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Subdivision rule constructions on
critically preperiodic quadratic matings

Mary Wilkerson

Abstract. ‘Mating’ describes a collection of operations that combine
two complex polynomials to obtain a new dynamical system on a quo-
tient topological 2-sphere. The dynamics of the mating are then de-
pendent on the two polynomials and the manner in which the quotient
space was defined, which can be difficult to visualize. In this article, we
use Hubbard trees and finite subdivision rules as tools to examine qua-
dratic matings with preperiodic critical points. In many cases, discrete
parameter information on such quadratic pairs can be translated into
topological information on the dynamics of their mating. The central
theorems in this work provide methods for explicitly constructing subdi-
vision rules that model nonhyperbolic matings. We follow with several
examples and connections to the current literature.
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1. Introduction

Even the simplest of rational maps can have surprisingly complicated dy-
namics. Many rational maps may exhibit behavior resembling polynomials
though, which are better understood. In the early 1980’s, Douady described
polynomial mating—a way to combine two polynomials in order to obtain a
new map with dynamics inherited from both original maps [4]. Sometimes,
this mating is dynamically similar to a rational map. In such a case, we
can examine the dynamics of the constituent polynomials in the mating to
better understand the rational map.

There are many kinds of polynomial matings, but their constructions typ-
ically begin in a similar manner. We consider the compactification C̃ of C
given by adding in the circle at infinity, C̃ = C ∪ {∞ ⋅ e2πiθ ∣θ ∈ R/Z}. Then,
we take two monic polynomials of the same degree with locally connected
and connected filled Julia sets acting on two disjoint copies of C̃. If we use
these domains to form a quotient space in an appropriate manner, our poly-
nomial pair will determine a map that descends to this new space. The map
on the quotient space then exhibits combined dynamical behavior from the
two polynomials. Both topological matings and formal matings are quotient
maps formed in this manner, differing only in the equivalence relation which
identifes points on our copies of C̃: In a formal mating, the opposing circles
at infinity are identified so that the quotient space is a topological 2-sphere.
In a topological mating, the domain of the map is given by a quotient space
which identifies two filled Julia sets along their boundaries. (While we pro-
vide more details later, an excellent overview of some fundamental mating
constructions is given in [10].)

Since the equivalence relation used in the topological mating is typically
more complicated than that for the formal mating, one might naively ex-
pect that this difference in complexity is reflected in the associated quotient
spaces. The domain of the topological mating can sometimes be surprising:
by results of Lei, Rees, and Shishikura, it is possible to develop an equiv-
alence relation on two connected filled Julia sets—including ones with no
interior—such that the associated quotient space is a topological 2-sphere
[8], [12], [13]. In [1], a general method is presented for developing the mating
resulting from a given polynomial pairing—but this method is best suited
for the hyperbolic case. As visualization of how the boundary identifica-
tions develop can be useful, this paper presents a construction to model the
case involving two critically preperiodic polynomials. We expand here upon
preliminary results given in [14].
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In §2, we detail the prerequisites needed to define and construct polyno-
mial matings. We also describe finite subdivision rules and Hubbard trees,
and why their use is relevant here.

In §3 we introduce the essential construction for obtaining finite subdi-
vision rules from matings, and demonstrate using several examples. We
then close with connections to the current literature and future avenues for
exploration in §4.

2. Prerequisites

2.1. Fundamentals. Let S2 denote a topological 2-sphere and Ĉ denote
the Riemann sphere. In this paper, we will make reference to many self-maps
of these spaces, and discuss instances in which these maps may ‘behave
similarly.’ To clarify statements of this sort, one way to ensure similar
behavior is the existence of a topological conjugacy. If f, g, and h are two
maps such that h○f ○h−1 = g, we may note that compositions of f and g are
also topologically conjugate. We may then think of conjugation as a means
of providing a coordinate change between the dynamical systems given by
iterating f and g.

We may obtain a similar, but weaker statement on the similarity of be-
havior of two maps in the event that they are Thurston equivalent to each
other:

Definition 2.1. Let f, g ∶ S2 → S2 be two branched mappings with respec-
tive postcritical sets Pf and Pg. The mappings f and g are said to be
Thurston equivalent if and only if there exist homeomorphisms

h,h′ ∶ (S2, Pf)→ (S2, Pg)
such that the diagram

(S2, Pf)
h′ÐÐÐ→ (S2, Pg)

×××Ö
f

×××Ö
g

(S2, Pf)
hÐÐÐ→ (S2, Pg)

commutes, and h is isotopic to h′ relative to Pf [5].

This suggests that when f and g are Thurston equivalent, f acts on a
sphere containing its postcritical set much in the same manner that g acts
on a sphere containing its postcritical set. These similarities in behavior
may not necessarily pass through to iteration as with topological conjugacy,
but we may be able to find maps h′′, h′′′, etc. to extend the commutative
diagram. It should also be noted that in the definition above, we may allow
Ĉ to stand in for S2 if f or g necessitate such, since the pairing of a metric
with S2 is not relevant to the definition.

In studying the behavior of an individual map and its iterates, a typical
point of investigation is how the map affects the space that it acts on. Two
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of the most fundamental dynamical structures associated with a map are its
Fatou and Julia sets, defined as follows:

Definition 2.2. A sequence of maps fn ∶ Ĉ → Ĉ is said to converge locally
uniformly to the limit g ∶ Ĉ→ Ĉ if for every compact set K ⊂ Ĉ the sequence
{fn∣K} converges uniformly to g∣K in the spherical metric on Ĉ. We say

that a collection F of holomorphic self-maps of Ĉ is normal if every infinite
sequence of maps from F contains a subsequence which converges locally
uniformly.

Let f ∶ Ĉ→ Ĉ be a rational function, regarded as an holomorphic self-map
of the Riemann sphere. The Fatou set of f , denoted by Ff or F , consists

of all points on Ĉ with an open neighborhood U such that the restrictions
of the iterates of f to U form a normal family of analytic functions on W .
The Julia set of f(z), denoted by either Jf or J , is the set Ĉ/F . [11]

In a sense, the Fatou set for f is the portion of the domain on which the
iterates of f behave somewhat predictably based on the surrounding local
behavior. The Julia set is the portion of the domain on which the iterates of
f respond with much higher sensitivity to initial conditions. A rudimentary
example is given by the map z ↦ z2: Off the unit circle in Ĉ, iterates of
this map converge to either 0 or ∞. On the unit circle, the map doubles
arguments of complex points—which means that upon iteration, points on
the unit circle may eventually have wildly differing itineraries from even
their closest neighbors. Almost all points on the unit circle do not converge
to any limit under these iterations. The unit circle here is the Julia set of
z ↦ z2, while its complement is the Fatou set.

