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Automorphisms of free groups. I —
erratum

Laurent Bartholdi

Abstract. I report an error in Theorem A of Automorphisms of free
groups. I , New York J. Math. 19 (2013), 395–421, where it was claimed
that two filtrations of the group of IA automorphisms of a free group
coincide up to torsion.

In fact, using a recent result by Day and Putman, I show that, for
a free group of rank 3, the opposite conclusion holds, namely that the
two series differ rationally.

1. Introduction

Let F denote a free group of rank r. Filter F by its lower central series
(Fn)n≥1, defined by F1 = F and Fn = [F, Fn−1]. Let A denote the au-
tomorphism group of F , and let A1 denote the kernel of the natural map
A → GLr(Z) = Aut(F/F ′). The group A1 has two natural filtrations: on
the one hand, its lower central series, defined as above by γ1 = A1 and
γn = [A1, γn−1], and on the other hand An = ker(A1 � Aut(F/Fn+1)). We
have γn ≤ An for all n.

Andreadakis conjectures [1, page 253] that An = γn, and proves his asser-
tion for r = 3, n ≤ 3 and for r = 2. This is further developed by Pettet [7],
who proves that γ3 has finite index in A3 for all r, building her work on
Johnson’s homomorphism [6].

It was noted in [3, Theorem A] that, if r = 3, the groups γ7 and A7

differ, disproving Andreadakis’s conjecture. It was however also erroneously
claimed there that An/γn is a finite group for all n. The “proof” relied
on the unproven assertion that the filtrations (γn)n≥1 and (An)n≥1 define
the same topology on A1. Theorem A should be replaced by the following
statement:

Theorem A. The filtrations (γn)n≥1 and (An)n≥1 differ rationally at n = 4
for r = 3, and we have

(A4/γ4)⊗ Q ∼= Q3.
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Let Â1 = proj limA1/An denote the completion of A1 under the filtration

(An)n≥1, let (γ̂n)n≥1 denote its closed lower central series, and let (Ân)n≥1
denote the closure of (An)n≥1 in Â1. Then Â7/γ̂7 ∼= Z/3.

Proof. In [8], Day and Putman give explicit presentations of A1 for all r, by
generators, relators and endomorphisms (see [2]). Here is a small adaptation
of their result. Let E be the free group generated by the set

S := {Mi,[j,k] : 1 ≤ j 6= i 6= k ≤ r, j < k} ∪ {Ci,j : 1 ≤ i 6= j ≤ r}.
These are the Magnus generators of A1, and act on F respectively by

xi 7→ xi[xj , xk] and xi 7→ x
xj
i ,

all other generators being fixed.
Day and Putman give explicit finite sets R ⊂ E′ (of size around 30) and

Θ ⊂ End(E) (of size around 4) such that

A1
∼= 〈S | wθ for all w ∈ R and all θ ∈ Θ∗〉.

Furthermore, Θ induces automorphisms of A1 that generate the conjugation
action of Aut(F ) on A1.

Using the algorithm described in [4], implemented in [5], it is possible to
compute nilpotents quotients of A1 of arbitrary class. I entered Day and
Putman’s presentation in Gap for r = 3, and computed (in about 1 minute)
its class-4 quotient. The result, atop the calculations in [3] gives (with ab

for (Z/aZ)b)

n = 1 2 3 4

γn/γn+1 Z9 Z18 Z43 × 214 × 39 Z123 × 250 × 43 × 83 × 345 × 99

An/An+1 Z9 Z18 Z43 Z120

.

We deduce A5/γ5 ∼= Z3 × torsion.
For the second claim, it suffices to note that the computer calculations

described in [3] actually manipulate (approximations of) the group Â1 rather
than A1. �
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