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The perfect power problem for
elliptic curves over function fields

Gunther Cornelissen and Jonathan Reynolds

Abstract. We generalise the Siegel–Voloch theorem about S-integral
points on elliptic curves as follows: let K/F denote a global function
field over a finite field F of characteristic p ≥ 5, let S denote a finite
set of places of K and let E/K denote an elliptic curve over K with j-
invariant jE /∈ Kp. Fix a function f ∈ K(E) with a pole of order N > 0
at the zero of E. We prove that there are only finitely many rational
points P ∈ E(K) such that for any valuation outside S for which f(P ) is
negative, that valuation of f(P ) is divisible by some integer not dividing
N . We also present some effective bounds for certain elliptic curves over
rational function fields.
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1. Introduction

To put our work in context, we cite a few results from the literature on
perfect powers and S-integral points in linear recurrent sequences and on
elliptic curves (the analogy arising from the fact that denominators of ratio-
nal points on elliptic curves give rise to higher order recurrence sequences
called “elliptic divisibility” sequences).
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• Pethő [12], and Shorey and Stewart have proven that a large class
of linear recurrent sequences over the integers contain only finitely
many pure powers > 2 up to factors from a given finite set of primes
(see, e.g., Corollary 2 in [15]).
• Bugeaud, Mignotte and Siksek have applied the modular method to

explicitly list all perfect powers in the classical Fibonacci sequence
(see, e.g., [4]).
• Lang and Mahler have shown that Siegel’s theorem on integral points

generalises to the statement that the set of S-integral points on
curves of genus ≥ 1 over a number field is finite, for every finite
set S of valuations ([16], [9], [10]).
• In [6], it is proven that the set of denominators of points on an elliptic

curve over Q contains only finitely many `-th powers for fixed ` > 2
(cf. also [13] for a general number field).

In this paper, we consider such questions over global function fields K over
a finite field F of characteristic p ≥ 5 (where we say that x ∈ K is a perfect
`-th power if all its valuations are divisible by `). For a study of recurrent
sequences in this setting, see, e.g., [8] and references therein. The analogue of
Siegel’s theorem was proven by Voloch ([23]; under the necessary assumption
that the elliptic curve is not isotrivial). We are interested in strenghtening
this by considering perfect powers > 2 up to a finite set S of valuations
in denominators of points on elliptic curves over K (here, “denominators”
refers to negative valuations of the coordinates of the point). Our main
result generalizes the Siegel–Voloch theorem and at the same time gives a
finiteness result that is uniform in the powers that can occur:

Theorem 1.1. Let K be a global function field over a finite field F of
characteristic p ≥ 5 and S a finite set of places of K. Suppose that E is an
elliptic curve over K with j-invariant jE /∈ Kp. Let f denote a function in
K(E) with a pole of order − ordO(f) > 0 at the zero point O = OE of E.
Define the set

P(E,K, S, f)n(1)

:= {P ∈ E(K) : n | ν(f(P )), for all ν /∈ S with ν(f(P )) < 0},

consisting of points P for which the “denominator” of f(P ) is an n-th power
up-to-S. Then

(2) P(E,K, S, f) :=
⋃

n-ordO(f)

P(E,K, S, f)n

is finite.

Remark 1.2. The result implies Voloch’s analogue of Siegel’s theorem ([23],
5.3) for curves with jE /∈ Kp, which states that the set of S-integer values
of f on E, defined as

Q(E,K, S, f) := {P ∈ E(K) : ν(f(P )) ≥ 0 for all ν /∈ S}
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is finite. This is implied by the above theorem by combining it with the
equality

Q(E,K, S, f) =
⋂
n≥1

P(E,K, S, f)n.

Remark 1.3. There is a corresponding statement for smooth curves of
genus one (not necessarily with aK-rational point), that follows immediately
from the theorem: if C is a curve of genus one over a global function field
k over F and f ∈ k(C) − k is a nonconstant function, then let O ∈ C(K)
denote a pole of f in some finite extension K/k. Then if the j-invariant of
the Jacobian of C is not a p-th power in K, the set P(C, k, S, f) (defined
as in (1) and (2)) is finite.

Also, replacing f by f−1, there is a corresponding result for functions
which have a zero at O (but then concerning P for which ν(f(P )) > 0
implies n | ν(f(P ))).

Remark 1.4. To make the analogy with linear recurrent sequences, one
can apply the theorem to multiples of a fixed (infinite order) point P in
E(K) and the coordinate function x on a Weierstrass equation for E, for
which ordO(x) = −2, then it says something about perfect powers in the
associated elliptic divisibility sequence: assume that jE /∈ Kp, and fix a place
∞ of K such that the ring of functions O regular outside∞ is a PID. Factor
x(P ) = AP /B

2
P with AP and BP coprime in O. Then {BnP } is a divisibility

sequence in the UFD O in the conventional sense, and the theorem (with
S = {∞}) says that it contains only finitely many perfect powers, in the
usual meaning of the word.