It should be noted that both the Fatou set and Julia set of f(z) are
sets that are invariant under f . Further, there are other equivalent means
of defining the Julia set for certain maps: when f is a polynomial, the
collection of points in Ĉ that stay bounded away from ∞ under iteration by
f form a set called the filled Julia set for f , denoted either Kf or K. For
such f we may also obtain the Julia set by taking J = ∂K.

Later we will examine matings of quadratic polynomials. This necessitates
an understanding of the Julia sets of the following special family of quadratic
functions:

Definition 2.3. Let c ∈ C and fc(z) = z2+c. The Mandelbrot set, M , is the
set of all values of c such that the forward orbit of 0 under fc is bounded.
Equivalently, the Mandelbrot set may also be defined as the set of all values
of c for which the Julia set of fc is connected.

In this paper, we will emphasize quadratic polynomials which are post-
critically finite—i.e., functions f for which the forward orbit of the critical
point(s) yields a finite set of points, Pf . Then, any fc which is postcritically
finite must clearly be associated with some parameter c which is contained
in M .
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2.2. Parameter space. Suppose that c is contained in the Mandelbrot set,
and that Kc is the filled Julia set of the map fc(z) = z2+c. Since this implies

that Kc is connected, Ĉ/Kc is conformally isomorphic to the complement of

the closed unit disk via some holomorphic map φ ∶ Ĉ/D → Ĉ/Kc. The

map φ can be chosen to conjugate z ↦ z2 on Ĉ/D to fc on Ĉ/Kc so that
φ(z2) = fc(φ(z)), in which case φ is a unique map.

Taking the image of rays of the form {re2πit ∶ r ∈ (1,∞)} under φ for
fixed t ∈ R/Z then yields the external ray of angle t, Rc(t). (See Figure 1.)
If Kc is locally connected, the map φ extends continuously to a map from
the unit circle to the Julia set Jc and external rays of angle t are said to
land at the point γ(t) = lim

r→1+
φ(re2πit). The map γ ∶ R/Z → Jc is called the

Carathéodory semiconjugacy, with the associated identity

γ(2 ⋅ t) = fc(γ(t))
in the degree 2 case. This identity allows us to easily track forward iteration
of external rays and their landing points in Jc by doubling the angle of their
associated external rays modulo 1.

Figure 1. The conformal isomorphism φ and selected ex-
ternal rays for the rabbit polynomial.

The work in this paper will be restricted to the use of polynomials whose
parameters are obtained from Thurston–Misiurewicz points—values of c at
which the critical point of fc is strictly preperiodic. Such values of c are
always contained in the boundary of the Mandelbrot set. Critically preperi-
odic polynomials are typically parameterized by the angle θ of some external
ray landing at the critical value rather than by the critical value c. (In the
event that the critical value is accessible by multiple external rays, it is
possible for multiple parameters to refer to the same polynomial.) We will
follow this convention from this point on, using fθ in lieu of fc. These
critically preperiodic polynomials have filled Julia sets that are dendrites:
locally connected continuua that contain no simple closed curves. In other
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words, the filled Julia set of such a polynomial possesses a possibly infinite
tree-like structure and has no interior. Further, since these fθ have Julia
sets that are locally connected, recall that external rays land on Jθ. This
means that the conformal isomorphism φ and Carathéodory semiconjugacy
γ can be used to recover the mapping behavior of fθ on its Julia set. As a
brief example, consider Figure 2: we could obtain that the critical orbit is
preperiodic and follows the pattern c0 ↦ c1 ↦ c2 ↦ c3 ↦ c2 by evaluation in
f1/6, or we could double the angles of external rays landing at these points
to obtain the same pattern.

Figure 2. External rays landing on the critical orbit of
f1/6(z) = z2 + i.

2.3. Matings. The operation of ‘mating’ may refer to one of several ways
to combine two polynomials to form a new map. We will focus on three
types of mating operations in this paper: formal, topological, and essential.
In general, the á symbol denotes that a mating operation is being performed
between two polynomials, and each kind of mating operation is defined using
a prescribed equivalence relation on the polynomial domains. We will utilize
áf , át, and áe respectively to reflect when we are discussing the formal,
topological, or essential mating; and will use subscripts in a similar manner
to identify the associated equivalence relations.

We now define the formal mating. Let fα ∶ C̃α → C̃α and fβ ∶ C̃β → C̃β
be postcritically finite monic quadratic polynomials taken on two disjoint
copies of C̃. Form the topological 2-sphere S2 by taking S2 = C̃α⊔ C̃β/ ∼f ,

where ∼f identifies ∞ ⋅ e2πit on C̃α with ∞ ⋅ e−2πit on C̃β. This yields a

topological 2-sphere by gluing two copies of C̃ together along their circles at
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infinity with opposing angle identifications. (See Figure 3.) This quotient
space serves as the domain of the formal mating fα áf fβ, which is the

map that applies fα and fβ on their respective hemispheres of S2. The
Carathéodory semiconjugacy guarantees that fα áf fβ is well-defined on the

equator and provides a continuous branched covering of S2 to itself. We will
use F = fα áf fβ to denote the formal mating whenever it is unambiguous
to do so.

Figure 3. Steps in the formation of the formal mating.

The topological mating fα át fβ, on the other hand, is formed by using the
quotient space Kα⊔Kβ/ ∼t, where ∼t identifies the landing point of Rα(t) on
Jα with the landing point of Rβ(−t) on Jβ. This glues the Julia sets of fα
and fβ together at opposing external angles. Similar to the formal mating,
we obtain the map fα át fβ by applying fα and fβ on their respective filled
Julia sets. The Carathéodory semiconjugacy similarly guarantees that the
resulting map is well-defined and continuous, but it is possible that the
quotient space is no longer a topological 2-sphere, even though there is an
induced map.

