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Classical theta functions from a quantum
group perspective

Răzvan Gelca and Alastair Hamilton

Abstract. In this paper we show how to model classical theta functions
using the quantum group of abelian Chern–Simons theory. We describe
the representation of the Heisenberg and mapping class groups in this
setting.
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1. Introduction

In 1989, Witten [31] introduced a series of knot and 3-manifold invariants
based on a quantum field theory with the Chern–Simons lagrangian. Witten
defined these invariants by starting with a compact simple Lie group, the
gauge group of the theory, and then defined a path integral for each 3-
manifold as well as for knots and links in such a 3-manifold. The most
studied case is of the gauge group SU(2), which is related to the Jones
polynomial of knots [13]. Witten pointed out that the case of the gauge
group U(1) (abelian Chern–Simons theory) is related to the linking number
of knots and to classical theta functions. Here and below we use the term
“classical” not in the complex analytical distinction between classical and
canonical, but to specify the classical theta functions as opposed to the
nonabelian ones.

Abelian Chern–Simons theory was studied in [2], [10], [18], [19] and [21].
Our interest was renewed by the discovery, in [10], that all constructs of
abelian Chern–Simons theory can be derived from the theory of theta func-
tions. More precisely, in [10] it was shown that the action of the Heisenberg
group on theta functions discovered by A. Weil, and the action of the map-
ping class groups lead naturally to manifold invariants.

In this paper we show how the theory of classical theta functions can be
modeled using the quantum group of abelian Chern–Simons theory. This
quantum group was introduced briefly in [21], but its properties were not
discussed. In particular it was not noticed that, surprisingly, this quantum
group is not a modular Hopf algebra. Below we interpret the classical theta
functions, the action of the Heisenberg group, and the action of the mapping
class groups in terms of vertex models using this quantum group.

Moreover, in [17] the Heisenberg group that arises in the theory of theta
functions was related to the quantum torus (also known as the noncom-
mutative torus). More precisely, the elements of the Heisenberg group are
quantized exponentials, and the multiplication rule of the Heisenberg group
yields a ∗-product for exponentials. The quantum torus is a normed algebra
in which the polynomials in quantized exponentials are dense. The question
arose as to whether the quantum torus is a quantum group; a deformation
of the algebra of smooth functions on the torus that is the Jacobian variety.
The answer is negative, except in a very weak sense [28]. In this paper we
establish the relationship between the quantum torus and quantum groups,
albeit in the spirit of [1].

Acknowledgements. We would like to thank Yuri Manin for making us
aware of the connection between our work and the quantum torus.

Notation and conventions. If V and W are vector spaces, we denote the
linear map that permutes V and W by

P : V ⊗W →W ⊗ V, v ⊗ w 7→ w ⊗ v.
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Given a Hilbert space H, we denote the group of unitary transformations
of H by U(H). In particular, we denote the group of unitary transformations
of Cn by U(n).

Given a ring R, we denote the ring of formal power series over R in a single
variable h by R[[h]]. We denote the ring of noncommutative polynomials in
the variables X1, . . . , Xn by R〈X1, . . . , Xn〉. The ring of integers modulo N
will be denoted by ZN .

We denote the mapping class group of a Riemann surface Σg byMΣg . If
g is a Lie algebra, we denote its universal enveloping algebra by U(g).

2. Classical theta functions from a topological perspective

2.1. Theta functions and representation theory. In this section we
recall the essential facts from [10], as well as the basic (well-known) back-
ground on theta functions. Classical theta functions may be described as
sections of a certain line bundle over the Jacobian variety J (Σg) associated
to a closed genus g Riemann surface Σg.

The Jacobian variety is constructed as follows (cf. [6]). Choose a canonical
basis of H1(Σg,Z) like that in Figure 1, which is given by a collection of
oriented simple closed curves a1, a2, . . . , ag, b1, b2, . . . , bg satisfying

ai · aj = bi · bj = 0, ai · bj = δij

with respect to the intersection form. These curves can also be interpreted as
generators of the fundamental group, and in this respect they define a mark-
ing on the surface in the sense of [12]. The complex structure on the surface
Σg together with this marking defines a point in the Teichmüller space Tg,
cf. [12]. There exists a unique set of holomorphic 1-forms ζ1, ζ2, . . . , ζg on

Figure 1. Any marked surface Σg may be canonically iden-
tified (up to isotopy) with the surface in the figure above.

Σg such that ∫
aj

ζkdz = δjk.

The matrix Π ∈Mg(C) whose entries are

πjk =

∫
bj

ζkdz

is symmetric with positive definite imaginary part.
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Definition 2.1. The Jacobian variety J (Σg) of the marked Riemann sur-
face Σg is the quotient

J (Σg) := Cg/L
of Cg by the lattice subgroup

L := {t1λ1 + · · ·+ t2gλ2g : t1, . . . , t2g ∈ Z}

that is spanned by the columns λi of the g × 2g matrix λ := (Ig,Π), which
we call the period matrix.

Remark 2.2. This identifies J (Σg) as an abelian variety whose complex
structure depends upon the matrix Π. Changing the marking on Σg whilst
leaving the complex structure of Σg fixed gives rise to a biholomorphic Ja-
cobian variety, albeit with a different period matrix.

The period matrix λ gives rise to an invertible R-linear map

R2g = Rg × Rg → Cg, (x, y) 7→ λ(x, y)T = x+ Πy

which descends to a diffeomorphism

(2.1) R2g/Z2g ≈ Cg/L = J (Σg).

Using this system of real coordinates, we define a symplectic form

ω =

g∑
j=1

dxj ∧ dyj

on the quotient space J (Σg). This form is obviously well-defined due to the
invariance of the above expression under translations. This symplectic form
allows us to identify J (Σg) with the phase space of a classical mechanical
system, and to address questions about quantization.

Theta functions are obtained by applying the procedure of geometric
quantization in a Kähler polarization, and this is explained in detail in [4].
The result is a family of functions that differs slightly from Riemann’s in the
sense that they depend on an integer parameter N . They are known as theta
functions with rational characteristic [20] (these theta functions correspond
to Mumford’s in the case a = µ

N , b = 0). We point out that these theta
functions with characteristic have been used to prove that abelian varieties
are projective varieties (Lefschetz’ Theorem).

Choose Planck’s constant to be h = 1
N , where N is a positive even inte-

ger. The Hilbert space of our quantum theory is obtained by applying the
procedure of geometric quantization [26], [32]. It may be constructed as the
space of holomorphic sections of a certain holomorphic line bundle over the
Jacobian variety J (Σg) which is obtained as the tensor product of a line

bundle with curvature −2πi
h ω = −2πiNω and a half-density. Such sections

may be identified, in an obvious manner, with holomorphic functions on Cg
satisfying certain periodicity conditions determined by the period matrix λ,
leading to the following definition.
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Definition 2.3. The space of classical theta functions ΘΠ
N (Σg) of the marked

Riemann surface Σg is the vector space consisting of all holomorphic func-
tions f : Cg → C satisfying the periodicity conditions

f(z + λj) = f(z), f(z + λg+j) = e−2πiNzj−πiNπjjf(z), j = 1, 2, . . . , g,

where λi denotes the ith column of the period matrix λ. The space of
classical theta functions is a Hilbert space with inner product

(2.2) 〈f, g〉 := (2N)
g
2 (det ΠI)

1
2

∫
[0,1]2g

f(x, y)g(x, y)e−2πNyTΠIydxdy,

where ΠI ∈Mg(R) denotes the imaginary part of Π.

This inner product arises from geometric quantization (see [4]), its com-
putation uses the fact that for a holomorphic line bundle with a hermitian
structure there is a unique connection compatible with both the hermitian
structure and the complex structure. We point out that in [4] all computa-
tions are done in the case g = 1, but the general case is entirely parallel.

The space of theta functions depends only on the complex structure of Σg

and not on the marking, in the sense that choosing a different marking on
Σg yields an isomorphic Hilbert space. However, the marking on Σg specifies
a particular orthonormal basis consisting of the theta series

θΠ
µ (z) :=

∑
n∈Zg

e2πiN [ 1
2( µN +n)

T
Π( µN +n)+( µN +n)

T
z], µ ∈ ZgN .

Hence each point in Tg gives rise to a space of theta functions endowed with
a preferred basis.

Given p, q ∈ Zg, consider the exponential function

J (Σg)→ C, (x, y) 7→ e2πi(pT x+qT y)

defined on J (Σg) in the coordinates (2.1). Applying the Weyl quantization
procedure in the momentum representation [2], [10] to such a function, one
obtains the operator

(2.3) Opq := Op
(
e2πi(pT x+qT y)

)
: ΘΠ

N (Σg)→ ΘΠ
N (Σg)

that acts on the theta series by

Opqθ
Π
µ = e−

πi
N
pT q− 2πi

N
µT qθΠ

µ+p.