As was observed in [8] (Lemma 22), if K is a function field, the structure
of the formal group associated to E(Kv) implies that if ν(x(nP )) < 0, then
ν(x(mnP )) = ν(nP ) for all integers m coprime to the characteristic of K,
in stark contrast with the number field case, where {ν(x(mnP ))}m≥1 in
unbounded. This does not imply anything about large perfect powers, since
it might be that the smallest n for which ν(x(nP )) is negative has very large
−ν(x(nP )); see the next remark.

Remark 1.5. There is no absolute (i.e., not depending on the elliptic curve
E) bound on the power that can occur in denominators of elliptic curves
over function fields. For example, consider the curve

E : y2 + xy = x3 − t2d

over the rational function field K = Fp(t) with p = 1 mod 4, and let
{Bm} be the elliptic divisibility sequence over O = Fp[t] generated by

P = (0, atd) ∈ E(K) where a is chosen so that a2 = −1 mod p. Then

B1 = B2 = B3 = 1 and B4 = td.

(This curve is taken from Theorem 1.5 in [21].)
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Remark 1.6. The requirement p ≥ 5 arises from our method of proof be-
cause we apply the abc-conjecture to a ternary equation associated to the
2-division polynomial on a short Weierstrass form and we take field exten-
sions of degree 2 and 3 in the proof (which could introduce inseparability if
p ≤ 3).

Remark 1.7. The following two examples show what can go wrong if jE ∈
Kp. First, suppose

E′ : y2 = x3 + ax+ b

is an elliptic curve of nonzero rank over K (so jE′ /∈ F) and let E be given
by

E : y2 = x3 + apx+ bp

for some a, b ∈ K. Then E(K) contains infinitely many p-th powers (x̃p, ỹp)
for (x̃, ỹ) running through the infinite set E′(K). In this example, jE ∈
Kp − F.

Secondly, if y2 = x3 + ax+ b is a curve with a, b ∈ F and

K ⊇ F(t,
√

1 + at4 + bt6)

then E(K) contains the points(
1

t2pm
,

√
1 + at4 + bt6

t3pm

)
for all m, on which the x-coordinate has unbouded negative t-valuation.
Here, j ∈ F is in the ground field, so j ∈ Kps for all s.

Here is an outline of the proof of the theorem. Throughout the proof we
can enlarge the field K to a separable extension and the set S to a larger set
of valuations. We use a standard reduction from a general function f to a
coordinate function x on a short Weierstrass equation. We use the method of
“Klein forms” to show that the existence of a point in P(E,K, S, f)n implies
the existence of a solution to a ternary equation of the form X2+Y 3 = Z4n in
S-integers. We then use Mason’s theorem (the “abc-conjecture in function
fields”) to bound n unless it is divisible by p. We can conclude that the
union in (2) needs to be taken over only finitely many n. Finally, we use
the Siegel identities to prove that each individual P(E,K, S, f)n is finite,
or jE ∈ Kp.

In principle, the method is effective, in that all occurring constants can be
bounded above in terms of E,K and S, but doing this abstractly in practice
is rather painful, given that the proof involves recurrent enlargement of K
and S.

As an example of making the results explicit, we prove the following in
Section 5.2, which shows what kind of bounds one can expect (i.e., linear in
the degree of the discriminant of the curve):
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Proposition 1.8. Assume that E is an elliptic curve over a rational func-
tion field K = Fq(t) with coefficients from Fq[t] such that all 2-torsion points
on E are K-rational and jE /∈ Kp. Assume that P = 2Q ∈ 2E(K) has as-
sociated elliptic divisibility sequence {Bn}. If Bn /∈ F is a perfect `-th power
of a polynomial in t, then we have the following bounds:

` ≤ 3 deg ∆E + 1; degBn ≤
49

2
deg ∆E ; n ≤

√
588 deg ∆E

12h(x(P ))− h(jE)
,

where h(x) = max{deg(A),deg(B)} if x = A/B with A and B coprime in
Fq[t].

We apply this to an explicit curve in Example 5.3.
In the final section, we briefly discuss what can be proven if the j-invariant

is a p-th power and j /∈ F, using Frobenius twists.

2. First reductions

2.1. Let K denote a global function field of genus g over a finite field F
of characteristic p ≥ 5, let MK denote the set of all normalized valuations
of K, normalized so the product formula holds. Let S denote a nonempty
finite set S ⊂MK . Let OK,S denote the ring of S-integers

OK,S = {x ∈ K : ν(x) ≥ 0 for all ν /∈ S},
and

O∗K,S = {x ∈ K : ν(x) = 0 for all ν /∈ S}
the ring of S-units. We call two elements a, b ∈ OK,S coprime S-integers
if for all ν /∈ S, either ν(a) = 0 or ν(b) = 0. Since the ground field F is
finite, the class number hK,S of OK,S is also finite ([14], Prop. 14.2), and
this implies:

Lemma 2.2. There exists a set S′ consisting of at most hK,S−1 valuations
such that OK,S∪S′ is a PID.