The quotient space obtained in developing the topological mating some-
times is a 2-sphere, however—and further, fα át fβ may be topologically
conjugate to a rational map on the Riemann sphere. Such a rational map
is called a geometric mating of fα and fβ. The following elegant result
highlights a case that we will consider in this paper:

Theorem 2.4 (Lei, Rees, Shishikura). The topological mating of the post-
critically finite maps z ↦ z2 + c and z ↦ z2 + c′ is Thurston equivalent to a
rational map on Ĉ if and only if c and c′ do not lie in complex conjugate
limbs of the Mandelbrot set [8], [12], [13].

This is useful since we can determine if the mating exists merely from the
values of the parameters c and c′. Given that this mating acts on a 2-sphere
obtained by identifying the boundaries of two Julia sets, and that one or
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both of these Julia sets may be dendrites though, this result may appear
somewhat counterintuitive.

To help understand the boundary identifications in the quotient space
of the topological mating, we will examine the essential mating, fα áe fβ
in the setting of Theorem 2.4. (Similar to our convention for the formal
mating, we will use E = fα áe fβ to denote the essential mating whenever

it is unambiguous to do so.) Starting with the 2-sphere S2 developed as
the domain of the formal mating F , the essential mating is constructed as
detailed below and in [8].

Definition 2.5. Let {l1, . . . , ln} be the set of connected graphs of external
rays on S2 containing at least two points of the postcritical set PF , and
let {τ1, . . . , τm} be the set of maximal connected graphs of external rays in

⋃
k∈N

n

⋃
i=1
F −k(li) containing at least one point on the critical orbit of F . Take

each of the {τ1, . . . , τm} to be an equivalence class of the equivalence relation
∼e. (See the white dashed lines on the top left of Figure 4.) Note that in
the setting of Theorem 2.4, S′2 = S2/ ∼e is homeomorphic to a sphere since
these equivalence classes will contain no loops. Further, F maps equivalence
classes to equivalence classes, so letting π ∶ S2 → S′2 denote the natural
projection yields that π ○ F ○ π−1 is well-defined and preserves the mapping
order of the equivalence classes {τ1, . . . , τm}. (See the mapping behavior
demonstrated by Case A in Figure 4.)

This composition is not necessarily a branched covering if {τ1, . . . , τm} is
nonemtpy, though. (In this case, F −1({τ1, . . . , τm}) will contain a compo-
nent which is not an element of {τ1, . . . , τm}—and this component will be
a collection of arcs mapping to a point under π ○ F ○ π−1, as in Case B of
Figure 4.) To rectify this, set Vj to be an open neighborhood of τj such
that Vj ∩ (PF ∪ ΩF ) = τj ∩ (Pf ∪ ΩF ) for each j, and such that distinct Vj
are nonintersecting. (See the dark grey region on the top left of Figure 4.)
For each j, denote by {Uij} the set of connected components of F−1(Vj) for

which Uij ∩
m

⋃
p=1

τp = ∅.

Finally, we set E ∶ S′2 → S′2 to be equivalent to π ○ F ○ π−1 off of the set

⋃
i,j

π(Uij), and for each i, j set E ∶ π(Uij) → π(Vj) to be a homeomorphism

that extends continuously to the boundary of each π(Uij). E is the essential
mating of fα and fβ.

This is a dense definition, so we will unpack it a bit: the essential mating
resembles the formal mating, except we have ‘collapsed’ the domain of the
formal mating along certain external ray pair groupings, and tweaked the
resulting quotient map to ensure that it is a branched covering of a 2-sphere.
The ray pair groupings τj that we collapse to form the essential mating are
those which connect two or more postcritical points of F , and preimages of
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Figure 4. Above, the action of F on an external ray pair
grouping which maps to some τj . Below, note that on much
of the 2-sphere, the essential mating is equivalent to the map
π ○ F ○ π−1. This would be locally true for Case A where we
have behavior that locally resembles a branched cover, but
not true for Case B where we have an arc which maps to a
point.

these ray pair groupings containing a point on the critical orbit of F , such
as the white dashed lines demonstrate at the top of Figure 4.
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Note that F maps each of the τj forward to some element in {τ1, . . . , τm}.
This is not necessarily true for inverse images under F , though. On the bot-
tom of Figure 4, we demonstrate two possible cases. In Case A, the inverse
image of τj under F has a component which is an element of {τ1, . . . , τm};
in Case B there is a component of the preimage of τj which is not. In most
locations on S′2 (including those like the one pictured in Case A), the es-
sential mating E is defined as π ○ F ○ π−1. Situations like Case B on the
other hand force π ○ F ○ π−1 to not be a branched covering—so we instead
define E as a homeomorphism on open neighborhoods of problematic ray
pair groupings such as this.

Despite the appearance of E being defined rather arbitrarily in the last
step, the essential mating is uniquely determined up to Thurston equiva-
lence, and is in fact a degree 2 branched covering map which is Thurston
equivalent to the associated topological mating [8]. In a sense, the essen-
tial mating captures the “essential” identifications—i.e., mostly ones on the
critical orbit—that are made in forming the topological mating. We may
see Figure 5 for an example highlighting the key identifications in the mat-
ing of f1/6 with itself—the formal self-mating is a map with six postcritical
points, while the essential and topological self-matings are both maps with
only four.

Figure 5. Depicted is the domain S2 for the formal self-
mating of f1/6. The white dashed lines represent τj and the
open grey regions surrounding these are the corresponding
Vj .
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The essential mating mostly behaves like the map F with the fundamental
difference being that the domain and range of E are a quotient space where
important identifications on the critical orbit of F are collapsed together. It
should thus be noted that if no postcritical points of F can be connected by
a graph of external rays on S2, then the collection of τj in Definition 2.5 is
actually the null set and ∼e is the equality equivalence relation. In this case,
the natural projection π ∶ S2 → S′2 behaves much like the identity map on
S2. Further, no τj means no neighborhoods Vj , and thus no sets Uij . Since
off of the Uij (i.e. on the whole sphere) we have E = π ○F ○π−1, this implies
that we could take the essential and formal mating to be the same map in
any case where there are no postcritical identifications under ∼t or ∼e. This
would, for example, be the case when mating two polynomials with periodic
critical points.

2.4. Finite subdivision rules. Our ultimate motivation in examining the
essential mating is to develop a tiling construction that highlights the identi-
fications formed in the topological mating. We will develop this construction
using finite subdivision rules.

