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Fields of definition and Belyi type
theorems for curves and surfaces

Paolo Dolce

Abstract. We study the relationship between the (effective) fields of
definition of a complex projective variety and the orbit {Xσ}σ∈Aut(C)
where Xσ is the “twisted” variety obtained by applying σ to the equations
defining X. Furthermore we present some applications of this theory to
smooth curves and smooth minimal surfaces.
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Introduction

A complex projective variety X is defined over a subfield F of C if it is
abstractly isomorphic to a projective variety which is cut out by polynomials
with coefficients in F . As González–Diez showed in [16], the property of
being defined over a number field is closely related to the structure of the
set {Xσ}σ∈Aut(C), where Xσ is obtained by applying the field automorphism
σ to the equations of X. It is worth mentioning that Xσ and X are not
isomorphic as complex varieties but only as schemes, therefore they are
essentially different objects, but on the other hand they share many important
geometric properties.

A first aim of this paper is to give a revisitation of [16] in the language of
scheme theory. The proof of the main result of [16] (which is Theorem 1.29
in this paper) is rather technical and long, but here is given a shorter proof
based on a theorem in [15] about the existence of the minimal algebraically
closed field of definition. Furtermore, Theorem 1.28 gives a criterion for
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deciding when X is actually cut out by polynomials with coefficients in a
number field.

Section 2 is basically a survey about Belyi’s well-known theorem for curves
and shows a concrete application of the theory developed in the first section.

[17] presents an extension of Belyi’s theorem for surfaces, and here, in
Section 3, there is a slightly different version of it. In particular the proof of
Proposition 3.16 is new and Proposition 3.17 does not seem to be published
in the literature.

Acknowledgements. The author would like to express gratitude to Prof.
Francesco Zucconi (University of Udine) for his insightful elucidations and
advice, especially about intersection theory on surfaces.

0. Notations and preliminary results

This section is a mere collection of definitions and results useful in the
paper, so it is logically independent from the other sections. The author
advises against reading it from scratch; the reader should use the following
list as reference material.

Every field in the paper is of characteristic 0, and the algebraic closure of
a field K is K.

Given a polynomial g =
∑
ai1,...,inX

i1
1 . . . Xin

n ∈ K[T1, . . . , Tn] and σ ∈
Aut (K), the symbol gσ denotes the polynomial

gσ :=
∑

σ(ai1,...,in)Xi1
1 . . . Xin

n

A variety over a field K is a K-scheme of finite type, separated and
geometrically integral. An affine variety over K is a variety (over K) such
that the K-scheme is an affine scheme and a projective variety over K is a
variety (over K) such that the K-scheme is a projective scheme. A complex
variety is a variety over K = C. A curve over K is a variety over K of
dimension 1 and a surface over K is a variety over K of dimension 2.

AnK := Spec(K[T1, . . . , Tn]) and PnK := Proj(K[T0, . . . , Tn]). They are dif-
ferent from An(K) and Pn(K) which are respectively the affine n-dimensional
space and the projective n-dimensional space over K. However if k is an
algebraically closed field, then there is a bijective correspondence between
the closed points of Ank (resp. Pnk) and An(k) (resp. Pn(k)).

When the ground field is C, one can associate in a canonical way to
any complex projective variety a complex projective manifold X(C). Basi-
cally X(C) is obtained by equipping an algebraic set X with the sheaf of
holomorphic functions (cf. [2, Corollary 2.5.16]).

Let ϕ : X → Y a morphism of varieties, we say that ϕ is étale at x ∈ X if
it is flat and unramified at x. Moreover ϕ is étale if it is étale at every point
of X.

The following properties hold for étale morphisms between varieties:r The set of points where a morphism is étale is open (possibly empty).
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r The composition of two morphisms which are étale is étale.r The base change of a morphism which is étale is étale.r An étale morphism is open.

Let Y be a variety over k. A finite covering of Y is a couple (X,ϕ) where
X is a variety over k and ϕ : X → Y is a surjective finite étale morphism.

0.1. Theorem (Riemann existence theorem). Let Y be a nonsingular pro-
jective complex variety and consider the associated complex manifold Y (C).
Then there is an equivalence of categories between the category of finite cover-
ing of Y (up to equivalence) and the category of finite holomorphic coverings
of Y (C) (up to equivalence).

Proof. See [19, éxpose XII] or [32, Proposition 4.5.13]. �

A nonconstant morphism between two nonsingular projective curves ϕ :
X → Y is a branched covering (i.e., X is a branched covering of Y ) if the open
set U ⊆ X where ϕ is étale, is nonempty. The finite set Ram(ϕ) := X \ U is
called the ramification locus and moreover Br(ϕ) := ϕ(X \ U) is the branch
locus. A point of Ram(ϕ) is a ramification point and a point of Br(ϕ) is a
branch point.

Let B be a fixed k-scheme (k-algebraically closed). A family of curves over
B (or a fibration over B) is a surjective proper flat morphism of k-schemes
π : X → B such that the fibres are connected (maybe nonintegral) curves.

A family of curves π : X → B is said to be:r smooth if all fibres are nonsingular;r isotrivial if there exists a dense open set U ⊆ B such that f−1(x) ∼=
f−1(y) for every x, y ∈ U ;r locally trivial if it is smooth and all the fibers are isomorphic;r relatively minimal if no fibre contains a (−1)-curve.

Let B be a nonsingular complex projective curve, S a nonsingular complex
projective surface and π : S → B a relatively minimal family of curves with
genus g; then the following numbers are well defined:

K2
π := K2

S − 8(g − 1)(g(B)− 1),

χπ := χ(OS)− (g − 1)(g(B)− 1),

eπ := χtop(S)− 4(g − 1)(g(B)− 1).

Let B be a nonsingular complex projective curve, S a nonsingular complex
projective surface and π : S → B a nonisotrivial family of curves. Let
moreover ∆ ⊂ B be a finite set of points such that π : S \ π−1(∆)→ B \∆
is smooth. In this case π is called an admissible family with respect to the
couple (B,∆). What follows is a very deep theorem that was also known as
the Shafarevich conjecture (see [24] for generalizations):

0.2. Theorem (Parshin–Arakelov theorem). Let B be a nonsingular complex
projective curve of genus g(B) and let ∆ ⊂ B be a finite set, then:
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r Up to B-isomorphism there is only a finite number of admissible
families with respect to (B,∆), of genus g ≥ 2.r If 2g(B)− 2 + #(∆) ≤ 0, then there are no such admissible families.

Proof. See [1]. �

Let X be a k-scheme over an algebraically closed field. A closed point

x ∈ X is called an ordinary double point if the completion ÔX,x of the local
ring OX,x has the following property: there exists some n ∈ N such that

ÔX,x ∼=
k[[T1, . . . , Tn]]

(f)

where f ∈ m2 (here m is the maximal ideal of k[[T1, . . . , Tn]]) and f = Q+ g
for a nonsingular quadratic form Q and an element g ∈ m3.

An ordinary double point is a singular point. In particular, if dim(X) = 1,
an ordinary double point is usually called a node.

A projective curve C over an algebraically closed field k is said stable if
the following conditions hold:r C is reduced and connected.r pa(C) ≥ 2.r The singularities of C, if present, are nodes.r If E ( C (note that must be E 6= C) is a rational component of C,

then #
(
E ∩ C \ E

)
≥ 3.

A family of curves π : X → B is said stable if the fibres of π are stable
curves.

0.3. Proposition. Let π : X → B be a stable family of curves (with
nonsingular generic fibre) over a nonsingular integral projective curve B. If
π is isotrivial then it is locally trivial.

Proof. This follows easily from the theory of moduli of (stable) curves. �

0.4. Theorem. Let B be a nonsingular complex projective curve, S a non-
singular complex projective surface and π : S → B a relatively minimal
family of curves with genus g ≥ 2. Then K2

π ≥ 0, χπ ≥ 0 and eπ ≥ 0.
Moreover, under the additional hypothesis that π is a stable family of curves,
then K2

π = 0 if and only if π is locally trivial.

Proof. See [5] and [1]. �

1. General theory

1.1. Definition. Let F ⊆ K be a field extension. A projective variety X
over K with a fixed closed immersion

j : X ↪→ PnK = PnF ×SpecF SpecK
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is effectively defined over F if there exists a projective variety X(F ) with a
closed immersion j(F ) : X(F ) ↪→ PnF such that X(F ) ×SpecF SpecK ∼= X and
moreover the following diagram is commutative:

PnK

X X(F ) ×SpecF SpecK .

j

∼=

j(F )×SpecF idSpecK

In this case F is called an effective field of definition of X ↪→ PnK .