2.3. Let E denote an elliptic curve over K, with j-invariant jE /∈ F. Fix a
short Weierstrass equation y2 = x3 +ax+ b for E/K, which is possible since
p ≥ 5. Let O = OE denote the zero point of the group E. If P ∈ E(K) is a
rational point with P 6= O, write it in affine form as P = (x(P ), y(P )).

Lemma 2.4. Theorem 1.1 holds for a field K and a set of valuations S if
it holds for a separable field extension K ′/K and a set S′ of K ′-valuations
that contains the extension of all S-valuations to K ′.

Proof. Under the given conditions, P(E,K, S, f)n ⊆ P(E,K ′, S′, f)n for
all n, and separability of K ′/K implies that jE /∈ (K ′)p. �

Proposition 2.5. Theorem 1.1 holds true for all nonconstant functions f
if it holds true for the coordinate function x on a short Weierstrass model
for the curve E.
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Proof. We claim that if P ∈P(E,K, S, f)n for some n coprime to ordO f ,
then we also have that P ∈P(E,K, S′, x)n′ for some n′ > 2 = − ordO x and
and extension S′ ⊇ S, where x is the x-coordinate of a Weierstrass model
y2 = x3 + ax + b. The method of proof is taken from [13], 5.2.3 (cf. [18]
IX.3.2.2 for a similar reduction in case of Siegel’s theorem).

Write f = (ϕ(x) + yψ(x))/η(x) for polynomials ϕ,ψ, η ∈ K[x] of respec-
tive degrees d1, d2 and d3.

First we compute the order of the pole of f at O: since x is of order −2
and y of order −3, we find

ordO(f) = ordO(ϕ(x) + yψ(x))− ordO(η)(3)

= −max{2(d1 − d3), 2(d2 − d3) + 3}.

Enlarge S so that a, b and all coefficients of these three polynomials are
S′-integers and their leading coefficients are S′-units, keeping OK,S′ a PID.
If we write x(P ) = (A/B2, C/B3) in S-integers A,B,C with B coprime to
AC, then we have the following two expressions for f(P ):

f(P ) =
1

B3+2(d2−d3)
·
B3+2(d2−d1)

(
B2d1ϕ(A/B2)

)
+ C

(
B2d2ψ(A/B2)

)
B2d3η(A/B2)

(4)

=
1

B2(d1−d3)
·
B2(d1−d2)−3

(
CB2d2ψ(A/B2)

)
+
(
B2d1ϕ(A/B2)

)
B2d3η(A/B2)

.(5)

First, suppose that in (3), − ordO(f) = 2(d2−d3)+3 > 0, or, equivalently,
3 + 2(d2 − d1) > 0. Then in the first representation of f(P ) in (4) we find
that B is coprime to the numerator and denominator of the second factor.
Assume that v /∈ S′ with v(x(P )) < 0, i.e., v(B) > 0. Then

v(f(P )) = −(3 + 2(d2 − d3))v(B) < 0,

and from P ∈P(E,K, S, f)n we conclude that n | v(f(P )), i.e.,

n | v(B) · (3 + 2(d2 − d3)).

The hypothesis n - ordO(f) implies that m | v(B) for some divisor m > 1 of
n, i.e., P ∈P(E′,K, S′, x)2m with m > 1 (i.e., 2m - ordO(x) = −2).

Secondly, suppose that in (3), − ordO(f) = 2(d1−d3) > 0, or, equivalently,
2(d1 − d2)− 3 > 0, then in the second representation of f(P ) in (5) we find
that B is coprime to the numerator and denominator of the second factor.
Assume that v /∈ S′ with v(x(P )) < 0, i.e., v(B) > 0. Then

v(f(P )) = −2(d1 − d3))v(B) < 0,

and from P ∈P(E,K, S, f)n we conclude that n | v(f(P )), i.e.,

n | v(B) · 2(d1 − d3).

The hypothesis n - ordO(f) implies that m | v(B) for some divisor m > 1 of
n, i.e., P ∈P(E′,K, S′, x)2m with m > 1 (i.e., 2m - ordO(x) = −2). �
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3. Bounding the exponent

Without loss of generality, we assume that E is given by a Weierstrass
equation in short form y2 = x3 + ax + b, with jE /∈ Kp and f = x. For
the next reduction, we take our inspiration from Bennett and Dahmen ([2],
Section 2) in using a classical syzygy for binary cubic forms, applied to the
2-division polynomial.

