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Periodic points on shifts of finite type and
commensurability invariants of groups

David Carroll and Andrew Penland

Abstract. We explore the relationship between subgroups and the pos-
sible shifts of finite type (SFTs) which can be defined on a group. In
particular, we investigate two group invariants, weak periodicity and
strong periodicity, defined via symbolic dynamics on the group. We
show that these properties are invariants of commensurability. Thus,
many known results about periodic points in SFTs defined over groups
are actually results about entire commensurability classes. Additionally,
we show that the property of being not strongly periodic (i.e., the prop-
erty of having a weakly aperiodic SFT) is preserved under extensions
with finitely generated kernels. We conclude by raising questions and
conjectures about the relationship of these invariants to the geometric
notions of quasi-isometry and growth.
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1. Introduction

Given a group G and a finite alphabet A, a shift (over G) is a nonempty
compact, G-equivariant subset of the full shift AG, where AG is a topological
space regarded as a product of discrete spaces. A shift of finite type (SFT)
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S over G is a shift defined by specifying a finite set of patterns that are
forbidden from appearing in elements of S.

It is natural to ask how properties of the group are related to the dy-
namical properties of its SFTs. Since it is possible to define essentially
equivalent SFTs on a group using different alphabets and different sets of
forbidden patterns, we should seek properties which are defined in terms of
all possible SFTs defined on the group.

One of the most natural properties of a dynamical system is the existence
and type of its periodic points. We say that G is weakly periodic if every
SFT defined on G has a periodic point, and we say G is strongly periodic if
every SFT defined on G has a periodic point with finite orbit. It should be
noted that weakly periodic is precisely the negation of what many authors
refer to as “the existence of a strongly aperiodic SFT.”

When the shifts in question are not required to be of finite type, the
question of periodic points is settled. Gao, Jackson, and Seward proved
that every countable group has a shift with no periodic points [10]. Pre-
viously, Dranishnikov and Schroeder had proved that having a shift with-
out strongly periodic points is a commensurability invariant [9]. They also
constructed strongly aperiodic shifts on torsion-free hyperbolic groups and
Coxeter groups.

Our objective is to show that for a group G, the dynamical properties
of SFTs on G are influenced by its finite index subgroups. We prove the
following results.

Theorem 1. Let G1 and G2 be finitely generated commensurable groups. If
G1 is weakly periodic, then G2 is weakly periodic.

Theorem 2. Let G1 and G2 be finitely generated commensurable groups. If
G1 is strongly periodic, then G2 is strongly periodic.

Theorem 3. Suppose 1→ N → G→ Q→ 1 is a short exact sequence of
groups and N is finitely generated. If G is strongly periodic, then Q is
strongly periodic.

From Theorem 3 we obtain a proof of the following result, which can also
be inferred from the work of Ballier and Stein in [1, Theorem 1.2].

Corollary 4. If G is a finitely generated group of polynomial growth

γ(n) ∼ nd,
where d ≥ 2, then G is not strongly periodic.

The study of periodic points in SFTs over arbitrary groups is well-es-
tablished and arises from two major sources. The first is a generalization of
classical symbolic dynamics, which considers shift spaces defined on Z or Z2,
to arbitrary semigroups [7] and groups [5]. For instance, the group Z is a
strongly periodic group, which follows from the fact (well-known in symbolic
dynamics) that every two-sided SFT contains a periodic point and the fact
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(well-known in group theory) that every subgroup of Z has finite index. The
proof is a straightforward exercise in the use of the well-known higher block
shift, a notion which we will generalize to arbitrary groups in Section 3.1. It
is worth noting that the higher block shift for arbitrary groups is implicitly
suggested in [16] and [5]. It follows from work of Piantadosi ([16], [17])
that a free group on n > 1 generators is weakly periodic but not strongly
periodic.