Definition 2.4. Given a nonnegative integer g, the Heisenberg group H(Zg)
is the group

H(Zg) := {(p, q, k) : p, q ∈ Zg, k ∈ Z}
with underlying multiplication

(p, q, k)(p′, q′, k′) =

p+ p′, q + q′, k + k′ +

g∑
j=1

∣∣∣∣ pj qj
p′j q′j

∣∣∣∣
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Given an even integer N , the finite Heisenberg group H(ZgN ) is the quo-
tient of the Heisenberg group H(Zg) by the normal subgroup consisting of
all elements of the form

(p, q, 2k)N = (Np,Nq, 2Nk); p, q ∈ Zg, k ∈ Z.

Remark 2.5. The finite Heisenberg group is a Z2N -extension of Z2g
N , and

consequently has order 2N2g+1. One should point out that the group H(Zg)
can be interpreted as the Z-extension of

(2.4) H1(Σg,Z) = Zg × Zg,
g∑
i=1

(piai + qibi) � (p, q)

by the cocycle defined by the intersection form.

The operators (2.3) generate a subgroup of the group U
(
ΘΠ
N (Σg)

)
of uni-

tary operators on ΘΠ
N (Σg), which may be identified with the finite Heisen-

berg group as follows.

Proposition 2.6 (Proposition 2.3. [10]). Given a marked Riemann surface
Σg of genus g and a positive even integer N , the subgroup G of the group of
unitary operators on ΘΠ

N (Σg) that is generated by all operators of the form

Opq = Op
(
e2πi(pT x+qT y)

)
; p, q ∈ Zg

is isomorphic to the finite Heisenberg group H(ZgN ):

(2.5) H(ZgN ) ∼= G, (p, q, k) 7→ e
kπi
N Opq.

Remark 2.7. Note that e
πi
N ∈ G, so (2.5) makes sense.

The multiplication in the Heisenberg group, seen as multiplication of
quantized exponentials, was interpreted in [17] as a ∗-product for expo-
nentials

exp(pTx+ qT y) ∗ exp(p′
T
x+ q′

T
y)

= eπih(pT q′−qT p′) exp((p+ p′)Tx+ (q + q′)T y),

with h = 1/N . Exponentials generated an algebra that is norm dense in the
quantum torus, and hence we have an action of the quantum torus on theta
functions.

The representation of H(ZgN ) on the space of theta functions ΘΠ
N (Σg)

defined by (2.5), which we refer to as the Schrödinger representation, was
first discovered by A. Weil [30] by examining translations in the line bundle
over the Jacobian. Like the Schrödinger representation of the Heisenberg
group with real entries, it satisfies a Stone–von Neumann theorem (for a
proof see [10]).
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Theorem 2.8. Any irreducible unitary representation of the finite Heisen-
berg group in which the element (0, 0, 1) ∈ H(ZgN ) acts as multiplication by

the scalar e
πi
N is unitarily equivalent to the Schrödinger representation (2.5).

This Stone–von Neumann theorem provides a reason for the existence of
the action of the mapping class group on theta functions, whose discovery
can be traced back to Jacobi. Let us denote by MΣg the mapping class
group of the surface Σg. An element h ∈ MΣg induces a linear endomor-
phism h∗ of H1(Σg,Z) preserving the intersection form. By Remark 2.5,
this endomorphism gives rise to an automorphism

(2.6) H(Zg)→ H(Zg), ((p, q), k) 7→ (h∗(p, q), k)

of the Heisenberg group. This automorphism descends to an automorphism
of the finite Heisenberg group H(ZgN ), yielding an action of the mapping
class group of Σg on H(ZgN );

(2.7) MΣg → Aut
(
H(ZgN )

)
h 7→ h̃ : ((p, q), k) 7→ (h∗(p, q), k).

Pulling the Schrödinger representation (2.5) back via the automorphism h̃
yields another representation

(p, q, k) 7→ e
kπi
N Oh∗(p,q)

of the finite Heisenberg group H(ZgN ). By Theorem 2.8, this representation
is unitarily equivalent to the Schrödinger representation, and therefore there
exists a unitary map

ρ(h) : ΘΠ
N (Σg)→ ΘΠ

N (Σg),

satisfying what is called the exact Egorov identity

e
kπi
N Oh∗(p,q) = ρ(h) ◦

(
e
kπi
N Opq

)
◦ ρ(h)−1; p, q ∈ Zg, k ∈ Z.

By Schur’s Lemma, ρ(h) is well-defined up to multiplication by a complex
scalar of unit modulus. Consequently, this construction yields a projective
unitary representation

MΣg → U
(
ΘΠ
N (Σg)

)
/U(1), h 7→ ρ(h)

of the mapping class group on the space of theta functions. The maps ρ(h)
can be described as discrete Fourier transforms as we will explain below.

The Schrödinger representation can be obtained as an induced represen-
tation, and this allows us to relate theta functions to knots without the use
of Witten’s quantum field theoretic insights.

Consider the submodule

L := {(0, q) : q ∈ Zg}
of Zg × Zg that is isotropic with respect to the intersection pairing induced
by (2.4) and let

L̃ := {(p, q, k) ∈ H(Zg) : (p, q) ∈ L}
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be the corresponding maximal abelian subgroup of H(Zg). Denote the im-

age of L̃ in H(ZgN ) under the natural projection by L̃N . Being abelian,
this group has only one-dimensional irreducible representations, which are
therefore characters. In view of the Stone–von Neumann theorem, choose
the character

χL : L̃N → C, χL(p, q, k) := e
kπi
N .

Consider the group algebras C[H(ZgN )] and C[L̃N ]. Note that the latter
acts on C by the character χL. The induced representation is

Ind
H(ZgN )

L̃N
= C[H(ZgN )]⊗C[L̃N ] C,

with H(ZgN ) acting on the left in the first factor of the tensor product.

We denote HN,g(L) := Ind
H(ZgN )

L̃N
. This space can be described as the

quotient of C[H(ZgN )] by the relations

(2.8) χL(u1)u = uu1; u ∈ H(ZgN ), u1 ∈ L̃N .

Denote the quotient map by

πL : C[H(ZgN )]→ HN,g(L).

The left regular action of H(ZgN ) on C[H(ZgN )] descends to an action of
H(ZgN ) on the quotientHN,g(L) that gives rise to the induced representation.

Proposition 2.9 ([10]). The map

(2.9) ΘΠ
N (Σg)→ HN,g(L) θΠ

µ 7→ πL[(µ, 0, 0)]

defines an H(ZgN )-equivariant C-linear isomorphism between the space of

theta functions ΘΠ
N (Σg) equipped with the Schrödinger representation and

the space HN,g(L) equipped with the left regular action of H(ZgN ).

Remark 2.10. Let h be an element of the mapping class group of Σg and
set L′ := h∗(L). As above, we may construct the vector space HN,g(L′) as
the quotient of C[H(ZgN )] by the same relations (2.8), where L is replaced
by L′ and the formula for the character χL′ is the same as that for χL.

Following [22] (see also [10]) we consider the map HN,g(L) → HN,g(L′)
given by

(2.10) πL(u) 7→ 1[
L̃N : (L̃N ∩ L̃′N )

] 1
2

∑
u1∈L̃N/(L̃N∩L̃′N )

χL(u1)−1πL′(uu1).

where u ∈ C[H(ZgN )]. On the other hand, the automorphism h̃ of H(ZgN )
defined by (2.7) induces a canonical identification

HN,g(L) ∼= HN,g(L′), πL(u) 7→ πL′(h̃(u))

Composing (2.10) with the inverse of this map yields an endomorphism of
HN,g(L) and consequently, by Proposition 2.9, an endomorphism of ΘΠ

N (Σg).
This endomorphism is (a unitary representative for) ρ(h)−1. There is a
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general philosophy with identifies the intetwiners of the representations of
Heisenberg groups as Fourier transforms, which is explained for the case of
the metaplectic representation in [16] and for our situation in [22]. In that
sense, ρ(h) is a discrete Fourier transform, and formula (2.10) is useful in
establishing this correspondence.

Denote by L(ΘΠ
N (Σg)) the algebra of C-linear endomorphisms of ΘΠ

N (Σg).
The Schrödinger representation (2.5) provides a way to describe this space
of linear operators in terms of the finite Heisenberg group H(ZgN ).