Proposition 3.1. Given E, up to replacing K by a sufficiently large separa-
ble extension and enlarging S so that OK,S is a PID, we have the following:
if there exists P ∈P(E,K, S, x)n 6= ∅, then there exists a solution to

X3 + Y 2 = Z4` where ` =

{
n if n is odd;
n/2 if n is even,

with X,Y, Z ∈ OK,S pairwise coprime and ν(Z) = 0 for all ν ∈ S, and with

BP = Z`v for some S-unit v, where x(P ) = AP /B
2
P is a representation in

coprime S-integers.

Proof. There exists a finite separable extension K ′ of K such that E(K) ⊆
2E(K ′): it suffices to let K ′ contain the coordinates of the solutions D to
the equations C = 2D for C running through a finite set of generators for
E(K) (this can also be done without halving generators, see Remark 3.3
below). Separability of K ′/K follows from the fact that the degree of K ′/K
is only divisible by powers of 2 and 3, and we assume p ≥ 5.

Replace K by K ′. Without loss of generality, enlarge S so that it contains
all divisors of the discriminant ∆E of E, and such that the coefficients of the
Weierstrass model of E are in OK,S and OK,S is a principal ideal domain.
Suppose that P ∈P(E,K, S, x), and write 2Q = P with Q ∈ E(K), where
x(Q) = AQ/B

2
Q with AQ, BQ coprime in OK,S . Then

AP
B2
P

=
B8
Qϑ2(AQ/B

2
Q)

B2
Qψ

2
2(AQ/B2

Q)B6
Q

.

where

ϑ2(x) = x4 − 2ax2 − 8bx+ a2 and ψ2
2(x) = 4(x3 + ax+ b)

are classical division polynomials. This gives a representation of x(Q) in
which numerator and denominator are in OK,S , and (cf., e.g., Ayad [1])
the greatest common divisors of numerator and denominator divides the
discriminant ∆E of E. Furthermore, the factors B2

Q and ψ2
2(AQ/B

2
Q)B6

Q are
coprime.

Consider the binary cubic form

K2(X,Y ) = 4(X3 + aXY 2 + bY 3).

A classical result, a “syzygy for the covariants”, apparently first discovered
by Eisenstein [5] (cf. [7]), says the following:
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Lemma 3.2. If F is a binary cubic form with discriminant ∆F , set

H(x, y) =
1

4
det

(
∂2F
∂x∂x

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y∂y

)
and G(x, y) = det

(
∂F
∂x

∂F
∂y

∂H
∂x

∂H
∂y

)
.

Then

(6) G2 + 4H3 = −27∆FF
2.

We return to the proof of Proposition 3.1. If P ∈P(E,K, S, x)n for some
n > 2, then BP = uC` where ν(u) = 0 for ν /∈ S, and ` = n if n is odd and
` = n/2 if n is even. We see that

K2(AQ, B
2
Q) = ψ2

2(AQ/B
2
Q)B6

Q = u2C2`/δ,

with ν(δ) 6= 0 only for the finitely many valuations ν for which ν(∆E) 6= 0,
which are included in S.

The syzygy (6) for F = K2 (with ∆F = ∆E) gives an equation of the
form

aX3 + bY 2 = Z4`,

where X,Y, Z ∈ OK,S are nonzero and a, b are S-units with

a = − δ

27u4∆E
, b = − 4δ

27u4∆E
,

X = G(AQ, B
2
Q), Y = H(AQ, B

2
Q), Z = C.

Since the resultant of any pair of F,G and H is a divisor of ∆3
E (as can be

seen by direct computation, or as in Prop. 2.1 in [2]), we find that the only
common divisors of any pair of X,Y and Z belongs to S, i.e., X,Y and Z
are pairwise coprime S-integers. Furthermore, if ν(Z) 6= 0 for some ν ∈ S,
fix a uniformizer πν ∈ OK,S for ν (this is possible since we assume OK,S is
a PID), and replace the equation by

a′X3 + b′Y 2 = (Z ′)4`

with

a′ = π−4`ν(Z)
ν a, b′ = π−4`ν(Z)

ν b and Z ′ = π−ν(Z)
ν Z;

then the new equation has has ν(Z ′) = 0. Doing this for all such (finitely
many) valuations, we may assume ν(Z) = 0 for ν ∈ S. Note that BP = Z`v
for an S-unit v.

Dirichlet’s S-unit theorem for function fields (due to F. K. Schmidt, cf.,
e.g., [14], 14.2) shows that there are only finitely many values of a and b
up to sixth powers, so we can enlarge K to contain the relevant sixth roots
(separable since p ≥ 5) to find a solution in K to X3 + Y 2 = Z4` with
X,Y, Z coprime S-integers and ν(Z) = 0 for all ν ∈ S. �



PERFECT POWERS ON ELLIPTIC CURVES OVER FUNCTION FIELDS 103

Remark 3.3. In explicit bounds, the following observation might be useful.
The extension K ′/K such that E(K) ⊆ 2E(K ′) that is needed at the start
of the proof can be constructed independently of choosing generators for
E(K): if P = (x(P ), y(P )) satisfies the Weierstrass equation, we find that∏

T∈E[2]−O

(x(P )− x(T )) = y(P )2

is a square. Extend S so that OK,S is a PID. Now the common divisors of
the factors on the left hand side divide ∆E . Therefore, if we extend K to K ′

so that all prime divisors of ∆E and all elements of O∗K,S (in which squares
have finite index by the function field analogue of Dirichlet’s unit theorem)
become squares in K ′, then all x(P ) − x(T ) are squares in K ′. Now the
explicit formula for the 2-isogeny [2] : E 7→ E implies that E(K) ⊆ 2E(K ′).

