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The Hopf theorem for gradient local vector
fields on manifolds

Piotr Bartłomiejczyk and Piotr Nowak-Przygodzki

Abstract. We prove the Hopf theorem for gradient local vector fields
on manifolds, i.e., we show that there is a natural bijection between
the set of gradient otopy classes of gradient local vector fields and the
integers if the manifold is connected Riemannian without boundary.
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Introduction

The definition of otopy was introduced by Becker and Gottlieb [7, 8],
and independently by Dancer, Gęba and Rybicki [10] as a generalization
of the notion of homotopy. The essential difference between otopies and
homotopies is that the domain of a map may change along otopy. What is
important is that the topological degree is otopy invariant and otopy classes
appear naturally in many classification results ([4, 5, 6, 9, 13, 16]), also in
the equivariant case ([1, 2, 3, 12]).

In our paper [4] we studied otopy classes of gradient maps and proved that
the usual topological degree establishes a bijection from the set of gradient
otopy classes of gradient local maps with domains in the Euclidean space to
the integers. This result was inspired by the Hopf type theorem proved by
Parusiński in [17].
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The main purpose of this article is to generalize the result presented in
[4] to an arbitrary connected Riemannian manifold M without boundary.
Namely, let F∇[M ] be the set of gradient otopy classes of gradient local
vector fields. We show a bijection F∇[M ] ≈ Z. It may be worth pointing
out that we do not assume orientability of the manifold M .

The important advantage of the above result is that it can be applied to
examine the gradient equivariant case. Namely, let V be an orthogonal rep-
resentation of a compact Lie group G and Ω be an open invariant subset of V .
In [12] authors show a decomposition of the set of gradient equivariant otopy
classes F∇G [Ω] into factors indexed by orbit types (H) appearing in Ω. For
each such factor the action of the Weyl group WH on the respective subset
of Ω is free. So to obtain the complete information on this decomposition it
remains to give an algebraic characterization of F∇G [Ω], where G acts freely
on Ω. On the other hand, in this case there is a one-to-one correspondence
F∇G [Ω] ≈ F∇[M ], whereM = Ω/G, so the description of F∇G [Ω] follows from
our main result.

The paper is arranged as follows. Section 1 presents some preliminaries.
Our main result is stated and proved in Section 2. Sections 3 and 4 contain
proofs of key lemmas needed in Section 2. Finally, in Section 5 we use our
main result to study gradient equivariant local maps.

1. Preliminaries

The notation A b B means that A is a compact subset of B. For a
topological space X, let τ(X) denote the topology on X. Recall that if A, B
are topological spaces, then Map(A,B) denotes the set of all continuous maps
of A into B equipped with the usual compact-open topology, i.e., having as
subbasis all the sets Γ(C,U) = { f ∈ Map(A,B) | f(C) ⊂ U } for C b A
and U open in B.

For any topological spaces X and Y , let M(X,Y ) be the set of all con-
tinuous maps f : Df → Y such that Df is an open subset of X. Let R be a
family of subsets of Y . We define

Loc(X,Y,R) := { f ∈M(X,Y ) | f−1(R) b Df for all R ∈ R}.
We introduce a topology in Loc(X,Y,R) generated by the subbasis consisting
of all sets of the form

• H(C,U) := { f ∈ Loc(X,Y,R) | C ⊂ Df , f(C) ⊂ U } for C b X
and U ∈ τ(Y ),
• M(V,R) := { f ∈ Loc(X,Y,R) | f−1(R) ⊂ V } for V ∈ τ(X) and
R ∈ R.

Elements of Loc(X,Y,R) are called local maps. The natural base point of
Loc(X,Y,R) is the empty map. The set-theoretic union of two local maps f
and g with disjoint domains will be denoted by f t g. Moreover, in the case
when R = {{y}} we will write Loc(X,Y, y) omitting double curly brackets.
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Assume thatM is a smooth (i.e., C1) connected manifold without bound-
ary. To simplify notation, we use the same letter M for the zero section of
the tangent bundle TM . Let F(M) ⊂ Loc (M,TM, {M}) denote the space
of local vector fields equipped with the induced topology.

Suppose, in addition, thatM is Riemannian. Then a local vector field v is
called gradient if there is a smooth function f : Dv → R such that v = ∇f .
In that case F(M) contains the subspace F∇(M) consisting of gradient local
vector fields.