Proposition 2.11 (Proposition 2.5 in [10]). The quotient of the algebra

C[H(ZgN )] by the ideal I generated by (0, 0, 1)−e
πi
N (0, 0, 0) is isomorphic, via

the Schrödinger representation, to the algebra of linear operators L(ΘΠ
N (Σg))

with isomorphism defined by (p, q, k) 7→ e
kπi
N Opq.

2.2. Theta functions modeled using skein modules. By Proposi-
tion 2.9, the map (2.9) intertwines the Schrödinger representation and the
left action of the finite Heisenberg group. As explained in [10], this abstract
version of the Schrödinger representation has topological flavor, which allows
us to model the space of theta functions, the Schrödinger representation, and
the action of the mapping class group using the skein modules correspond-
ing to the linking number introduced by Przytycki in [23]. The key idea is
that the group algebra of the Heisenberg group can be interpreted as a skein
algebra of curves on the surface, while the factorization relation that gives
rise to the induced representation is the result of filling in the surface with
a handlebody. Here is the topological model.

For an oriented 3-manifold M , consider the free C[t, t−1]-module with
basis the set of isotopy classes of framed oriented links contained in the in-
terior of M , including the empty link ∅. Factor it by the C[t, t−1]-submodule
spanned by the elements from Figure 2, where the two terms depict framed
links that are identical, except in an embedded ball, in which they look as
shown and have the blackboard framing; the orientation in Figure 2 that is
induced by the orientation of M must coincide with the canonical orientation
of R3. In other words, we are allowed to smooth each crossing, provided that
we multiply with the appropriate power of t, and we are allowed to delete
trivial link components. The result of this factorization is called the linking
number skein module of M and is denoted by L(M). Its elements are called
skeins. The name is due to the fact that the skein relations (Figure 2) are
used in computing the Gaussian linking number of two curves.

From the even positive integer N we define the reduced linking number
skein module of M , denoted by LN (M), as follows. Consider the C-module

L(M)⊗C[t,t−1] C,
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Figure 2. The skein relations defining L(M).

where C[t, t−1] acts on C by setting t = e
πi
N . The reduced linking number

skein module LN (M) is then the quotient of this C-module by the relation,

γ‖N ∪ L = L;

where this relation holds for all framed oriented knots γ and framed oriented
links L disjoint from γ, and γ‖N is the multicurve1 in a regular neighborhood
of γ disjoint from L obtained by replacing γ by N parallel copies of it (where
“parallel” is defined using the framing of γ).

If M = Σg × [0, 1], then the identification

(2.11) (Σg × [0, 1])
⊔

Σg×{0}=Σg×{1}

(Σg × [0, 1]) ≈ Σg × [0, 1]

induces a multiplication of skeins in L(Σg× [0, 1]) and LN (Σg× [0, 1]) which
transforms them into algebras. Moreover, the identification

(2.12) (∂M × [0, 1])
⊔

∂M×{0}=∂M

M ≈M,

canonically defined up to isotopy, makes L(M) into a L(∂M× [0, 1])-module
and LN (M) into a LN (∂M × [0, 1])-module.

We are only interested in the situation where the cylinder Σg × [0, 1] is
glued to the boundary of the standard handlebody Hg of genus g, which we
take to be the 3-manifold enclosed by the surface depicted in Figure 1. The
marking on Σg leads to a canonical (up to isotopy) identification ∂Hg = Σg

making L(Hg) into a L(Σg×[0, 1])-module and LN (Hg) into a LN (Σg×[0, 1])-
module. Note that any link in a cylinder over a surface is skein-equivalent
to a link in which every link component is endowed with a framing that is
parallel to the surface. Consider the curves a1, a2, . . . , ag, b1, b2, . . . , bg from
Figure 1 that define the marking on Σg, equipped with this parallel framing.

The surface Σg can be decomposed into the union of a sphere with g punc-
tures and g punctured tori in such a way that for each j, aj , bj form a basis
of the first homology group of the jth punctured torus. Using the canonical
basis we identify H1(Σg,Z) with Zg ×Zg. Then an element (p, q) ∈ Zg ×Zg
can be identified with a multicurve which is the union of the multicurves
(pj , qj) on the jth torus, j = 1, 2, . . . , g, where (pj , qj) consists of gcd(pj , qj)
copies of the curve of slope pj/qj on the jth torus oriented from the origin

1We use this notation to distinguish this from an N -fold product, which will appear
later.
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towards the point with coordinates (pj , qj) (when viewing this curve as a
segment in the universal covering space R2 of the torus). Turn the multic-
urve (p, q) into a skein in Σg×[0, 1] by placing it on Σg×{1/2} and endowing
each curve with the blackboard framing of the surface.

Theorem 2.12 (Theorem 4.5 and 4.7 in [10]). The algebras C[H(Zg)] and
L(Σg × [0, 1]) are isomorphic, with the isomorphism defined by the map

(2.13) C[H(Zg)] ∼= L(Σg × [0, 1]), (p, q, k) 7→ tk(p, q).

This isomorphism is equivariant with respect the action of the mapping class
group of Σg, where MΣg acts on the left by (2.6) and on the right in an
obvious fashion.

Furthermore, this isomorphism descends, using Proposition 2.11, to an
isomorphism of the algebras
(2.14)

L(ΘΠ
N (Σg)) ∼= C[H(ZgN )]/

〈
(0, 0, 1)− e

πi
N (0, 0, 0)

〉
∼= LN (Σg × [0, 1]).

Remark 2.13. We should point out that in terms of the canonical basis
depicted in Figure 1 this isomorphism is,

(p, q, k) 7→ t(k−p
T q)ap11 · · · a

pg
g b

q1
1 · · · b

qg
g ;

where we consider the curves ai and bi as oriented framed curves in the
cylinder Σg × [0, 1] whose framing is parallel to the surface. We remind the
reader that according to the multiplication defined by (2.11), the curves to
the left are placed on top of the curves to the right.

Consider now the oriented framed curves a1, a2, . . . , ag on Σg = ∂Hg.
These curves give rise to oriented framed curves in the handlebodyHg which,
by an abuse of notation, we denote in the same way. By (2.14), LN (Hg) is
a L(ΘΠ

N (Σg))-module.

Theorem 2.14 (Theorem 4.7 in [10]). The map

(2.15) ΘΠ
N (Σg)→ LN (Hg), θΠ

µ 7→ aµ11 · · · a
µg
g

is an isomorphism of L(ΘΠ
N (Σg))-modules.

Consider the orientation reversing diffeomorphism

(2.16) ∂Hg ≈ ∂Hg, ai 7→ bi, bi 7→ ai

of the boundary of the standard handlebody Hg that is canonically de-
termined (up to isotopy) by the above action on the marking depicted in
Figure 1. This identification gives rise to a Heegaard splitting

Hg

⊔
∂Hg≈∂Hg

Hg = S3



104 RĂZVAN GELCA AND ALASTAIR HAMILTON

of S3 in which the leftmost handlebody corresponds to the interior of Fig-
ure 1 and the rightmost handlebody corresponds to the exterior. In turn,
this Heegaard splitting defines a pairing

(2.17) [·, ·] : ΘΠ
N (Σg)⊗ΘΠ

N (Σg) ∼= LN (Hg)⊗ LN (Hg)→ LN (S3) = C,

where we make use of Theorem 2.14 and the fact2 that LN (S3) is generated
by the empty link. A direct computation illustrated in Figure 3 yields

[θΠ
µ , θ

Π
µ′ ] = t−2µTµ′ ; µ, µ′ ∈ ZgN .

Since t = e
πi
N is a primitive 2Nth root of unity, it follows from this formula

that this pairing is nondegenerate (the inverse matrix is 1
Ng t2µ

Tµ′). It is
important to point out that this pairing is not the inner product (2.2).

Figure 3. The pairing [θΠ
µ , θ

Π
µ′ ] yields the above skein in S3.

The labels µi, µ
′
i indicate the number of curves.

Let us now turn to the action of the mapping class group. Recall that any
element h of the mapping class group of Σg can be represented as surgery
on a framed link in Σg× [0, 1]. Suppose that L is a framed link in Σg× [0, 1]
such that the 3-manifold K that is obtained from Σg × [0, 1] by surgery
along L is diffeomorphic to Σg × [0, 1] by a diffeomorphism (where K is the
domain and Σg× [0, 1] is the codomain) that is the identity on Σg×{1} and
h ∈ MΣg on Σg × {0}. Of course, not all links have this property, but for
those that do, the diffeomorphism hL := h is well-defined up to isotopy.

In particular, if T is a simple closed curve on Σg, then a Dehn twist along
T is represented by the curve T+ that is obtained from T by endowing T
with the framing that is parallel to the surface and placing a single positive
twist in T (here, our convention for a Dehn Twist is such that a Dehn twist
along the curve b1 in Figure 1 maps a1 ∈ H1(Σg) to a1 + b1). The inverse
twist is represented by the curve T− obtained by placing a negative twist in
T .

