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Tangle sums and factorization of
A-polynomials

Masaharu Ishikawa, Thomas W. Mattman
and Koya Shimokawa

Abstract. We show that there exist infinitely many examples of pairs
of knots, K1 and K2, that have no epimorphism

π1(S3 \K1)→ π1(S3 \K2)

preserving peripheral structure although their A-polynomials have the
factorization AK2(L,M) | AK1(L,M). Our construction accounts for
most of the known factorizations of this form for knots with 10 or fewer
crossings. In particular, we conclude that while an epimorphism will
lead to a factorization of A-polynomials, the converse generally fails.
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1. Introduction

Cooper et al. [5] introduced the A-polynomial as a knot invariant derived
from the SL(2,C)-representations of the fundamental group of the knot’s
complement. It is a polynomial in the variables M and L, which corre-
spond to the eigenvalues of the SL(2,C)-representations of the meridian
and longitude respectively. We can obtain a lot of geometric information
from A-polynomials including boundary slopes of incompressible surfaces
in the knot complement and the nonexistence of Dehn surgeries yielding 3-
manifolds with cyclic or finite fundamental groups, see for instance [9, 5, 3].

It is natural to ask if there is a correspondence between epimorphisms
among the fundamental groups of knot complements and their A-polynomials.
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Actually, Silver and Whitten [21] showed that if there exists an epimorphism,
π1(S3 \ K1) → π1(S3 \ K2), between the fundamental groups of two knot
complements, that preserves peripheral structure, then the A-polynomial of
K1 has a factor corresponding to the A-polynomial of K2 under a suitable
change of coordinates. Here we say an epimorphism preserves peripheral
structure if the image of the subgroup generated by the meridian and longi-
tude of K1 is included in the subgroup generated by the meridian and lon-
gitude of K2. Hoste and Shanahan [13] refined this by demonstrating that
the A-polynomial of K1 has a factor which corresponds to the A-polynomial
of K2 under the change of coordinates (L,M) 7→ (Ld,M) for some d ∈ Z.
Ohtsuki, Riley, and Sakuma [19] made a systematic study of epimorphisms
between 2-bridge link groups.

In this paper, we study factorizations of A-polynomials of knots obtained
by specific tangle sums and the existence of epimorphisms. To state our
main result, let AK(L,M) be the A-polynomial of a knot K in S3 and
A◦K(L,M) the product of the factors of AK(L,M) containing the variable
L. We denote by S + T the sum of tangles S and T and by N(T ) the
numerator closure of T .

Theorem 1. Suppose that N(S + T ) and N(T ) are knots and N(S) is a
split link in S3. Then A◦N(T )(L,M) | AN(S+T )(L,M).

Note that AK(L,M)/A◦K(L,M) is a polynomial in only one variable, M .
While this polynomial is often trivial, the 938 knot shows that it need not
be. According to a calculation by Culler [4], that knot has (1 −M2)2 as a
factor. We also know that the roots of AK(L,M)/A◦K(L,M) lie on the unit
circle, for instance see [5].

Certain properties arising from the SL(2,C)-representations of the fun-
damental group of the complement of N(T ) are inherited by N(S + T ).
Specifically, we have the following corollary.

Corollary 2. Suppose that N(S+T ), N(T ), and N(S) satisfy the conditions
of Theorem 1. With the possible exception of 1

0 , the set of boundary slopes
of N(T ) detected by its character variety is a subset of the boundary slopes
of N(S + T ).

Remark 3. This has obvious implications for finite/cyclic surgeries and r-
curves (factors of the form 1± LbMa, for which r = a/b, or Lb ±Ma, with
r = −a/b; see [2]). An r–curve of N(T ) with r 6= 1

0 is inherited by N(S+T ).
On the other hand, the A–polynomial of N(T ) can often be used to rule out
finite/cyclic surgeries of N(S + T ) (cf. [14]).