Definition 2.6. A finite subdivision rule R consists of the following three
components:

(1) A tiling. Formally, this is a finite 2-dimensional CW complex SR,
called the subdivision complex, with a fixed cell structure such that
SR is the union of its closed 2-cells. We assume that for each closed
2-cell s̃ of SR there is a CW structure s on a closed 2-disk such that
s has ≥ 3 vertices, the vertices and edges of s are contained in ∂s,
and the characteristic map ψs ∶ s → SR which maps onto s̃ restricts
to a homeomorphism on each open cell.

(2) A subdivided tiling. Formally, this is a finite 2-dimensional CW
complex R(SR) which is a subdivision of the above CW complex
SR.

(3) A continuous cellular map gR ∶R(SR) → SR, called the subdivision
map, whose restriction to any open cell is a homeomorphism. [3]

In essence, a finite subdivision rule is a finite combinatorial rule for subdi-
viding tilings on some 2-complex. We restrict, however, to tilings formed by
“filling in” connected finite planar graphs on a 2-sphere with open tiles that
are topological polygons. None of these tiles are allowed to be monogons
or digons, and further, each edge of the tiling must be a boundary edge to
some tile. These tiles may be nonconvex, though—to the potential extreme
of allowing both sides of a single edge to form two sides of the boundary
of a single tile. (For example, a line segment with both end points and
the midpoint marked on the 2-sphere forms the boundary of a topological
quadrilateral.)

Once we subdivide a tiling, we will need a map that takes open cells of
the subdivision tiling homeomorphically to open cells of the original tiling.
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Only when we have all three components—the initial tiling, the subdivision
tiling, and a subdivision map—do we have a complete finite subdivision rule.
Then, this rule can be applied recursively to yield iterated subdivisions of
the original tiling.

Example 2.7. Consider Figure 6: Ĉ is oriented so that the marked points
0,±1, and ∞ all lie on the equator. The equator and marked points deter-
mine a graph which yields a tiling of Ĉ into two topological quadrilaterals.
If we take a preimage of this structure under the map z ↦ z2, we obtain a
tiling that has four quadrilaterals—each of which maps homeomorphically
onto one of the quadrilaterals in the original tiling. Here, the structure on
the left is our tiling, the structure on the right is the subdivided tiling, and
the map z ↦ z2 is the subdivision map.

While a finite subdivision rule may be defined using analytic maps and
embedded tilings as in the previous example, this is not necessary. We can
use the mapping behavior of n-cells in a tiling to determine the mapping
behavior of (n + 1)-cells, thus obtaining a subdivision map based on combi-
natorial data. The reader may reference Cannon, Floyd, and Parry in [3]
for a more detailed treatment of this topic.

Figure 6. A rudimentary tile subdivision.

2.5. Hubbard trees. In order to build a finite subdivision rule later on, it
will be helpful to have a finite invariant structure in mind to determine the
tiling. The Julia set is invariant under iteration of its associated polynomial,
but the structure of the Julia set is more complicated than we would like to
use as a starting point for a finite subdivision rule. Thus, we would like to
work with a discrete approximation to the Julia set: the Hubbard tree.

(Note: Hubbard Trees are defined in [6] using allowable arcs. The con-
struction of an allowable arc is simplified considerably for the case where
f has a dendritic Julia set, so for the reader’s convenience we present a
definition restricted to this case here.)
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Definition 2.8. Let fθ ∶ C → C be given by fθ(z) = z2 + c for some Misi-
urewicz point c, and let fθ have Julia set Jθ and postcritical set Pfθ .

We say that a subset X of Jθ is allowably connected if x, y ∈ X implies
that there is a topological arc in X that connects x and y. The allowable hull
of a subset A in Jθ is then the intersection of all allowably connected subsets
of Jθ which contain A. Finally, the Hubbard tree of fθ is the allowable hull
of Pfθ in Jθ.

Figure 7. The Julia set and Hubbard trees for f1/6(z) = z2 + i.

The Hubbard tree as defined above is embedded in C and topologically
equivalent to the notion of an admissible Hubbard tree with preperiodic crit-
ical point as discussed in [2]. The notes of Bruin and Schleicher in [2],
however, emphasize the combinatorial structure of the Hubbard tree as a
graph with vertices marked by elements of Pfθ , rather than as an embedded
object in the complex plane. (See Figure 7.) They present several explicit
algorithms that can be used to construct a topological copy of Tθ from the
parameter θ, building heavily on the notion that quadratic maps are local
homeomorphisms off of their critical points, and degree two at their criti-
cal points. We can expand upon these observations regarding the behavior
of quadratic polynomials to determine what images and preimages of the
Hubbard tree Tθ under fθ will look like: forward images are invariant and
fθ maps the tree onto itself, every point in Tθ has at most two inverse im-
ages under fθ, fθ acts locally homeomorphically on Tθ everywhere except
at the critical point, and subsequent preimages of Tθ under fθ give discrete
approximations to Jθ. (The nth preimage of an tree Tθ under its associated
polynomial f contains 2n miniature copies of the tree which each map home-
omorphically onto the tree via f○n, as in Figure 8.) In addition, Hubbard
trees have many desirable characteristics that we will later require the 1-
skeletons of subdivision complexes to possess—namely, being planar, finite,
forward invariant, and containing the postcritical set.
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Figure 8. Preimages of a Hubbard tree under its associated polynomial.

3. An essential finite subdivision rule construction

Recall that the emphasis for this paper is on the nonhyperbolic case
in which two postcritically finite polynomials with dendritic Julia sets are
mated. If we further restrict our work to the setting where the critical values
of these polynomials are not in complex conjugate limbs of the Mandelbrot
set, the topological mating is Thurston-equivalent to a rational map on the
Riemann sphere. In order to understand how the quotient space for the mat-
ing comes together, we will construct a combinatorial model of the mating
in the form of a finite subdivision rule.

3.1. The essential construction. An ideal finite subdivision rule should
be based upon a subdivision map that is dynamically similar to the topo-
logical and geometric matings. The formal mating will not always suffice:
if any postcritical points of F are contained in the same equivalence class
of ∼t, F is not Thurston-equivalent to the topological mating. On the other
hand, the essential mating is Thurston-equivalent to the topological and
geometric matings—thus, it is a desirable subdivision map.