By Theorem 2.12, any linear operator on ΘΠ
N (Σg) may be uniquely rep-

resented by a skein in LN (Σg × [0, 1]). To describe the skein associated to
the discrete Fourier transform ρ(h), we need the following definition.

Definition 2.15. Denote by Ω the skein in the solid torus depicted in Fig-

ure 4 multiplied by N−
1
2 .

2Note that in S3, the relation γ‖N ∪L = L is redundant, as using the skein relations of
Figure 2, any N -fold multicurve may be disentangled from any link and transformed into
a union of unknots, which may then be deleted.
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Figure 4. The skein Ω. The sum has N terms.

For a framed link L in a 3-manifold M , denote by Ω(L) ∈ LN (M) the
skein that is obtained by replacing each component of L by Ω using the
framing on L. Specifically, if L = L1 ∪ L2 ∪ · · · ∪ Lm then

Ω(L) :=
1

N
m
2

N−1∑
i1,...,im=0

L
‖i1
1 ∪ L

‖i2
2 ∪ · · · ∪ L

‖im
m .

Note that Ω(L) is independent of the orientation of L.

Remark 2.16. Given an oriented 3-manifold M , let L̂(M) denote the free
C[t, t−1]-module generated by isotopy classes of framed oriented links. This
is distinct from L(M) in that we do not quotient out by the skein relations of
Figure 2. The definition of Ω extends to give rise to a linear endomorphism,

L 7→ Ω(L),

of L̂(M) (but not of L(M)). As before, the identification (2.11) makes

L̂(Σg × [0, 1]) into an algebra. In this case, the endomorphism defined by Ω
is multiplicative.

Theorem 2.17 (Theorem 5.3 in [10]). Let hL ∈ MΣg be a diffeomorphism
that is represented by surgery on a framed link L. Then the skein associated
to the discrete Fourier transform ρ(hL) by (2.14) is Ω(L). Consequently,
if we consider ρ(hL) as an endomorphism of LN (Hg) using Theorem 2.14,
then

(2.18) ρ(hL)(β) = Ω(L) · β, β ∈ LN (Hg).

Remark 2.18. Of course, since ρ(hL) is a projective unitary representation,
what is meant by (2.18) is that left multiplication by the skein Ω(L) is a
unitary representative for the equivalence class represented by ρ(hL).

Remark 2.19. Since the mapping class group is generated by Dehn twists,
Theorem 2.17 is sufficient to describe the action of the mapping class group.

Consider the subalgebra E of L̂(Σg × [0, 1]) that is linearly generated by
isotopy classes of links for which surgery along that link does not change
the diffeomorphism type of Σg× [0, 1]. We may consider the diffeomorphism
represented by surgery on a framed link as a multiplicative map

E → C[MΣg ], L 7→ hL.

If

h = hT±1
◦ hT±2 ◦ · · · ◦ hT±n



106 RĂZVAN GELCA AND ALASTAIR HAMILTON

is a product of Dehn twists, it follows that h is represented by surgery on
the framed link T±1 · · ·T±n . Consequently,

ρ(h) = ρ(hT±1 ···T
±
n

) = Ω(T±1 · · ·T
±
n ).

3. The quantum group of abelian Chern–Simons theory

Any isotopy of knots can be decomposed into a sequence of Reidemeister
moves. Of them, the third Reidemeister move, an instance of which is
depicted in Figure 5, was interpreted by Drinfeld [5] as a symmetry which
leads to the existence of quantum groups. It follows that the linking number
skein modules, and hence the theory of classical theta functions, should
have an associated quantum group. This is the quantum group of abelian
Chern–Simons theory. In what follows we explain how this quantum group
is constructed and how the theory of classical theta functions is modeled
using it.

Figure 5. The third Reidemeister move leads to the study
of quantum groups.

3.1. The quantum group. From now on we set t = e
iπ
N , where N is the

even integer from §2. Note that t is a primitive 2Nth root of unity. It is
worth mentioning that, for the purposes of §3.2 and §3.3 alone, everything
still holds true if N is an odd integer. The quantum group associated to
U(1) is very simple; it is nothing more than the group algebra of the cyclic
group Z2N of order 2N . However, in order to explain how one arrives at
this as the correct definition of the quantum group for U(1), we need to
revisit the construction of the quantum group for SL2(C), from which it
is deduced. The reader unconcerned with the derivation of this quantum
group may skip ahead to Definition 3.1.

The Lie algebra u(1) is not semisimple, so the Drinfeld–Jimbo construc-
tion does not apply directly. Nevertheless, the construction of the corre-
sponding quantum group can be performed by following closely the construc-
tions from [5], [14]. Recall the Drinfeld–Jimbo construction of Uh(sl2(C)).
This is the quotient of the algebra C〈X,Y,H〉[[h]] by the closure of the ideal
generated by the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] =
e
hH
2 − e−

hH
2

e
h
2 − e−

h
2
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in the h-adic topology. It carries the structure of a Hopf algebra;

∆(H) := H ⊗ 1 + 1⊗H, ∆(X) := X ⊗ e
hH
4 + e−

hH
4 ⊗X,

∆(Y ) := Y ⊗ e
hH
4 + e−

hH
4 ⊗ Y, S(H) := −H,

S(X) := −X, S(Y ) := −Y.
There is a surjective map of Hopf algebras Uh(sl2(C))→ U(sl2(C)) defined

by its action on the generators as follows;

h 7→ 0, X 7→
[

0 1
0 0

]
, Y 7→

[
0 0
1 0

]
, H 7→

[
1 0
0 −1

]
.

Now recall that according to [25, §8], the quantum group Uq(sl2(C)) is
defined as the quotient of C〈K,K−1, X, Y 〉[q, q−1] by the relations

KK−1 = 1 = K−1K, (q − q−1)[X,Y ] = K2 −K−2,

KXK−1 = qX, KY K−1 = q−1Y.

It carries the Hopf algebra structure

∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1,

S(K) = K−1, S(K−1) = K,

∆(X) = X ⊗K +K−1 ⊗X, ∆(Y ) = Y ⊗K +K−1 ⊗ Y,
S(X) = −X, S(Y ) = −Y.

There is a map of Hopf algebras Uq(sl2(C)) → Uh(sl2(C)) defined by its
action on the generators as follows;

K 7→ e
hH
4 , K−1 7→ e−

hH
4 , X 7→ X, Y 7→ Y, q 7→ e

h
2 .

Finally, Reshetikhin and Turaev [25] define the quantum group Ut(sl2(C))
as the quotient of Uq(sl2(C)) by the relations

K2N = 1, X
N
2 = Y

N
2 = 0, q = t2.

Having recalled the construction of the quantum group for SL2(C), we
may now deduce from it the construction of the quantum group for U(1).
There is an inclusion of groups

U(1)→ SL2(C), z 7→
[
z 0
0 z̄

]
giving rise to an inclusion of (real) Lie algebras

(3.1) u(1) = R→ sl2(C), x 7→
[
ix 0
0 −ix

]
.

If we denote by

uC(1) := C⊗R u(1) = C
the complexification of u(1), then (3.1) extends to a C-linear map

uC(1)→ sl2(C)
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of complex Lie algebras.
We wish to define analogues Uh(uC(1)), Uq(uC(1)) and Ut(uC(1)) of the

above quantum groups for SL2(C) in such a way that they fit naturally into
a commutative diagram

(3.2) U(uC(1)) // U(sl2(C))

Uh(uC(1)) //

OO

Uh(sl2(C))

OO

Uq(uC(1)) //

OO

��

Uq(sl2(C))

OO

��

Ut(uC(1)) // Ut(sl2(C)).

Since the Lie algebra uC(1) is not semi-simple, we cannot use the Drinfeld–
Jimbo construction to define its quantized enveloping algebra Uh(uC(1)).
However, by the definition of quantum enveloping algebra, we must have

Uh(uC(1)) = U(uC(1))[[h]]

as a C[[h]]-module. The only reasonable way to place a Hopf algebra struc-
ture on Uh(uC(1)) so that it fits into the commutative diagram (3.2) appears
to be to choose the trivial deformation of U(uC(1)). Consequently, since
U(uC(1)) is a polynomial algebra in a single variable, we define

Uh(uC(1)) := C〈H〉[[h]]

and define

Uh(uC(1))→ Uh(sl2(C)); h 7→ h, H 7→ H
Uh(uC(1))→ U(uC(1)); h 7→ 0, H 7→ −i ∈ uC(1).