Our second corollary gives an infinite family of pairs of knots where the
A-polynomial of one factors that of the other even though there is no epi-
morphism between them. The proof depends on an analogous result for
Alexander polynomials which requires the notion of marked tangles.
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A marked tangle is one whose four ends have specific orientations as shown
on the left in Figure 1. The sum of two marked tangles S and T is a marked
tangle obtained as shown on the right, denoted by S+̇T . We’ll continue to
use N(T ) and D(T ) to denote the numerator and denominator closure of a
marked tangle T .

Figure 1. A marked tangle and the sum of marked tangles.

Let ∆K(t) denote the Alexander polynomial of a knot K in S3. Using
his formulation of the Alexander polynomial, Conway observed (cf. [7, The-
orem 7.9.1])

∆N(S+̇T )(t) = ∆N(T )(t)∆D(S)(t) + ∆D(T )(t)∆N(S)(t).

In particular, if N(S) is a split link then the Alexander polynomial has a
factorization as

(1) ∆N(S+̇T )(t) = ∆N(T )(t)∆D(S)(t)

since ∆N(S)(t) = 0.

Figure 2. The 2-bridge knot K(β/α) where α/β = [2,−n, k, n,−2].

If, for knots K1 and K2, π1(S3\K1) has an epimorphism onto π1(S3\K2),
then ∆K2(t) | ∆K1(t) (e.g., see [8]). However, the converse does not hold
in general. Indeed, it is well known that, given knot K, there are infinitely
many knots Ki with ∆Ki(t) | ∆K(t). On the other hand, Agol and Liu [1]
show that π1(S3 \K) surjects only finitely many knot groups.
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Remark 4. Concretely, the knots described in our second corollary below
give an infinite family of pairs for which ∆K2,k

(t) | ∆K(t) although there is
no surjection of the knot groups. Indeed, K = K(β/α) has a diagram of the
form N(S+̇T ) with N(T ) = K2,k, see Figure 2, while the lack of an epimor-
phism is easily deduced from work of González-Acuña and Ramı́rez [11, 12].

Corollary 5. Let K be the 2-bridge knot K(β/α) with

α/β = [2,−n, k, n,−2]

and K2,k the (2, k)-torus knot, where k > 2 is odd and n > 1. Then
π1(S3 \ K) admits no epimorphism onto π1(S3 \ K2,k) preserving periph-
eral structure, although AK2,k

(L,M) | AK(L,M).

The corollary follows from Theorem 1, Remark 4 and that ∞ is not a
boundary slope of K2,k. In [20] Riley discusses three ways in which character
varieties of 2-bridge knots and links may become reducible. The examples
in Corollary 5 do not fall into any of those three categories.

In the next section, we prove Theorem 1. In Section 3 we list 16 examples
of factorizations of A-polynomials as in the theorem among pairs of knots
of 10 or fewer crossings.

Acknowledgements. We would like to express our gratitude to Makoto
Sakuma for his precious comments and for informing us of Riley’s result on
the reducibility of the character variety of 2-bridge knots. We would like
to thank Fumikazu Nagasato for telling us some important details about A-
polynomials as relates to Theorem 1. We appreciate the referee’s thoughtful
suggestions about how to improve our paper.

In this study, we often referred to the list of A-polynomials computed by
Hoste and Culler and other knot invariants in the database KnotInfo [4]. We
also used the program Knotscape of Hoste and Thistlethwaite for checking
the knot types of given knot diagrams. We thank them for these useful
computer programs and their database.

2. Proof of Theorem 1

We prove Theorem 1 in this section. Let F2 denote the free group of
rank 2. We first introduce a lemma that allows us a specific choice for the
generators of F2. We omit the straightforward proof.

Lemma 6. Let 〈a, b〉 be generators of F2 and â be an element in F2 conjugate

to a. Then there exists b̂ ∈ F2 conjugate to b such that â and b̂ generate
〈a, b〉 = F2.

