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On the geodesic problem for the Dirichlet
metric and the Ebin metric on the space

of Sasakian metrics

Simone Calamai, David Petrecca and Kai Zheng

Abstract. We study the geodesic equation for the Dirichlet (gradient)
metric in the space of Kähler potentials. We first solve the initial value
problem for the geodesic equation of the combination metric, including
the gradient metric. We then discuss a comparison theorem between
it and the Calabi metric. As geometric motivation of the combination
metric, we find that the Ebin metric restricted to the space of type II
deformations of a Sasakian structure is the sum of the Calabi metric
and the gradient metric.
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e analisi armonica”, by SIR 2014 AnHyC “Analytic aspects in complex and hypercomplex
geometry” (code RBSI14DYEB), and by GNSAGA of INdAM.

D. P. is supported by the Research Training Group 1463 “Analysis, Geometry and
String Theory” of the DFG, as well as the GNSAGA of INdAM.

The work of K. Z. has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk lodowska-Curie grant agreement
No. 703949, and was also partially supported by the Engineering and Physical Sciences
Research Council (EPSRC) on a Programme Grant entitled “Singularities of Geometric
Partial Differential Equations” reference number EP/K00865X/1.

ISSN 1076-9803/2016

1111

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2016/Vol22.htm


1112 SIMONE CALAMAI, DAVID PETRECCA AND KAI ZHENG

2.2. Local well-posedness of the geodesic equation 1117

2.3. Exponential map, Jacobi fields and conjugate points 1123

2.4. Dirichlet metric and a comparison theorem 1124

3. The space of Sasakian metrics 1126

3.1. The restricted Ebin metric 1126

3.2. The sum metric on HS 1130

3.3. Another space of Sasakian metrics, an open problem 1131

References 1131

Introduction

This is the sequel of the previous paper [13] on the Dirichlet metric, which
here will be called gradient metric. We recall the background briefly. The
idea of defining a Riemannian structure on the space of all metrics on a
fixed manifold goes back to the sixties with the work of Ebin [19]. His work
concerns the pure Riemannian setting and, among other things, defines a
weak Riemannian metric on the space M of all Riemannian metrics on a
fixed compact Riemannian manifold (M, g). The geometry of the Hilbert
manifoldM was later studied by Freed and Groisser in [21] and Gil-Medrano
and Michor in [22]. In particular the curvature and the geodesics ofM were
computed.

Let (M,ω) be a compact Kähler manifold. The space H of Kähler met-
rics cohomologous to ω is isomorphic to the space of the Kähler potentials
modulo constants. It can be endowed with three different metrics, known as
the Donaldson–Mabuchi–Semmes L2-metric (2), the Calabi metric (5) and
the Dirichlet (or gradient) metric (8).

The Calabi metric goes back to Calabi [10] and it was later studied by the
first author in [11] where its Levi-Civita covariant derivative is computed, it
is proved that it is of constant sectional curvature, that H is then isometric
to a portion of a sphere in C∞(M) and that both the Dirichlet problem
(find a geodesic connecting two fixed points) and the Cauchy problem (find
a geodesic with assigned starting point and speed) admit smooth explicit
solutions.

The gradient metric was introduced and studied in [11, 13]. Its Levi-
Civita connection, geodesic equation and curvature are written down in
[13]. In this paper, we continue to study its geometry. We solve the Cauchy
problem of its geodesic equation, so we prove it is locally well-posed, unlike
the corresponding problem for the L2 metric, which is known to be ill-posed.

Actually, we define a more general metric, the linear combination of the
three metrics on H we call combination metric whose special instance is the
sum metric, i.e., the sum of the gradient and Calabi metrics.
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We denote the Hölder spaces with respect to the fixed Kähler metric g by
Ck,α(g). We prove that our Cauchy problem is well-posed (See Theorems 2.2,
2.8 and 2.15).

Theorem 0.1. On a compact Kähler manifold, for every initial Kähler
potential ϕ0, and initial speed ψ0 in Ck,α(g), for all k ≥ 6 and α ∈ (0, 1),
there exists, for a small time T , a unique C2([0, T ], Ck,α(g)∩H) geodesic for
the combination metric, starting from ϕ0 with initial velocity ψ0. Moreover
if (ϕ0, ψ0) are smooth then also the solution is.

Furthermore, we prove a Rauch type comparison theorem of the Jacobi
fields (Theorem 2.16) between the gradient metric and the Calabi metric.

Theorem 0.2. Let γG and γC be two geodesics of equal length with respect
to the gradient metric and the Calabi metric respectively and suppose that
for every XG ∈ TγG(t)H and XC ∈ TγC(t)H, we have

KG(XG, γ
′
G(t)) ≤ KC(XC , γ

′
C(t)).

Let JG and JC be the Jacobi fields along γG and γC such that

• JG(0) = JC(0) = 0,
• J ′G(0) is orthogonal to γ′G(0) and J ′C(0) is orthogonal to γ′C(0) ,
• ‖J ′G(0)‖ = ‖J ′C(0)‖.

then we have, for all t ∈ [0, T ],

‖JG(t)‖ ≥

∣∣∣sin(2t
√

vol
)∣∣∣

√
vol

.

The sum metric arises from Sasakian geometry. Indeed the geometric
motivation comes naturally from the space of Sasakian metricsHS as follows.

Since HK naturally embeds in the Ebin space M, it is natural to ask
what the restriction of the Ebin metric is. To our knowledge, the restriction
of Ebin metric to subspaces of the space of Riemannian metrics was first
considered by [35, (9.19), page 2485] (for the space of Kähler metrics, see
[15]). In this paper we consider on HK the metric given by (twice) the sum
of the Calabi and the gradient metric and we will refer to it as the sum
metric. Its study is justified by the fact that it arises when restricting the
Ebin metric to the space of Sasakian metrics, introduced (and endowed with
the Sasakian analogue of the Mabuchi metric) in [24, 25].

One of our results is the following.

Proposition 0.3. The restriction of the Ebin metric of M to the space of
Sasakian metrics is twice the sum metric.

Moreover, Theorem 0.1 can be generalized to the Sasakian setting, leading
to the corresponding statement for the restriction of the Ebin metric to the
space of Sasakian metrics.

The paper is organized as follows. In Section 1 we recall the main def-
inition of the space of Kähler metrics and in Section 2 we write down the
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Levi-Civita connection of the combination metric and study the equation of
the Cauchy problem for gradient metric. Finally, in Section 3 we compute
the restriction of the Ebin metric on the space of Sasakian metrics, proving
Prop. 0.3.