Let I = [0, 1]. Suppose that Λ is an open subset of I ×M and h is a
continuous vector field on Λ. We say that h is an otopy if:

• h is tangent to the slices (t×M) ∩ Λ;
• the set {(t, x) | h(t, x) = 0} is compact.

Given an otopy h we can define for each t ∈ I sets Λt = {x ∈M | (t, x) ∈ Λ}
and vector fields ht on Λt with ht(x) = h(t, x). If ht is a gradient vector
field for each t ∈ I, then h is called a gradient otopy. The set of all gradient
otopies on I × M will be denoted by F∇(I × M). It is easy to see that
there is a one-to-one correspondence between (gradient) otopies and paths
in F(M) (F∇(M)). Moreover, if h is a (gradient) otopy, we say that h0 and
h1 are (gradient) otopic. If two gradient local fields v and v′ are gradient
otopic then we will write v ∼ v′ for short. Of course, (gradient) otopy
gives an equivalence relation on F(M) (F∇(M)). The sets of the respective
equivalence classes will be denoted by F [M ] and F∇[M ].

Observe that if v is a (gradient) local vector field and U is an open sub-
set of Dv such that v−1(M) ⊂ U , then v and v|U are (gradient) otopic.
This property of (gradient) local vector fields will be called localization. In
particular, if v−1(M) = ∅ then v is (gradient) otopic to the empty map.

Let us denote by I(v) the oriented intersection number of a local vector
field v with the zero section of the tangent bundle (see for instance [14]). It
is evident that the intersection number is otopy invariant, i.e., if two local
vector fields are otopic then they have the same intersection number. The
converse is also true. Namely, the following result, which is a version of the
well-known Hopf theorem, has been proved in [2, Rem. 2.3].

Theorem 1.1. If M is smooth connected without boundary then

I : F [M ]→ Z

is a bijection.

Now suppose again that M is Riemannian. Let us consider a smooth
function f : M → R. Assume that p ∈ M is a nondegenerate critical point
of f . Let Hpf denote the Hessian of f at p. In that situation, the Hessian
is nondegenerate bilinear symmetric form and, in consequence, its matrix is
nonsingular symmetric. The following obvious observation will be needed in
Section 3.
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Remark 1.2. Path-components of the space of nonsingular real symmetric
n× n matrices are classified by the signature.

Let us introduce two types of vector fields in F∇(M). A gradient local
vector field is called generic if its potential is a Morse function.

Proposition 1.3. Any gradient local vector field is gradient otopic (also
homotopic) to generic one.

Proof. Let v be a gradient local vector field. Since v−1(M) is compact,
there is a set K such that

v−1(M) b intK ⊂ K b Dv.

Now by Theorem 1.2 in [15, Ch. 6], there exists a generic vector field v′

defined on Dv such that 〈v, v′〉 > 0 on Dv \K. Consequently, the straight-
line homotopy between v and v′ gives the desired otopy. �

A generic vector field s is called standard centered at p if s−1(M) = {p}.
The point p is called the center of s. If s is standard centered at p, then we
will write µ(s) for the Morse index µp = (dimM − signHpf)/2.

2. Main result

Let us formulate the main result of this paper.

Main Theorem. Assume thatM is a connected Riemannian manifold with-
out boundary. Then

I : F∇[M ]→ Z
is a bijection.

Observe that the inclusion F∇(M) ↪→ F(M) induces a well-defined map
Φ: F∇[M ]→ F [M ].

Corollary 2.1. The map Φ is a bijection.

The above result follows immediately from Main Theorem, Theorem 1.1
and the commutativity of the diagram

F∇[M ]

I
""

Φ // F [M ]

I
}}

Z .

Remark 2.2. Observe that Corollary 2.1 is an analogue of the Parusiński
theorem ([17, Thm. 1]) and a generalization of our previous result ([4, Rem.
2.2]).

The proof of Main Theorem is based on the two following lemmas, which
will be proved in the next two sections.
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Lemma A. If v is a gradient local vector field and I(v) = m then v is
gradient otopic to a disjoint union of |m| standard vector fields, each of them
with the same intersection number equal to 1 (resp. −1) if m ≥ 0 (resp.
m < 0).

Lemma B. Consider two finite collections {si}mi=1 and {s′i}mi=1 of standard
vector fields such that for each collection the domains of local vector fields
are pairwise disjoint and all 2m fields have the same sign of the intersection
number. Then tmi=1si is gradient otopic to tmi=1s

′
i.