The meaning of the adjective “effective” associated to a field of definition
is explained by the following proposition.

1.2. Proposition. A projective variety X ↪→ PnK is effectively defined over
F ⊆ K if and only if there exist some homogeneous polynomials f1, . . . , fm ∈
F [T0, . . . Tn] such that X ∼= Proj K[T0,...Tn]

(f1,...,fm) as subvarieties of PnK .

Proof. (⇒) Suppose that X is effectively defined over F , namely that there
is a variety X(F ) ↪→ PnF over F such that X ∼= X(F ) ×SpecF SpecK as
subvarieties of PnK . Therefore

X ∼= Proj
F [T0, . . . Tn]

(f1, . . . , fm)
×SpecF SpecK

where f1, . . . , fm are homogeneous polynomials in F [T0, . . . Tn]. Now by [27,
Proposition 3.1.9]:

Proj
F [T0, . . . Tn]

(f1, . . . , fm)
×SpecF SpecK ∼= Proj

(
F [T0, . . . Tn]

(f1, . . . , fm)
⊗F K

)
,

but F [T0,...,Tn]
(f1,...,fm) ⊗F K ∼=

K[T0,...,Tn]
(f1,...,fm) , therefore X ∼= Proj K[T0,...,Tn]

(f1,...,fm) .

(⇐) In order to show that X ∼= X(F )×SpecF SpecK, it is enough to retrace

backward the above proof starting from the fact that X ∼= Proj K[T0,...Tn]
(f1,...,fm) ,

where f1, . . . , fm,∈ F [T0, . . . Tm]. Furthermore, the commutativity of the
diagram

PnK

X X(F ) ×SpecF SpecK
∼=

is evident from the commutativity of the following diagram of K-algebras

F [T0, . . . , Tn]⊗F K

K[T0, . . . , Tn]

(f1, . . . , fm)

F [T0, . . . , Tn]

(f1, . . . , fm)
⊗F K . �

∼=
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1.3. Remark. For any projective variety X ↪→ PnK with a fixed closed
immersion there is an ideal (f1, . . . , fm) ⊂ K[T0, . . . , Tn] such that X ∼=
Proj K[T0,...,Tn]

(f1,...,fm) as subvarieties of PnK . So, from now on we can work inside

PnK and write by abuse of notations:

X = Proj
K[T0, . . . , Tn]

(f1, . . . , fm)
⊆ PnK .

For example Theorem 1.2 can be stated as follows: X ⊆ PnK is effectively
defined over F if and only if there exist some homogeneous polynomials

f1, . . . , fm ∈ F [T0, . . . Tn] such that X = Proj K[T0,...Tn]
(f1,...,fm) .

The concept of effective field of definition of a projective variety is very
important in Diophantine geometry, but it has a serious drawback: it is
not preserved by isomorphisms. Indeed a projective variety Y isomorphic

to Proj K[T0,...,Tn]
(f1,...,fm) with f1, . . . , fm ∈ F [T0, . . . , Tn] may not be cut out by

polynomials with coefficients in F (see Example 1.8). Therefore a weaker
concept of field of definition is needed.

1.4. Definition. Let F ⊆ K be a field extension and let X be a variety
over K. X is defined over F if there exists a variety X(F ) over F such that
X ∼= X(F ) ×SpecF SpecK (isomorphism over K), where the fibre product is
taken along the morphism SpecK → SpecF .

X ∼= X(F ) ×SpecF SpecK SpecK

X(F ) SpecF .

Note that Definition 1.4 works for any variety, not necessarily projective.
Moreover a projective variety X ⊆ PnK is defined over F exactly when it is
isomorphic to a projective variety effectively defined over F .

1.5. Remark. The literature is somewhat confusing as far as Definitions 1.1
and 1.4 are concerned. Some sources mix the two definitions, but there seems
to be a tacit agreement on calling “a field of definition” what is depicted in
Definition 1.4. On the other hand the terminology used in Definition 1.1 is
not standard.

In [16] and [17] the author uses the terms “X is defined over F” for
Definition 1.1 and “X can be defined over F” for Definition 1.4.

1.6. Definition. Let F ⊆ K be a field extension and let X,Y be two
varieties over K. A morphism ϕ : X → Y is defined over F if there exist two
varieties X(F ), Y(F ) over F with a morphism ϕ(F ) : X(F ) → Y(F ) such that:r X ∼= X(F ) ×SpecF SpecK.r Y ∼= Y(F ) ×SpecF SpecK.
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r The following diagram is commutative:

Y(F ) ×SpecF SpecK Y

X(F ) ×SpecF SpecK X .

∼=

ϕ
(F )
×SpecF idSpecK

∼=

ϕ

1.7. Remark. It is evident that if ϕ is defined over F , then both X and Y
are defined over F . Moreover if Γϕ is the graph of the morphism ϕ, then
ϕ is defined over F if and only if the immersion j : Γϕ ↪→ X ×SpecK Y is a
morphism defined over F .

The following very simple example shows that the concept of effective field
of definition is truly stronger than the concept of field of definition.

1.8. Example. Consider the one-point variety p = (eX0 +X1) ⊆ P1
R where

e = exp(1); x is defined over Q, but on the other hand x is not effectively
defined over Q. Note that the same example works if we substitute e with
any irrational number.

An important question consists in asking if there exists a minimal field
of definition or a minimal effective field of definition for a given projective
variety.

1.9. Definition. Let X ⊆ PnK be a projective variety over K, then a subfield
K0 ⊆ K is the (effective) minimal field of definition of X if the following
conditions hold:r K0 is an (effective) field of definition of X.r If F is any (effective) field of definition of X contained in K, then

K0 ⊆ F .

In the “effective case” we have an affirmative answer thanks to the following
theorem due to Weil.

1.10. Theorem (Weil, 1962). Consider a field extension F ⊆ K and a
nonzero ideal a ⊆ K[T1, . . . , Tn], then there exists a field K0 between F and
K with the following properties:

(1) a has a system of generators in K0[T1, . . . , Tn].
(2) If K ′ is any field between F and K such that a has a system of

generators in K ′[T1, . . . , Tn], then K0 ⊆ K ′.
Proof. Assume that a monomial order is fixed (in general one considers the
graded lexicographic ordering), then the key point is the uniqueness of the
reduced Gröbner basis for a nonzero polynomial ideal ([11, 2 Proposition 6]).

If G = {g1, . . . , gt} is the reduced Gröbner basis for a, and S is the set
of all coefficients of the polynomials in G, one simply defines K0 := F (S).
Since G is a set of generators for a, K0 clearly satisfies the condition (1). Let
K ′ be a field between F and K such that a has a system of generators

h1, . . . , hs ∈ K ′[T1, . . . , Tn]
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and consider the ideal a′ = (h1, . . . , hs) ⊆ K ′[T1, . . . , Tn]. If G′ is the reduced
Gröbner basis for a′, then it is also the reduced Gröbner basis for a: this
is true since the reduced Gröbner basis of the ideal (h1, . . . , hs) can be
obtained by an algorithm which manipulates only the polynomials h1, . . . , hs
without going out from the field generated by their coefficients (Buchberger’s
algorithm plus a reduction process, cf. [11]). By the uniqueness of the
reduced Gröbner basis it follows that G′ = G, but the polynomials in G′

have coefficients in K ′, so S ⊆ K ′. This means that K0 ⊆ K ′ and therefore
also the condition (2) is satisfied. �

The above proof of Theorem 1.10 is shorter than the classical ones: see
for example [33, I.7 Lemma 2] (this is the original proof of Weil) or [26, III.2
Theorem 7]. By the way the author is not aware of any argument at all
based on Gröbner bases in the literature.