Acknowledgments. The authors are grateful to Prof. Xiuxiong Chen and
Prof. Fabio Podestà for encouragement and support, to Prof. Qing Han for
his insights and explanations and to Dario Trevisan, Prof. Elmar Schrohe
and Prof. Christoph Walker for helpful discussions.

We finally thank Boramey Chhay who let us know that he independently
proved Proposition 0.3 and Prof. Stephen Preston for sharing his insightful
knowledge of infinite-dimensional geometry.

1. Preliminaries

In this section we recall the definitions of space of Riemannian and Kähler
metrics and several weak Riemannian structures on them.

1.1. Ebin metric. The space of the Riemannian metrics M is identified
with the space S2

+(T ∗M) of all symmetric positive (0, 2)-tensors on M . The
formal tangent space at a metric g ∈ M is then given by all symmetric
(0, 2)-tensors S2(T ∗M). For a, b ∈ TgM, the Ebin [19] metric is defined as
the pairing

gE(a, b)g =

∫
M
g(a, b)dvg

where g(a, b) is the metric g extended to (0, 2)-tensors and dvg is the volume
form of g. From e.g. [22] one can see that the curvature is nonpositive and
the geodesic satisfies the equation

gtt = gtg
−1gt +

1

4
tr(g−1gtg

−1gt)g −
1

2
tr(g−1gt)gt.

Moreover in [22] the explicit expression of the Cauchy geodesics is given.

1.2. Space of Kähler potentials. Moving on to Kähler manifolds, let
(M,ω, g) be a compact Kähler manifold of complex dimension n, with ω a
Kähler form and g the associated Kähler metric. By the ∂∂-Lemma, the
space of all Kähler metrics cohomologous to ω can be parameterized by
Kähler potentials; namely, one considers the space H of all smooth real-
valued ϕ such that

ωϕ := ω + i∂∂ϕ > 0

and satisfy the normalization condition [17]

(1) I(ϕ) :=

∫
M
ϕ
ωn

n!
−
n−1∑
i=0

i+ 1

n+ 1

∫
M
∂ϕ ∧ ∂ϕ ∧ ω

i

i!
∧

ωn−1−i
ϕ

(n− 1− i)!
= 0.
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The tangent space of H at ϕ is then given by

TϕH =

{
ψ ∈ C∞(M) :

∫
M
ψ
ωnϕ
n!

= 0

}
.

1.3. Donaldson–Mabuchi–Semmes’s L2-metric. Donaldson, Mabuchi
and Semmes [17, 30, 33] defined a pairing on the tangent space of H at ϕ
given by

gM (ψ1, ψ2)ϕ =

∫
M
ψ1ψ2

ωnϕ
n!
.(2)

We shall refer to this metric as the L2-metric. It makes H a nonpositively
curved, locally symmetric space. A geodesic ϕ satisfies

ϕ′′ − 1

2
|dϕ′|2ϕ = 0,(3)

where |dϕ|2ϕ denotes the square norm of the gradient of ϕ′ with respect to
the metric ωϕ. The geodesic equation can be written down as a degenerate
complex Monge–Ampère equation. It was proved by Chen [14] that there is
a C1,1 solution for the Dirichlet problem. More work on this topic was done
in [1, 3, 6, 12, 16, 18, 29, 32], which is far from a complete list.

1.4. Space of conformal volume forms. According to the Calabi–Yau
theorem, there is a bijection between H and the space of conformal volume
forms

(4) C =

{
u ∈ C∞(M) :

∫
M
eu
ωn

n!
= vol

}
,

that is the space of positive smooth functions on M whose integral with
respect to the initial measure is equal to the volume of M (which is constant
for all metrics in H). The map is given by

H 3 ϕ 7→ log
ωnϕ
ωn0
,

where
ωnϕ
ωn0

represents the unique positive function f such that ωnϕ = fωn0 .

The tangent space TuC is then given by

TuC =

{
v ∈ C∞(M) :

∫
M
veu

ωn

n!
= 0

}
.

1.5. Calabi metric. Calabi [10] introduced the now known Calabi metric
as the pairing

(5) gC(ψ1, ψ2)ϕ =

∫
M

∆ϕψ1∆ϕψ2

ωnϕ
n!

where, here and in the rest of the paper, the Laplacian is defined as

∆ϕf = (i∂∂f, ωϕ)ϕ
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i.e., the ∂-Laplacian. The geometry studied in [11] is actually the one of C,
where the Calabi metric has the simpler form

(6) gC(v1, v2)u =

∫
M
v1v2e

uω
n

n!
.

Back in H, the geodesic equation is

∆ϕϕ
′′ − |i∂∂ϕ′|2ϕ +

1

2
(∆ϕϕ

′)2 +
1

2 vol
gC(ϕ′, ϕ′) = 0.(7)

1.6. Dirichlet metric. In [11, 13], the Dirichlet (or gradient) metric is
defined as the pairing

(8) gG(ψ1, ψ2)ϕ =

∫
M

(dψ1, dψ2)ϕdµϕ

that is, the global L2(dµϕ)-product of the gradients of ψ1 and ψ2. Its geo-
desic equation is

2∆ϕϕ
′′ − |i∂∂ϕ′|2ϕ + (∆ϕϕ

′)2 = 0,(9)

where |i∂∂ϕ′|2ϕ denotes the square norm with respect to ωϕ of the (1, 1)-form

i∂∂ϕ′.

2. Combination metrics

We can combine together the three metrics as follows. Let α, β, γ be three
nonnegative constant and at least one of them positive. Consider the metric

(10) g(ψ1, ψ2)ϕ = α · gM (ψ1, ψ2)ϕ + β · gG(ψ1, ψ2)ϕ + γ · gC(ψ1, ψ2)ϕ.

which will be referred to as the combination metric.
Let us prove the existence of the Levi-Civita covariant derivative for the

combination metric. We can write

(11) g(ψ1, ψ2)ϕ = gC(Mϕψ1, ψ2),

where

Mϕ = αG2
ϕ − βGϕ + γ,

and Gϕ is the Green operator associated to the Laplacian ∆ϕ.
We have the following.