This leaves us to determine the tiling and subdivided tiling for a given
essential mating. The Hubbard trees associated with the polynomial pair
for our essential mating are a good start for a tiling 1-skeleton, as they
record much of the dynamical information associated with the polynomials.
However, there are two trees associated with any polynomial pair, and we
need to reconcile these structures on S2/ ∼e. For many polynomial pairings,
this problem solves itself quite naturally:

Definition 3.1 (Finite subdivision rule construction, essential type). Let
fα and fβ be critically preperiodic monic quadratic polynomials such that
x ∼e y for some points x ∈ Tα, y ∈ Tβ.

Give Tα⊔Tβ/ ∼e a graph structure on the quotient space of the essential
mating by marking all postcritical points and branched points as vertices. (If
need be, mark additional periodic or preperiodic points on Tα or Tβ and the
points on their forward orbits to avoid tiles forming digons.) The associated
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two dimensional CW complex for this structure will yield the subdivision
complex, SR.

Select a construction of the essential mating E and set R(SR) to be the
preimage of SR under E, taking preimages of marked points of SR to be
marked points of R(SR).

If R(SR) is a subdivision of SR and if the essential mating E ∶R(SR)→
SR is a subdivision map, then R is a finite subdivision rule and the above
construction is labelled of essential type.

The central idea behind this approach is that groupings of points on the
critical orbit of F which are identified under ∼e must be collapsed if we wish
to use the essential mating as a subdivision map. The quotient of Tα⊔Tβ
under ∼e is a connected planar graph when ∼e is associated with a nontrivial
essential mating, as in the example in Figure 9. If we “fill in” the faces of
this graph with polygonal tiles, we obtain a subdivision complex SR which
in many cases subdivides when we consider its pullback by E. We formalize
these notions with the following theorem:

Figure 9. External ray-pairs which connect the periodic
postcritical points of f1/6 áf f1/6 also modeled on Hubbard
trees. The rays shown here collapse under ∼e.

Theorem 3.2. Let F be the formal mating of fα and fβ. The essential
type construction fails to yield a finite subdivision rule generated by this
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polynomial pairing if and only if there exists some x, y in Tα⊔Tβ with x ∼t y,
x /∼e y, and F (x) ∼e F (y).

Proof. We prove the backward direction by contradiction. Using the nota-
tion developed in Definition 2.5 for the essential mating, if such an x and y
exist, we must have that x, y ∈ Uij with F (x), F (y) ∈ Vj for some i, j. Recall
that the essential mating E is then a homeomorphism from π(Uij) to π(Vj).

Since F (x) ∼e F (y), we can choose Vj so that it contains no other marked
points of our 1-skeleton, and so that π(Vj) intersected with the 1-skeleton
of SR yields a connected subset of S2. E being a homeomorphism then
implies that the 1-skeleton of E−1(SR) = R(SR) intersected with π(Uij) is
connected. π(Uij) intersected with the 1-skeleton of SR, however will not be
connected since x /∼e y. This suggests that at least one edge must have been
added to the 1-skeleton of R(SR) in this neighborhood during a subdivision
of SR. Thus, the intersection of Uij with R(SR) should have at least two
marked points corresponding to the endpoints of this edge (and potentially
others) added during the subdivision of SR. This cannot be so, however,
since by the construction this intersection should contain only the single
marked point E−1 ○ π ○F (x). Thus, the construction does not yield a finite
subdivision rule in this case.

We now prove the forward direction by contrapositive: suppose that there
exist no x, y in Tα⊔Tβ with x ∼t y, x /∼e y, and F (x) ∼e F (y). Then for
every Uij , at least one of Uij ∩ Tα or Uij ∩ Tβ must be ∅. We will now
use E to denote the essential mating formed with the additional restrictions
that E∣Uij∩π(Tα⊔Tβ) = π ○ F ○ π−1, and that E be a homeomorphism that

extends continuously to this new boundary on the remainder of the π(Uij).
This agrees with the definition of E off ⋃

i,j

Uij , and still permits E to be a

homeomorphism from each Uij to its respective Vj—that is, we still have that
E is an essential mating as defined before; we are just being more specific
regarding the homeomorphism used in the final step of its construction.

We will consider the essential type construction performed with this es-
sential mating, E, and show that it yields a finite subdivision rule. Recall
that we need three things for a finite subdivision rule: a tiling, a subdivided
tiling, and a subdivision map.

For the tiling SR, note that “filling in” the faces of a finite, connected,
planar graph with open 2-cell tiles guarantees a 2 dimensional CW complex.
The 1-skeleton of our tiling starts with two disjoint Hubbard trees, which on
their own would be finite and planar, but disconnected. The construction
requires that the essential mating is nontrivial with postcritical identifica-
tions between trees on S2/ ∼e though, so the 1-skeleton is connected and we
obtain the desired CW complex. The final requirements for a tiling forbid
monogon and digon tiles, but the construction expressly accounts for this
by requiring additional marked points to fix potentially errant tiles.



SUBDIVISION RULE CONSTRUCTIONS ON QUADRATIC MATINGS 1071

For the subdivision map, we need to show that E restricted to any open
cell of R(SR) maps homeomorphically onto some open cell of SR. Since
R(SR) is obtained by pulling back the structure of SR under E, this follows
from the fact that the critical and postcritical set of E are marked as vertices
in SR. Marked points ofR(SR) must map to marked points of SR, and since
E is a branched covering it must map homeomorphically on the remaining
open tiles and edges.

This leaves checking that the tilingR(SR) is a tiling which is a subdivision
of SR. Again, as R(SR) is obtained by pulling back the structure of SR
under E, it will yield a tiling—but it is not obvious that this tiling results
from a subdivision of SR. We will need to check that the open tiles and
edges of R(SR) resemble open tiles and edges of R(SR) which have been
subdivided by open edges and vertices. We will obtain this condition if the
1-skeleton of R(SR) contains a subdivision of the 1-skeleton of SR. This
will be true if the 1-skeleton of SR is forward invariant under E.