1.11. Corollary. If X ⊆ PnK is a projective variety, then there exists an
effective minimal field of definition of X.

Proof. Let

X = Proj
K[T0, . . . , Tn]

(f1, . . . , fm)

be a projective variety where a = (f1, . . . , fm) is a homogeneous prime ideal
of K[T0, . . . , Tn]. If F is the prime field of K, thanks to Theorem 1.10 one
can find a minimal field K0 ⊆ K such that a has a system of generators

g1, . . . , gr ∈ K0[T0, . . . , Tn]. If g
(d)
j is the homogeneous part of degree d of gj ,

then g
(d)
j ∈ a because a is a homogeneous ideal, therefore a =

({
g

(d)
j

}
j,d

)
where j and d run in their range. Thanks to Proposition 1.2 K0 is the
effective minimal field of definition for X. �

On the other hand, regarding the existence of the minimal field of definition
of X, we can state a partial affirmative result if we restrict to algebraically
closed fields of definition.

1.12. Theorem. Let X ⊆ Pnk a projective variety over an algebraically closed
field k, then there exists a minimal algebraically closed field of definition of
X.

Proof. See [15, Theorem 2] for a proof of a more general result. �

1.13. Definition. Let s : X → SpecK be a variety over K and let σ ∈
Aut(K). The variety Xσ is defined (up to isomorphism) as the base change
of X with respect to the morphism Specσ : SpecK → SpecK.

Xσ = X ×SpecK SpecK SpecK

X SpecK .

p2

p1 Specσ

s
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1.14. Remark. If VarK is the set of all varieties over K, then the mapping

VarK ×Aut(K) → VarK

(X,σ) 7−→ Xσ

is not a function since Xσ is defined up to isomorphism. The problem can
be avoided by assuming a fixed canonical choice of Xσ among all isomorphic
fibre products. With this clarification in mind, it is evident that the rule
(X,σ) 7→ Xσ defines a group action of Aut(K) on the set VarK .

The structural morphism of the variety Xσ is always understood to be
p2 : Xσ → SpecK. Note that p1 : Xσ → X is not a morphism of varieties,
and one can only say that p1 is an isomorphism of schemes. The inverse
map can be obtained by taking the base change through Specσ−1. This is a
crucial point: in general X and Xσ are two nonisomorphic varieties but two
isomorphic schemes.

Let ϕ : X → Y be a morphism of varieties over K and consider an element
σ ∈ Aut(K). Then by equipping SpecK with the K-scheme structure
Specσ : SpecK → SpecK, the following canonical morphism of varieties:

ϕσ := ϕ×SpecK idSpecK : Xσ → Y σ .

1.15. Proposition. Let X = Proj K[T0,...,Tn]
(f1,...,fm) be a projective variety over a

field K, then we can choose Xσ = Proj K[T0,...,Tn]

(fσ1 ,...,fσm)
.

Proof. Suppose for the moment that σ : K → K ′ is an isomorphism of
fields where K and K ′ are not necessarily equal, then consider the K ′-scheme
X ×σ SpecK ′ given by the following diagram

X ×σ SpecK ′ SpecK ′

X SpecK .

p2

p1 Specσ

s

Since X = Proj K[T0,...,Tn]
(f1,...,fm) , by [27, 3 Proposition 1.9]:

X ×σ SpecK ′ ∼= Proj

(
K[T0, . . . , Tn]

(f1, . . . , fm)
⊗σ K ′

)
.

But K[T0,...,Tn]
(f1,...,fm) ⊗σ K

′ is a K ′-algebra isomorphic to K′[T0,...,Tn]

(fσ1 ,...,fσm)
, so it follows

that

X ×σ SpecK ′ ∼= Proj
K ′[T0, . . . , Tn]

(fσ1 , . . . , f
σ
m)

and we can put Xσ = Proj K
′[T0,...,Tn]

(fσ1 ,...,fσm)
. Finally, by using the fact that K = K ′

the proof is complete. �
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1.16. Remark. If X = Proj K[T0,...,Tn]
(f1,...,fm) , from now on we always put Xσ =

Proj K[T0,...,Tn]

(fσ1 ,...,fσm)
. In particular (PnK)σ = PnK .

So, at least for projective varieties over an algebraically closed field k, the
abstract switch from X to Xσ, is equivalent to transforming the projective
algebraic set Z(f1, . . . , fm) ⊆ Pn(k) in Z (fσ1 , . . . , f

σ
m) ⊆ Pn(k). Since X

and Xσ are in general not isomorphic as varieties, then Z(f1, . . . , fm) and

Z (fσ1 , . . . , f
σ
m) are not isomorphic as algebraic sets. If X = Proj k[T0,...,Tn]

(f1,...,fm) (k

algebraically closed), it is not difficult to see that the scheme isomorphism
p1 : Xσ → X induced by the fibre product construction, in classical terms is
described by the map:

Z (fσ1 , . . . , f
σ
m) → Z(f1, . . . , fm)

p 7−→ σ−1(p) .

Moreover if Y ∼= Proj k[T0,...,Tn]
(g1,...,gh) , ϕ : X → Y is a morphism of varieties,

and ϕ̃ : Z(f1, . . . , fm) → Z(g1, . . . , gh) is its corresponding morphism of
projective algebraic sets, then it follows that ϕσ : Xσ → Y σ corresponds to
the morphism of projective algebraic sets defined by:

σ ◦ ϕ̃ ◦ σ−1 : Z (fσ1 , . . . , f
σ
m)→ Z (gσ1 , . . . , g

σ
h)

If around a point p ∈ Z(f1, . . . , fm) the morphism ϕ̃ is defined by the
polynomials h1, . . . , hr, then around q = σ(p) ∈ Z (fσ1 , . . . , f

σ
m) the morphism

σ ◦ ϕ̃ ◦ σ−1 is defined by hσ1 , . . . , h
σ
r . In the Example 1.18 it will be clear how

it is not difficult to encounter two nonisomorphic varieties which are two
isomorphic schemes.

1.17. Lemma. Let k be an algebraically closed field. If F is a subfield of k,
then every element of Aut(F ) extends to an element of Aut(k).

Proof. If S is a transcendence basis for k/F , then every element σ ∈ Aut(F )
extends naturally to an element σ̃ ∈ Aut(F (S)). Moreover, since k is
an algebraic closure of F (S), the isomorphism extension theorem (see [29,
Theorem I.3.20]) ensures that σ̃ extends to an element of Aut(k). �

1.18. Example. Consider the following two varieties over C:

X = P1
C \ {(T0), (T0 − T1), (T0 − πT1), (T1)} ,

Y = P1
C \ {(T0), (T0 − T1), (T0 − eπT1), (T1)} .

The elements π and eπ are known to be algebraically independent over Q, so
the function {π, eπ} → {π, eπ} that exchanges them can be extended to an
automorphism σ ∈ Aut(Q(π, eπ)). By Lemma 1.17, σ extends to an element
σ̃ ∈ Aut(C), but σ̃ in turn extends in the obvious way to an automorphism
of graded rings σ : C[T0, T1] → C[T0, T1]. Thanks to the properties of the
Proj(·) construction, the graded automorphism σ induces an automorphism
Projσ of the scheme P1

C such that (Projσ)(X) = Y . Practically X and Y
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are two isomorphic schemes. We can identify them with the open sets of the
projective line given by

X = P1(C) \ {0, 1, π,∞} ,

Y = P1(C) \ {0, 1, eπ,∞} .
X and Y are not isomorphic, because if they were, then would exist a
birational map f : P1(C) 99K P1(C). Such a map induces an automorphism
f of P1(C) sending by construction {0, 1, π,∞} in {0, 1, eπ,∞}. But the
automorphisms of P1(C) are Möbius transformations, so they preserve the
cross-ratio. This leads to the contradiction because all cross-ratios obtainable
by {0, 1, π,∞} and {0, 1, eπ,∞} are different. Now since X and Y aren’t
isomorphic, then X and Y can’t be two isomorphic varieties over C.

The key point of the example is that σ : C[T0, T1] → C[T0, T1] is an
automorphism of graded rings, but it is not an automorphism of C-algebras.

1.19. Definition. Let X be a variety over K, and consider the group

U(X) := {σ ∈ Aut(K) : Xσ ∼= X as varieties over K} ⊆ Aut(K) ,

then the field M(X) := FixK(U(X)) ⊆ K is the field of moduli of X.
1.20. Lemma. Let k be an algebraically closed field, then

Fixk (Gal(k/F )) = F.

Proof. Obviously it is enough to prove that for every x ∈ k \ F there is an
element σ ∈ Gal(k/F ) such that σ(x) 6= x. There are two cases:

Case 1. x is transcendental over F . Consider the field F (x), then the
assignment x 7→ −x induces a unique element σ ∈ Gal(F (x)/F ) that moves
x. By Lemma 1.17 this σ extends to an element of Gal(k/F ).