Let N(S + T ), N(S), and N(T ) be as in Theorem 1. Since N(S + T ) is
a knot, the split link N(S) consists of two link components, say S1 and S2.
Since

π1(S3 \N(S)) ∼= π1(S3 \ S1) ∗ π1(S3 \ S2),
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the abelianizations π1(S3 \Si)→ H1(S3 \Si) ∼= Z, i = 1, 2, define a quotient
map q : π1(S3 \ N(S)) → F2 that sends meridians of the two different
components to the two generators a and b of F2. Set â, b′ to be the elements
in F2 = 〈a, b〉 corresponding to the meridional loops around the two strands
of the numerator closure of the tangle T . By replacing a (resp. b) by its
inverse element if necessary, we may assume that a and â (resp. b and b′)

are conjugate. By Lemma 6, there exists an element b̂ conjugate to b such
that â and b̂ generate F2 = 〈a, b〉. Since b′ is conjugate to b, there exists

c ∈ 〈â, b̂〉 such that b′ = cb̂c−1. We further assume that the elements in
π1(S3 \N(T )) corresponding to â and b′ are conjugate by replacing one of
them by its inverse element if necessary.

Let ρ0 be a representation in Hom(π1(S3 \N(T )),SL(2,C)).

Lemma 7. Suppose that ρ0(â) =

(
M 0
0 M−1

)
and that ρ0(b′) =

(
b′11 b′12

b′21 b′22

)
satisfies b′11 6= M±1. Then there is a representation

ρ ∈ Hom(〈â, b̂〉, SL(2,C))

such that ρ(â) = ρ0(â) and ρ(b′) = ρ0(b′).

Proof. Set ρ(â) = ρ0(â). We will find a ρ such that ρ(b′) = ρ0(b′). Set

ρ(b̂) =

(
b11 b12

b21 b22

)
∈ SL(2,C) and let f11, f12, f21, f22 be the polynomial

functions, in the variables M and the bij ’s, given by(
f11 f12

f21 f22

)
= ρ(c)ρ(b̂)ρ(c)−1,

where f11f22 − f12f21 = 1. We eliminate the variables b22 and b21 by sub-
stituting b21 = 1

b12
(b11b22 − 1) and b22 = M + 1

M − b11, where the second

equation holds since â and b′ are conjugate. The remaining variables are M ,
b11, and b12.

We first prove that f11 depends on the variables b11 and b12. Assume it
does not, i.e., f11 is constant for each, fixed, choice of M . Setting ρ(b̂) =(
M 0
0 M−1

)
, resp. ρ(b̂) =

(
M−1 0

0 M

)
, we have(

f11 f12

f21 f22

)
=

(
M 0
0 M−1

)
, resp.

(
f11 f12

f21 f22

)
=

(
M−1 0

0 M

)
.

Therefore we have M = M−1, i.e., M = ±1 since f11 is constant. However,

in the case M = ±1, since ρ0(â) =

(
±1 0
0 ±1

)
, the equality(

f11 f12

f21 f22

)
= ρ(b̂) =

(
b11 b12

b21 b22

)
is satisfied for any choice of the bij ’s, which contradicts the assumption that
f11 does not depend on b11.



828 MASAHARU ISHIKAWA, THOMAS W. MATTMAN AND KOYA SHIMOKAWA

Now f11 does depend on at least one of the variables b11 and b12, so we
solve the equation f11 = b′11 in terms of one of these variables. The inequality
f11 = b′11 6= M±1 implies f12 6= 0 and f21 6= 0, otherwise we cannot have
f11f22− f12f21 = 1. For the same reason, we have b′12 6= 0 and b′21 6= 0. The
conjugation of ρ by the matrix

P =

(√
b′12/f12 0

0
√
f12/b′12

)
satisfies

Pρ(â)P−1 = ρ(â) and P

(
f11 f12

f21 f22

)
P−1 =

(
b′11 b′12

b′21 b′22

)
,

where the bottom two equalities in the second matrix equation are automat-
ically satisfied by the equation f11 + f22 = b′11 + b′22 and the fact that these
matrices are in SL(2,C). Hence we obtain the representation required. �

Let f+(M) be the rational function of one variable M that appears as

the top-right entry of ρ(c)ρ(b̂)ρ(c)−1 when

ρ(â) =

(
M 0
0 M−1

)
and ρ(b̂) =

(
M 1
0 M−1

)
.