3.4. The (logarithmic) height of x ∈ K is defined by

h(x) = −
∑
ν∈MK
ν(x)<0

ν(x).

Note that h(x) ≥ 0 and h(x) ∈ Z for all x ∈ K. Let

h(x)0 =
∑
ν∈MK
ν(x)>0

ν(x).

Note that ν(1/x) = −ν(x), so ν(x) > 0 if and only if ν(1/x) < 0. Thus, by
the product formula:

Lemma 3.5. For all x ∈ K∗, h(1/x) = h(x)0 = h(x).

We will apply the following theorem of Mason’s (the “abc-conjecture for
function fields”):

Theorem 3.6 (Mason [11] Lemma 10, p. 97). Suppose that γ1, γ2 and γ3

are nonzero elements of K with

γ1 + γ2 + γ3 = 0 and ν(γ1) = ν(γ2) = ν(γ3)

for each valuation ν not in a finite set T . Then either

γ1/γ2 ∈ Kp or h(γ1/γ2) ≤ |T |+ 2gK − 2.

Remark 3.7. It seems that for gK = 0 and |T | ≤ 1, the right hand side
could be negative. However, if T = ∅, then γi have the same valuation for all
v, and hence their quotients γi/γj are in the constant field F; in particular,
since F is finite, they are in Kp. If |T | = 1, then γi have the same valuation
at all but one v; but then, by the product formula, they have the same
valuation everywhere, and the previous argument applies.
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Remark 3.8. If γ1 + γ2 + γ3 = 0, then γ1/γ2 ∈ Kp is equivalent to γ3/γ2 ∈
Kp (since γ3/γ2 = −1 − γ1/γ2)), which is equivalent to γ1/γ3 ∈ Kp (since
γ1/γ3 = γ1/γ2 ·γ2/γ3). In the future, we will only list one of these conditions,
but freely apply the other (equivalent) ones.

Proposition 3.9. If X,Y, Z ∈ OK,S are pairwise coprime S-integers with

ν(Z) = 0 for all ν ∈ S, Z /∈ F and X3/ZN /∈ Kp, that satisfy an equation
of the form

X3 + Y 2 = ZN

for N ≥ 1, then N ≤ C ′ for some constant C ′ that depends on K and S
only.

Proof. Mason’s Theorem 3.6 applied to

{γ1, γ2, γ3} = {X3/ZN , Y 2/ZN ,−1}
in all combinations, with

T = S ∪ {ν : ν(X) > 0 or ν(Y ) > 0 or ν(Z) > 0}
implies: if X3/Y 2 /∈ Kp, then

(7) max{h(X3/ZN ), h(Y 2/ZN ), h(X3/Y 2)} ≤ 2gK − 2 + |S|+ h(XY Z),

Using Lemma 3.5 and the fact that we are assuming ν(Z) = 0 for all ν ∈ S,
we find

h(X3/ZN ) = −
∑
ν∈S

ν(X3/ZN )<0

ν(X3/ZN ) +N
∑
ν /∈S

ν(Z)>0

ν(Z)

= −
∑
ν∈S

ν(X3)<0

ν(X3) +Nh(Z)

and also

h(X3/ZN ) = h(ZN/X3)

= −
∑
ν∈S

ν(ZN/X3)<0

ν(ZN/X3) + 3
∑
ν /∈S

ν(X)>0

ν(X)

= 3
∑
ν∈S

ν(X)>0

ν(X) + 3
∑
ν /∈S

ν(X)>0

ν(X)

= 3h(X).

Thus,
h(X3/ZN ) = 3h(X) ≥ Nh(Z).

Similarly, we find
h(Y 2/ZN ) = 2h(Y ) ≥ Nh(Z).

We also have
h(X3/Y 2) ≥ max{2h(Y ), 3h(X)}.
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Combining this with the estimate (7) from Mason’s Theorem yields

(8) max{3h(X), 2h(Y ), Nh(Z)} ≤ 2gK − 2 + |S|+ h(X) + h(Y ) + h(Z).

Let

Σ = ΣX,Y,Z = h(X) + h(Y ) + h(Z)

and

C = CK,S = 2gK − 2 + |S|.
From (8), we find inequalities

h(X) ≤ 1

3
(Σ + C) and h(Y ) ≤ 1

2
(Σ + C) and h(Z) ≤ 1

N
(Σ + C),

which add up to

Σ ≤
(

1

2
+

1

3
+

1

N

)
(Σ + C),

or

(9)
1

N
≥ 1

1 + C
Σ

− 5

6
.