Case 2. x is algebraic over F . Since in characteristic 0 every polynomial is
separable, if f = min (x, F ) then there exists in k (remember that f splits
over k) a root y of f such that x 6= y. Let M be the splitting field of f
over F and look at the inclusions F ⊆ F (x) ⊆ M ⊆ k; M is normal over
F and the canonical F -isomorphism σ : F (x)→ F (y) can be viewed as an
immersion σ : F (x)→ k. By [29, Proposition I.3.28 (3.)] there is an element
τ ∈ Gal(M/F ) such that τ|F (x) = σ (in particular τ(x) = y), therefore by
Lemma 1.17 τ extends to an element of Gal(k/F ) which moves x. �

1.21. Proposition. Let X = Proj k[T0,...,Tn]
(f1,...,fm) be a projective variety over

an algebraically closed field k, then every effective field of definition of X
contains M(X).

Proof. Let F ⊆ k be an effective field of definition of X and consider

σ ∈ Gal(k/F ). Thanks to Proposition 1.15 Xσ = Proj k[T0,...,Tn]
(fσ1 ,...,f

σ
m) . But X is

effectively defined over F , so, since σ fixes F , then Xσ = X. By Lemma 1.20
it follows that M(X) ⊆ Fixk (Gal(k/F )) = F . �
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1.22. Corollary. If a projective variety X over an algebraically closed field
k is effectively defined over M(X), then M(X) is the minimal effective field
of definition of X.

In general is a difficult problem to show that a given complex variety is
effectively defined over Q without finding explicitly the adequate equations.

1.23. Remark. Note that if X = Proj C[T0,...,Tn]
(f1,...,fm) , and {αij}j∈J are the

coefficients of the polynomial fi, then X is effectively defined over the field
Q (
⋃m
i=1 {αij}). Therefore X is defined over Q if and only if X is defined

over a number field.

Remember that if F ⊆ k is a field extension with k algebraically closed,
then the algebraic closure of F in k is F . This simple fact will be tacitly
used throughout the paper.

1.24. Definition. Two fields K1 and K2 containing a field F are said
algebraically disjoint over F if for every pair of sets S1 ⊆ K1 and S2 ⊆ K2,
both algebraically independent over F , it holds that S1 ∩ S2 = ∅ and S1 ∪ S2

is algebraically independent over F .

1.25. Remark. By the above definition it follows that the intersection of
two fields algebraically disjoint over F is algebraic over F . Indeed, if there
exists x ∈ K1 ∩ K2 such that x is not algebraic over F , then {x} is an
algebraically independent subset of both K1 and K2 over F .

1.26. Lemma. Let X ⊆ PnC be a complex projective variety and consider a
subfield F of C. If X is effectively defined [resp. defined] over two subfields
K1 and K2 of C which are algebraically disjoint over F , then X is effectively
defined [resp. defined] over F .

Proof. If X is effectively defined over K1 and K2 thanks to Corollary 1.11
there exists the effective minimal field of definition K0 of X, therefore
K0 ⊆ K1 and K0 ⊆ K2. This means that K0 ⊆ K1 ∩K2, so X is effectively
defined over K1 ∩K2, but K1 ∩K2 is algebraic over F (see Remark 1.25),
then X is effectively defined over F .

If X is defined over K1 and K2 then it is defined over the algebraic closures
K1,K2 ⊆ C. Therefore X is defined over K1 ∩ K2 ⊆ C because of the
existence of the minimal algebraically closed field of definition k0 ⊆ K1 ∩K2

(Theorem 1.12). By [10, Corollary of prop. 12, page A.V. 113] K1 and K2

are algebraically disjoint over F , so the extension F ⊆ K1 ∩K2 is algebraic.
This means that X is defined over F . �

1.27. Lemma. If K is a countable subfield of C then every transcendence
basis of C over K is uncountable.

Proof. Suppose that the proposition is false, namely there exists is a count-
able transcendence basis B of C over K. Clearly K(B) =

⋃
b∈BK(b), but

since K is countable, also K(b) is countable and it follows that K(B) is
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countable. Now C is algebraic over K(B), so by [29, Lemma I.3.13] it follows
that C is countable which is absurd. �

Below there are the main results of this first section; they are stated for a
generic countable subfield F of C, but we are mainly interested in the case
F = Q. The proofs are heavily based on Lemma 1.26 1.

1.28. Theorem. Let X ⊆ PnC be a complex projective variety and let F be a
countable subfield of C, then the following conditions are equivalent:

(1) X is effectively defined over F .
(2) The set {Xσ}σ∈Gal(C/F ) is finite.
(3) The set {Xσ}σ∈Gal(C/F ) is countable.

Proof. (1)⇒(2). Let X = C[T0,...,Tn]
(f1,...,fm) where f1, . . . , fm ∈ F [T0, . . . Tn]. De-

note by K the field generated over F by the coefficients of the polynomials
f1, . . . , fm. F ⊆ K ⊆ F , so the extension F ⊆ K is finitely generated and
algebraic, therefore it is finite. Suppose that the degree of the extension
F ⊆ K is [K : F ] = r and that {b1, . . . , br} is a basis for K over F ; if
σ ∈ Gal(C/F ) and i ∈ {1, . . . , r}, then σ(bi) is a root of min(bi, F ). But
min(bi, F ) can have at most r roots, therefore {σ|K}σ∈Gal(C/F ) is a finite set
as well as {Xσ}σ∈Gal(C/F ).

(2)⇒(3). Obvious.

(3)⇒(1). If X = Proj C[T0,...,Tn]
(f1,...,fm) where f1, . . . , fm ∈ C[T0, . . . Tn], denote

with K the field generated over F by the coefficients of the polynomials
f1, . . . , fm. If K is algebraic over F there is nothing to prove, so suppose
that {π1, . . . , πd} is a transcendence basis of K over F with d ≥ 1. Since
F is countable, by Lemma 1.27 there is an uncountable number of sets
Aα = {α1, . . . , αd} ⊆ C algebraically independent over F and such that
Aα ∩ {π1, . . . , πd} = ∅ and Aα ∩ Aβ = ∅ for every pair of indexes α and β.
Consider the field

L = F

(
π1, . . . , πd,

⋃
α

Aα

)
⊂ C ;

for any α, there is certainly σα ∈ Gal(L/F ) such that σα(πi) = αi and
σα(αi) = πi for every i = 1, . . . , d. Now by Lemma 1.17 every σα extends to
an element τα ∈ Gal(C/F ). All the τα are distinct by construction, therefore
{Xτα}α is an uncountable set. But by hypothesis there is only a countable
number of elements in the orbit, so there exist certainly τα and τβ such
that Xτα = Xτβ . If σ := τβτα

−1, it follows that X = Xσ. Now X is
effectively defined over K thanks to Proposition 1.2; but on the other hand

X = Xσ = C[T0,...,Tn]
(fσ1 ,...,f

σ
m) by Proposition 1.15, therefore again Proposition 1.2

1See [16, Theorem 2.12] for a less general version of Lemma 1.26; it is proved using
specializations of k-algebras and some very technical “ε-δ argumentations”. In this paper,
on the contrary, Lemma 1.26 follows immediately from the existence of the (effective)
minimal fields of definition.
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implies that X is also effectively defined over σ(K). F ⊂ K and F ⊂ σ(K)
since σ fixes F , and {σ(π1), . . . , σ(πd)} is a transcendence basis of σ(K) over
F such that

{σ(π1), . . . , σ(πd)} ∩ {π1, . . . , πd} = ∅ .
Thus, by construction K and σ(K) are two algebraically disjoint fields over
F and by Lemma 1.26 it follows that X is effectively defined over F . �

1.29. Theorem (González–Diez, 2006). Let X ⊆ PnC be a complex projective
variety and let F be a countable subfield of C, then the following conditions
are equivalent:

(1) X is defined over F .
(2) The set {Xσ}σ∈Gal(C/F ) contains at most finitely many isomorphism

classes.
(3) The set {Xσ}σ∈Gal(C/F ) contains at most countably many isomor-

phism classes.

Proof. (1)⇒(2). Follows easily from the implication (1)⇒(2) of Theo-
rem 1.28.