A second motivation for studying SFTs over arbitrary groups is connected
to tilings on Riemannian manifolds. Many authors have been interested in
sets of tiles which can tile (tesselate) a manifold without admitting any
translation (i.e., fixed-point-free) symmetries from the manifold’s isometry
group. In certain cases, such tilings naturally lead to shifts on a group. The
question of the existence of a set of tiles which can tesselate the plane R2

without any translation symmetries was first asked by Wang [18], who was
motivated by connections to decidability problems. Berger [2] constructed
such a set of tiles, now known as Wang tiles. From this work, it follows
that Z2 is neither weakly periodic nor strongly periodic. The generalization
of this result for free abelian groups of rank n > 2 is due to Culik and
Kari [8]. Block and Weinberger [3] used a homology theory connected to
coarse geometry to construct aperiodic tiling systems for a large class of met-
ric spaces, including all nonamenable manifolds. It follows from their results
that nonamenable groups are not strongly periodic. Mozes [15] constructed
aperiodic tiling systems for a class of Lie groups which contain uniform lat-
tices satisfying certain conditions. Mozes also associated these tiling systems
to labelings of vertices of the Cayley graph of a lattice. Using a homology
theory related to the one used by Block and Weinberger, Marcinkowski and
Nowak proved that a large class of amenable groups, namely those for which
all of maximal subgroups have index not divisible by some prime p, are not
strongly periodic [14]. This class includes the Grigorchuk group.

It should be noted that weakly periodic is precisely the opposite of what
some authors call strong aperiodicity or the existence of a strongly aperiodic
SFT, i.e., a SFT on G which has no G-periodic points. Recently, Cohen [6]
has independently obtained results connecting strong aperiodicity to the
coarse geometry of groups. In particular, he has shown that in the case of
finitely presented torsion-free groups, strong aperiodicity is a quasi-isometry
invariant, and that no group with at least two ends is strongly aperiodic.
Jeandel [13] showed that any finitely presented group with a strongly ape-
riodic SFT must have decidable word problem, disproving a conjecture of
Cohen’s that every one-ended group has a strongly aperiodic SFT. In addi-
tion, Jeandel constructed strongly aperiodic SFTs on a large class of groups.
Cohen also conjectured that strong aperiodicity is a quasi-isometric invari-
ant for all finitely generated groups, and this conjecture is still open. Since
commensurability implies quasi-isometry (but not vice versa), a proof of his
conjecture would subsume Theorem 1. The techniques we use in the paper
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are not explicitly geometric. However, Cohen’s results, as well as the con-
nection in other work between SFTs and isometry groups of Riemannian
manifolds, suggest that a deeper geometric investigation of SFTs on groups
is warranted.
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manuel Jeandel for providing useful feedback and our advisor Zoran Šunić
for his valuable guidance. Finally, we thank the anonymous referee for var-
ious helpful suggestions, including several references.

2. Background

2.1. Symbolic dynamics on groups. Throughout this section, we as-
sume A is a finite discrete set, called the alphabet, and G is an arbitrary
group. The set of all functions G → A is called the full shift of A over G
and is denoted AG. We endow AG with the product topology and the (con-
tinuous) left G-action defined by (gx)(h) = x(g−1h) for g, h ∈ G, x ∈ AG.
Elements of AG are called configurations. Often we just call AG the full shift
if A and G are understood.

A subset X ⊂ AG is shift-invariant if gx ∈ X for all g ∈ G, x ∈ X. The
stabilizer group of a configuration x will be denoted

StabG(x) = Stab(x) = {g ∈ G : gx = x},
and we call x ∈ AG weakly periodic, or just periodic, if Stab(x) is nontrivial.
If Stab(x) is of finite index in G, so that x has finite G-orbit, we call x
strongly periodic.

Definition. S ⊂ AG is a shift space (or shift) of A over G if S is closed
and shift-invariant.

An equivalent definition can be formulated as follows. Call a function
p : Ω→ A a pattern if Ω is a finite subset of G and write supp(p) = Ω. We
say p appears in a configuration x ∈ AG if (gx)

∣∣
Ω

= p for some g ∈ G. Then
we have:

Proposition 5. S ⊂ AG is a shift if and only if there exists a set of patterns

P ⊂
⋃

Ω⊂G
Ω finite

AΩ

such that S = {x ∈ AG : no p ∈ P appears in x}.