Now there are two possibilities:

Case 1. Σ > 11C. From (9) it follows that N < 12.

Case 2. Σ ≤ 11C. Since h(X), h(Y ), h(Z) ∈ Z are positive and bounded
above by the constant 11C that depends only on K and S, there must be
finitely many choices for X, Y and Z. Since Z /∈ F, h(Z) > 0. Hence we
find a bound on N , since

N ≤ Nh(Z) = h(ZN ) ≤ max{h(X3 + Y 2) : h(X) + h(Y ) ≤ 11C}. �

Corollary 3.10. Assume jE /∈ Kp. There exists a constant C̃ only depend-
ing on E,K and S such that

P(E,K, S, x) ⊆
⋃

3≤n≤C̃

P(E,K, S, x)n.

Proof. The successive enlargement of the original field K and the original
set of valuations S only depended on E,K and S. We assume we have ex-
tended the field and set so that we are in the situation of Proposition 3.1.
Let P ∈P(E,K, S, x), so P ∈P(E,K, S, x)n for some n ≥ 3. Then in par-
ticular, BP is defined and in the notation of the two previous propositions,
Z` = BP v where v is an S-unit and ` ∈ {n, n/2}. Propositions 3.1 and 3.9
with N = 4` imply that if ` > C ′/4 where C ′ is the constant implied by
Proposition 3.9, then either of the following two cases occurs:

(1) Z ∈ F; then BP is an S-unit and hence

P ∈ Q(E,K, S, x) ⊆P(E,K, S, x)p.
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(2) X3/Z4` ∈ Kp; since X and Z are coprime S-integers, Z4` is a p-th
power up to an S-unit; hence B4

P is a p-th power up to an S-unit,
and hence (with p odd) BP is a p-th power up to an S-unit, so
P ∈P(E,K, S, x)p.

Hence

P(E,K, S, x) ⊆
⋃

3≤n≤C′/2

P(E,K, S, x)n ∪P(E,K, S, x)p,

so it suffices to take C̃ = max{C ′/2, p}. �

4. Bounding the solutions

By Corollary 3.10, to prove the main theorem we are now reduced to
showing the following:

Proposition 4.1. If jE /∈ Kp, then for fixed n > 2, the set P(E,K, S, x)n
is finite.

Proof. The start of the proof is a function field version of the argument
in [13], Theorem 5.2.1, which we then combine with the abc-hypothesis in
function fields. This means we have to deal with the exceptional case where
a term is a p-th power, but we show that this implies that jE ∈ Kp.

Suppose that P ∈ P(E,K, S, x)n for n > 2. Without loss of generality,
we assume E is in short Weierstrass form with coefficients from OK,S , and
K and S have been extended so that OK,S is a PID, the 2-torsion of E is
K-rational, and ∆E is an S-unit. Let α1, α2, α3 denote the x-coordinates
of the points in E[2]. Extend S further so that the differences αi − αj are
S-units for i 6= j. The necessary field extension is separable, since p ≥ 5.

Let P = (AP /B
2
P , CP /B

3
P ) ∈ E(K) where APCP and BP are coprime

S-integers. Plugging the coordinates of P into the Weierstrass equation
gives

C2
P =

3∏
i=1

(AP − αiB2
P ).

The factors AP − αiB2
P are coprime S-integers. Indeed, if ν /∈ S has

ν(AP − αiB2
P ) > 0 and ν(AP − αjB2

P ) > 0,

then ν((αi − αj)B2
P ) > 0, so ν(BP ) > 0, and hence from ν(AP − αiB2

P ) > 0
it follows that also ν(AP ) > 0, a contradiction. Hence

(10) AP − αiB2
P = z2

i

for some zi ∈ K, up to S-units. By extending K such that all S-units from K
become squares (which can be done by a finite extension by the function field
analogue of Dirichlet’s unit theorem) while keeping all previous conditions
satisfied, we absorb the S-unit into zi. Since the necessary field extension
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is of degree a power of 2, it is separable for p ≥ 5. Taking the difference of
any two of the equations (10) yields

(11) (αj − αi)B2
P = (zi + zj)(zi − zj).

Now zi+zj and zi−zj are coprime, since if ν(zi+zj) > 0 and ν(zi−zj) > 0
for ν /∈ S, then ν(zi) > 0. But also ν(BP ) > 0 from (11), and hence
ν(AP ) > 0 from (10), a contradiction since AP and BP are coprime.