(2)⇒(3). Obvious.
(3)⇒(1). We repeat word by word the construction made in the last

implication of Theorem 1.28 except for the following obvious changes. Here
by hypothesis we have only a countable number of isomorphism classed in
the orbit {Xσ}σ∈Gal(C/F ), hence there exist τα and τβ such that Xτα ∼= Xτβ .

If σ := τβτα
−1, then X ∼= Xσ = C[T0,...,Tn]

(fσ1 ,...,f
σ
m) . It follows that X is defined over

K and σ(K) which are algebraically disjoint over F , so again by Lemma 1.26
we can conclude that X is defined over F . �

2. Curves defined over Q
For the rest of the paper we deal with fields of definition (not necessarily

effective). In practice, it is not a feasible problem to decide when a variety
X is defined over Q directly from Theorem 1.29. Indeed one should count
the elements in the orbit {Xσ : σ ∈ Aut(C)}, but Aut(C) is an uncountable
group, so this “task” in general can’t be easily performed. Here is presented a
beautiful characterization for nonsingular complex projective curves defined
over Q in terms of morphisms to P1

C and their branch points:

2.1. Theorem (Definability over Q for curves). A nonsingular complex
projective curve X ⊆ PnC is defined over Q if and only if there exists a
branched covering ϕ : X → P1

C, with at most three branch points.

The “if direction” of the theorem is also called “the obvious implication”
because it is a known result for specialists in the field, and “only if direc-
tion” is referred as the Belyi’s theorem. Despite of the name, the obvious
implication can be approached in different ways and all the proofs are far
from straightforward. On the other hand the proof of Belyi’s theorem dates
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back only to 1979 and is very simple and short, in spite of the problem was
considered hard to solve. What follows is the translation of an original quote
by Alexander Grothendieck, taken from [18], about Belyi’s proof; note that
even Grothendieck was struck by the simplicity of the Belyi’s argument:

Every finite oriented map gives rise to a projective nonsingular
algebraic curve defined over Q, and one immediately asks the
question: which are the algebraic curves over Q obtained in
this way — do we obtain them all, who knows? (. . . ) could
it be true that every projective nonsingular algebraic curve
defined over a number field occurs as a possible “modular
curve” parametrising elliptic curves equipped with a suitable
rigidification? Such a supposition seemed so crazy that I was
almost embarrassed to submit it to the competent people in
the domain. (. . . ) Bielyi announced exactly that result, with
a proof of disconcerting simplicity which fit into two little
pages of a letter of Deligne — never, without a doubt, was
such a deep and disconcerting result proved in so few lines!

In the form in which Bielyi states it, his result essentially
says that every algebraic curve defined over a number field
can be obtained as a covering of the projective line ramified
only over the points 0, 1 and ∞. This result seems to have
remained more or less unobserved. Yet it appears to me to
have considerable importance. To me, its essential message is
that there is a profound identity between the combinatorics of
finite maps on the one hand, and the geometry of algebraic
curves defined over number fields on the other. This deep
result, together with the algebraic geometric interpretation of
maps, opens the door onto a new, unexplored world — within
reach of all, who pass by without seeing it.

The proof of the “obvious implication” presented here, like in [16], is based
on standard results about covering spaces and on Theorem 1.29. For other
approaches see [23], [32], [34], [9] or [25].

2.2. Lemma. Let d ∈ N; if G is a finitely generated group then there is a
finite number of subgroups H ≤ G such that |G : H| = d.

Proof. Suppose that {Hα} is the set of all subgroups of G of index d, where
α ranges in some index set. Now define the sets of right cosets G/Hα for
every α, and for each of them fix a bijection with {1, . . . , d} such that the
identity coset Hα ∈ G/Hα corresponds to the number 1.

To any subgroup Hα, one can associate a group action of G on G/Hα

by right multiplication, therefore, in the above setting, for each Hα is well
defined a group homomorphism ϕα : G → Sd (here Sd is the group of
permutations of d elements). Vice versa, given ϕα : G→ Sd, one can recover
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Hα as:
Hα = StabG(1) = {g ∈ G : ϕα(g)(1) = 1} .

In this way e have defined a injective map from {Hα} to Hom(G,Sd). Since
G is finitely generated, then Hom(G,Sd) is a finite set and {Hα} is a finite
set too. �

2.3. Lemma. Fix a finite set B = {y1, . . . , yt} ⊂ P1(C) and a number d ∈ N.
Then there is a finite number of equivalence classes of degree d connected
topological coverings of V = P1(C) \B (in the complex topology).

Proof. The classification theorem of covering spaces (cf. [21, Theorem 1.38])
says that the following two sets are in bijective correspondence:

R1 := {classes of deg. d path-connected topological coverings of V }
R2 := {conjugacy classes of subgroups H ⊆ π1(V ) of index d }

Moreover as a consequence of the van Kampen theorem

π1(V ) ∼=

〈
g1, . . . , gt :

t∏
i=1

gi = 1

〉
.

By applying Lemma 2.2 on G = π1(V ), it follows that R2 is a a finite set. �

2.4. Lemma. Fix a finite set B = {y1, . . . , yt} ⊂ P1
C and a number d ∈ N.

Then there is a finite number of equivalence classes of degree d branched
coverings of P1

C whose branch locus is contained in B.

Proof. Let V = P1
C \B. Every degree d branched covering π : X → P1

C with
branch locus contained in B induces a (degree d) finite covering π|U : U → V
where U = X \ π−1(B). The claim follows immediately from the Riemann
existence theorem and Lemma 2.3. �

2.5. Theorem (“If direction” of Theorem 2.1). Let X ⊆ PnC be a nonsingular
complex projective curve and suppose that there exists a branched covering
ϕ : X → P1

C with at most three branch points, then X is defined over Q.

Proof. Fix ϕ with degree d. By possibly composing ϕ with an appropriate
automorphism of P1

C, one can always suppose that the branch locus of ϕ
is contained in {(T0), (T0 − T1), (T1)}. For any σ ∈ Aut(C) consider the
morphism of varieties ϕσ : Xσ →

(
P1
C
)σ

and the following commutative
diagram:

Xσ
(
P1
C
)σ

X P1
C .

ϕσ

h1 h2

ϕ

Clearly (Xσ, ϕσ) is a finite covering of degree d of
(
P1
C
)σ

= P1
C. Moreover,

since the set {(T0), (T0−T1), (T1)} is fixed pointwise by h2, the two morphisms
ϕ and ϕσ have the same branch locus by construction. So for any σ ∈ Aut(C),
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(Xσ, ϕσ) is a finite covering of degree d of P1
C whose branch locus is contained

in {(T0), (T0−T1), (T1)}. By Lemma 2.4, {Xσ}σ∈Aut(C) contains only a finite
number of isomorphism classes of curves, so Theorem 1.29 implies that X is
defined over Q. �

The proof of the only if direction of Theorem 2.1 follows Belyi’s argument
(he presented two different proofs: [7] and [8]).

The idea is simple: given a branched covering of Riemann surfaces whose
branch-locus is contained in P1(Q), there is a systematic way to reduce the
branch-locus to a set of three points. The reduction “algorithm” can be
divided in two steps, presented here as two lemmas: in the first step the
branch-locus is sent onto a finite set of P1(Q) and in the second step it is
shrunk to {0, 1,∞}.

2.6. Remark. If K is any field and f ∈ K[T ] is a polynomial, then it clearly

induces a map f̃ : P1(K) → P1(K) as follows: f̃((x : 1)) := (f(x) : 1) and

f̃(∞) =∞. By an abuse of notation f is identified with f̃ , so from now a
polynomial of K[T ] can be considered as a morphism from P1(K) to itself.

2.7. Lemma. Let B be a finite subset of P1(Q). If B is invariant under the
natural action of Aut(Q) on P1(Q), then there exists a polynomial f ∈ Q[T ]
with the following properties:r f(B) ⊆ P1(Q).r The branch points of f lie in P1(Q).

Proof. One can proceed by induction on #(B) = n. If n = 1, then B = {α}
and α is a fixed point of Aut(Q), therefore by Lemma 1.20 α ∈ Q. By
choosing f = z, the base step of the induction is done.

Let n > 1, then consider the set of polynomials

S = {min(α,Q) : α ∈ B}

and define

g(T ) =
∏

p(T )∈S

p(T ) .

