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On smoothly superslice knots

Daniel Ruberman

Abstract. We find smoothly slice (in fact doubly slice) knots in the
3-sphere with trivial Alexander polynomial that are not superslice, an-
swering a question posed by Livingston and Meier.

1. Introduction

A recent paper of Livingston and Meier raises an interesting question
about superslice knots. Recall [3] that a knot K in S3 is said to be superslice
if there is a slice disk D for K such that the double of D along K is the
unknotted 2-sphere S in S4. We will refer to such a disk as a superslicing
disk. In particular, a superslice knot is slice and also doubly slice, that is,
a slice of an unknotted 2-sphere in S4. Livingston and Meier ask about the
converse in the smooth category.

Problem 4.6 (Livingston–Meier [10]). Find a smoothly slice knot K with
∆K(t) = 1 that is not smoothly superslice.

The corresponding question in the topological (locally flat) category is
completely understood [10, 12], for a knot K with ∆K(t) = 1 is topologically
superslice.

In this note we give a simple solution to Problem 4.6, making use of
Taubes’ proof [16] that Donaldson’s diagonalization theorem [5] holds for
certain noncompact manifolds. For K a knot in S3, we write Σk(K) for a
k-fold cyclic branched cover of S3 branched along K. The same notation
will be used for the corresponding branched cover along an embedded disk
in B4 or sphere in S4.

Theorem 1.1. Suppose that J is a knot with Alexander polynomial 1, so
that Σk(J) = ∂W , where W is simply connected and the intersection form
on W is definite and not diagonalizable. Then the knot K = J# − J is
smoothly doubly slice, but is not smoothly superslice.

An unpublished argument of Akbulut says that the positive Whitehead
double of the trefoil is a knot J satisfying the hypotheses of the theorem,
with k = 2. The construction is given as [1, Exercise 11.4] and is also
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documented, along with some generalizations, in the paper [4]. Hence J
gives an answer to Problem 4.6. We remark that for the purposes of the
argument, it doesn’t matter if W is positive or negative definite, as one could
replace J by −J and change all the signs.

We need a simple and presumably well-known algebraic lemma.

Lemma 1.2. Suppose that
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is a pushout of groups, and that i1 = i2. Then C surjects onto B.

Proof. This follows from the universal property of pushouts; the identity
map idB satisfies idB ◦i1 = idB ◦i2, and hence defines a homomorphism
C → B with the same image as idB. �

Applying Lemma 1.2 to the decomposition of the complement of the un-
knot in S4 into two disk complements, we obtain the following useful facts.
(The first of these was presumably known to Kirby and Melvin; compare [8,
Addendum, p. 58], and the second is due to Gordon and Sumners [6].)

Corollary 1.3. If K is superslice and D is a superslicing disk, then

π1(B
4 −D) ∼= Z and ∆K(t) = 1.

Proof. The lemma says that there is a surjection

Z ∼= π1(S
4 − S)→ π1(B

4 −D).

Hence π1(B
4 − D) is abelian and so must be isomorphic to Z. This con-

dition implies, using Milnor duality [13] in the infinite cyclic covering, that
the homology of the infinite cyclic covering of S3 − K vanishes, which is
equivalent to saying that ∆K(t) = 1. �

Proof of Theorem 1.1. It is standard [15] that any knot of the form J #
−J is doubly slice. In fact, it is a slice of the 1-twist spin of J , which was
shown by Zeeman [17] to be unknotted.

Suppose that K is superslice and let D be a superslicing disk, so D∪KD =
S, an unknotted sphere. Then S4 = Σk(S) = V ∪Y V , where we have written
Y = Σk(K) and V = Σk(D). By Corollary 1.3, the k-fold cover of B4 −D
has π1 ∼= Z, so the branched cover V is simply connected.

Note that Σk(K) = Σk(J) # −Σk(J). Since ∆J(t) = 1, the same is true
for ∆K(t), moreover this implies that both Σk(J) and Σk(K) are homol-
ogy spheres. An easy Mayer-Vietoris argument says that V = Σk(D) is a
homology ball; in fact Claim 1.3 implies that it is contractible. Adding a
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3-handle to V , we obtain a simply-connected homology cobordism V ′ from
Σk(J) to itself. By hypothesis, there is a manifold W with boundary Σk(J)
and nondiagonalizable intersection form. Stack up infinitely many copies of
V ′, and glue them to W to make a definite periodic-end manifold M , in the
sense of Taubes [16]. Since π1(V ) is trivial, M is admissible (see [16, Defi-
nition 1.3]), and Taubes shows that its intersection form (which is the same
as that of W ) is diagonalizable. This contradiction proves the theorem. �

The fact that π1(B
4 − D) ∼= Z for a superslicing disk leads to a second

obstruction to supersliceness, based on the Ozsváth–Szabó d-invariant [14].
Recall from [11] (for degree 2 covers) and [7] in general that for a knot K
and prime p, that one denotes by δpn(K) the d-invariant of a particular spin
structure s on Σpn(K) pulled back from the 3-sphere. The fact that a pn

fold branched cover of a slicing disk is a rational homology ball implies that
if K slice then δpn(K) = 0. For a non-prime-power degree k, the invariant
δk(K) might not be defined, because Σk(K) is not a rational homology
sphere. (One might define such an invariant using Floer homology with
twisted coefficients as in [2, 9], but there’s no good reason that it would be
a concordance invariant.)