Proposition 2.1. For a curve ϕ ∈ H and a section v on it, the Levi-Civita
covariant derivative of the combination metric is the unique Dtv that solves

MϕDtψ = [G2
ϕαD

M
t − βGϕDG

t + γDC
t ]ψ

where DM, DG
t , D

C
t are the covariant derivatives of the L2, gradient and

Calabi metric.
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Proof. We start by proving that Mϕ is a bijection of TϕH. The injectivity
holds because it defines a metric. To prove surjectivity, we see that the
problem Mϕu = f is equivalent to Du = h where D = γ∆2

ϕ − β∆ϕ + α. It
is elliptic and then by known results we have

C∞(M) = kerD ⊕ Im(D)

and by integration and the normalization condition on TϕH we immediately
see that TϕH∩kerD = 0, so TϕH = Im(D)∩TϕH and we obtain surjectivity.

The fact that Dt is torsion-free is evident from its definition. Let us now
compute

d

dt
g(ψ,ψ) = 2αgM (DM

t ψ,ψ) + 2βgG(DG
t ψ,ψ) + 2γgC(DC

t ψ,ψ)

= 2αgC(G2
ϕD

M
t ψ,ψ)− 2βgC(GϕD

G
t ψ,ψ) + 2γgC(DC

t ψ,ψ)

= 2gC([G2
ϕαD

M
t − βGϕDG

t + γDC
t ]ψ,ψ)

= 2gC(MϕDtψ,ψ)

= 2g(Dtψ,ψ)

so the compatibility with the metric holds as well. �

2.1. Geodesic equation of the combination metric. The geodesic
equation of the combination metric is the combination of the geodesic equa-
tions of L2-metric, gradient metric and the Calabi metric. After rearrange-
ment, it is written in the following form

(12) [α− β∆ϕ + γ∆2
ϕ]ϕ′′

=
α

2
|dϕ′|2ϕ +

[
β

2
− γ∆ϕ

]
|i∂∂ϕ′|2ϕ +

[
β

2
+
γ

2
∆ϕ

]
(∆ϕϕ

′)2.

The key observation is that the differential order on the both sides of the
geodesic equation (12) are the same. We will carry out in detail in the next
section the study of the geodesic equation with β = γ = 1 and α = 0, the
general case with α = 1 is similar, so we omit the proof.

This observation suggest that, though the Cauchy problem of the geodesic
ray with respect to the L2-metric is ill-posed, after combining the L2-metric
with the Calabi metric and the gradient metric, the new geodesic equation
is well-posed.

2.2. Local well-posedness of the geodesic equation.

2.2.1. Existence and uniqueness. Recall the definition of the space of
Kähler potentials

H = {ϕ ∈ C∞(M) : ω + i∂∂ϕ > 0, I(ϕ) = 0}.
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We are aiming to solve the geodesic equation with β = γ = 1 and α = 0,
i.e., the equation

(13) (∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2

)
− 1

2
|i∂∂ϕ′|2ϕ = 0.

We rewrite it as a system
(14)ϕ

′ = ψ

ψ′ = Lϕ(ψ) := ∆−1
ϕ

[
1
2(∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ + 1

2(∆ϕψ)2

]
with the initial data ϕ(0) = ϕ0, ψ(0) = ψ0 ∈ Ck,α(g).

Take a constant δ > 0 such that ω + i∂∂ϕ0 ≥ 2δω. Let us introduce also
the following function spaces

Hk,α = {ϕ ∈ Ck,α(g) : ω + i∂∂ϕ > 0, I(ϕ) = 0}
and

Hk,αδ = {ϕ ∈ Ck,α(g) : ω + i∂∂ϕ ≥ δω, I(ϕ) = 0},
where k ≥ 2 and α ∈ (0, 1).

The aim of this subsection is to prove the following.

Theorem 2.2. For every integer k ≥ 6 and α ∈ (0, 1) and initial data

ϕ0 ∈ Hk,αδ and ψ0 ∈ Tϕ0Hk,α there exists a positive ε and a curve

ϕ ∈ C2((−ε, ε),Hk,αδ )

which is the unique solution of (13) with initial data (ϕ0, ψ0).

We need the following lemma.

Lemma 2.3 (Schauder estimates, see [4, p. 463]). Let P be an elliptic
linear operator of order 2 acting on the Hölder space Ck+2,α(g). Then for
u ∈ Ck+2,α(g) we have

‖u‖Ck+2,α(g) ≤ c1‖Pu‖Ck,α(g) + c2‖u‖L∞

where c1 depends only on the Ck,α(g)-norm of the coefficients of P and, if
u is L2(g)-orthogonal to kerP , then c2 = 0.

The structure of the system (14) suggests to consider the following com-
plete metric space

(15) X = C2([−ε, ε],Hk,αδ )× C2([−ε, ε], Ck,α(g))

as the function space where we are going to look for solutions of our system.
The norm that we consider is defined for ψ ∈ C2([−ε, ε], Ck,α(g)) as

|ψ|k,α := sup
t∈[−ε,ε]

‖ψ(t, ·)‖Ck,α(g),

and in the product space, the norm of any element (ϕ,ψ) ∈ X is

|(ϕ,ψ)|k,α := |ϕ|k,α + |ψ|k,α.
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We work in an appropriate metric ball in X obtained by the following
lemma.

Lemma 2.4. There exists r > 0 such that if ϕ ∈ Ck,α(g) is such that

‖ϕ− ϕ0‖Ck,α(g) < r then ϕ ∈ Hk,αδ .

Proof. Being k ≥ 2 we have ‖ϕ− ϕ0‖C2,α(g) ≤ ‖ϕ− ϕ0‖Ck,α(g) < r. Then

gϕ = gϕ − gϕ0 + gϕ0

≥ −‖ϕ− ϕ0‖C2,α(g)g + 2δg

≥ (2δ − r)g
which is strictly bigger than δg for r < δ. �

We consider the operator

(16) T (ϕ,ψ) =

(
ϕ0 +

∫ t

0
ψ(s)ds, ψ0 +

∫ t

0
(Lϕ(ψ))(s)ds

)
.

Let us now fix r > 0 as in Lemma 2.4. We have the following proposition,
but first let us isolate a lemma.

Lemma 2.5. There exist a positive C depending only on r and g such that

‖gabϕ ‖Ck,α(g) ≤ C.