Firstly note that the polynomial g doesn’t have repeated roots, indeed every
p(T ) in the product is separable and moreover if β was a root of p(T ), and
q(T ) both in M , then q(T ) = p(T ) = min(β,Q). If Z(g) is the zero-locus
of g, clearly B ⊆ Z(g). Vice versa if β ∈ Z(g), then there exists some
p(T ) = min(α,Q) ∈ S such that p(β) = 0; but Aut(Q) acts transitively
on the roots of p(T ) [13, 8.1.4], therefore there is some σ ∈ Aut(Q) such
that σ(α) = β, and β ∈ B since B is an invariant set under Aut(Q). It
has been proved that B is exactly the set of all distinct roots of g, so
deg(g) = #(B) = n. Define

B′ = g
({
z ∈ Q : g′(z) = 0

})
,
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then #(B′) ≤ n−1 and moreover B′∪{∞} is exactly the set of branch points
of g. Clearly also B′ is closed under the action of Aut(Q), so by inductive
hypothesis: there exists a polynomial h ∈ Q[T ] such that h(B′) ⊆ P1(Q) and
its branch points lie in P1(Q). Now look at the composition f = h◦ g ∈ Q[T ]:

Br(f) = Br(h) ∪ h(Br(g)) = Br(h) ∪ h(B′ ∪ {∞}) ⊆ P1(Q) .

Moreover f(B) = h(g(B)) = h(0) ∈ P1(Q), hence f is the required polyno-
mial. �

2.8. Remark. Actually it has been shown that f maps B onto 0.

2.9. Lemma. Let D be a finite subset of P1(Q). Then there exists a polyno-
mial f ∈ Q[T ] such that:r f(D) ⊆ {0, 1,∞}.r The branch points of f lie in {0, 1,∞}.

Proof. Here one works by induction on #(D) = n. If n ≤ 3 there is
an appropriate Möbius transformation M such that M(D) ⊆ {0, 1,∞}.
So suppose that n > 3; in this case by applying an appropriate Möbius
transformation, one can suppose that {0, 1,∞} ⊆ D an that there is a
fourth point m

m+n ∈ D with m,n ∈ N. Indeed take P1, P2, P3, P4 ∈ D, then

there exists a Möbius transformation M such that M({P1, P2, P3, P4}) =
{0, 1,∞, P ′} where P ′ = (1 : x) with x ∈ Q∩]0, 1[. Now consider the
polynomial

g(T ) :=
(m+ n)m+n

mmnn
Tm(1− T )m ∈ Q[T ] ;

It holds that g
({

0, m
m+n , 1,∞

})
= {0, 1,∞} and moreover since

g′(T ) = −(m+ n)m+n

mmnn
(1− T )(n−1)T (m−1)[(m+ n)T −m] ,

the branch points of g lie in {0, 1,∞}. By the induction hypothesis (the case
when n = 3) applied to g(D), there exists a polynomial h ∈ Q[T ] such that
h(g(D)) ⊆ {0, 1,∞} and moreover the branch points of h lie in {0, 1,∞}.
Finally, the function f := h ◦ g satisfies the required conditions and the proof
is complete:

Br(f) = Br(h) ∪ h(Br(g)) ⊆ Br(h) ∪ h({0, 1,∞}) ⊆ {0, 1,∞} . �

2.10. Theorem (Belyi, 1979. “Only if direction” of Theorem 2.1). Let
X ⊆ PnC be nonsingular complex projective curve defined over Q, then there
exists a branched covering ϕ : X → P1

C with at most three branch points.

Proof. Since by hypothesis X is defined over Q, then one can choose a finite
nonconstant morphism ψ : X → P1

C defined over Q: indeed if ψ1 : XQ → P1
Q is

any finite morphism of varieties, it is enough to take ψ := ψ1 ×SpecQ idSpecC.

Now consider the Riemann surface X(C) ⊆ Pn(C) associated to X and the
holomorphic map ψ(C) : X(C) → P1(C). For any σ ∈ Gal(C/Q), consider
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ψσ(C) = σ ◦ ψ(C) ◦ σ−1, then Br(ψσ(C)) = σ(Br(ψ(C))). But since X(C)
and ψ(C) are both defined over Q, then ψσ(C) = ψ(C) and it follows that

Br(ψσ(C)) = σ(Br(ψ(C))) = Br(ψ(C)) .

It means that Br(ψ(C)) is a finite set fixed by all σ ∈ Gal(C/Q), so by Lem-
ma 1.20 Br(ψ(C)) ⊆ P1(Q). If B ⊆ P1(Q) is the smallest set invariant under
the action of Aut(Q) containing Br(ψ(C)), it has clearly finite cardinality
because B can be obtained by adding to each point α ∈ Br(ψ(C)) its
finite orbit under Aut(Q). Now by Lemma 2.7 there exists a polynomial
h : P1(C) → P1(C) such that D := Br(h) ∪ h(B) ⊆ P1(Q) with #(D)
finite. Finally by applying Lemma 2.9 on D one obtains a polynomial
g : P1(C) → P1(C) such that g(D) ∪ Br(g) ⊆ {0, 1,∞}. The branched
covering of Riemann surfaces

ϕ(C) := g ◦ h ◦ ψ(C) : X(C)→ P1(C)

has at most three branch points, so by the Riemann existence theorem
it induces a rational map ϕ : X 99K P1

C which is a finite covering of the
projective line minus at most three points, where it is well defined. But every
rational map between complex nonsingular projective curves is everywhere
defined, therefore ϕ : X → P1

C is a branched covering with at most three
branch points. �

3. Minimal Surfaces defined over Q
Theorem 2.1 establishes a sufficient and necessary condition for a nonsin-

gular complex projective curve to be defined over Q, so one would like to
have a similar theorem for minimal complex surfaces. Things here are more
complicated since most of the tools used in section 2 are not available for
surfaces, therefore a completely different approach is needed. The results
of this section are inspired by [17] which employs the theory of Lefschetz
pencils. The idea is the following: if for a curve X the definability over Q
depends on the critical values of a morphism ϕ : X → P1

C, here for a minimal

surface S the definability over Q depends on the critical values of a Lefschetz
pencil.

By the way, the author believes that in the case of minimal ruled surfaces
(i.e., geometrically ruled) over a base curve B, the conditions imposed in
[17] on both S and B, are too strong. For this reason, we formulate a new
sufficient condition based on the number of base points of a Lefschetz pencil.
The drawback is that the statement does not guarantee the definability over
Q in the case of elliptic Lefschetz fibrations or when there is a number of
base points which is a multiple of 8. These cases should be treated separately.
Alternative generalizations of Theorem 2.1 for surfaces are given in [30] and
[31].

For the purposes of this paper it is enough to present the theory of
Lefschetz fibrations on complex surfaces, but the definitions can be extended
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to any variety over an algebraically closed field. For a more general treatment
of this argument the reader may consult [12] and [14].

3.1. Definition. Let S ⊆ PnC be a nonsingular complex projective surface.
A rational map λ : S 99K P1

C which is not defined on a nonempty set Ξλ, is
called a Lefschetz pencil on S if the following conditions are satisfied:

(a) All but finitely many fibres of λ are nonsingular (i.e., the generic
fibre is nonsingular).

(b) The singular fibres have only one singular point, and this point is a
node.

(c) The closures in S of the fibres of λ meet pairwise transversally at the
points of Ξλ.

The finite (nonempty) subset Ξλ ⊂ S is called the base locus and each point
of Ξλ is called a base point of the Lefschetz pencil.

If a Lefschetz pencil is given on S, then S can be “approximated” with a
family of curves over P1

C:

3.2. Definition. Let λ : S 99K P1
C be a Lefschetz pencil. Thanks to

Castelnuovo’s elimination of indeterminacy (see [6]) there exists a nonsingular

complex projective surface S̃ with a birational morphism ρ : S̃ → S and a

morphism Λ : S̃ → P1
C such that the following diagram is commutative:

S̃ S

P1
C .

Λ

ρ

λ

The triple (S̃, ρ ; Λ) is called a Lefschetz fibration associated to λ.

When λ and ρ are clear from the context, a Lefschetz fibration is indicated

as a morphism Λ : S̃ → P1
C.

3.3. Proposition. Let (S̃, ρ; Λ) be a Lefschetz fibration associated to the
Lefschetz pencil λ : S 99K P1

C and let b ∈ Ξλ any base point. If Eb := ρ−1(b),
then every fibre of Λ meets Eb.