Remark 2.3. Note that one can construct a gradient local vector field (in
fact, standard) around any p ∈ M with a given Morse index. Namely,
let f(x) = −∑µ

i=1 x
2
i +

∑n
i=µ+1 x

2
i be written in some chart containing p

represented by 0. Then for s = ∇f we have µ(s) = µ and I(s) = (−1)µ.

Proof of Main Theorem. Injectivity follows immediately from Lemmas A
and B. In turn, surjectivity follows easily from Remark 2.3. �

Remark 2.4. Let us note that in Main Theorem we do not assume the
orientability of the manifold M . The reason is that the intersection number
being an integer is well-defined for every local vector field on an arbitrary
smooth manifold (orientable or non-orientable). Moreover, the assumption
on the orientability of M is not needed in the proofs of Lemmas A and B.
Namely, let s be a standard vector field defined on a small disc centered
at p. Choose one of two possible orientations of that disc. If we move s
along a closed path on a non-orientable manifold M in such a way that the
orientation of the domain of s changes, then the orientation of TpM will
change as well. Consequently, the intersection number of s will remain the
same. The more general case of vector bundles is discussed in [2].

We close this section with a remark concerning gradient proper vector
fields. Recall that a local vector field v is called proper if for all K ≥ 0 the
set {x ∈ Dv | |v(x)| ≤ K} is compact. Using an approach similar to that
in [5], one can obtain a result analogous to our Main Theorem, in which
gradient local fields and their otopies are replaced by gradient proper ones.

3. Technical lemmas

We precede the proofs of Lemmas A and B by a number of technical
results. Let us start with a lemma that would allow us to move a finite col-
lection of standard vector fields with disjoint domains over the manifold M .
Since we work with charts coveringM that give the local Euclidean structure
not necessarily coherent with the Riemannian structure of the manifold, we
have to remember that the gradient of a real function on M depends on the
latter. Note, however, that gradients in Euclidean and Riemannian struc-
tures have the same zeroes.

Lemma 3.1. Assume that dimM > 1 and si (i = 1, . . . , k) are standard
vector fields centered at pi with disjoint domains. Let p 6= pi for all i. Then
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there are standard vector fields s′i (i = 1, . . . , k) with disjoint domains such
that:

• p is the center of s′1.
• s′i is a restriction of si for i = 2, . . . , k.
• tki=1si is gradient otopic to tki=1s

′
i.

Proof. Let ω : [0, r] → M denote a path connecting p1 with p such that
pi 6∈ ω([0, r]) for i ≥ 2 and ω([j, j + 1]) is contained in a chart ϕj for
j = 0, . . . , r − 1. Let us define inductively open sets Ut and potentials
ft : Ut → R for t ∈ [0, r]. Denote by U0 an open subset of the domain of
s1 such that p1 ∈ U0 and by f0 the potential of the field s1 restricted to
U0. Assuming Ut and ft to be defined for t ∈ [0, j], we will define it for
t ∈ [j, j + 1]. Set

Ut = {x+ ω(t)− ω(j) | x ∈ Uj} and ft(x+ ω(t)− ω(j)) = fj(x)

written in the coordinates of the chart ϕj . We choose U0 small enough so
that:

• For j = 0, . . . , r − 1 and for all t ∈ [j, j + 1] the set Ut is contained
in the chart ϕj .
• pi 6∈ cl

(⋃
t∈[0,r] Ut

)
for i = 2, . . . , k.

This guarantees that the sets Ut are well-defined and disjoint with the do-
mains of the restrictions s′i for i = 2, . . . , k.

Let Ω =
⋃
t∈[0,r] t × Ut and F : Ω → R is given by F (t, x) = ft(x). Since

∇xF is a gradient otopy between s1 and s′1 = ∇fr, the required otopy
from tki=1si to tki=1s

′
i can be easily obtained by combining ∇xF with the

restriction of tki=2si to tki=2s
′
i (see Figure 1). �

p1

p2

p3

p

s1

s2

s3

s′1

s′2

s′3

ω

Figure 1. The idea of the otopy in Lemma 3.1.
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In the remainder of this section we assume additionally that a manifold
M can be covered by one chart. Thus M is diffeomorphic to an open subset
of Rn.

Let us introduce the following notation. Let s = ∇f be a standard vector
field centered at p. Set f̃(x) = (x− p)T (Hpf)(x− p) and s̃ = ∇f̃ .
Remark 3.2. Observe that s̃ is standard and gradient otopic to s (it is
enough to consider the straight-line homotopy of the potentials on a suffi-
ciently small neighborhood of p).