By the essential construction, note that the 1-skeleton of SR is given
by points in π(Tα⊔Tβ). The definition of our essential mating E, how-

ever, yields that E∣π(Tα⊔Tβ) = π ○ F ○ π−1. Thus, E maps our 1-skeleton to

π ○F (Tα⊔Tβ). Recall that the formal mating F acts as fα on Tα and as fβ
on Tβ, though. Since Hubbard trees are forward invariant under their as-
sociated polynomials, F preserves Tα⊔Tβ, and so our 1-skeleton is mapped
to itself under E.

Since we have shown that E acts as a subdivision map from the subdivided
tiling R(SR) to the tiling SR, the essential type construction yields a finite
subdivision rule. �

In simpler words, Theorem 3.2 tells us that we will have a problem build-
ing a finite subdivision rule using the essential type construction exactly
when two points are identified by ∼e, but their preimages are not.

3.2. An example. To highlight a case where the essential construction
yields a finite subdivision rule, we consider the essential mating f1/6 áe f1/6.
The essential construction prescribes that we start with the disjoint union
of Hubbard trees of the two constituent polynomials in the mating, T1/6
and T1/6, and then take a quotient under the relation ∼e associated with
this mating. The Hubbard tree is presented on the left of Figure 10, and
T1/6⊔T1/6/ ∼e is shown on the right. (Recall that a pair of external rays

adjacent to the same spot on the equator of S2 will land at θ and 1 − θ on
opposing Julia sets in the formal mating. Thus, if there is a θ and 1 − θ
pairing of postcritical points on opposing trees, these points collapse under
∼e.) The resulting 1-skeleton yields a 2-tile subdivision complex SR.

We now need to take the pullback of SR under E to obtain the subdivided
complex R(SR). It may not be immediately obvious how to determine what
the resulting 1-skeleton looks like, but the Hubbard tree structure is helpful
here: the preimage of a Hubbard tree under its associated polynomial yields
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Figure 10. The Hubbard tree for f1/6, and the 1-skeleton
of the essential type subdivision complex, SR, for f1/6 áe f1/6

two miniature copies of the tree which map homeomorphically onto the
original tree, joined at the critical point. This suggests “missing limbs”
that when filled in will subdivide the tiles of SR. Noting where each of the
marked points maps forward shows where to embed these limbs, since the
1-skeleton of R(SR) should map homeomorphically onto the 1-skeleton of
SR off of the critical point. This yields R(SR), as shown in the right side
of Figure 11.

Figure 11. Determining the essential type subdivided com-
plex, R(SR)

An important thing to note in the above example is that we can obtain
up to the first subdivision utilizing the given essential mating map, but that
subsequent pullbacks by E do not subdivide in the manner suggested by the
original tiles. After the first subdivision we exhaust all of the equivalence
classes that collapse to form the quotient space for the essential mating,
meaning that the essential mating is not actually a subdivision map for
these later iterations. This is precisely the problem that we want to avoid
in developing a setting for the essential type construction to admit a finite
subdivision rule.
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Recall that finite subdivision rules do not require embedded structures or
maps to yield a rule, though—combinatorially defined rules are acceptable.
In this case, we can use the combinatorial rule implied by the essential
construction after the first iteration. Figure 12 shows this for the f1/6 áe f1/6
example mentioned above; note how the essential construction yields a 2-tile
subdivision rule with a quadrilateral and an octagon. When subdividing,
the quadrilateral is replaced with an octagon, and the octagon is subdivided
into two quadrilaterals and a smaller octagon. This pattern continues for
future subdivisions.

Figure 12. Subsequent subdivisions of of SR for the mating
f1/6 áe f1/6.

While this subdivision rule will not reflect the behavior of the essential
mating after the first subdivision (the subsequent subdivisions would sug-
gest an infinite number of nontrivial equivalence classes of ∼e as we keep
subdividing, which is impossible), it does show us identifications made in
the topological mating. Any time the opposing Hubbard tree structures
meet reflects some equivalence class of ∼t collapsing to a point.

3.3. A nonexample. To highlight a less trivial situation in which the es-
sential construction does not yield a finite subdivision rule, we will consider
the example f7/8 áe f1/4. In Figure 13, we see the two Hubbard trees
needed for the construction with postcritical points and branched points
marked, along with the subdivision complex SR associated with the essen-
tial construction for this mating. For ease of notation in the figures, we set
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γ(θ) ∶= γ7/8(θ), and γ(θ)∗ ∶= γ1/4(1 − θ). When building SR, it will help to
recall that this implies γ(θ) ∼e γ(θ)∗.

Figure 13. Hubbard trees for f7/8 and f1/4, along with SR
as suggested by the essential construction for f7/8 áe f1/4.

The critical portrait for this essential mating suggests a subdivision simi-
lar to that given in Figure 14: first, we note where each of the marked points
will map; and second, since we expect that the rule reflects a degree two map
we should subdivide 1- and 2-cells as needed to yield a homeomorphic map-
ping onto SR. This forces the addition of 4 new edges and 4 new vertices to
our structure—but regardless of their placement, no subdivision will have
f7/8 áe f1/4 serve as the subdivision map for a subdivision rule. The grey
regions highlighted in Figure 14 contain points on the initial Hubbard trees
which identify under ∼t but not ∼e, and whose forward images identify under
∼e. There are two ways to view why this is problematic: first, subdivisions
of the initial tiling will not map locally homeomorphically onto SR off of the
critical points, thus any finite subdivision rule with subdivision complex SR
cannot have the essential mating as a subdivision map. Alternatively, pull-
backs of SR under the essential mating are not proper subdivisions. Instead,
they possess 1-skeletons that appear to be “pinched” versions of subdivided
1-skeletons.

Experimentally, the essential construction appears most likely to falter
with polynomial pairings like f7/8 and f1/4 where some equivalence class
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Figure 14. A subdivision of SR from Figure 13 that does
not map homeomorphically onto SR.

of ∼e contains two points from the same Hubbard tree. This is not to say
that these kinds of matings cannot be expressed by finite subdivision rules,
however. In many cases, minor adaptations can be made to the essential
construction in order to produce a rule. One such adaptation is presented
in Figure 15: since the full critical orbit of f7/8 áe f1/4 is contained in
T7/8/ ∼e, we can use this as the 1-skeleton for a subdivision complex rather
than T7/8⊔T1/4/ ∼e. The proof of Theorem 3.2 implies that if a 1-skeleton
is finite, connected, planar, forward invariant, and contains the postcritical
set as vertices, then filling in the 1-skeleton with tiles will yield a finite
subdivision rule. The subdivision complex in this modified finite subdivision
rule is then a 10-gon which is subdivided into two 10-gons when pulled back
by the essential mating f7/8 áe f1/4.