Proof. Certainly Λ(Eb) can’t be a point, indeed if Λ(Eb) = p, then λ could
be defined at b as λ(b) := p. It follows that Λ(Eb) = P1

C, so for every x ∈ P1
C

the intersection Λ−1(x) ∩ Eb is not empty. �

The geometric picture of the property c) of Definition 3.1 needs to be
clarified:

3.4. Proposition. Let λ : S 99K P1
C be a Lefschetz pencil, then the closure

of λ−1(x) in S is λ−1(x) ∪Ξλ for any x ∈ P1
C.

Proof. Let x be any point of P1
C. The inclusion λ−1(x) ⊆ λ−1(x) ∪ Ξλ is

quite trivial: λ−1(x) = C ∩ (S \Ξλ) where C is a closed subset of S, so



BELYI TYPE THEOREMS FOR CURVES AND SURFACES 843

λ−1(x) ∪ Ξλ = C ∩ (S \Ξλ) ∪ Ξλ = C. Practically λ−1(x) ∪ Ξλ is a closed
subset containing λ−1(x).

In order to prove that λ−1(x) ⊇ λ−1(x) ∪Ξλ, it is enough to show that if

b ∈ Ξλ, then b ∈ λ−1(x). Let (S̃, ρ; Λ) be a Lefschetz fibration associated to
λ and let Eb := ρ−1(b). The intersection Λ−1(x)∩Eb is not empty thanks to

Proposition 3.3, therefore if y ∈ Λ−1(x) ∩Eb, then y ∈ ρ−1(λ−1(x)). Since ρ
is continuous, this implies that

b = ρ(y) ∈ ρ(ρ−1(λ−1(x))) = λ−1(x) . �

3.5. Theorem. Let S ⊆ PnC be a nonsingular complex projective surface.
Then there exists a Lefschetz pencil λ : S 99K P1

C on S such that an associated

Lefschetz fibration Λ : S̃ → P1
C is a family of curves which admits a section.

Moreover the Lefschetz pencil λ can be chosen in such a way that the fibres
of Λ are irreducible.

Sketch of proof. The complete proof can be found in [28, V.3] and [22].
Thanks to the Bertini’s theorem (cf. [20, Theorem II.8.18]) there exists a
hyperplane H ⊆ PnC such that H ∩ S is a nonsingular projective curve and
furthermore for the generic element H ′ of the complete linear system |H|,
the intersection X ∩H ′ is a nonsingular projective curve. There is a bijection

φ : |H| → P1
C and moreover that S ⊆

⋃
H′∈|H|

H ′. So one can define

λ : S \
⋂

H′∈|H|

(
S ∩H ′

)
→ P1

C

in the following way: λ(x) := φ(H ′) if x ∈ H ′ for the unique element
H ′ ∈ |H| containing x. Note that the base locus of λ is the finite set

Ξλ :=
⋂

H′∈|H|

(
S ∩H ′

)
. �

Figure 1. A schematization of a Lefschetz fibration associated to a
Lefschetz pencil. In this case there are are two base points b1 and b2 and
two knotted curves. The birational morphism ρ is such that ρ(E1) = b1
and ρ(E2) = b2.
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3.6. Remark. From now on, by simplicity any Lefschetz pencil λ : S 99K P1
C

satisfies the conditions of Theorem 3.5. In particular one assume that any

Lefschetz fibration Λ : S̃ → P1
C is a family of curves with irreducible fibres

and with a section.

3.7. Remark. Actually, from the properties of Λ : S̃ → P1
C, it follows that

its fibres are also reduced.

3.8. Proposition. A Lefschetz fibration of genus g ≥ 2 is a stable family of
curves.

Proof. Let F be a fibre of a Lefschetz fibration Λ : S̃ → P1
C. By Remarks 3.6

and 3.7 F is connected and reduced. By definition F has at most nodes
as singularities and moreover by hypothesis pa(F ) ≥ 2. Finally, since F is
irreducible, the condition on the rational components is vacuously true. �

Let S be a nonsingular complex projective surface and consider a Lefschetz

fibration (S̃, ρ ; Λ), then S̃ can’t be a minimal surface since it is obtained by
some blow-ups of S. On the other hand one can at least ensure the relative
minimality of Λ:

3.9. Proposition. Any Lefschetz fibration Λ : S → P1
C is relatively minimal.

Proof. Suppose by contradiction that a fibre F of Λ contains a (−1)-curve
E. Since F is irreducible E = F , namely E is an entire fibre of Λ. But this
means that E2 = 0 which is in contradiction with E2 = −1. �

3.10. Theorem. Let π : S → B be a relatively minimal fibration (with
nonsingular generic fibre) of genus g where S is a nonsingular complex
projective surface and B is a nonsingular complex projective curve. Let
moreover E be a (−1)-curve on S such that E.F > 2g − 2 for a nonsingular
fibre F of π, then S is ruled.

Proof. If g = 0, then S is rational thanks to Noether-Enriques theorem
(cf. [6, Theorem III.4]); so one can suppose that g ≥ 1. Let β : S → X the
contraction of the curve E and let F ⊂ S be a nonsingular fibre of π such
that E.F > 2g − 2 and β∗F ′ = F +mE for F ′ = β(F ). Therefore:

F ′.KX = (β∗F ′).(β∗KX) = (F +mE).(KS − E)

= F.KS − F.E +mE.KS −mE2 = F.KS − F.E +mE.KS +m.

Now by adjunction E.KS = −2−E2 = −1 and F.KS = 2g−2−F 2 = 2g−2
(here F 2 = 0 since F is a nonsingular fibre of a surjective morphism), hence
by continuing the previous chain of inequalities:

F ′.KX ≤ F.KS − F.E +mE.KS +m

= 2g − 2− F.E < 2g − 2− (2g − 2) = 0 .

Practically F ′.KX < 0 and this implies that X is ruled (cf. [6, Corollary
VI.18]). But X and S are birational, so S is ruled too. �
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3.11. Corollary. Let π : S → B be a relatively minimal fibration (with
nonsingular generic fibre) of genus g = 1 where S is a nonruled surface and
B is a nonsingular complex projective curve. Then S is minimal.

Proof. Suppose by contradiction that E is a (−1)-curve in S and let F be
a nonsingular fibre of π such that #(E ∩ F ) > 0. Since E is irreducible and
E is not contained in F then E.F > 0 = 2g − 2. Now Theorem 3.10 ensures
that S is ruled and this is a contradiction. �

3.12. Proposition. If S is a nonruled minimal surface, then a Lefschetz
fibration over S can’t be elliptic.

Proof. Suppose by contradiction that (S̃, ρ ; Λ) is an elliptic Lefschetz fibra-

tion over a nonruled surface S. Clearly S̃ is also nonruled, and moreover by
Proposition 3.9 the fibration is relatively minimal. From Corollary 3.11 it

follows that S̃ is a minimal surface which is an absurd. �

Suppose that a nonsingular complex projective surface S ⊆ PnC is defined

over Q, what can be said about the fields of definition of the divisors on S
and about the fields of definition of the minimal models of S? The following
propositions try to answer to these questions.

3.13. Proposition. Let S ⊆ PnC be a nonsingular complex projective surface

defined over Q, then every irreducible effective divisor of S with negative self
intersection number is defined over Q.

Proof. Suppose by contradiction that there exists an effective divisor D ⊂ S
with D2 < 0 which is not defined over Q. By Theorem 1.29 the orbit set
SAut(C) contains only a finite number of surfaces up to isomorphism and
on the other hand DAut(C) contains an uncountable numbers of divisors up
to isomorphism. So it follows that for a certain σ ∈ Aut(C), Sσ contains
an uncountable numbers of effective divisors with negative self intersection
(remember that the intersection number is invariant under base extensions of
the ground field). But the Neron–Severi group NS(Sσ) is finitely generated,
so in Sσ one can always find two nonisomorphic curves D1 and D2 with
negative self intersection which are numerically equivalent; in particular
D1.D2 = D2

2 < 0. So D1 and D2 must have a common irreducible component.
But since they are both irreducible, then D1 = D2 contradicting the fact
that D1 and D2 are not isomorphic. �

3.14. Proposition. Let S ⊆ PnC be a nonsingular complex projective surface

defined over Q, then every minimal model of S is defined over Q.