Proof. For fixed a, b it holds ‖gabϕ ‖Ck,α(g) ≤ ‖g−1
ϕ ‖Ck,α(g) where the norm

is intended as operator norm. Then by the sub-multiplicative property we
have ‖g−1

ϕ ‖Ck,α(g) ≤ ‖gϕ‖−1
Ck,α(g)

and by estimate in the proof of Lemma 2.4

we have that ‖gϕ‖−1
Ck,α(g)

≤ (2δ − r)−1‖g‖Ck,α(g) =: C(r, g). �

Proposition 2.6. For any (ϕ0, ψ0) ∈ Hk,αδ × Ck,α(g) there exists ε > 0
such that the metric ball Br(ϕ0, ψ0) ⊂ X centered in (ϕ0, ψ0) of radius r is
mapped into itself by T .

Proof. We need to estimate |T (ϕ0, ψ0) − (ϕ0, ψ0)|k,α. Let us estimate the
first component∣∣∣∣ϕ0 +

∫ t

0
ψ(s)ds− ϕ0

∣∣∣∣
k,α

= sup
t∈[−ε,ε]

∥∥∥∥∫ t

0
ψ(s)ds

∥∥∥∥
Ck,α(g)

≤ sup
t∈[−ε,ε]

∫ t

0
‖ψ(s)‖Ck,α(g)ds

≤ sup
t∈[−ε,ε]

∫ t

0
sup

s∈[−ε,ε]
‖ψ(s)‖Ck,α(g)ds

≤ ε · (|ψ0|k,α + |ψ − ψ0|k,α)

≤ ε · (|ψ0|k,α + r).

As for the second component, it is enough to estimate ‖Lϕ(ψ)‖Ck,α(g) for
every t.
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We have, by Lemma 2.3,

‖Lϕ(ψ)‖Ck,α(g)

≤
∥∥∥∥∆−1

ϕ

[
1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ +

1

2
(∆ϕψ)2

]∥∥∥∥
Ck,α(g)

≤ C(‖ϕ‖Ck,α(g))

∥∥∥∥1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ +

1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

.

To estimate the first summand we have∥∥∥∥1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ

∥∥∥∥
Ck−2,α(g)

≤ C(‖ϕ‖Ck−2,α(g))‖|i∂∂ψ|2ϕ‖Ck−4,α(g)

≤ C(r)‖giϕgk`ϕ ψi`ψk‖Ck−4,α(g)

≤ C(r)‖ψ‖Ck,α(g)

where in the first inequality we have used again Lemma 2.3 and in the last
we have used that ‖ψ‖Ck−2,α(g) ≤ ‖ψ‖Ck,α(g) < r.

The second summand is estimated, similarly as before, by

‖|i∂∂ψ|2ϕ‖Ck−2,α(g) ≤ C(r)‖ψ‖Ck,α(g).

The third summand is∥∥∥∥1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

≤ ‖(∆ϕψ)2‖Ck−2,α(g) ≤ ‖giϕψi‖2Ck−2,α(g)

≤ C(r)‖ψ‖Ck,α(g).

So we can conclude that the second component of |T (ϕ0, ψ0)−(ϕ0, ψ0)|k,α
is estimated by εC(r)|ψ − ψ0|k,α ≤ εrC(r), so it is enough to choose ε(r)
such that ε(r)C(r) < 1. �

Our second step is the following.

Proposition 2.7. The map T on the metric ball Br(ϕ0, ψ0) is a contraction.

Proof. For (ϕ,ψ) and (ϕ̃, ψ̃) in Br(ϕ0, ψ0), let for simplicity L̃ = Lϕ̃. We

need to estimate ‖L(ψ) − L̃(ψ̃)‖Ck,α(g). Define f and f̃ such that L(ψ) =

∆−1
ϕ f and L̃(ψ̃) = ∆−1

ϕ̃ f̃ . Then we have

∆ϕ(L(ψ)− L̃(ψ̃)) = f − f̃ −∆ϕL̃(ψ̃) + ∆ϕ̃L̃(ψ̃)

= f − f̃ + (giϕ̃ − g
i
ϕ )(L̃(ψ̃))i

so by the Schauder estimates of Lemma 2.3 we have

‖L(ψ)− L̃(ψ̃)‖Ck,α(g) ≤ C(‖ϕ‖Ck,α(g))

·
(
‖f − f̃‖Ck−2,α(g) + ‖∆ϕ̃L̃(ψ̃)−∆ϕL̃(ψ̃)‖Ck−2,α(g)

)
.
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To estimate the second summand, let gs = (1− s)gϕ + sgϕ̃. Then we notice
we can write

∆ϕ̃L̃(ψ̃)−∆ϕL̃(ψ̃) = −
(∫ 1

0
gi`s g

k
s ds

)
· (ϕ̃− ϕ)k` · (L̃(ψ̃))i.

so we have

‖∆ϕ̃L̃(ψ̃)−∆ϕL̃(ψ̃)‖Ck−2,α(g)

≤ C(‖ϕ‖Ck,α(g), ‖ϕ̃‖Ck,α(g))‖ϕ̃− ϕ‖Ck,α(g) · ‖L̃ψ̃‖Ck,α(g)

≤ C(r)‖ϕ̃− ϕ‖Ck,α(g)

where in the last inequality we have used the estimate for ‖L̃ψ̃‖Ck,α(g) from
the previous proposition.

Let us now consider f̃ − f which can be written as

f̃ − f =
1

2
(∆ϕ − 1)−1|i∂∂ψ|2ϕ −

1

2
(∆ϕ̃ − 1)−1|i∂∂ψ̃|2ϕ̃(17)

+ |i∂∂ψ|2ϕ − |i∂∂ψ̃|2ϕ̃ −
1

2
(∆ϕψ)2 +

1

2
(∆ϕ̃ψ̃)2.

Let h− h̃ be the first summand, so we can write

(∆ϕ − 1)(h− h̃) = |i∂∂ψ|2ϕ − |i∂∂ψ̃|2ϕ̃ + (∆ϕ̃ −∆ϕ)h̃.

Again by Lemma 2.3 we have

‖h−h̃‖Ck−2,α(g) ≤ C(‖ϕ‖Ck−2,α(g))·‖|i∂∂ψ|2ϕ−|i∂∂ψ̃|2ϕ̃+(∆ϕ̃−∆ϕ)h̃‖Ck−4,α(g).