P as above is called a set of forbidden patterns for S. If P can be taken
to be finite, we call S a shift of finite type.
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Remark. Let S be a SFT and P be a finite set of forbidden patterns defining
S. We may assume that P ⊂ AΩ for a fixed finite subset Ω ⊂ G by taking
Ω ⊃

⋃
p∈P supp(p) and extending forbidden patterns in all possible ways. In

fact, if G is finitely generated, we may assume that Ω is a ball of radius n
with respect to some finite generating set of G.

Henceforth, we use the acronym SFT as shorthand for a nonempty shift
of finite type of some finite alphabet over a group.

Different shift spaces over a group G may use use differing alphabets.
Our primary concern is for properties common to all shift spaces over a
fixed group G, independent of the choice of finite alphabet. We begin with
two such invariants.

Definition. G is weakly periodic if every SFT over G contains a (weakly)
periodic configuration.

Definition. G is strongly periodic if every SFT over G contains a strongly
periodic configuration.

In other words, G is strongly periodic if every SFT over G contains a
point with finite orbit under the G-shift action. Currently the only known
strongly periodic groups of which the authors are aware are virtually cyclic
groups.

As mentioned in the introduction, the properties which we call weak peri-
odicity and strong periodicity have been established for several well-known
classes of groups. We mention that it is not hard to see that any finite group
is strongly periodic but not weakly periodic. For infinite groups, strongly
periodic implies weakly periodic.

2.2. Quasi-isometry and commensurability of groups. Here we give
a very brief introduction to certain geometric notions in group theory, nearly
all of which can be found in the textbook [12].

For the remainder of this subsection, let G be a group with a finite gen-
erating set A = {a1, a2, . . . , am}, so that any group element in G can be
represented by at least one word in A±1.

We define the length of g ∈ G to be the length of the shortest word in
A±1 which represents g. The length of g is denoted by |g|A, or |g| if A
is understood. This makes G a metric space with left-invariant distance
function dAG given by dAG(g1, g2) = |g−1

1 g2|A for g1, g2 ∈ G. This distance
is equivalent to the combinatorial distance between g1 and g2 in the right
Cayley graph of G with respect to A.

The growth function of G (with respect to A) is a map γAG : N→ N which
counts the number of elements in a ball of radius n with respect to dAG, i.e.,

γAG(n) = |{g ∈ G | |g| ≤ n}|.
The growth function γAG depends on A, but this dependence is superficial.
Take a partial order ≺ on growth functions so that f ≺ g if and only if
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there exists a constant C so that f(n) ≤ g(Cn) for all n ∈ N, and define an
equivalence relation on this set of functions so that ' where f ' g if and
only if f ≺ g and g ≺ f . We call an equivalence class under ' a growth type.
It is not hard to see that the growth type of a finitely generated group is an
invariant of the group (independent of the choice of finite generating set).

A striking connection between the growth of a group and algebraic prop-
erties of its finite index subgroups is due to Gromov [11]. Recall that if
P is a property of groups, a group G is virtually P if G has a finite index
subgroup which has the property P . If G and H are groups, we say that G
is virtually H if G has a finite index subgroup isomorphic to H.

Theorem 6 (Gromov). A finitely generated group has polynomial growth if
and only if it is virtually nilpotent.

Growth is related to the coarse geometry of a group, as expressed by the
notion of quasi-isometry.

Definition. Let X and Y be metric spaces. A map φ : X → Y is a quasi-
isometry if it satisfies the following properties:

(i) There exist constants B ≥ 1, C ≥ 0 such that for all x1, x2 ∈ X,

1

B
dX(x1, x2)− C ≤ dY (φ(x1), φ(x2)) ≤ BdX(x1, x2) + C.

(ii) There exists D ≥ 0 such that for any y ∈ Y , there exists x ∈ X with
dY (φ(x), y) ≤ D.

Quasi-isometry gives an equivalence relation on metric spaces which cap-
tures the large-scale aspects of their geometric structures. Intuitively, two
metric spaces are quasi-isometric if they are hard to tell apart from far away.
It is not hard to see that all bounded metric spaces are quasi-isometric to
one another, and that Zn is quasi-isometric to Rn for any n ≥ 1.