Similarly, one now realizes the only reasonable way to define Uq(uC(1)) is
to define it as the quotient

Uq(uC(1)) := C〈K,K−1〉[q, q−1]/(KK−1 = 1 = K−1K)

and choose the maps to be

Uq(uC(1))→ Uq(sl2(C)); K 7→ K, q 7→ q

Uq(uC(1))→ Uh(uC(1)); K 7→ e
hH
4 , q 7→ e

h
2 .

Finally, one arrives at the only sensible choice for Ut(uC(1)).

Definition 3.1. The quantum group Ut(uC(1)) is defined to be the quotient
of the quantum group Uq(uC(1)) by the ideal generated by the relations

K2N = 1, q = t2.
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The quantum group Ut(uC(1)) may be identified with the group algebra of
Z2N by identifying K with the generator of Z2N . The remaining two maps
at the bottom of (3.2) are defined in the obvious manner.

The irreducible representations of Ut(uC(1)) = C[Z2N ] are

V k; k = 0, 1, . . . , 2N − 1

where V k ∼= C and K acts by K · v = tkv. We denote by ek the canonical
basis element of V k.

Because of the Hopf algebra structure, finite-dimensional representations
form a ring (with the underlying abelian group defined á la Grothendieck
from the monoid whose addition is the direct sum of representations) in
which the product is provided by the tensor product of representations.
Since (V 1)⊗k ∼= V k, the representation ring is

C[V 1]/
(
(V 1)2N − 1

)
= C[Z2N ].

The fact that, in this case, the representation ring coincides with the quan-
tum group, is purely coincidental. Since Ut(uC(1)) is a Hopf algebra, this
implies that the dual space of each representation is itself a representation.
It is easy to see that there are natural isomorphisms

D : (V k)∗ → V 2N−k, Dek = ek, k = 1, . . . , 2N − 1,

where the functional ek is defined by ek(ek) = 1.
In what follows, we will explain how Ut(uC(1)) may be given the structure

of a ribbon Hopf algebra. Everything will be phrased using the terminology
from [29]. Most of our computations are based on the simple fact that if
z 6= 1 is a kth root of unity, then

(3.3) 1 + z + z2 + · · ·+ zk−1 = 0.

3.2. The universal R-matrix. Just as in the Reshetikhin–Turaev theory,
we want to model the braiding of strands in Section 2 by R-matrices. The
operator Ř = P ◦ R : V m ⊗ V n → V n ⊗ V m (where P is the map that
transposes the factors) should then come from the crossing of m strands by
n strands, as in Figure 6, and hence should equal multiplication by tmn for
all m,n ∈ {0, 1, . . . , 2N − 1}.

Figure 6. The skein relation for the crossing of n strands
by m strands.

We claim that, as for the quantum group of SU(2) [25], these R-matrices
are induced by a universal R-matrix in Ut(uC(1)). The universal R-matrix
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should be of the form

R :=
2N−1∑
j,k=0

cjkK
j ⊗Kk.

Let us compute the coefficients cjk. Because Kj = tjn id on V n for all j and
n, we obtain the system of equations

(3.4)

2N−1∑
j,k=0

cjkt
mjtnk = tmn; m,n ∈ {0, 1, . . . , 2N − 1}.

If T is the matrix whose mnth entry is tmn and C = (cjk), then this equation
becomes

T CT = T
and hence we find that C = T−1. Since t is a primitive 2Nth root of unity,
it follows from equation (3.3) that

(3.5) cjk =
1

2N
t−jk.

Hence, we arrive at the following formula for the R-matrix,

(3.6) R =
1

2N

∑
j,k∈Z2N

t−jkKj ⊗Kk.

Note that this formula for R implies that the R-matrix is symmetric in the
sense that P (R) = R.

Theorem 3.2. (Ut(uC(1)), R) is a quasi-triangular Hopf algebra.

Proof. We must show the following:

(1) R is invertible.
(2) For all a ∈ A, ∆op(a) = R∆(a)R−1; where ∆op := P ◦∆.
(3) The identities

(a) R13R12 = (id⊗∆)(R),
(b) R13R23 = (∆⊗ id)(R).

If Ut(uC(1)) is to be a quasi-triangular Hopf algebra, then a formula for
R−1 should be given by

R−1 = (S ⊗ id)[R] =
1

2N

∑
j,k∈Z2N

t−jkK−j ⊗Kk(3.7)

=
1

2N

∑
i,j∈Z2N

tjkK−j ⊗K−k.

We may check that this element is inverse to R as follows;

RR−1 =
1

4N2

∑
j,j′,k,k′∈Z2N

tj
′k′−jkKj−j′ ⊗Kk−k′
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=
1

4N2

∑
m,n∈Z2N

 ∑
j,k∈Z2N

t(j−m)(k−n)−jk

Km ⊗Kn.

But ∑
j,k∈Z2N

t(j−m)(k−n)−jk = tmn

 ∑
j∈Z2N

t−jn

 ∑
k∈Z2N

t−km

 .

By (3.3), this is zero unless m = n = 0, in which case it is equal to 4N2.
Hence RR−1 = 1⊗ 1.

Having proven (1), (2) follows trivially from the fact that

Ut(uC(1)) = C[Z2N ]

is both commutative and co-commutative.
Finally, to establish (3), one may compute directly from equation (3.6)

that

R13R12 =
1

4N2

∑
j,j′,k,k′∈Z2N

t−jk−j
′k′Kj+j′ ⊗Kk′ ⊗Kk

=
1

4N2

∑
m∈Z2N

∑
j,k,k′∈Z2N

t−jk−(m−j)k′Km ⊗Kk′ ⊗Kk

=
1

4N2

∑
m,k,k′∈Z2N

t−mk
′

 ∑
j∈Z2N

tj(k
′−k)

Km ⊗Kk′ ⊗Kk.

Now by (3.3),
∑

j∈Z2N
tj(k

′−k) is equal to zero, unless k′ = k, in which case
it is equal to 2N . Hence,

R13R12 =
1

2N

∑
m,k∈Z2N

t−mkKm ⊗Kk ⊗Kk = (id⊗∆)[R]

which establishes (3a). Item (3b) follows from a similar argument. �

For further use we introduce the element u. In general, if R =
∑

j αj⊗βj ,
then u =

∑
j S(βj)αj . In our particular situation

(3.8) u =
1

2N

∑
j,k∈Z2N

t−jkKj−k.

3.3. The universal twist. We want to prove the existence of a universal
twist v that defines on (Ut(uC(1)), R) a ribbon Hopf algebra structure.

Following [25], the maps

φ+ : V k → V k, φ+(x) := v−1x

and

φ− : V k → V k, φ−(x) := vx
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are intended to model a positive twist respectively a negative twist, as in
Figure 7.

Figure 7. The skein relation for a positive twist of k strands

If we write v =
∑

j∈Z2N
cjK

j , then the above requirement leads us to the
system of equations

(3.9)
∑
j∈Z2N

cjt
jk = t−k

2
, k ∈ Z2N

for the coefficients cj . From the formula (3.5) for the matrix T −1 introduced
in the previous section, we find

cj =
1

2N

∑
k∈Z2N

t−jkt−k
2
,

which yields

(3.10) v =
1

2N

∑
j,k∈Z2N

t−k(k+j)Kj .

Before proceeding further, we determine a simpler expression for v. Note
that ∑

k∈Z2N

t−(k+j)k =
N−1∑
k=0

(
t−(k+j)k + t−(k+N+j)(k+N)

)

=

N−1∑
k=0

t−(k+j)k(1 + t−2kN−jN−N2
)

= (1 + (−1)j+N )

N−1∑
k=0

t−(k+j)k.

Hence

v =
1

2N

∑
j∈Z2N

[
(1 + (−1)j+N )

N−1∑
k=0

t−(k+j)kKj

]

=
1

N

N−1∑
j=0

N−1∑
k=0

t−(k+2j+N)kK2j+N =
1

N

∑
j,k∈ZN

(−1)kt−(k+2j)kK2j+N
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=
1

N

∑
j,k∈ZN

(−1)k−jt−(k+j)(k−j)K2j+N

yielding the formula

(3.11) v =
1

N

∑
k∈ZN

(−1)kt−k
2

∑
j∈ZN

(−1)jtj
2
K2j+N

 .

A similar computation starting with the negative twist yields

v−1 =
1

N

∑
k∈ZN

(−1)ktk
2

∑
j∈ZN

(−1)jt−j
2
K2j+N

 .

Let us check that
v−1v = vv−1 = 1.