The second summand is

‖(∆ϕ̃ −∆ϕ)h̃‖Ck−4,α(g)

≤
∥∥∥∥−(∫ 1

0
gi`s g

k
s ds

)
· (ϕ̃− ϕ)k` · h̃i

∥∥∥∥
Ck−4,α(g)

≤ C(‖ϕ‖Ck−2,α(g), ‖ϕ̃‖Ck−2,α(g)) · ‖ϕ̃− ϕ‖Ck−2,α(g) · ‖h̃‖Ck−2,α(g).

By definition of h̃ we estimate then

‖h̃‖Ck−2,α(g) ≤ C(‖ϕ̃‖Ck−2,α(g)) · ‖|i∂∂ψ̃|2ϕ̃‖Ck−4,α(g)

≤ C(r)(‖ϕ̃‖Ck−2,α(g) + 1)2 · ‖ψ̃‖2Ck−2,α(g)

≤ C(r).

So we finally have for the first summand in (17)∥∥∥∥1

2
(∆ϕ − 1)−1|i∂∂ψ|2ϕ −

1

2
(∆ϕ̃ − 1)−1|i∂∂ψ̃|2ϕ̃

∥∥∥∥
Ck−2,α(g)

≤ C(r)(‖ϕ̃− ϕ‖Ck−2,α(g) + ‖ψ̃ − ψ‖Ck−2,α(g)).

The second summand in (17) is estimated by the same trick as in the
previous proposition.
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For the last summand in (17) we have

1

2
(∆ϕ̃ψ̃)2 − 1

2
(∆ϕψ)2 =

1

2
(∆ϕψ −∆ϕ̃ψ̃)(∆ϕψ + ∆ϕ̃ψ̃)

=
1

2
(∆ϕψ −∆ϕ̃ψ + ∆ϕ̃ψ −∆ϕ̃ψ̃)(∆ϕψ + ∆ϕ̃ψ̃).

so we estimate∥∥∥∥1

2
(∆ϕ̃ψ̃)2 − 1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

≤
(
‖∆ϕψ −∆ϕ̃ψ‖Ck−2,α(g) + ‖∆ϕ̃ψ −∆ϕ̃ψ̃‖Ck−2,α(g)

)
·
(
‖∆ϕψ‖Ck−2,α(g) + ‖∆ϕ̃ψ̃‖Ck−2,α(g)

)
.

By the estimates for the Laplacians we are able to say that this quantity

is ≤ C(r)(‖ϕ̃− ϕ‖Ck,α(g) + ‖ψ̃ − ψ‖Ck,α(g)).

Again, the estimate for the norm | · |k,α is the same multiplied by ε, so
again it suffices to pick ε(r) such that ε(r)C(r) < 1. �

2.2.2. Higher regularity. Now we explain how to obtain the smoothness
of the solution of Theorem 2.2.

Theorem 2.8. For every ϕ0 ∈ H , ψ0 ∈ Tϕ0H , there exists a positive ε
and a curve ϕ ∈ C∞((−ε, ε),H) which is the unique solution of (13) with
smooth initial data (ϕ0, ψ0).

We isolate the following technical lemma that can be proved by compu-
tation in local coordinates.

Lemma 2.9. Let ∂A be the derivative with respect to the complex coordinate
zA and let fA = ∂Af . Then the following hold

(giϕ )A = −gisϕ (gϕsm)Ag
m
ϕ ;

∂A(∆ϕf) = ∆ϕfA + (giϕ )Afi;

∂A|i∂∂ψ|2ϕ = 2(i∂∂ψ, i∂∂ψA)− ψiψk`g
is
ϕ (gϕsm)Ag

m`
ϕ gmϕ

− ψiψk`g
i`
ϕ g

ks
ϕ (gϕsm)Ag

m
ϕ

= 2(i∂∂ψ, i∂∂ψA) +BϕψϕA;

∂A(∆ϕψ)2 = 2∆ϕψ[∆ϕψA + (giϕ )Aψi]

where Bϕψ is a linear operator.

We want to derive the second equation of (19) by deriving the equation

(18) F (ϕ,ψ) = (∆ϕ − 1)

[
∆ϕψ

′ − |i∂∂ψ|2ϕ +
1

2
(∆ϕψ)2

]
− 1

2
|i∂∂ψ|2ϕ = 0.
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Lemma 2.10. ∂AF (ϕ,ψ) is a linear fourth order operator on (ϕA, ψA).
When (ϕ,ψ) are Ck,α, the coefficients of ∂AF (ϕ,ψ) are Ck−4,α.

Proof. The derivative of the first term is, by Lemma 2.9,

∂A(∆ϕ − 1)∆ϕψ
′ = (∆ϕ − 1)

[
∆ϕψ

′
A + (giϕ )Aψ

′
i)
]

+ (giϕ )A(∆ϕψ
′)i

where we notice linearity with respect to ϕA and ψA.
The derivative of the second term is

∂A(∆ϕ − 1)|i∂∂ψ|2ϕ
= (∆ϕ − 1)∂A|i∂∂ψ|2ϕ + (giϕ )A(|i∂∂ψ|2ϕ)i

= (∆ϕ − 1)[2(i∂∂ψ, i∂∂ψA) +BϕψϕA] + (giϕ )A(|i∂∂ψ|2ϕ)i

and we notice again linearity with respect to ϕA and ψA.
The third and fourth terms are as in Lemma 2.9 and are linear with

respect to ϕA and ψA as well. �

Proof of Theorem 2.8. When we are given a smooth initial data (ϕ0, ψ0)
and Hölder exponent (k, α) with k ≥ 6 and α ∈ (0, 1), according to Theorem
2.2, we have a maximal lifespan ε = ε(k + 1, α) of the geodesic ϕ(t) ∈
C2((−ε, ε),Hk+1,α). Meanwhile, for a less regular space (k, α), we have an
other maximal lifespan ε(k, α). In general,

ε(k + 1, α) ≤ ε(k, α).

Now we explore the important property of our geodesic equation and thus
prove the inverse inequality ε(k + 1, α) ≥ ε(k, α).

Recall that our geodesic equation could be written down as a couple
system (14).

The important observation is that this system is of order zero. In a local
coordinate chart on M , we take the derivative ∂A = ∂

∂zA
on the both side of

the equations and get

(19)

{
(∂Aϕ)′ = ∂Aψ

(∂Aψ)′ = ∂A(Lϕψ).