Similarly, we define f−(M) to be the rational function of one variable M

that is the top-right entry of ρ(c)ρ(b̂)ρ(c)−1 when

ρ(â) =

(
M 0
0 M−1

)
and ρ(b̂) =

(
M−1 1

0 M

)
.

Lemma 8. Either f+(M) ≡ 1 (respectively f−(M) ≡ 1) or f+(M) (respec-
tively f−(M)) is not constant.

Proof. We can set ρ(c) =

(
Mk c12

0 M−k

)
, where c12 is a rational function

in one variable, M , whose denominator, if any, is a power of M , and k ∈ Z.
Then

ρ(c)ρ(b̂)ρ(c)−1 =

(
Mk c12

0 M−k

)(
M±1 1

0 M∓1

)(
M−k −c12

0 Mk

)
=

(
M±1 (Mk∓1 −Mk±1)c12 +M2k

0 M∓1

)
,

i.e.,

f±(M) = (Mk∓1 −Mk±1)c12 +M2k.

If c12 = k = 0 then f±(M) ≡ 1. Otherwise this cannot be constant since,
even if c12 has a denominator, it is only a power of M . �

Lemma 9. Suppose that ρ0(â) =

(
M 0
0 M−1

)
and ρ0(b′) =

(
M b′12

b′21 M−1

)
with b′12b

′
21 = 0. Suppose further that f+(M) 6= 0. Then there exists a
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reducible representation ρ ∈ Hom(〈â, b̂〉, SL(2,C)) such that ρ(â) = ρ0(â)
and ρ(b′) = ρ0(b′).

Proof. Set ρ(â) = ρ0(â). We will find a reducible representation ρ such that
ρ(b′) = ρ0(b′). Consider the case where b′21 = 0. As above, we have b′ =

cb̂c−1. Set ρ(b̂) =

(
M b12

0 M−1

)
; then the top-right entry of ρ(c)ρ(b̂)ρ(c)−1

becomes f+(M)b12. Since f+(M) 6= 0, b12 = b′12/f
+(M) gives the required

reducible representation. The proof for the case b′12 = 0 is similar. �

Lemma 10. Suppose that ρ0(â) =

(
M 0
0 M−1

)
and ρ0(b′) =

(
M−1 b′12

b′21 M

)
with b′12b

′
21 = 0. Suppose further that f−(M) 6= 0. Then there exists a

reducible representation ρ ∈ Hom(〈â, b̂〉, SL(2,C)) such that ρ(â) = ρ0(â)
and ρ(b′) = ρ0(b′).

Proof. Similar to the proof of Lemma 9. �

Proof of Theorem 1. Let R(K) denote the representation variety
Hom(π1(S3 \K), SL(2,C)) of a knot K in S3.

Let M and M−1 be the eigenvalues of ρ0(â). Assume that f±(M) 6= 0 and
M 6= ±1. Lemma 8 ensures that, except for a finite number of values, every
M ∈ R satisfies these conditions. Since M 6= ±1, ρ0(â) is diagonalizable and

hence we can set ρ0(â) =

(
M 0
0 M−1

)
by conjugation. Then by Lemma 7,

Lemma 9, and Lemma 10, for each representation ρ0 ∈ R(N(T )), there

exists ρ ∈ Hom(〈â, b̂〉, SL(2,C)) such that ρ(â) = ρ0(â) and ρ(b′) = ρ0(b′).

The quotient map q : π1(S3 \ N(S)) → 〈â, b̂〉 induces a representation ρ ∈
R(N(S)) which satisfies ρ(â) = ρ0(â) and ρ(b′) = ρ0(b′). Let DN(S+T ) be a
knot diagram of N(S + T ) such that we can see the tangle decomposition
into N(S) and N(T ) on that diagram. Fix a Wirtinger presentation of
π1(S3 \ N(S + T )) on DN(S+T ). Clearly, ρ0 satisfies the relations of the
Wirtinger presentation in the tangle T and ρ also satisfies the relations in
the tangle S. Therefore these representations satisfy all the relations of the
Wirtinger presentation, in other words, we obtain an SL(2,C)-representation
of π1(S3 \N(S + T )).