Write BP = uB` with an S-unit u for some B ∈ OK,S and n ∈ Z with
` > 1 and n = 2`. Then zi + zj and zi − zj are n-th powers up to S-units.
For convenient notational purposes, let ∆ denote a fixed choice of a plus
or minus symbol, and ∇ the opposite sign. We will use without further
mentioning that −1 ∈ Kp. We distinguish the following cases:

(1) There exists a set of distinct indices i, j, k for which
zi±zj
zi∆zk

/∈ Kp for

both signs ±.
We have the following Siegel’s identities:

(12)
zi ± zj
zi − zk

∓ zj ± zk
zi − zk

= 1 =
zi ± zj
zi + zk

∓ zj ∓ zk
zi + zk

.

In our situation, they become equations of the form

(13) aX2` + bY 2` = 1,

a, b ∈ O∗K,S are S-units. Using the function field version of Dirichlet’s
unit theorem, there is a finite set R of representatives for such units

up to 2`-th powers. So
zi±zj
zi∆zk

takes on values inside

S := {a0X
2`
0 : X0 ∈ K, a0 ∈ R and ∃Y0 ∈ K, b0 ∈ R : a0X

2`
0 + b0Y

2`
0 = 1}.

Mason’s theorem implies that for n > 2 (i.e., ` > 1), the solution
set to any of the finitely many ternary equations that occur in the

definition of S is finite, since
zi±zj
zi∆zk

= aX2`
0 /∈ Kp by assumption.

This implies that the set of values taken by

(14) Z∆ =
1

αj − αi
· zi − zj
zi∆zk

· zi + zj
zi∆zk

is finite. To finish the proof that P takes on only finitely many values
in this case, we state the following identity, which can be verified by
direct computation, or follows from combining the last four indented
formulas in the proof of 5.2.1 in [13]:

(15) 4x(P ) = 2(αi + αk) + Z−1
∆ + (αi − αk)2Z∆,

and observe that to every value of x(P ) correspond at most two
values of P .

(2) There exists a set of distinct indices i, j, k for which x± :=
zi±zj
zi∆zk

∈
Kp for both signs ±.
We claim that if this statement holds for one set of indices (for fixed
∆), it holds for all sets of indices (for the same fixed ∆). It suffices
to prove it for the permuted indices (j, i, k) and (k, j, i), since these
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permutations generate S3. The second permutation is implemented
by replacing x± by ±(1− x±), which are p-th powers if and only if
x± are so. The first is given by replacing x± by −x±/(1−x±). This
proves the claim.

We then conclude from the equalities

λ :=
α1 − α2

α1 − α3
=
z1 − z2

z1 + z3
·
(
z1 − z3

z1 + z2

)−1

=

(
z1 + z3

z1 − z2

)−1

· z1 + z2

z1 − z3

(the first if ∆ = + and the second if ∆ = −) that λ is a p-th power.
But now we have

jE = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
,

(cf. [18], III.1.7), and we conclude that jE ∈ Kp, which we have
assumed is not the case.

(3) For all triples of pairwise distinct indices (i, j, k), we have
zi∓zj
zi∆zk

∈
Kp and

zi±zj
zi∆zk

/∈ Kp, for some choice of signs ∓ and ± (depending

on the indices).
We use the identity

zi ± zj
zi∆zk

=
1− zi∓zj

zi∆zk

1− zi∇zk
zi±zj

to see that zi∇zk
zi±zj /∈ Kp. But together with the assumption that

zi±zj
zi∆zk

/∈ Kp (so also its inverse), this implies that both zi∇zk
zi±zj and

zi∆zk
zi±zj are not p-th powers, and the first case applies.

This covers all cases and finishes the proof of the theorem. �

Remark 4.2. Since one can in principle use the above method to bound
the height of elements in P(E,K, S, f)n for fixed n, and since the constant

C̃ in Corollary 3.10 is in principle computable, the set P(E,K, S, f) can be
explicitly found.

Remark 4.3. It might seem that the above proof simultaneously bounds `
and the height of a solution, so that there is no need for proving Corollary
3.10 first. However, in general the maximal height of a set of representatives
of S-units up to 2`-th powers depends on `, making this reasoning impos-
sible. In some special cases, e.g. when the field extension that is used has
a finite unit group, one can restrict the “coefficients” a and b to a finite set
independent of `, and then such a simultaneous bound is possible, see, e.g.
Example 5.2 below.

5. Explicit bounds

We now show some examples of explicit bounds.



PERFECT POWERS ON ELLIPTIC CURVES OVER FUNCTION FIELDS 109

5.1. For this, we first list some crude estimates of heights in a rational
function field F(u) (we write the variable as u to avoid confusion when
taking field extensions). (see, e.g., [3] 1.5.14-15, but do the nonarchimedean
case):

(16) max{h(xy), h(x+ y)} ≤ h(x) + h(y) if x, y ∈ F(u);

so that for any α, x ∈ F(u), we have

h(x) = h(αxα−1) ≤ h(αx) + h(α−1) = h(αx) + h(α).

Hence

(17) h(αx) ≥ h(x)− h(α) for all α, x ∈ F(u).