If we manage to prove that this is a linear system in ϕA = ∂Aϕ and
ψA = ∂Aψ (all other functions treated as constants) then we can argue
as follows. According to Lemma 2.10, the coefficients of (19) are Ck−4,α

and exist for |t| < ε(k, α). Because of its linearity and of fourth order
on (ϕA, ψA), its Ck,α solution (ϕA, ψA) exists as long as the coefficients
do, so we have that ϕ is Ck+1,α at least for |t| < ε(k, α), proving that
ε(k + 1, α) ≥ ε(k, α). �

2.3. Exponential map, Jacobi fields and conjugate points. With the
local well-posedness of the geodesic, we are able to define the exponential
map locally at point ϕ ∈ H by

expϕ(tψ) = γ(t), 0 ≤ t ≤ ε(20)
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where γ is the geodesic starting from ϕ with initial speed ψ. Furthermore,
we have the following.

Corollary 2.11. For any ϕ1 ∈ H, there exists an ε > 0 so that for any
ϕ2 ∈ H with ‖ϕ1 − ϕ2‖C2,α < ε, there is a unique geodesic connecting ϕ1 to
ϕ2 whose length is less than ε.

Now that we have achieved the existence of smooth short-time geodesics
we can move a step further to bring the definition of its Jacobi vector fields.
The very definition comes from classical Riemannian geometry, see [11] for
more details.

Let γ : [0, ε) → H be a smooth geodesic for the metric connection D on
H. A Jacobi field J along γ is a map J : [0, ε)→ TH such that J(t) ∈ Tγ(t)H
for all t ∈ [0, ε) and moreover satisfies the Jacobi equation

(21)
D2

dt2
J(t) +R

(
J(t),

d

dt
γ(t)

)
d

dt
γ(t) = 0.

The Jacobi field is a vector field along the geodesic γ(t). Let v = d
dt |t=0γ(t)

at γ(0) = ϕ, the geodesic is given by the exponential map γ(t) = expϕ tv.
Then given w ∈ TϕH, the solution of the Jacobi equation (21) with initial
condition J(0) = 0 and J ′(0) = w is given by

J(t) = d expϕ |tvtw.
The definition of conjugate points in the infinite dimensional setting is

different from the one from classical Riemannian geometry. Let ϕ ∈ H,
ψ ∈ TϕH and let γ be the geodesic with γ(0) = ϕ and γ′(0) = ψ. There are
two notions related to conjugate points, cf. e.g. [23, 28, 31].

Definition 2.12. We say that γ(1) is

• monoconjugate to ϕ if d expϕ |ψ is not injective;
• epiconjugate to ϕ if d expϕ |ψ is not surjective.

Remark 2.13. In order to understand the conjugate points, it turns out to
further study whether d expϕ |ψ is a Fredholm operator between the tangent
spaces of H. Then the infinite dimensional version of Sard’s theorem applies
[34].

2.4. Dirichlet metric and a comparison theorem. Now we continue
the study of the (Dirichlet) gradient metric.

2.4.1. Sectional curvature for the gradient metric. We denote ϕ =
ϕ(s, t) be a smooth two parameter family of curves in the space of Kähler
metricsH, and the corresponding two parameter families of curves of tangent
vectors ϕt, ϕs along ϕ are R-linearly independent. The sectional curvature
of the gradient metric is computed in [13],

KG(ϕs, ϕt)ϕ =
1

2

∫
M
|da(s, t)|2gϕ

ωnϕ
n!
− 1

2

∫
M

(da(s, s), da(t, t))gϕ
ωnϕ
n!

,
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where the symmetric expression a(σ, τ) satisfies

∆ϕa(σ, τ) = ∆ϕϕσ∆ϕϕτ − (i∂∂ϕσ, i∂∂ϕτ ).

We let

{ϕs, ϕt}ϕ =

√
−1

2

(
gi
∂ϕs
∂zi

∂ϕt
∂z
− gi∂ϕt

∂zi
∂ϕs
∂z

)
= Im(∂ϕs, ∂ϕt)ϕ .

The expression of the sectional curvature KM for the L2 metric is, for all
linearly independent sections ϕs, ϕt,

KM (ϕs, ϕt)ϕ = −
∫
M Im(∂ϕs, ∂ϕt)

2
ϕ
ωnϕ
n!√∫

M ϕ2
s
ωnϕ
n!

√∫
M ϕ2

s
ωnϕ
n! −

∫
M ϕsϕt

ωnϕ
n!

.

Therefore, KM ≤ 0. On the other side, the first author proved that, for any
linearly independent sections ϕs, ϕt the sectional curvature for the Calabi
metric KC is

KC(ϕs, ϕt) =
1

4 vol
.

In a private communication, Calabi conjectured that there exists the follow-
ing relation among the sectional curvatures of L2 metric, gradient metric
and Calabi metric,

KM ≤ KG < KC .

Remark 2.14. It would be interesting to construct examples to detect the
sign of the sectional curvature of the gradient metric and determine whether
this conjecture holds.

2.4.2. Local well-posedness for the gradient metric. On the other
hand, the application of the proofs of Theorem 2.2 and 2.8 leads to the
corresponding theorem of the gradient metric.

Theorem 2.15. For every integer k ≥ 6 and α ∈ (0, 1) and initial data
ϕ0 ∈ Hk,α and ψ0 ∈ Tϕ0Hk,α there exists a positive ε and a curve ϕ ∈
C2((−ε, ε),Hk,α) which is the unique solution of the geodesic equation (9)
with initial data (ϕ0, ψ0). Moreover, if the initial data is smooth, then the
solution ϕ is also smooth.

2.4.3. Sectional curvature and stability. The idea that the sign of the
sectional curvature could be used to predict the stability of the geodesic ray
goes back to Arnold [2]. Intuitively, when the sectional curvature is positive,
all Jacobi fields are uniformly bounded, then under a small perturbation
of the initial velocities, the geodesics remain nearby. When the sectional
curvature is negative, the Jacobi fields grow exponentially in time, then
the geodesic rays grow unstable. When the sectional curvature is zero,
the geodesic ray is linear. For the gradient metric, the picture might be
more complicated as the sign of the sectional curvature might vary along
different planes. However, we are able to examine the growth of Jacobi fields
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along geodesics by applying the comparison theorem for infinite dimensional
manifolds.

Then with the definitions of the Jacobi equation and conjugate points
in Section 2.3, we could apply Biliotti’s [5] Rauch comparison theorem for
weak Riemannian metrics, see [27].