Firstly∑
k∈ZN

(−1)ktk
2

 ∑
k′∈ZN

(−1)k
′
t−k

′2

 =
∑

k,k′∈ZN

(−1)k+k′t(k−k
′)(k+k′)

=
∑

k,k′∈ZN

(−1)ktk(k+2k′)

=
∑
k∈ZN

(−1)ktk
2
∑
k′∈ZN

t2kk
′

 = N

where the last equality follows from (3.3). Hence

v−1v =
1

N

∑
j∈ZN

(−1)jt−j
2
K2j+N

 ∑
j′∈ZN

(−1)j
′
tj
′2
K2j′+N


=

1

N

∑
j,j′∈ZN

(−1)j+j
′
tj
′2−j2K2j+2j′

=
1

N

∑
m∈ZN

∑
j∈ZN

(−1)mt(m−j)
2−j2K2m

=
1

N

∑
m∈ZN

(−1)mtm
2

∑
j∈ZN

t−2mj

K2m = 1,

where the last line follows from (3.3), proving that v and v−1 are the inverse
of each other.
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Theorem 3.3. (Ut(uC(1)), R, v) is a ribbon Hopf algebra.

Proof. The fact that v is central is obvious since the Hopf algebra is com-
mutative. We must check the following identities:

(1) v2 = S(u)u, where u is given by (3.8);
(2) ∆(v) = (P (R)R)−1(v ⊗ v);
(3) S(v) = v;
(4) ε(v) = 1.

Using (3.10) we have

v2 =
1

4N2

∑
j,k,l,m∈Z2N

t−k(j+k)−l(m+l)KjKm

which after the change j 7→ j − k, m 7→ m− l becomes

v2 =
1

4N2

∑
j,k,l,m∈Z2N

t−kj−lmKj−k+l−m.

On the other hand, using (3.8) we have

uS(u) =
1

2N

∑
j,k∈Z2N

t−jkKj−k 1

2N

∑
m,l∈Z2N

t−mlS(Km−l)

=
1

4N2

∑
j,k,l,m∈Z2N

t−jkt−mlKj−kK l−m

=
1

4N2

∑
j,k,l,m∈Z2N

t−jk−mlKj−k+l−m.

This proves (1).
Because P (R) = R, (P (R)R)−1 = R−2. To show (2) we need to compute

R−2. From (3.7) we calculate

R−2 =
1

4N2

∑
j,j′,k,k′∈Z2N

tjk+j′k′K−j−j
′ ⊗K−k−k′

=
1

4N2

∑
m,n∈Z2N

∑
j,k∈Z2N

tjk+(m−j)(n−k)K−m ⊗K−n

=
1

4N2

∑
m,n,k∈Z2N

tm(n−k)

 ∑
j∈Z2N

t(2k−n)j

K−m ⊗K−n

=
1

2N

∑
m,k∈Z2N

tmkK−m ⊗K−2k =
1

2N

∑
m,k∈Z2N

tmkKm ⊗K2k

=
1

2N

∑
m∈Z2N

N−1∑
k=0

(tmk + tm(k+N))Km ⊗K2k
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=
1

2N

∑
m∈Z2N

[
(1 + (−1)m)

N−1∑
k=0

tmkKm ⊗K2k

]

=
1

N

N−1∑
m=0

N−1∑
k=0

t2mkK2m ⊗K2k.

where line 4 follows from (3.3). This yields the following formula for R−2,

(3.12) R−2 =
1

N

∑
j,k∈ZN

t2jkK2j ⊗K2k.

Next, using (3.11), we may write

v ⊗ v =
1

N2

∑
r∈ZN

(−1)rt−r
2

2 ∑
j,k∈ZN

(−1)j+ktj
2+k2K2j+N ⊗K2k+N

 .

From this and (3.12), we obtain that R−2(v ⊗ v) is equal to

1

N3

∑
r∈ZN

(−1)rt−r
2

2 ∑
m,n,j,k∈ZN

(−1)j+kt2mn+j2+k2K2m+2j+N⊗K2n+2k+N

=
1

N3

∑
r∈ZN

(−1)rt−r
2

2 ∑
s,s′∈ZN

 ∑
j,k∈ZN

(−1)j+kt2(s−j)(s′−k)+j2+k2


×K2s+N ⊗K2s′+N

=
1

N3

∑
r∈ZN

(−1)rt−r
2

2 ∑
s,s′∈ZN

t2ss
′

 ∑
j,k∈ZN

(−1)j+kt(j+k)2−2sk−2s′j


×K2s+N ⊗K2s′+N .

Now consider the coefficient∑
j,k∈ZN

(−1)j+kt(j+k)2−2sk−2s′j =
∑

j,k∈ZN

(−1)jtj
2−2sk−2s′(j−k)

=

∑
j∈ZN

(−1)jtj
2−2s′j

∑
k∈ZN

t2(s′−s)k

 .

By (3.3), the right-hand factor is zero, unless s = s′, in which case it is equal
to N . The left-hand factor is∑

j∈ZN

(−1)jtj
2−2s′j = t−s

′2 ∑
j∈ZN

(−1)jt(j−s
′)2 = (−1)s

′
t−s
′2 ∑
j∈ZN

(−1)jtj
2
.

Consequently, R−2(v ⊗ v) equals
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1

N2

(∑
r∈ZN

(−1)rt−r
2

)2(∑
j∈ZN

(−1)jtj
2

)(∑
s∈ZN

(−1)sts
2
K2s+N ⊗K2s+N

)

=
1

N

(∑
r∈ZN

(−1)rt−r
2

)(∑
s∈ZN

(−1)sts
2
K2s+N ⊗K2s+N

)
= ∆(v),

where on the last line we have used the fact that ∆(Kj) = Kj ⊗Kj . This
proves (2).

Using (3.10), we have

S(v) =
1

2N

∑
j,k∈Z2N

t−k(k+j)S(Kj) =
1

2N

∑
j,k∈Z2N

t−k(k+j)K−j

=
1

2N

∑
j,k∈Z2N

t−(−k)(−k−j)Kj =
1

2N

∑
j,k∈Z2N

t−k(k+j)Kj = v.

This proves (3).
Finally, for (4), we have

ε(v) =
1

2N

∑
j,k∈Z2N

t−k(k+j)ε(Kj) =
1

2N

∑
j,k∈Z2N

t−k(k+j)

=
1

2N

∑
k∈Z2N

t−k
2
∑
j∈Z2N

t−kj .

By (3.3) the second sum is 0 unless k = 0, in which case it is equal to
2N . Hence the result of the computation is 1

2N · 2N = 1. The theorem is
proved. �

It is important to point out that Ut(uC(1)) is not a modular Hopf algebra.
We will explain this in the next section, and return to this matter in [8].

4. Modeling classical theta functions using the quantum
group

4.1. Quantum link invariants. Theorem 3.3 implies that the quantum
group, which we shall denote

At := Ut(uC(1))

can be used to define invariants of oriented framed knots and links in S3,
the 3-dimensional sphere. Let us recall the construction, which is described
in detail in the general setting in [25] and [29].

View S3 as R3 compactified with the point at infinity, and in it fix a
plane and a direction in the plane called the vertical direction. Given an
oriented framed link L in S3, deform it through an isotopy to a link whose
framing is parallel to the plane, and whose projection onto the plane is a link
diagram that can be sliced by finitely many horizontal lines into pieces, each
of which consists of several vertical strands and exactly one of the events
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from Figure 8. The lines in these figures will be oriented, inheriting their
orientation from the orientation of the link.

Figure 8. Any link diagram may be decomposed into a se-
quence involving the above events.

Now consider a coloring V of the components of L by irreducible repre-
sentations of At. This means that if L has components L1, L2, . . . , Lm, then
V is a map

V : {L1, L2, . . . , Lm} → {V 0, V 1, . . . , V 2N−1}.

We shall denote the data consisting of L together with its coloring V by
V(L). Each of the horizontal lines considered is crossed by finitely many
strands of L. To a strand that crosses downwards, associate to that crossing
point the corresponding irreducible representation decorating that strand;
to a strand that crosses upwards, associate the dual of that representation.
Then take the tensor product of all these irreducible representations for
that given horizontal line, from left to right. This defines a representation
of At. If the horizontal line does not intersect the link, the representation is
automatically V 0.

The link diagram defines a composition of homomorphisms between the
representations on each horizontal line when traveling in the vertical direc-
tion from below the link diagram to above the link diagram. To the events
from Figure 8 we associate operators as follows:

• To a crossing like the first event in Figure 8 we associate Ř := P ◦R.
• To a crossing like the second event in Figure 8 we associate

Ř−1 := (P ◦R)−1.

• If the event is like the third in Figure 8, then there are two possibil-
ities depending on the orientation of the strand:

– If the strand is oriented left to right, so that the homomorphism
should be V ∗ ⊗ V → C, then the homomorphism is

E(f ⊗ x) := f(x).