Figure 15. A finite subdivision rule with subdivision map
given by the essential mating f7/8 áe f1/4.
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4. The essential construction and the pseudo-equator

In a sense, the essential construction shows us where the “most important”
identifications in a mating are formed first, since we start with the essential
mating and then are shown where subsequent preimage identifications must
be made on polynomial Julia sets.

This section elaborates on how this technique can provide insights into
other means for visualizing and understanding matings.

4.1. Meyer’s pseudocircles. In [9], Meyer shows that certain postcriti-
cally finite rational maps can be viewed as matings and then decomposed
into their two constituent polynomials. If the Julia set of the rational map
is a 2-sphere, a sufficient condition for such a decomposition is the existence
of a pseudo-equator :

Definition 4.1. A homotopy H ∶ X × [0,1] → X is a pseudo-isotopy if
H ∶ X × [0,1) → X is an isotopy. We will assume H0 = H(x,0) = x for all
x ∈X.

Let f be a postcritically finite rational map, C ⊆ Ĉ be a Jordan curve with
Pf ⊆ C, and C1 = f−1(C). Then we say that f has a pseudo-equator if it has

a pseudo-isotopy H ∶ S2 × [0,1]→ S2 rel. Pf with the following properties:

(1) H1(C) = C1.
(2) The set of points w ∈ C such that H1(w) ∈ f−1(Pf) is finite. (We will

let W denote the set of all such w.)
(3) H1 ∶ C/W → C1/f−1(Pf) is a homeomorphism.

(4) H deforms C orientation-preserving to C1. More specifically, Hk is
orientation preserving for all k, even in the case where k = 1: Given
an orientation on C, both f and H1 induce an orientation on C1.
These orientations agree [9].

The motivation for the pseudo-equator definition appears forced when
approached from the starting point of a rational map, but is quite natural
when starting with the mating:

Theorem 4.2. Let S′2 denote the quotient space associated with the mating
E = fα áe fβ, and let PE denote the postcritical set of E. If there exists
some Jordan curve C on X which contains PE and separates (Tα/ ∼e)/PE
from (Tβ/ ∼e)/PE, then E has a pseudo-equator.

Proof. Consider the pullback of C under E, C1. Since C contains the critical
values of E, C1 must pass through the two critical points of E. Locally, the
pullback resembles an X at the critical points because E is a degree 2 map—
and these are the only locations that the pullback has this shape, since there
are only two critical points.

Since E is a branched covering map, there are a limited number of options
for the topological shape of the pullback C1 since C1 may only cross itself
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Figure 16. Possible pullbacks of C under a branched cover-
ing map.

twice. The options resemble those given in Figure 16, up to inclusion of
additional components that are Jordan curves.

These are possibilities for a generic branched covering not specific to E,
however. The first case in Figure 16 cannot be the pullback because S′2/C1
contains too many components: E is a degree two map, and acts homeo-
morphically off the critical set. This means that we should expect S′2/C1 to
have 4 components. This line of reasoning also rules out the possibility of
adjoining additional Jordan components to any of the cases in Figure 16.

The second case can be ruled out using a similar line of reasoning: we
can examine where segments of the pullback will map based on where the
endpoints map. The segments on either end start and end at a critical point,
which means the image of these segments under E must start and end at
a critical value. These end segments, when paired with their respective
critical points, must map onto C. The two segments in the middle when
paired with the critical points must also map onto C. This suggests that E
is at minimum a degree 3 map, which is not the case.

We are left with the pullback resembling the the last case of Figure 16.
Since E acts homeomorphically off of the critical set, we expect a mapping
behavior much like that expressed in Figure 17. In this figure, blue lines
denote the indicated curve and dots mark critical points. The bolded black
and red lines mark Hubbard trees, with dashing to denote that we are only
showing local behavior of the tree near the critical point—although we may
note that the black tree (Tα/ ∼e)/PE and red tree (Tβ/ ∼e)/PE are separated

by C. Notice that if we ‘sliced’ C1 along the Hubbard trees, we’d obtain a
curve that could be deformed in an orientation preserving manner to C. This
deformation hints at the desired pseudo-isotopy H, whose construction we
sketch below.

Recall that S′2 is a quotient of the space S2, and that S2 was formed
by identifying two copies of C̃ at their boundaries using opposing angles
of external rays. Thus, for the formal mating we may view each point on
the equator of S2 as the middle of an external ray pair that connects the
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Figure 17. C and its pullback, shown with local behavior
of Hubbard trees near the critical points of E.

Julia sets of the two polynomials we are mating. In forming the domain
S′2 = S2/ ∼e of the essential mating, this external ray structure is distorted
in a few spots, but effectively preserved so that the external rays similarly
connect Jα/ ∼e to Jβ/ ∼e. To simplify the discussion, when referring to
angles of external ray pairs, we will orient to the black polynomial fα.

Since C effectively encircles the black tree, we may then assume without
loss of generality that C was constructed in such a manner so that the curve
passes through each external ray pair on S′2 exactly once—much like the
equator on Earth passes through each line of longitude exactly once. Then,
there is a natural parameterization rC ∶ [0,1] → S′2 for the curve C where
rC(t) gives the point of C on the external ray pair associated with angle
t. Since the action of the essential mating on S′2 is to double angles of
external rays, this suggests that the pullback curve C1 = E−1(C) can be
parameterized similarly, so that the arcs of C1 corresponding to rC1(t) on
[0,1/2] and [1/2,1] both map onto C.

Since both C and C1 can be parameterized by angles of external ray pairs
in this manner, a natural way to view H is as describing a continuous defor-
mation which pushes C to C1 along external rays: i.e., for any t ∈ [0,1], take
H0(rC(t)) to be where the t ray pair intersects C; H1(rC(t)) to be where the
t ray pair intersects C1 ; and if 0 < k < 1, Hk(rC(t)) is some point on the t
ray pair which lies between these two points as in Figure 18.