All vector fields considered in the following five lemmas are standard.

Lemma 3.3. If s and s′ have disjoint domains and µ(s′) = µ(s) + 1 then
s t s′ is gradient otopic to the empty map.

Proof. Let µ = µ(s). Applying Lemma 3.1, we may assume that s and
s′ are centered at (0, . . . ,−a) and (0, . . . , 0, a). Note that s t s′ is gradient
otopic to s̃ t s̃′. Set g(x) = −∑µ

i=1 x
2
i +

∑n−1
i=µ+1 x

2
i . By Remark 1.2 we

can assume that the potentials of s̃ and s̃′ have the form g(x) + (xn + a)2

and g(x)− (xn − a)2. Now we can perform “annihilation” by bringing closer
the centers of s̃ and s̃′ along the n-th coordinate axis, glueing together both
potentials and finally removing the zeroes of their gradient fields. More
precisely, let

ft(x)

=


g(x) + (xn + a(1− 2t))2 − a2(1− 2t)2 if xn ∈ (−2a, 0) and t ∈ I,
g(x)− (xn − a(1− 2t))2 + a2(1− 2t)2 if xn ∈ (0, 2a) and t ∈ I,
0 if xn = 0 and t 6= 0.

Then ht(x) = ∇ft(x) is the desired “annihilation” otopy (see Figure 2). �

−a
a

t = 0

−a
a

t = 1
5

−a
a

t = 1

Figure 2. Annihilation — the graph of the n-th summand
of the otopy potential.

Recall that below ∼ denotes the relation of gradient otopy.

Lemma 3.4. If µ(s) ≡ µ(s′) (mod 2) then s is gradient otopic to s′.
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Proof. Without loss of generality we can assume that µ(s′) ≥ µ(s). The
proof is by induction on k, where 2k = µ(s′) − µ(s). The lemma holds for
k = 0 by Remarks 1.2 and 3.2. Assume the lemma is true if µ(s′) = µ(s)+2k.
We will prove it if µ(s′) = µ(s) + 2k + 2. Let s′′ and s′′′ be standard
vector fields near s′ (all three with pairwise disjoint domains) such that
µ(s′′) = µ(s) + 2k + 1 and µ(s′′′) = µ(s) + 2k. By inductive assumption,
Lemma 3.3 and localization property,

s ∼ s′′′ ∼ (s′ t s′′) t s′′′ = s′ t (s′′ t s′′′) ∼ s′,
which is our assertion. �

Lemma 3.5. If s and s′ have disjoint domains and µ(s′) ≡ µ(s)+1 (mod 2)
then s t s′ is gradient otopic to the empty map.

Proof. Let s′′ be a standard vector field with the same center as s′ and
such that |µ(s′′)− µ(s)| = 1. Then µ(s′′) ≡ µ(s′) (mod 2). By Lemma 3.3,
s t s′′ ∼ ∅ and by Lemma 3.4, s′ ∼ s′′. Therefore s t s′ ∼ ∅. �

Remarks 1.2, 2.3 and 3.2 imply that the formula I(s) = (−1)µ(s) holds for
any standard vector field s. Thus the next two results follow immediately
from Lemmas 3.4 and 3.5, respectively.

Lemma 3.6. If I(s) = I(s′) then s is gradient otopic to s′.

Lemma 3.7. If s and s′ have disjoint domains and I(s′) = − I(s) then sts′
is gradient otopic to the empty map.

4. Proofs of Lemmas A and B

Proof of Lemma A. By Proposition 1.3, any gradient local vector field is
gradient otopic (also homotopic) to generic one and by localization property,
any generic local vector field is gradient otopic to a finite disjoint union of
standard ones. If all these standard vector fields have the same intersection
number, we are done. Otherwise, without restriction of generality we can
assume that s = tki=1si and I(s1) = − I(s2). Now we need to consider the
following two cases.

Case 1. dimM > 1. By Lemma 3.1, we can assume the domains of s1 and s2

are contained in a chart of the manifold, which is disjoint with the remaining
fields. Now by Lemma 3.7, tki=1si is gradient otopic to tki=3si. Proceeding
by induction, we obtain our claim.