Theorem 1.4. If K is superslice, then for any k, the d-invariant

d(Σk(K), s0)

is defined and vanishes.

Proof. Since by Corollary 1.3 the Alexander polynomial is trivial, so Σk(K)
is a homology sphere, and hence d(Σk(K), s0) is defined. (There is only the
one spin structure.) As in the proof of Theorem 1.1, the branched cover
Σk(D) is contractible, and hence [14, Theorem 1.12], d(Σk(K), s0) = 0. �

Sadly, we do not know any examples of a slice knot where Theorem 1.4
provides an obstruction to it being superslice. For such a knot would not be
ribbon, so we would also have a counterexample to the slice-ribbon conjec-
ture!

Acknowledgements. Thanks to Hee Jung Kim for an interesting conver-
sation that led to this paper, and to Chuck Livingston, Paul Melvin, and
Nikolai Saveliev for comments on an initial draft.
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[14] Ozsváth, Peter; Szabó, Zoltán. Absolutely graded Floer homologies and in-
tersection forms for four-manifolds with boundary. Adv. Math. 173 (2003), no. 2,
179–261. MR1957829, Zbl 1025.57016, arXiv:math/0110170, doi: 10.1016/S0001-
8708(02)00030-0.

[15] Sumners, D. W. Invertible knot cobordisms. Comment. Math. Helv. 46 (1971), 240–
256. MR0290351, Zbl 0227.57007, doi: 10.1007/BF02566842.

[16] Taubes, Clifford Henry. Gauge theory on asymptotically periodic 4-manifolds. J.
Differential Geom. 25 (1987), no. 3, 363–430. MR0882829, Zbl 0615.57009.

[17] Zeeman, E. C. Twisting spun knots. Trans. Amer. Math. Soc. 115 (1965), 471–495.
MR0195085, Zbl 0134.42902, doi: 10.2307/1994281.

(Daniel Ruberman) Department of Mathematics, MS 050, Brandeis University,
Waltham, MA 02454
ruberman@brandeis.edu

This paper is available via http://nyjm.albany.edu/j/2016/22-32.html.

http://www.ams.org/mathscinet-getitem?mr=0976591
http://zbmath.org/?q=an:0669.57003
http://dx.doi.org/10.1016/0040-9383(88)90028-6
http://www.ams.org/mathscinet-getitem?mr=0710056
http://zbmath.org/?q=an:0507.57010
http://www.ams.org/mathscinet-getitem?mr=0380816
http://zbmath.org/?q=an:0293.57010
http://zbmath.org/?q=an:0293.57010
http://dx.doi.org/10.1007/BF01363239
http://www.ams.org/mathscinet-getitem?mr=2923439
http://zbmath.org/?q=an:1250.57011
http://arXiv.org/abs/0809.1088
http://dx.doi.org/10.1016/j.topol.2012.03.014
http://www.ams.org/mathscinet-getitem?mr=0467754
http://zbmath.org/?q=an:0377.55002
http://dx.doi.org/10.1007/BF01406223
http://www.ams.org/mathscinet-getitem?mr=3287799
http://zbmath.org/?q=an:1333.57024
http://arXiv.org/abs/1403.2464
http://nyjm.albany.edu/j/2015/21-47v.pdf
http://nyjm.albany.edu/j/2015/21-47v.pdf
http://www.ams.org/mathscinet-getitem?mr=3425633
http://zbmath.org/?q=an:1328.57009
http://arXiv.org/abs/1504.03368
http://www.ams.org/mathscinet-getitem?mr=2363303
http://zbmath.org/?q=an:1132.57013
http://arXiv.org/abs/math/0508065
http://dx.doi.org/10.1093/imrn/rnm077
http://www.ams.org/mathscinet-getitem?mr=3356764
http://zbmath.org/?q=an:1320.57027
http://arXiv.org/abs/1401.1161
http://dx.doi.org/10.1112/jtopol/jtu027
http://www.ams.org/mathscinet-getitem?mr=0242163
http://zbmath.org/?q=an:0179.52302
http://www.ams.org/mathscinet-getitem?mr=1957829
http://zbmath.org/?q=an:1025.57016
http://arXiv.org/abs/math/0110170
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://www.ams.org/mathscinet-getitem?mr=0290351
http://zbmath.org/?q=an:0227.57007
http://dx.doi.org/10.1007/BF02566842
http://www.ams.org/mathscinet-getitem?mr=0882829
http://zbmath.org/?q=an:0615.57009
http://www.ams.org/mathscinet-getitem?mr=0195085
http://zbmath.org/?q=an:0134.42902
http://dx.doi.org/10.2307/1994281
mailto:ruberman@brandeis.edu
http://nyjm.albany.edu/j/2016/22-32.html

	1. Introduction
	References