Two groups G1, G2 are said to be commensurable if there exists a group
H such that G1 and G2 are both virtually H. Commensurability is an equiv-
alence relation on the class of all groups. Commensurability implies quasi-
isometry, but the converse is not true (see [12, IV.44, IV.47, and IV.48]).

3. Some special SFTs on groups

In this section we construct some useful shifts of finite type and apply
them to the question of shift periodicity of groups.

3.1. Higher block shift. Let A be a finite set. Let G be a group, H
a subgroup of finite index, and T a finite set of elements of G such that
HT = G. Set B = AT . The higher block map ψH,T : AG → BH is defined
by (ψH,T (x))(h) = (h−1x)

∣∣
T

. In other words, ψH,T (x) is the configuration

z ∈ BH such that

(3.1) z(h)(t) = x(ht) for any h ∈ H, t ∈ T.
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Notice that (3.1) guarantees ψH,T is injective, as HT = G. However, not all

configurations z in BH are of the form (3.1) for some x ∈ AG—one needs to
restrict to those which overlap correctly.

We define a set of nonoverlapping patterns P for BH as follows. Let
E = H ∩ TT−1 and

P = {p ∈ BE : there exist h ∈ E and t ∈ T such that h−1t ∈ T
and p(1)(t) 6= p(h)(h−1t)}.

The higher block shift (over G, relative to H,T ) is the shift of finite type
I ⊂ BH defined by the forbidden patterns P .

Proposition 7. ψH,T maps AG onto I bijectively.

Proof. First we show z = ψH,T (x) ∈ I for any x ∈ AG, which amounts to
showing that for any k ∈ H, the restriction r = (kz)

∣∣
E

is not in P . For

h ∈ E and t ∈ T such that h−1t ∈ T ,

r(1)(t) = (kz(1))(t) = z(k−1)(t) = x(k−1hh−1t) = z(k−1h)(h−1t)

= r(h)(h−1t).

Hence r /∈ P .
It remains to show ψH,T is surjective. If z ∈ I, define x ∈ AG by setting

x(ht) = z(h)(t) for h ∈ H, t ∈ T . To see x is well-defined, suppose h2 ∈ H,
t2 ∈ T are such that ht = h2t2. Then h−1h2 = tt−1

2 ∈ E and h−1
2 ht = t2 ∈ T .

Thus the nonoverlapping restrictions in I imply that

z(h)(t) = (h−1z)(1)(t) = ((h−1z)(h−1h2))(h−1
2 ht) = z(h2)(t2).

We conclude x is well-defined, and it is evident that ψH,T (x) = z. �

Remark. Notice that if z ∈ I and x = ψ−1
H,T (z), StabH(z) is a subgroup of

StabG(x).

3.2. Products of shifts. In this section we recall some basic results about
products of shift spaces. Let A and B be finite alphabets. We set C = A×B.
If c = (a, b) ∈ A×B, we use the notation c1 = a, c2 = b.

Suppose now that X is an arbitrary set. Notice that CX can be identified
with AX × BX : if f : X → C is a function, we write f1 : X → C → A and
f2 : X → C → B for f composed with the corresponding projections, and
make the identification f = (f1, f2).

Some easy consequences of this identification are as follows. If G is a
group and x ∈ CG, (gx)i = g(xi) for i = 1, 2. If Ω ⊂ G, then (x|Ω)i = (xi)|Ω
for i = 1, 2. If S1 ⊂ AG, S2 ⊂ BG are shifts on A and B, respectively,
then S1 × S2 is a shift on C. Moreover, if S1 is a SFT defined by forbidden
patterns P ⊂ AΩ, then the SFT on C defined by forbidden patterns P ×BΩ

equals S1×BG. It follows that if S1 and S2 are SFTs, then S1×S2 is a SFT:
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assuming S1 is defined by forbidden patterns P ⊂ AΩ and S2 by forbidden
patterns Q ⊂ BΩ, S1 × S2 is the SFT defined by forbidden patterns

P ×BΩ ∪ AΩ ×Q.
This result is given in [7, Proposition 3.4] with a different argument.