– If the strand is oriented right to left, so that the homomorphism
should be V ⊗ V ∗ → C, then the homomorphism is

Eop(x⊗ f) := f(v−1ux).

• If the event is like the fourth in Figure 8, then there are two possi-
bilities depending on the orientation of the strand:
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– If the strand is oriented right to left, so that the homomorphism
should be C→ V ∗ ⊗ V , then the homomorphism is defined by

Nop(1) := ek ⊗ u−1vek.

– If the strand is oriented left to right, so that the homomorphism
should be C→ V ⊗ V ∗, then the homomorphism is defined by

N(1) := ek ⊗ ek.

Here ek denotes the basis vector of V and ek is the dual basis vector in
V ∗, meaning that ek(em) = δkm. These operators are At-linear. Vertical
strands away from the events define the identity operators, which are then
tensored with the operators of the events to form a homomorphism between
the representations associated to the horizontal lines.

The colored link diagram defines an endomorphism of V 0 = C, which is
given by multiplication by a complex number 〈V(L)〉. Because At has the
structure of a ribbon Hopf algebra, it follows from [24] (see also [29, §I.2,
XI.3]) that 〈V(L)〉 is an invariant of colored framed oriented links, meaning
that it depends only on the isotopy class of the link and not on its projection
onto the plane.

In fact, according to [29], we may color these links using any represen-
tations of At, and the above algorithm still leads to an isotopy invariant.
There is even a simple “cabling formula”, which states that if a link compo-
nent is colored by the representation U ⊗W , then we may replace that link
component by two parallel copies, one colored by U and the other by W . In
particular, if our link component is colored by V k, then we may replace it
with k parallel copies which are each colored by V 1.

Furthermore, since this invariant is distributive with respect to direct
sums of representations, its definition extends to links that are colored by
elements of the representation ring of our quantum group At. We may
describe this extension explicitly as follows. If L is an oriented framed link
whose components L1, . . . , Lm are colored by elements of the representation
ring of At,

(4.1) V : Lj 7→
2N−1∑
k=0

cjkV
k, 1 ≤ j ≤ m;

then

〈V(L)〉 =
2N−1∑
k1=0

2N−1∑
k2=0

· · ·
2N−1∑
km=0

c1k1c2k2 · · · cmkm〈Vk1,k2,...,km(L)〉;

where Vk1,k2,...,km is the coloring of L that decorates the component Lj with

the color V kj .
We wish to connect these colored links and their invariants to the skein

theory of §2. We need the following definition.
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Definition 4.1. Given an oriented 3-manifold M , we define VAt(M) to be
the vector space whose basis consists of isotopy classes of oriented framed
links, whose components are colored by irreducible representations of At.

There is a map

(4.2) VAt(M)→ LN (M)

which is defined by the cabling formula which replaces any link component
colored by V j with j copies of that component that are parallel in the
framing of the link component.

Theorem 4.2. The following diagram commutes

VAt(S3)

cabling
��

invariant

""
LN (S3) C

where the map on the right assigns to a colored link V(L) its invariant
〈V(L)〉, and that on the left is the cabling map (4.2).

Proof. This is a basic consequence of our construction of the quantum group
Ut(uC(1)) which we carried out in §3. Present the colored link diagram as
a composition of horizontal slices, each containing exactly one event from
Figure 8. Using the canonical basis elements ej of V j , the representation
associated to each horizontal line may be identified with C. Consequently,
the homomorphism assigned to each horizontal slice is just multiplication
by some complex number.

For the first event in Figure 8 with the “over” strand decorated by V m

and the “under” strand decorated by V n, we have the following possibilities:

• If both strands are oriented downwards or both are oriented upwards,
then the complex number is tmn.
• If both strands are oriented to the right or to the left, then the

number is t−mn.

This is precisely what we get when we unlink n strands crossed by m strands,
which should be so because we constructed the R matrix to satisfy this
condition. A similar analysis for the second event with the same orien-
tations yields respectively the numbers t−mn, tmn, t−mn, tmn, in agreement
with what the linking number skein relations yield.

For the third event, if the strand is oriented from left to right and deco-
rated by V l, then E(el ⊗ el) = el(el) = 1, so if we identify (V l)∗ ⊗ V l with
C⊗C = C, then E is just multiplication by 1. We recall that here el is the
basis element of V l.

If the strand is oriented from right to left, then the operator is Eop, for
which the situation is slightly more complicated. We compute

uel =
1

2N

∑
j,k∈Z2N

t−jkKj−kel =
1

2N

∑
j,k∈Z2N

t−jkt(j−k)lel
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=
1

2N

∑
k∈Z2N

t−kl
∑
j∈Z2N

(tl−k)jel.

The inner sum is zero unless k ≡ l. So uel = t−l
2
el. But v was constructed

so that vel = t−l
2
el and v−1el = tl

2
el. Hence

Eop(el ⊗ el) = el(v−1uel) = 1

Similar computations show that the complex numbers corresponding to N
and Nop are 1. So the homomorphisms C → C associated to maxima and
minima are trivial. In particular trivial knot components have the quantum
invariant equal to 1, as required by the skein module picture. The theorem
is proved. �

Corollary 4.3. Let V be a coloring of an oriented framed link L in S3 by
irreducible representations, and suppose that some link component of L is
colored by V n with 0 ≤ n ≤ N − 1. If V′ denotes the coloring of L obtained
by replacing the color of that link component by V n+N , then

〈V(L)〉 = 〈V′(L)〉.

It follows that we may factor the representation ring by the ideal generated
by the single relation V N = 1, without any affect on the invariants 〈V(L)〉.
Let

R(At) := C[V 1]/
(
(V 1)N − 1

)
denote this quotient. Note that in R(At),

(V k)∗ = V N−k and V m ⊗ V n = V m+n(modN);

where these equalities should be interpreted formally (i.e., inside R(At)).
Thus, we can think of the link invariant defined above as an invariant of
oriented framed links colored by elements of R(At).

4.2. Theta functions as colored links in a handlebody. Consider the
Heegaard decomposition

Hg

⊔
∂Hg≈∂Hg

Hg = S3

of S3 given by (2.16). This decomposition gives rise to a bilinear pairing
(4.3)

[·, ·]qgr : VAt(Hg)⊗ VAt(Hg) → VAt(S3) → C
V(L)⊗V′(L′) 7→ V(L) ∪V′(L′) 7→ 〈V(L) ∪V′(L′)〉

on VAt(Hg). Due to the obvious diffeomorphism of S3 that swaps the com-
ponent handlebodies, this pairing is symmetric. However, it is far from being
nondegenerate, which leads us to the following definition.

Definition 4.4. The vector space L̃At(Hg) is defined to be the quotient of
the vector space VAt(Hg) by the annihilator

Ann(VAt(Hg)) := {x ∈ VAt(Hg) : [x, y]qgr = 0, for all y ∈ VAt(Hg)}
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of the form (4.3).

The pairing induced on L̃At(Hg) by (4.3) is nondegenerate.

Proposition 4.5. Consider the cabling map from VAt(Hg) to LN (Hg) de-
scribed in Definition 4.1. This map factors to an isomorphism,

L̃At(Hg) ∼= LN (Hg).

Proof. By Theorem 4.2, the following diagram commutes;

VAt(Hg)⊗ VAt(Hg)
cabling

//

��

LN (Hg)⊗ LN (Hg)

��

VAt(S3)
cabling

//

invariant
''

LN (S3)

C
Since the cabling map from VAt(Hg) to LN (Hg) is obviously surjective, the
result follows from the fact that the pairing (2.17) appearing on the right of
the above diagram is nondegenerate. �

Corollary 4.6. The space L̃At(Hg) is isomorphic to the space of theta func-
tions ΘΠ

N (Σg).

Proof. This is a consequence of Theorem 2.14. �

Consequently, we may represent the theta series θΠ
k as colored links in

the handlebody Hg. More precisely, the coloring represented by Figure 9

of a1, . . . , ag by V k1 , . . . , V kg , k1, k2, . . . , kg ∈ {0, 1, . . . , N − 1} respectively,
corresponds to the theta series θΠ

k1,...,kg
.

Figure 9. The presentation of θΠ
k1,...,kg

as a colored link in a handlebody.

Remark 4.7. At this point we should remark that theta functions are
modeled using only half of the irreducible representations of the quantum
group. This should be compared to the case of SU(2), where there were 4
families of irreducible representations of the quantum group and only one
was used for constructing the SU(2) Chern–Simons theory [25] and [15] and
for modeling the nonabelian theta functions [11]. However, there is a major
difference. In the present situation, the representations that model theta
functions do not form a ring. This has an interesting consequence:
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The quantum group Ut(uC(1)) is not a modular Hopf algebra when
equipped with the irreducible representations V 1, V 2, . . . , V 2N .