Theorem 2.16. Let γG and γC be two geodesics of equal length with respect
to the gradient metric and the Calabi metric respectively and suppose that
for every XG ∈ TγG(t)H and XC ∈ TγC(t)H, we have

KG(XG, γ
′
G(t)) ≤ 1

4 vol
= KC(XC , γ

′
C(t)).

Let JG and JC be the Jacobi fields along γG and γC such that

• JG(0) = JC(0) = 0,
• J ′G(0) is orthogonal to γ′G(0) and J ′C(0) is orthogonal to γ′C(0),
• ‖J ′G(0)‖ = ‖J ′C(0)‖.

then we have, for all t ∈ [0, T ],

‖JG(t)‖ ≥

∣∣∣sin(2t
√

vol
)∣∣∣

√
vol

.

Proof. In Biliotti’s Rauch comparison theorem, it is required that JC(t) is
nowhere zero in the interval (0, T ] and if γC has most a finite number of
points which are epiconjugate but not monoconjugate in (0, T ], this condi-
tion is satisfied for the Calabi metric, see [11]. Therefore the conclusion of
the comparison theorem is that, for all t ∈ [0, T ],

‖JG(t)‖ ≥ ‖JC(t)‖.

We know that, as an application of [11, Theorem 8], that

‖JC(t)‖ =

∣∣∣sin(2t
√

vol
)∣∣∣

√
vol

,

thus the resulting inequality in the proposition follows. �

3. The space of Sasakian metrics

3.1. The restricted Ebin metric. Since the sum metric arises in the
context of Sasakian geometry, in this subsection we recall the definitions of
the case. A Sasakian manifold is a (2n + 1)-dimensional M together with
a contact form η, its Reeb field ξ, a (1, 1)-tensor field Φ and a Riemannian
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metric g that makes ξ Killing, such that

η(ξ) = 1, ιξdη = 0

Φ2 = − id +ξ ⊗ η
g(Φ·,Φ·) = g + η ⊗ η

dη = g(Φ·, ·)
NΦ + ξ ⊗ dη = 0,

where NΦ is the torsion of Φ. The first four mean that M is a contact metric
manifold and the last one means it is normal, see [7, Chap. 6].

The foliation defined by ξ is called characteristic foliation. Let D = ker η.
It is known that (dη, J = Φ|D) is a transversally Kähler structure, as the
second, third and fourth equation above say.

A form α is said to be basic if ιξα = 0 and ιξdα = 0. A function f ∈
C∞(M) is basic if ξ · f = 0. The space of smooth basic functions on M is
denoted by C∞B (M). The transverse Kähler structure defines the transverse

operators ∂, ∂ and dc = i
2(∂ − ∂) acting on basic forms, analogously as

in complex geometry.1 The form dη is basic and its basic class is called
transverse Kähler class.

Given an initial Sasakian manifold (M,η0, ξ0,Φ0, g0), basic functions pa-
rameterize a family of other Sasakian structures on M which share the same
characteristic foliation and are in the same transverse Kähler class, in the
following way. We follow the notation of [7, p. 238].

Let ϕ ∈ C∞B (M) and define ηϕ = η0 + dcϕ. The space of all ϕ’s is

H̃S = {ϕ ∈ C∞B (M) : ηϕ ∧ dηϕ 6= 0}

and, in analogy of the Kähler case, we consider normalized “potentials”

HS = {ϕ ∈ H̃S : I(ϕ) = 0}.

The equation I = 0 is a normalization condition, similar to (1). We refer to
[25] for the definition of I in our case, which is such that

TϕHS =

{
ψ ∈ C∞B (M) :

∫
M
ψ

1

n!
ηϕ ∧ dηnϕ = 0

}
.

These deformations are called of type II and it is easy to check that they
leave the Reeb foliation and the transverse holomorphic structure fixed, since
ξ is still the Reeb field for ηϕ.

1This definition with the 1
2

is classical in Sasakian geometry and differs from the con-

vention usually used in complex geometry dc = i(∂−∂). With this convention, the relation

ddc = i∂∂ holds on basic forms.
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Every ϕ ∈ HS defines a new Sasakian structure where the Reeb field and
the transverse holomorphic structure are the same and

ηϕ = η0 + dcϕ(22)

Φϕ = Φ0 − (ξ ⊗ dcϕ) ◦ Φ0

gϕ = dηϕ ◦ (id⊗Φϕ) + ηϕ ⊗ ηϕ.

Note that one could write gϕ = dηϕ ◦ (id⊗Φ0) + ηϕ⊗ ηϕ since the endomor-
phism Φϕ − Φ0 has values parallel to ξ and dηϕ is basic. Indeed, the range
of Φϕ is the one of Φ0 plus a component along ξ, so if we contract it with
dη the latter vanishes. As in the Kähler case, these deformations keep the
volume of M fixed, which will be denoted by vol.

The L2 metric was generalized to HS in [25, 26], where Guan and Zhang
solved the Dirichlet problem for the geodesic equation and He provided a
Sasakian analogue of Donaldson’s picture about extremal metrics.

On the space HS one can define the Calabi metric and the gradient metric
in the same ways as in formulae (5) and (8) by using the so called basic
Laplacian which acts on basic functions in the same way as in the Kähler
case and by using the volume form 1

n!ηϕ ∧ dη
n
ϕ in the integrals.

In this setting, it is easy to see that the map

HS 3 ϕ 7→ log
ηϕ ∧ dηnϕ
η0 ∧ dηn0

maps basic functions to basic functions. The transverse Calabi–Yau theorem
of [8] allows to prove the surjectivity of this map as in the Kähler case, more
precisely between HS and the space of basic conformal volume forms

CB =

{
u ∈ C∞B (M) :

∫
M
eu

1

n!
η0 ∧ dηn0 = vol

}
.

As noted above, the space C can be defined also for Sasakian manifolds
by just taking the Sasakian volume form 1

n!η0 ∧ dηn0 instead of the Kähler
one. One might ask how the spaces CB and C are related. Obviously CB ⊆ C
but we can say more.

Proposition 3.1. CB is totally geodesic in C.

Proof. It is straightforward to verify that for any curve in CB and section
along it, the covariant derivative defined in [11] is still basic, meaning that
the (formal) second fundamental form of CB vanishes. �

Let M be the Ebin space of all Riemannian metrics on (M, g0, ξ0, η0)
Sasakian of dimension 2n+ 1.