Each irreducible component of A◦N(T )(L,M) = 0 corresponds to an ir-

reducible component Y of R(N(T )) on which M varies. Since each rep-
resentation ρ0 ∈ Y corresponds to a representation ρ1 ∈ R(N(S + T )),
except for a finite number of M values, there always exists a subvariety Z
in R(N(S + T )) which corresponds to Y .

Let Z∆ be the algebraic subset of Z consisting of all ρ1 ∈ Z such that
ρ1(`1) and ρ1(m1) are upper triangular, where (m1, `1) is the meridian-
longitude pair of N(S + T ). Let ξ : Z∆ → C2 be the eigenvalue map
ρ1 7→ (L1,M1), where L1 and M1 are the top-left entries of ρ1(`1) and
ρ1(m1) respectively. It is known by [6, Corollary 10.1] that dim ξ(Z∆) ≤
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1. Since M varies on ξ(Z∆), we have dim ξ(Z∆) = 1. This means that
there exists a factor of the A-polynomial AN(S+T )(L,M) which vanishes at
(L,M) = (L1,M1).

In summary, for each generic point (L0,M0) ∈ {A◦N(T )(L,M) = 0}, there

is a representation ρ0 ∈ R(N(T )) such that the top-left entries of ρ0(`0) and
ρ0(m0) are L0 and M0 respectively, where (m0, `0) is the meridian-longitude
pair of N(T ), and there exists a representation ρ1 ∈ R(N(S + T )) corre-
sponding to ρ0 such that the image (L1,M1) satisfies AN(S+T )(L1,M1) = 0.
Thus if we have ρ0(m0) = ρ1(m1) and ρ0(`0) = ρ1(`1) then M0 = M1 and
L0 = L1, and hence we have AN(S+T )(L0,M0) = 0. This means that the
factor A◦N(T )(L,M) appears in AN(S+T )(L,M). Since m0 = m1 from the

construction, we have ρ0(m0) = ρ1(m1). Hence, it is enough to show that
ρ0(`0) = ρ1(`1).

Let Σ be the Seifert surface ofN(S+T ) described on the diagramDN(S+T )

by using Seifert’s algorithm. The boundary of Σ determines `1. Using the
Wirtinger presentation of π1(S3 \N(S + T )) on DN(S+T ), the longitude `1
in π1(S3 \N(S + T )) is represented as a product of words of the generators
in the Wirtinger presentation by reading the words along the boundary of
Σ. This word presentation of `1 has the form

`1 = `T,1`S,1`T,2`S,2,

where, for i = 1, 2, `T,i is a product of generators in the tangle T and `S,i
is a product of generators in the tangle S. Since each `S,i represents one of
the boundary components of a Seifert surface of the split link N(S) and the
representation ρ1 is defined via the quotient map q : π1(S3 \ N(S)) → F2,
ρ1(`S,i) is the identity matrix. Therefore we have

ρ1(`1) = ρ1(`T,1)ρ1(`T,2) = ρ0(`0). �

3. RTR examples of 10 or fewer crossings

Definition 11. A knot K in S3 is said to be an RT Rknot if it satisfies the
following:

(1) K is of the form N(R + T + R), where R is rational, Ris the mirror
reflection of R, and T is some tangle.

(2) K is not isotopic to N(T ).

The second condition is added to exclude trivialities, for example the case
where R consists of two horizontal arcs. Since N(R + R) is always a trivial
link of two components, N(R +T + R) satisfies the conditions of Theorem 1
with S = R + R.