Case 2. dimM = 1. The reasoning is analogous as in the previous case, but
instead of using Lemma 3.1 we choose s1 and s2 to be adjacent on the one
dimensional manifold M . �

Proof of Lemma B. First, if the set of centers of the collection {si}mi=1 is
the same as that of {s′i}mi=1, then it is enough to use Lemma 3.6. Otherwise,
we can achieve this situation by applying the following inductive procedure.
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Without loss of generality assume that the center of s1 is not equal to any
center of s′i. Then in the case of dimM > 1, by Lemma 3.1, we can translate
the center of s1 to the position of the center of s′1. Similarly in the case
of dimM = 1, instead of using Lemma 3.1, we can just move the collection
{si}mi=1 to the position of the collection {s′i}mi=1, where the order is irrelevant.

�

5. Gradient equivariant local maps

Assume that V is a real finite dimensional orthogonal representation of
a compact Lie group G. Let X be an arbitrary G-space. We say that
f : X → V is equivariant, if f(gx) = gf(x) for all x ∈ X and g ∈ G. We
will denote by FG(X) the space {f ∈ Loc(X,V, 0) | f is equivariant} with
the induced topology.

Assume that Ω is an open invariant subset of V and the action of G on I
is trivial. Elements of FG(Ω) are called equivariant local maps and elements
of FG(I × Ω) are called otopies. Otopies give an equivalence relation on
FG(Ω): f and k are otopic iff there is an otopy h such h0 = f and h1 = k.
Let FG[Ω] denote the set of equivalence classes of this relation. Since there
is a natural bijection between FG(I × Ω) and Map (I,FG(Ω)) (it is even a
homeomorphism — see [1, Cor. 2.2 and Rem. 2.3]), we may identify FG[Ω]
with the set of path-connected components of FG(Ω).

Let F∇G (Ω) denote the subspace of FG(Ω) (with the relative topology) con-
sisting of those maps f for which there is an invariant C1-function ϕ : Df →
R such that f = ∇ϕ. Similarly, we write F∇G (I × Ω) for the subspace of
FG(I × Ω) consisting of such otopies h that ht ∈ F∇G (Ω) for each t ∈ I.
These otopies are called gradient. Let us denote by F∇G [Ω] the set of the
equivalence classes of the gradient otopy relation. Alternatively, F∇G [Ω] may
be viewed as the set of path-connected components of F∇G (Ω).

In the remainder of this section we assume that V is a real finite dimen-
sional orthogonal representation of a compact Lie group G, Ω is an open
invariant subset of V , G acts freely on Ω and M := Ω/G. It is well known
that M is a Riemannian manifold equipped with the so-called quotient Rie-
mannian metric (see for instance [11, Prop. 2.28]).

If U is an open invariant subset of Ω and ϕ : U → R is an invariant
function then ϕ̃ stands for the quotient function ϕ̃ : U/G → R. Let the
function Ψ: F∇G (Ω) → F∇(M) be given by Ψ(∇ϕ) = ∇ϕ̃. Since ∇ϕ̃ does
not depend on the choice of ϕ, the function Ψ is well-defined. We can now
formulate the main result of this section.

Theorem 5.1. The function Ψ is a bijection. Moreover, Ψ induces a bijec-
tion between F∇G [Ω] and F∇[M ].

Proof. We call a potential admissible if its gradient is a local map in the
respective function space. Since the assignment ϕ 7→ ϕ̃ is a bijection between
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the sets of admissible potentials on U and U/G, the function

Ψ−1(∇ϕ̃) = ∇ϕ
is well-defined, and so Ψ is a bijection. Similar arguments establish a bi-
jection between F∇G (I × Ω) and F∇(I ×M), which shows that Ψ induces a
bijection from F∇G [Ω] to F∇[M ]. �

The following result is an immediate consequence of Main Theorem and
Theorem 5.1.

Corollary 5.2. There is a natural bijection

F∇G [Ω] ≈
∑
α

Z,

where the direct sum is taken over the set of all connected components α of
M .

Remark 5.3. The important point to note here is the difference between
the sets of gradient equivariant and equivariant otopy classes. Namely, in [2]
we proved that there is a bijection

FG[Ω] ≈
∑
α

Z,

with the direct sum taken over all connected components of M , but only if
dimG = 0. If dimG > 0, then the set FG[Ω] is trivial, i.e., consists of one
element. Consequently, the map F∇G [Ω] → FG[Ω] induced by the inclusion
is a bijection for dimG = 0, but the sets F∇G [Ω] and FG[Ω] are essentially
different for dimG > 0. Therefore the analogy with the Parusiński result
([17]) occurs only if dimG = 0.

Acknowledgements. The authors wish to express their thanks to the ref-
eree for helpful comments concerning the paper.
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