3.3. Locked shift. Suppose A is a finite alphabet, G is a group, and N is
a finitely generated normal subgroup of G. We define

FixAG(N) = Fix(N) = {x ∈ AG : nx = x for all n ∈ N}
and claim that Fix(N) is a SFT over G. To see this, let Λ = {a1, . . . , am}
be a symmetric generating set for N . Then Fix(N) is the SFT determined
by the forbidden patterns

{p : {1, ai} → A : ai ∈ Λ, p(ai) 6= p(1)}.
Now suppose N is also of finite index in G. Let T = {t1, . . . , tn} be a
complete set of distinct left coset representatives for N in G with t1 = 1.
We use T as alphabet and define the N -locked shift (over G, on T ) to be
L = FixTG(N) ∩ S, where S is the SFT defined by forbidden patterns

{p : {1, t} → T : t ∈ T \ {1}, p(1) = p(t)}.

Proposition 8. L is a nonempty shift of finite type. Moreover, for any
x ∈ L, gx = x if and only if g ∈ N .

Proof. First, we show L is nonempty. Let y ∈ TG be the configuration
sending each g ∈ G to its coset representative: y(tn) = t whenever t ∈ T ,
n ∈ N . Then if n, n′ ∈ N , t ∈ T ,

ny(tn′) = y(n−1tn′) = y(t(t−1n−1t)n′) = t = y(tn′),

so ny = y and we conclude y ∈ Fix(N). Moreover, y ∈ S, for if g = tn ∈ G,

gy(1) = ty(1) = y(t−1) 6= y(t−1t2) = gy(t2)

whenever t2 ∈ T \ {1}.
For the second assertion, suppose x ∈ L and g = tn ∈ G satisfies gx = x.

Then
tx = x, so x(1) = tx(t) = x(t).

By the restrictions on S, t = 1 and g ∈ N . �

4. Commensurability and periodicity

Using the basic constructions above, we show the properties of weak and
strong periodicity are preserved under finite index extensions and, in the case
when the group is finitely generated, preserved in finite index subgroups. As
a corollary, we find that weak and strong periodicity are commensurability
invariants.

Proposition 9. Let G be a group.

(1) If G is virtually weakly periodic, then G is weakly periodic.
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(2) If G is virtually strongly periodic, then G is strongly periodic.

Proof. Suppose H is a weakly periodic subgroup of G with [G : H] = n
and S ⊂ AG is a nonempty shift of finite type over G. Let P ′ be a finite
set of forbidden patterns for S; by extending patterns if necessary, we may
assume P ′ ⊂ AΩ for some fixed finite subset Ω ⊂ G with 1 ∈ Ω. Let T ′ =
{a1, . . . , an} be a set of distinct right coset representatives for H in G, where
a1 = 1, and set T = T ′Ω. Define the higher block map ψH,T : AG → I ⊂ BH

as in Section 3.1, and let J ⊂ BH be the shift of finite type defined by the
following set of forbidden patterns:

{p : {1H} → B : there is p′ ∈ P ′, t ∈ T ′ such that

(p(1H))(tω) = p′(ω) for all ω ∈ Ω}.

Then I∩J is a shift of finite type and S = ψ−1
H,T (I∩J). Since S is nonempty,

I ∩J is nonempty and contains a periodic configuration z ∈ BH by hypoth-
esis; i.e., StabH(z) is nontrivial. Let x = ψ−1

H,T (z) ∈ S. By the remark

preceding Section 3.2, StabG(x) is nontrivial, proving assertion (1). If in
addition z can be chosen so that StabH(z) is of finite index in H, then
StabG(x) is of finite index in G, giving assertion (2). �

Proposition 10. Let G be a finitely generated group and H a finite index
subgroup of G.

(1) If G is weakly periodic, then H is weakly periodic.
(2) If G is strongly periodic, then H is strongly periodic.

Proof. Since H contains a finite index subgroup that is normal in G, by
Proposition 9 we may assume without loss of generality that H is normal
in G. Let T be a complete set of left coset representatives for H in G with
1 ∈ T .

Suppose A is a finite alphabet and S ⊂ AH is a SFT over H defined by
forbidden patterns P ⊂ AΩ, where Ω ⊂ H is finite. By regarding Ω as a
subset of G, we can consider the SFT S′ ⊂ AG with the same forbidden
pattern set P . Notice that S′ is nonempty, for we can choose x ∈ S and
define x′ ∈ S′ by letting x′(th) = x(h) for t ∈ T , h ∈ H. Notice also that if
y ∈ S′, y|H ∈ S.