Note that H as constructed in this manner is a pseudo-isotopy with the
properties named in Definition 4.1. We clearly have that H1(C) = C1. Since
H deforms C by sliding along external rays, H does not map arcs to points.
In fact, the only points on H1(C) with two preimages on C are the two critical
points of the mating. All other points in H1(C) have only one preimage in C,
and in general H1 acts homeomorphically off of the 4 points which it sends
to critical points of E. This guarantees conditions (2) and (3) in Definition
4.1. Finally, note that per our construction all deformations of C by H
can be parameterized in terms of angle of external rays, which suggests an
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Figure 18. The local action of a desired pseudo-isotopy Hk

on the curve C. The top of this figure shows Hk as applied to
a single marked point on C, the bottom shows Hk as applied
to the curve C. Note that as k increases, the action of Hk is
to ‘push’ the curve C along external ray pairs towards C1.

orientation agreeing with the orientation induced by E. Thus, H deforms C
orientation-preserving to C1, and E has a pseudo-equator. �

4.2. An example, continued. Theorem 4.2 implies the following method
for finding pseudo-equators associated with a mating: if Γ is homotopic to
the equator on S2 relative to Tα and Tβ, then C = Γ/ ∼e generates a pseudo-
equator when C is a Jordan curve. It is thus reasonably straightforward to
visualize the pseudo-equator on particular matings by using the essential
construction: form a finite subdivision rule using the essential construction,
and on SR construct a curve C through the postcritical points such that S′2/C
contains two components—the closure of each containing the Hubbard tree
of a polynomial in the mating. If C is a Jordan curve, C generates a pseudo-
equator, and the subdivision map shows us how Meyer’s 2-tiling subdivides,
as in Figure 19.

With consideration for edge replacements in the pullback, the pseudo-
equator provides a means for recovering information on the polynomial pair
associated with the mating. Although it should be clear in this f1/6 áe f1/6
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Figure 19. The pseudo-equator associated with f1/6 áe
f1/6. C is marked in blue on the left. The pullback of C
under this mating is marked in blue on the right.

example that the polynomials associated with the pseudo-equator are two
copies of f1/6, we can confirm the decomposition for C using the methods
given in [9].

First, label the postcritical vertices along the pseudo-equator as p0, . . . , pn.
We then label each edge from pi to pi+1(mod n+1) as Ei, and determine the
edge replacement matrix (aij) of the pseudo isotopy where aij is the number
of distinct sub-edges of H1(Ei) which map to Ej . The edge replacement
matrix for the example in Figure 19 is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 1 1
0 1 0 0
1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The degree of the mating corresponds to the leading eigenvalue of the
edge replacement matrix, which is 2. When normalized so that the sum of

entries is 1, the corresponding eigenvector is v = [1
6

1
3

1
6

1
3
]T . The entries

v0, v1, . . . of v then correspond to the lengths of edges E0,E1, . . . on the
pseudo-equator, which in turn determines spacing of the marked postcritical
points pi.

Since the spacing between these points does not immediately provide in-
formation about the mating, we let the function θ ∶ {p0, . . . , pn} → [0,1)
denote the external angle associated with each postcritical point with re-
spect to one of the polynomial Hubbard trees (say, the black one in Figure
19). This function must satisfy two properties: first by tracking lengths of
edges that

θ(pi) = θ(p0) +
i

∑
k=1

vk,
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and second, we require that

θ(pi) = θ ○E(pi) − θ(pi) (mod 1)
due to the Carathéodory semiconjugacy associated with the mating. Simple
computation allows us to obtain that for the current example, θ(p0) = 1

6 ,

θ(p1) = 1
3 , θ(p2) = 2

3 , and θ(p3) = 5
6 . The Carathéodory semiconjugacy

suggests that p0 and p3 are our critical values. Since the external angle is
given with respect to the black polynomial, this means that only one of θ(p0)
or θ(p3) may be taken as the correctly oriented angle associated with this
polynomial, and that the other is given in reverse orientation. If we choose
p0 to have a correctly oriented angle 1

6 , this means that p3 has external angle

when oriented to the red polynomial of 1−θ(p3) = 1
6 . Thus, we confirm that

the pseudo-equator is given by f1/6 mated with itself.

4.3. When pseudo-equators do not exist. Not all nonhyperbolic mat-
ings have pseudo-equators. A potential reason is that the path C is not
always a Jordan curve—any time ∼e contains equivalence classes that in-
clude multiple postcritical or critical points from one of the polynomials in
the mating, the equator Γ is pinched to form C. This falls outside of the
scope of the definition for a pseudo-equator, which concerns the deformation
of a Jordan curve. For instance, the example given in [9] for f1/6 á f13/14
presents with subdivision complex SR and C as shown in Figure 20. Notice
the pinching of the blue equator curve due to the postcritical identifications
on f13/14.

4.4. Implications and future work. The essential finite subdivision rule
constructions provide an alternative model for matings of critically prepe-
riodic quadratic polynomials. Further, finite subdivision rules are a useful
tool for visualizing basic dynamics and modeling the mapping properties of
certain matings—When paired with Bruin and Schleicher’s algorithms from
[2], the essential construction is simple enough that many elementary func-
tion pairings with few postcritical points can have their mapping behaviors
sketched without the aid of a computer.

In addition, these constructions serve as complementary to work in the
current literature: In [1], the Medusa algorithm is provided for obtaining
rational maps from matings of quadratic polynomials, but the algorithm
eventually diverges in the case of nonhyperbolic pairings. It is the author’s
belief that the finite subdivision rule constructions in this paper could be
used to modify the Medusa algorithm in a way that would yield rational
maps from matings of nonhyperbolic polynomials.

In [9], the relationship between rational maps and matings is only stressed
with the existence of an equator or pseudo-equator, to the exclusion of struc-
tures such as those highlighted in Figure 20. As highlighted in the above
examples, 2-tilings generated by the essential construction have potential to
show how nonhyperbolic mated maps are related to different space-filling
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Figure 20. The “pseudo-equator” is pinched by ∼e into a
non-Jordan curve.

curves on the 2-sphere: the quotient of the equator on S2 with respect to ∼t
is a topological 2-sphere, and 1-skeletons of subdivisions of the 2-tiling give
subsequent approximations to this quotient space. The essential construc-
tion and these 2-tilings should provide further insight on the conditions in
which postcritically finite rational maps can be realizable as matings, and
suggest alternative structures to consider when rational maps do not have
pseudo-equators.
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