Here are two simple families of RT Rknots:

• The 2-bridge knots of the form [a1, a2, a3, · · · , ak, · · · , a2n−1] with
ai = −a2n−i for i = 1, · · · , n− 1 and an odd.
• Three-tangle Montesinos knots of the form (p/q, r/s,−p/q).
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Table 1. Factorizations of RT Rknots

RT R type A-poly. fac. epi. Alex. poly.
810 1/3, 3/2,−1/3 A 31 810 → 31 (31)3

811 [2,−2, 3, 2,−2] B 31 No (31)(61)
924 1/3, 5/2,−1/3 A 41 924 → 31 (31)2(41)
937 1/3, 5/3,−1/3 B 41 937 → 41 (41)(61)
1021 [2,−2, 5, 2,−2] B 51 No (51)(61)
1040 [2, 2, 3,−2,−2] B 31 1040 → 31 (31)(88)
1059 2/5, 3/2,−2/5 A 31 1059 → 41 (31)(41)2

1062 1/3, 5/4,−1/3 A 51 1062 → 31 (31)2(51)
1065 1/3, 7/4,−1/3 A 52 1065 → 31 (31)2(52)
1067 1/3, 7/5,−1/3 B 52 No (52)(61)
1074 1/3, 7/3,−1/3 B 52 1074 → 52 (52)(61)
1077 1/3, 7/2,−1/3 A 52 1077 → 31 (31)2(52)
1098 1/3, T0, −1/3 B 31#31 1098 → 31 (31)2(61)
1099 1/3, T1, −1/3 A 31#3mir

1 1099 → 31 (31)4

10143 1/3, 3/4,−1/3 A 31 10143 → 31 (31)3

10147 1/3, 3/5,−1/3 B 31 No (31)(61)

Note that the infinite collection of pairs of 2-bridge knots of Corollary 5 are
included in the first of these families.

In the following, we represent the rational tangle corresponding to the
rational number p/q by R(p/q). For example, the Montesinos knot of the
form (p/q, r/s,−p/q) is represented as N(R(p/q) +R(r/s) +R(−p/q)).

Table 1 lists the RT Rknots of 10 or fewer crossings of which we know.
In the table, T0 is the tangle obtained as the +π/2-rotation of the tangle
sum R(−1/1) + R(1/3) + R(1/3) and T1 is obtained as the +π/2-rotation
of the tangle sum R(1/3) + R(−1/3). We use 3mir

1 to denote the mirror
image of 31 and use # for the connected sum of two knots. In the table, we
include information of epimorphisms among the knot groups and Alexander
polynomials for convenience. The epimorphism column shows the existence
of an epimorphism to a knot group up to ten crossings, as proven in [15]. In
the column “Alex. poly.,” we represent a knot’s Alexander polynomial by
enclosing the knot’s symbol in parenthesis.

There are two types of RT Rknots depending on how the strands enter
and leave the tangle T . We say that the RT Rknot N(R +T + R) is of type
A if the tangle T is a marked tangle. Otherwise we say it is of type B.

Lemma 12. Let K = N(R + T + R) be an RT Rknot with R = R(p/q) and
q > 0. Then:

(i) q > 1.
(ii) If K is of type A then ∆K(t) = ∆N(T )(t)∆D(R)(t)

2.
(iii) If K is of type B then ∆K(t) = ∆N(T )(t)∆N(R+R(1/1)+ R)(t).
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(iv) The knot determinant of K is divisible by q2.

Proof. If q = 1 then we have N(R + T + R) = N(T ). Such a knot is not
RT Rby definition. Thus we have assertion (i). Assertion (ii) follows from
Equation (1) and the equations

∆D(S)(t) = ∆D(R)#D( R)(t) = ∆D(R)(t)
2.

Next we prove assertion (iii). Since K is of type B, we need to modify the
diagram of N(R+T + R) as shown in Figure 3 such that it becomes the sum
of marked tangles. We denote the marked tangle obtained from T by T ′

and the complementary tangle of T ′ by S′. From the figure, we can see that
D(S′) = N(R +R(1/1) + R). Thus assertion (iii) follows from Equation (1).

Figure 3. Changing an RT Rknot of type B into the sum of
two marked tangles.