We define an immersion Γ : HS → M that maps ϕ 7→ gϕ as defined in
(22). As in the Kähler case, it is injective. Indeed if two basic function
ϕ1, ϕ2 ∈ HS give rise to the same Sasakian metric, taking the corresponding
transverse structures we would have ddc(ϕ1−ϕ2) = 0 forcing ϕ1−ϕ2 = const.
The normalization I(·) = 0 then implies ϕ1 = ϕ2.
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Let us compute the differential of Γ. Let ϕ(t) be a curve in HS with
ϕ(0) = ϕ and ϕ′(0) = ψ ∈ TϕHS . Then

(23) Γ∗ϕψ =
d

dt

∣∣∣∣
t=0

gϕ(t) = ddcψ(Φ0 ⊗ id) + 2dcψ � ηϕ

with the convention a � b = 1
2(a ⊗ b + b ⊗ a). For easier notation we call

βψ := ddcψ(Φ0 ⊗ 1).
The differential of Γ is also injective. Indeed if ψ is in its kernel, then

0 = Γ∗ϕψ(ξ, ·) = dcψ,

forcing ψ to be zero, as it has zero integral.
On TgM recall that the Ebin metric is given by, for a, b ∈ TgM =

Γ(S2M),

gE(a, b)g =

∫
M
g(a, b)dvg.

We want to compute the restriction of the Ebin metric on the space HS .

Proposition 3.2. The restriction of the Ebin metric to HS is twice the sum
of the Calabi metric with the gradient metric

1

2
Γ∗gE = gC + gG

which we have called the sum metric.

Proof. Computing the length with respect to gϕ of the tensor in (23) we
get

|βψ + 2dcψ � ηϕ|2gϕ
= gϕ(βψ, βψ) + 2gϕ(dcψ ⊗ ηϕ, dcψ ⊗ ηϕ) + 2gϕ(βψ, 2d

cψ � ηϕ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)gϕ(ηϕ, ηϕ) + 2βψ((dcψ)], ξ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)

using the fact that the gϕ-dual of ηϕ is ξ, that the ] is done with respect to
gϕ and finally the fact that the tensor βψ is transverse, i.e., vanishes when
evaluated on ξ.

Integrating with respect to dµϕ we have

〈Γ∗ϕψ,Γ∗ϕψ〉ϕ = ‖βψ‖2ϕ + 2‖dcψ‖2ϕ
where the right hand side are L2 norms with respect to the metric gϕ. The
second summand is twice the gradient metric on HS given by

gG(ψ,ψ) =

∫
M
gϕ(dψ, dψ)

1

n!
ηϕ ∧ dηnϕ.

(For a basic function, there is no difference between its Riemannian gradient
and its basic gradient).
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We now want to establish a useful formula that we will need in a while.
Fix ϕ ∈ HS and h ∈ TϕHS we consider the curve ϕ(t) = ϕ+ th which is in
HS for small t. We then compute for every curve f(t) ∈ TϕHS ,

0 =
d

dt

∣∣∣∣
t=0

∫
M

∆ϕ(t)f
1

n!
ηϕ(t) ∧ dηnϕ(t)

=

∫
M

(∆ϕf
′(t)− (ddcf, ddch)ϕ + ∆ϕf∆ϕh)

1

n!
ηϕ ∧ dηnϕ.

which means that

gC(f, h)ϕ =

∫
M

(ddcf, ddch)ϕ
1

n!
ηϕ ∧ dηnϕ.

Then we have, since βψ is the (transverse) 2-tensor associated to the basic
form ddcψ, whose point-wise norms are related by |βψ|2 = 2|ddcψ|2,

gC(ψ,ψ) =

∫
M

(∆ϕψ)2 1

n!
ηϕ ∧ dηnϕ

=

∫
M

(ddcψ, ddcψ)ωϕ
1

n!
ηϕ ∧ dηnϕ =

1

2
‖βψ‖2ϕ. �

3.2. The sum metric on HS. Consider on HS the metric g = 2gC +2gG.
It can be written, for ϕ ∈ HS and α, β ∈ TϕHS ,

g(α, β) = 2

∫
M

∆ϕα∆ϕβ
1

n!
ηϕ ∧ dηnϕ − 2

∫
M
α∆ϕβ

1

n!
ηϕ ∧ dηnϕ

= 2

∫
M

∆ϕ(α−Gϕα)∆ϕβ
1

n!
ηϕ ∧ dηnϕ

= gC(Lϕα, β)

where Lϕ = 2(I −Gϕ) with Gϕ the Green operator associated to ∆ϕ.
Note that the Gϕ acting on functions with zero integral with respect to

dµϕ is the inverse of ∆ϕ, since the projection on the space of harmonic
functions is

Hϕ : f 7→ 1

volgϕ

∫
M
f

1

n!
ηϕ ∧ dηnϕ = 0

and because of the known relation I = Hϕ + ∆ϕGϕ.
We have the first result.

Proposition 3.3. For any curve ϕ in HS and any section v on ϕ, the only
solution Dtv of

(24)
1

2
LϕDtv = DC

t v −GϕDG
t v

is the Levi-Civita covariant derivative of g, i.e., it is torsion free and

(25)
d

dt
g(v, v) = 2g(Dtv, v).
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Its proof is analogous to Proposition 2.1 and makes use of the results in
[20] about transversally elliptic operators. The geodesic equation is then

(26) ∆2
ϕD

C
t ϕ
′ −∆ϕD

G
t ϕ
′ = 0

which is rewritten as (13), i.e.,

(27) (∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2

)
− 1

2
|i∂∂ϕ′|2ϕ = 0.

Remark 3.4. It is clear that a curve ϕ which is a geodesic for both the
Calabi and the gradient metric would be a geodesic for our metric as well.
Unfortunately there are no such nontrivial curves, as one can easily see from
the equations.

3.3. Another space of Sasakian metrics, an open problem. Back to
Sasakian geometry, it is interesting to consider also the space G of Sasakian
structures that share the same underlying CR structure. These deforma-
tions are known as type I and we refer to [7, Chap. 8]. The most striking
differences between G and the HS is that the former is finite dimensional
and the metrics in it do not have the same volume. Recently, it was studied
by Boyer, Huang, Legendre and Tønnesen-Friedman [9] in relation to the
existence of constant scalar curvature Sasakian metrics.

It would be interesting to compute the restriction of the Ebin metric to
G ⊂M and study its intrinsic and extrinsic geometry.
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[2] Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et
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