This can be checked easily as follows. In the framework of [29], the repre-
sentations of a modular Hopf algebra give rise to a modular category. The S
matrix of this theory (§ 2.1.4 in [29]) has dimension 2N and its j, k entry is
equal to the quantum invariant associated to the Hopf link with components
colored by V j and V k (Figure 10). This is equal to tjk. Consequently

S =

[
A −A
−A A

]
where A is N−1/2 times the standard discrete Fourier transform whose jk

entry is e
2πijk
N . Unfortunately this matrix is singular, violating the nonde-

generacy axiom (1.4.4 in [29]).

Figure 10. The S matrix.

This problem cannot be solved by identifying V N with V 0, since this
identification can only be done at the level of link invariants and not at
the level of tangles. There is an approach in [27] that attempts to resolve
this problem by twisting the standard associators for the tensor product of
irreducible representations by roots of unity.

4.3. The Schrödinger representation and the action of the map-
ping class groups via quantum group representations. Consider the
spaces VAt(Σg × [0, 1]) and VAt(Hg). As before, by (2.11), we see that
VAt(Σg × [0, 1]) is an algebra and, by (2.12), that VAt(Hg) is a module over
this algebra. Since the cabling maps to the corresponding reduced skein
modules are equivariant with respect to this action, it follows from Propo-

sition 4.5 that this action descends to L̃At(Hg).
We wish to cast the action of the finite Heisenberg group on the space of

theta functions within this setting. Consider the surface Σg endowed with
the canonical basis a1, a2, . . . , ag, b1, b2, . . . , bg. Then each element

(p, q) = (p1, p2, . . . , pg, q1, q2, . . . , qg)

in H1(Σg,Z) can be represented as a multicurve on Σg as explained in Sec-
tion 2.2, and by endowing it with the blackboard framing of Σg it can be
turned into a skein in L(Σg × [0, 1]). Next, for an element of the finite
Heisenberg group H(ZgN ) of the form

(p, q, k), p, q ∈ {0, 1, . . . , N − 1}g, k ∈ {0, 1, . . . , 2N − 1}
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consider the skein (p, q) ∈ L(Σg × [0, 1]). Add to it a trivial framed link
component, with framing twisted k times. Color all link components by the
representation V 1 of At. Denote the resulting colored link by (p, q, k)qgr.
This is an element of VAt(Σg × [0, 1]).

Theorem 4.8. Let Φ : ΘΠ
N (Σg) → L̃At(Hg) denote the isomorphism of

Corollary 4.6. Then

Φ[(p, q, k) · f ] = (p, q, k)qgrΦ(f); (p, q, k) ∈ H(ZgN ), f ∈ ΘΠ
N (Σg).

Proof. Consider the commutative diagram

VAt(Σg × [0, 1])⊗ L̃At(Hg)
cabling

//

��

LN (Σg × [0, 1])⊗ LN (Hg)

��

C(H(ZgN ))⊗ΘΠ
N (Σg)

��

oo

L̃At(Hg)
cabling

∼=
// LN (Hg) ΘΠ

N (Σg)∼=
oo

where we have used Proposition 4.5 and Theorems 2.12 and 2.14. Since the
image of (p, q, k) in LN (Σg × [0, 1]) under (2.13) coincides with the image of
(p, q, k)qgr under the cabling map, this proves the result. �

The following corollary is the abelian analogue of the main result in [9].

Corollary 4.9. The Weyl quantization and the quantum group quantization
of the moduli space of flat u(1)-connections on a closed surface are unitary
equivalent.

We can describe the reduced linking number skein algebra LN (Σg) as a
quotient of VAt(Σg×[0, 1]) and within it we can find a quantum group model
of the finite Heisenberg group H(ZgN ).

Embed the cylinder Σg× [0, 1] in the standard way in S3, so that on each
side lies one handlebody. We then have a decomposition of the 3-dimensional
sphere as

(4.4) S3 = Hg

⊔
(Σg × [0, 1])

⊔
Hg.

Let L be an oriented framed link in Σg × [0, 1] endowed with a coloring V
by representations of At. Insert the colored link in (4.4). Then V(L) defines
a bilinear pairing

VAt(Hg)⊗ VAt(Hg)→ C
via the Reshetikhin–Turaev invariant in S3. This pairing descends to a
pairing

(4.5) [·, ·]V(L) : LAt(Hg)⊗ LAt(Hg)→ C.
Because [·, ·]qgr is nondegenerate, the bilinear map (4.5) defines a linear

map
Op(V(L)) : LAt(Hg)→ LAt(Hg),

by
[Op(V(L))x, y]qgr = [x, y]V(L).
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Using the identification of LAt(Hg) with ΘΠ
N (Σg), we deduce that

Op(V(L)) ∈ L(ΘΠ
N (Σg)).

Example 4.10. Let us consider the operator obtained by decorating the
(1, 1) curve on the torus by the irreducible representation V m. In this situa-
tion Π is just a complex number in the upper half-plan, and it is customary
to denote it by τ . The theta series θτj (z) is represented in the solid torus by

the curve that is the core of the solid torus, decorated by V j .

[θτj (z), θτk(z)]qgr = t−2jk.

The operator Op(V m(1, 1)) defined by coloring the (1, 1) curve by V m is
determined by requiring that for every j, k = 0, 1, 2, . . . , N − 1,

[Op(V m(1, 1))θτj (z), θτk(z)]qgr

is equal to the Reshetikhin–Turaev invariant of the link from Figure 11.

Figure 11. The jk entry of Op(V(1, 1)

This operator coincides with the one defined by the skein

〈(m,m)〉 ∈ LN (Σg × [0, 1])

acting on LN (Hg).

The cabling map

VAt(Σg × [0, 1])→ LN (Σg × [0, 1]),

is onto. Let LAt(Σg×[0, 1]) be the quotient of VAt(Σg×[0, 1]) by the kernel of
this map. Then LAt(Σg × [0, 1]) is an algebra isomorphic to LN (Σg × [0, 1]),
which is therefore isomorphic to the algebra of linear operators on the space
of theta functions.

Intuitively, the algebra L(ΘΠ
N (Σg)) is an algebra of oriented simple closed

curves on Σg colored by irreducible representations of At.
In particular, H(ZgN ) lies inside LAt(Σg × [0, 1]) consisting of the equiva-

lence classes of framed oriented links colored by irreducible representations.
Its elements are (p, q, k)qgr, p, q ∈ {0, 1, . . . , N − 1}g, k ∈ {0, 1, . . . , 2N − 1}.

This construction allows us to define a star product for exponential func-
tions using quantum groups. This is a particular case of the general con-
struction from [1]. Hence we have a quantum group model for the ∗-product
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of the quantum torus. We point out that the key ingredient in defining the
∗-product is the R-matrix, since the R-matrix determines the skein relation
by which we smooth the crossings, and hence defines the multiplication rule
in LN (Σg × [0, 1]) = L(ΘΠ

N (Σg)).
Next, denote by V ′At(Σg × [0, 1]) the vector space that is freely generated

by isotopy classes of oriented framed links colored by elements of the rep-
resentation ring of At. There is a multiplicative map from this space onto
VAt(Σg × [0, 1]); if L is a link with m components whose coloring V by the
representation ring is written as in (4.1), then this map is given by

V(L) 7→
2N−1∑

k1,...,km=0

c1k1 · · · cmkmVk1,...,km(L);

where Vk1,...,km is the coloring of L that decorates the component Lj with

the color V kj .
Consequently, L̃At(Hg) is a module over V ′At(Σg × [0, 1]). In fact, in view

of Corollary 4.3, we may assume that our links are colored by elements of
the quotient ring R(A). If L is an oriented framed link in Σg × [0, 1], we
denote by ΩAt(L) the element of V ′At(Σg× [0, 1]) that is obtained by coloring

each component of L by N−
1
2
∑N−1

k=0 V k.

Proposition 4.11. Let hL ∈ MΣg be a diffeomorphism that is represented
by surgery on a framed link L. By Corollary 4.6 we may consider the discrete

Fourier transform ρ(hL) as an endomorphism of L̃At(Hg). This endomor-
phism is given (projectively) by:

ρ(hL)[β] = ΩAt(L) · β, β ∈ L̃At(Hg).

Proof. Since the image of ΩAt(L) in LN (Σg× [0, 1]) under the cabling map
coincides with Ω(L), this is a consequence of Theorem 2.17 and the fact that
the cabling map is equivariant. �
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