Finally, we check the last assertion. It is known that the knot determinant
of a knot is equal to the absolute value of its Alexander polynomial evaluated
at t = −1 (see for instance [18, Proposition 6.1.5]). We also know that
the knot determinant of D(R(p/q)) is q. Thus, if K is of type A then
assertion (iv) follows immediately from the factorization in (ii). Suppose K
is of type B. Then, from

N(R(p/q) +R(1/1) +R(−p/q)) = N(R(p/q) +R((q − p)/q)),

the knot determinant of D(S′) = N(R +R(1/1) + R) is calculated as

|pq + (q − p)q| = q2

(see [10] and also [18, Theorem 9.3.5]). Thus, from the factorization in (iii),
we again have assertion (iv). �

Using Lemma 12, we can check that most of the knots up to 10 crossings
are not RT Rknots. We first consider the case of type A. Set R = R(p/q)
with q > 0. By Lemma 12(i), we have q > 1. We check if the Alexander
polynomial of a knot, up to 10 crossings, has a factorization of the form in
Lemma 12(ii). Since the knot determinant of D(R) is equal to ∆D(R)(−1),

q > 1 implies that the polynomial ∆D(R)(t)
2 in Lemma 12(ii) is nontrivial.
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Now we check if the Alexander polynomial of a knot has such a nontriv-
ial, multiple factor corresponding to a knot up to 10 crossings. The only
candidate knots K are

810, 818, 820, 924, 940, 1059, 1062, 1065, 1077,

1082, 1087, 1098, 1099, 10123, 10137, 10140, 10143.

Next we consider RT Rknots of type B. It is shown in the proof of
Lemma 12(iv) that the knot determinant of D(S) is q2 > 1. Hence D(R) is a
2-bridge knot with denominator q > 1. Moreover, since N(T ) is assumed to
be a nontrivial knot of 10 or fewer crossings, ∆N(T )(t) is nontrivial. Hence
we know that the factorization of ∆K(t) in Lemma 12(iii) is nontrivial.

Now we make a list of knots K, up to 10 crossings that satisfy

• the Alexander polynomial of K factors into two nontrivial Alexander
polynomials, and
• the knot determinant of K is divisible by q2 for some integer q > 1.

The following knots satisfy these conditions:

810, 811, 818, 820, 91, 96, 923, 924, 937, 940, 1021, 1040, 1059, 1062, 1065, 1066, 1067,

1074, 1077, 1082, 1087, 1098, 1099, 10103, 10106, 10123, 10137, 10140, 10143, 10147.

Figure 4. An epimorphism π1(S3\810)→ π1(S3\31). Con-
struct a Seifert surface and observe that the longitude of 810

vanishes in π1(S3 \ 31).

Remark 13. There is no direct relationship between the RT Rconstruction
and the list of epimorphisms in [15]. First of all, we can see from Table 1
that the following 9 knots

811, 924, 1021, 1059, 1062, 1065, 1067, 1077, 10147

have the factorization of the A-polynomials but have no epimorphisms to
the corresponding knot groups.

Even for the other knots in Table 1, we believe that there is no relationship
for the following reason: In [16] it is written that there is an epimorphism
π1(S3\810)→ π1(S3\31) which maps the longitude of 810 to 1 ∈ π1(S3\31),
see Figure 4, while Theorem 1 shows that the longitude of 810 corresponds
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to that of 31 in our construction. In this example, the epimorphism is given
by the tangle R and the factorization of the A-polynomial is given by the
tangle T . In general, for any RT Rknot of type A, there is an epimorphism
from π1(S3 \ N(R + T + R)) to π1(S3 \ D(R)) such that the image of the
longitude of this RT Rknot is 1 ∈ π1(S3 \ D(R)); however, the longitude
of N(R + T + R) corresponds to that of D(R) when we compare their A-
polynomials. This shows that the type A examples do not correspond to the
epimorphisms. We remark that there may exist other epimorphisms from
π1(S3\N(R+T+ R)) to π1(S3\D(R)) preserving peripheral structure. This
is why we cannot exclude the possibility that there is a relationship between
the factorization of A-polynomials and epimorphisms for these examples.
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