ is the desired asymptotically extremal Beltrami differential. �
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