Proof. It is enough to prove that if S is defined over Q and β : S → X is
a contraction of a (−1)-curve E ⊆ S such that β(E) = x ∈ X, then X is a
surface defined over Q.

Suppose by contradiction that X is not defined over Q and moreover
consider the set {βσ : Sσ → Xσ}σ∈Aut(C). Thanks to Theorem 1.29, there
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exists an element τ ∈ Aut(C) such that S ∼= Sτ and X 6∼= Xτ . Denote
with θ : S → Sτ the isomorphism between S and Sτ , then one obtains the
following diagram:

S Sτ

X Xτ .

θ

β βτ

The morphism β′ := βτ ◦ θ is a contraction of E such that β′(E) = x′ ∈ Xτ ,
therefore is well defined a birational map ψ = β′ ◦ β−1 : X 99K Xτ which
actually is an isomorphism between the open sets X \ {x} and Xτ \ {x′}.

X

S

Xτ .

ψ

β

β′

This implies that ψ is everywhere defined, in particular it is an isomorphism.
This contradicts the fact that X and Xτ are not isomorphic. �

Finally, there are all the ingredients to study in detail the definability over
Q. One can distinguish 3 cases:r Case 1: rational surfaces. This will be quite trivial.r Case 2: nonruled surfaces. The statement in this paper is the same

of [17], but here is given an original proof.r Case 3: ruled nonrational surfaces. This will be a new sufficient
condition on the number of base points of a Lefschetz pencil.

On the other hand there is a single necessary condition.

3.15. Proposition (Suff. Cond. Case 1). Let S ⊆ PnC be a rational minimal

surface, then it is defined over Q.

Proof. S is isomorphic to P2
C or to some Hirzebruch surface Σm with m 6= 1,

but they are both defined over Q. �

3.16. Proposition (Suff. cond. Case 2). Let S ⊆ PnC be a nonruled minimal
surface. If S admits a Lefschetz pencil λ : S 99K P1

C with critical values in

P1
Q, then S is defined over Q.

Proof. Suppose that (S̃, ρ; Λ) is the Lefschetz fibration associated to λ. If
the genus of the Lefschetz fibration over S is g = 0, by [6, Theorem III.4] it

follows that S̃ is a rational surface, and then S is a rational surface too. The
case g = 1 can be excluded thanks to Proposition 3.12, so it is enough to
prove the claim when g ≥ 2.
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The first step consists in showing that Λ : S̃ → P1
C is not an isotrivial fibra-

tion. Suppose by contradiction that Λ is isotrivial, then by propositions 3.8
and 0.3 Λ is locally trivial, and Theorem 0.4 implies that K2

Λ = 0. So

(1) 0 = K2
Λ = K2

S̃
+ 8(g − 1) .

On the other hand, if the Lefschetz pencil has r = #(Ξλ) base points, then

S̃ is obtained from S by r repeated blow-ups. The fact that S̃ is obtained
through a finite sequence of blow-ups follows by Castelnuovo’s elimination
of indeterminacy, but the number of blow-ups is exactly r thanks to the
property c) of Definition 3.1. Indeed if two effective divisors C1 and C2

of S meet transversally, then their strict transforms Ĉ1 and Ĉ2 don’t meet

in S̃. So K2
S −K2

S̃
= r, but since S is minimal and nonruled, then KS is

nef (cf. [4, III Corollary 2.4], [6, Appendix C]) and therefore [3, Theorem
1.25] implies that K2

S ≥ 0. It follows that 0 ≤ r +K2
S̃
, and by equation (1)

8(g − 1) ≤ r. There exists a nonsingular curve C ⊂ S of genus g such that

C2 ≥ r: let F0 ⊂ S̃ be a nonsingular fibre of Λ and consider C := ρ(F0).

F0 meets all the r (−1)-curves of S̃ which are mapped by ρ onto a base
point of λ (cf. Proposition 3.3); furthermore ρ = βr ◦ βr−1 ◦ . . . ◦ β1 where
each βi is a contraction of a (−1)-curve. In particular, if F1 = β1(F0), then
F0 = β∗1F1 −mE where E is the (−1)-curve contracted by β1, and m ≥ 1.
By using the properties of the blow-up:

F 2
0 = (β∗1F1 −mE)2 = (β∗1F1)2 − 2mE.(β∗1F1) +m2E2 = F 2

1 −m2 < F 2
1 .

One can repeat the same argument on F1 to get F2 = β2(F1) such that
F 2

1 < F 2
2 ; by continuing to generate the curves Fi = βi(Fi−1) in this fashion,

one eventually obtains C = ρ(F0) = βr(Fr−1) = Fr. The finite sequence of
curves F0, F1, . . . , Fr−1, C has the following property (remember that F0 is a
fibre, so F 2

0 =0):

0 = F 2
0 < F 2

1 < . . . < F 2
r−1 < C2 .

Therefore it is evident that C2 ≥ r. Now, since KS is nef, by adjunction one
gets the inequality

2g − 2 = C2 + C.KS ≥ r ≥ 8g − 8

which gives g ≤ 1, contradicting the choice of g.

Finally, suppose by contradiction that S is not defined over Q, then S̃
is not defined over Q (Proposition 3.14) and by the Theorem 1.29, the set

{S̃σ}σ∈Aut(C) contains infinitely many isomorphism classes. Suppose that ∆
is the set of critical points of λ (so the set of critical points of of Λ). By
hypothesis ∆ is contained in P1

Q, so it has a finite orbit under the action of

Aut(C); therefore there exists τ ∈ Aut(C) such that the set

F :=
{

Λσ : S̃σ →
(
P1
C
)σ

= P1
C s.t. σ ∈ Aut(C) and Crit (Λσ) ⊆ ∆τ

}
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contains an infinite number of nonisomorphic fibrations. In other words
F contains an infinite number of nonisomorphic admissible families with
respect to

(
P1
C,∆

τ
)
, but this contradicts the Parshin–Arakelov theorem

(Theorem 0.2). Note that the nonisotriviality of each member of F follows
from the nonisotriviality of Λ shown above. �

3.17. Proposition (Suff. Cond. Case 3). Let S ⊆ PnC be a ruled nonrational
minimal surface over a curve B. Suppose that there exists a Lefschetz

fibration Λ : S̃ → P1
C associated to a Lefschetz pencil λ : S 99K P1

C such that
the following properties are satisfied:r A nonsingular fibre of Λ has genus g ≥ 2.r λ has critical values in P1

Q.r #(Ξλ) 6= 8t for t ∈ N \ {0}.
Then S is defined over Q.

Proof. It is enough to show that Λ is not isotrivial. Indeed the rest of
the proof follows by applying the Parshin–Arakelov theorem as in Proposi-
tion 3.16.

Assume by contradiction that Λ is isotrivial, then it is locally trivial and
0 = K2

Λ = K2
S̃

+ 8(g − 1) which implies that K2
S̃

= 8(1− g). On the other

hand S is a geometrically ruled surface over B, hence by [6, proposition
III.21] K2

S = 8(1− g(B)). By substituting these values of K2
S̃

and K2
S in the

equation K2
S −K2

S̃
= #(Ξλ) one gets g − g(B) = Ξλ

8 . But g − g(B) is an

integer, hence Ξλ = 8t for some t ∈ N \ {0} contradicting the hypotheses of
the theorem. �

Finally the necessary condition for the definability over Q:

3.18. Proposition (Nec. Cond.). Let S ⊆ PnC be a minimal surface defined

over Q, then S admits a Lefschetz pencil λ : S 99K P1
C with critical values in

P1
Q.

Proof. S ∼= SQ ×SpecQ SpecC for a surface SQ over Q. Now let HQ ⊆ PnQ
be a hyperplane which gives a Lefschetz pencil λQ over SQ; clearly the

critical values of λQ are contained in P1
Q and moreover the hyperplane

H = HQ ×SpecQ SpecC gives a Lefschetz pencil λ over S with the same

critical values of λQ. �
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[3] Bădescu, Lucian. Algebraic surfaces. Universitext. Springer-Verlag, New York, 2001.
xii+258 pp. ISBN: 0-387-98668-5. MR1805816, Zbl 0965.14001, doi: 10.1007/978-1-
4757-3512-3.

[4] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius.
Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4. Springer-
Verlag, Berlin, 2004. xii+436 pp. ISBN: 3-540-00832-2. MR2030225, Zbl 1036.14016,
doi: 10.1007/978-3-642-57739-0.
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