Define L to be the H-locked shift as in section 3.3. Then S′×L is a SFT
over G. Moreover, whenever y ∈ S′ × L, StabG(y) ⊂ H, for gy = y implies
in particular that gy2 = y2. Regarding x = (y1)|H as a configuration in
S ⊂ AH , it follows that StabH(x) contains StabG(y). In conclusion, H is
weakly (strongly) periodic whenever G is. �

Theorem 11. Let G1 and G2 be finitely generated commensurable groups.
If G1 is weakly (strongly) periodic, then G2 is weakly (strongly) periodic.

Remark. Emmanuel Jeandel has pointed out to us that the proof of Propo-
sition 10 can be extended to show that strong periodicity is in fact a heredi-
tary property for all finitely generated subgroups. That is, if G is a strongly
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periodic group and H is a finitely generated subgroup of G, possibly of infi-
nite index, then H is strongly periodic. However, the property of having a
strongly aperiodic SFT is not a hereditary property, as evidenced by Z ≤ Z2.

4.1. SFTs and quotient groups. Let f : G → Q be a surjective homo-
morphism of groups. Let N be the kernel of f so that Q = G/N . Notice
that f induces a bijection F : AQ → FixAG(N) defined by F (x) = x ◦ f .
Moreover, F is G/N -equivariant in the following sense: if q = gN ∈ Q and
x ∈ AQ, then F (qx) = gF (x). (This correspondence is explained in [5,
Section 1.3].)

Now, if S ⊂ AQ is a SFT defined by forbidden patterns P ⊂ AΩ, Ω ⊂ Q
finite, we can choose a (finite) set Ω ⊂ G such that f maps Ω onto Ω

bijectively. f |Ω induces a bijection g : AΩ → AΩ. We let P = g(P ) and
S ⊂ AG be the SFT with forbidden patterns P .

Proposition 12. F (S) = S ∩ Fix(N).

Proof. Suppose x ∈ AQ. If p ∈ P and p = g(p) ∈ P , then p appears in x
if and only if p appears in F (x). Since F is a bijection from AQ to Fix(N),
the result follows. �

It follows from Section 3.3 that F (S) is a SFT in AG whenever N is
finitely generated. This leads to a useful general result.

Theorem 13. Suppose 1→ N → G→ Q→ 1 is a short exact sequence of
groups and N is finitely generated. If G is strongly periodic, then Q is
strongly periodic.

Proof. Suppose S ⊂ AQ is a SFT over Q. Defining F as above, by hypoth-
esis there is a configuration F (x) ∈ F (S) ⊂ AG such that H = StabG(F (x))
is of finite index in G. Of course, N ⊂ H, so H/N is of finite index in
G/N = Q. Moreover, by equivariance of F , qx = x for every q ∈ H/N . In
conclusion, x has finite index stabilizer in Q. �

As an example application, this result places restrictions on the SFTs
which can be defined on groups of polynomial growth.

Corollary 14. If G is a finitely generated group of polynomial growth

γ(n) ∼ nd,

where d ≥ 2, then G is not strongly periodic.

Proof. By Gromov’s theorem, G is virtually nilpotent, so by Proposition 10,
we may assume G is nilpotent. Since G is not virtually cyclic, there exists
a surjective homomorphism f : G → Z2 ([4, Lemma 13]) and as every
subgroup of a finitely generated nilpotent group is itself finitely generated,
N = ker f is finitely generated. Since Z2 is not strongly periodic, G is not
strongly periodic. �
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Corollary 14 does not rule out the existence of periodic points for SFTs
defined on groups of polynomial growth. However, the examples we know of
groups with strongly aperiodic SFTs (such as Zn and the discrete Heisein-
berg group) are all groups of polynomial growth. This leads to the following
question.

Question. Is there a group of nonlinear polynomial growth on which every
shift of finite type has a periodic point?

We also make the following conjecture.

Conjecture. A group is strongly periodic if and only if it is virtually cyclic.
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