Example/Proof 5.2. In this example, we show how, in some cases, the
proof of Proposition 4.1 can be changed so it implies a simultaneous bound
on the exponent and the height of a perfect power, leading to a proof of
Proposition 1.8 from the introduction.

Assume that E is an elliptic curve over a rational function field K = Fq(t)
with with jE /∈ Kp and coefficients from Fq[t] such that all 2-torsion points
on E are K-rational, and assume that P = 2Q ∈ 2E(K) with associated
elliptic divisibility sequence {Bn}. Let S = {1/t} denote the set consisting of
the one place “1/t”, corresponding to the valuation degt, so OK,S = Fq[t].

Suppose that Bn = C` for some C ∈ Fq[t]. Since P = 2Q, in the proof
of Proposition 4.1, the expressions AP − αiBP = z2

i are actual squares in
Fq[t], so that (zi − zj)/(zi∆zk) = aX2` satisfies aX2` + bY 2` = 1 for some
a, b ∈ Fq(t) whose numerator and denominator divide some of the αi − αj .
In particular, they divide ∆E , so

max{h(a), h(b)} ≤ deg ∆E .

If x ∈ K, let n0(x) denote the number of valuations ν for which ν(x) 6= q0.
Counting the valuation degt, we find an estimate

(18) max{n0(a), n0(b)} ≤ n0(∆E) ≤ deg ∆E + 1.

The abc-hypothesis (Mason’s theorem) implies a bound on the height of a
possible solution X, as follows:

max{h(aX2`), h(bY 2`)} ≤ −2 + #{ν : ν(aX2`) 6= 0 or ν(bY 2`) 6= 0}(19)

≤ −2 + n0(a) + n0(b) + h(X) + 2h(Y );(20)

where we may write h(X) + 2h(Y ) instead of 2h(X) + 2h(Y ) since the
equation satisfied by X and Y implies that if ν(a) = ν(b) = 0 and ν(X) < 0,
then also ν(Y ) < 0. Using (17), we find

max{−h(a)+2`h(X),−h(b)+2`h(Y )} ≤ −2+n0(a)+n0(b)+h(X)+2h(Y ),
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which implies, using Equation (18):

(`− 1)h(X) ≤ (`− 1)h(X) + (`− 2)h(Y )(21)

≤ −2 + n0(a) + n0(b) +
1

2
(h(a) + h(b))

≤ deg ∆E + 2(n0(∆E)− 1)

≤ 3 deg ∆E .

Now we can assume that h(X) 6= 0. Indeed, since we assume that Bn /∈ F,
there will be a prime π dividing zi ± zj for at least one choice of sign. If
π | zi+zk (so that π cancels out in (zi±zj)/(zi+zk)) then use the left hand
side of the Siegel identities (12); and if π | zi−zk then choose the right hand
side instead. With these choices, we can assume X /∈ F.

Hence (21) implies in particular that

` ≤ deg ∆E + 2n0(∆E)− 1 ≤ 3 deg ∆E + 1.

For symmetry reasons, the estimate (21) also holds with X replaced by Y .
From (19), we then find (with ` ≥ 2) that

h(aX2l) ≤ −2 + 2n0(∆E) + 3h(X)

≤ 3 deg ∆E + 8(n0(∆E)− 1).

With our previous estimates for height of sums and products, we deduce
from this with (14) and (15) that

h(Z∆) ≤ 7 deg ∆E + 16(n0(∆E)− 1)

and finally

h(x(nP )) ≤ 17 deg ∆E + 32(n0(∆E)− 1) ≤ 49 deg ∆E .

An estimate for the difference between the height and the canonical height
can be deduced from the local (nonarchimedean) counterparts (as in Section
4 of [17]), and gives

− 1

24
h(jE) ≤ ĥ(R)− 1

2
h(x(R)) ≤ 0,

for all point R ∈ E(K). So we find

n2 =
ĥ(nP )

ĥ(P )
≤ h(x(nP ))

2ĥ(P )
≤ 17 deg ∆E + 32(n0(∆E)− 1)

2ĥ(P )
,

from which we can deduce

(22) n ≤
√

49 deg ∆E

2ĥ(P )
and n ≤

√
588 deg ∆E

12h(P )− h(jE)
.

Translated to the corresponding elliptic divisibility sequence, this proves
Proposition 1.8. �
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Example 5.3. Consider the curve

(23) E : y2 = x3 − t(t− 2)x2 + 2t2(t+ 1)x

over K = F5(t) of discriminant and j-invariant

∆E = 4t6(t+ 1)2(t− 1)2 and jE = −(t2 − 2)3/(t2 − 1)2.

The group E(K) is the direct product of the full 2-torsion and a free group
of rank one generated by P = (t, t2), with associated elliptic divisibility
sequence

1, 1, t2 − 1, t2 + 1, (t3 + t2 − 2t− 1)(t3 − t2 − 2t+ 1), . . . .

Now P = 2Q over K ′ = F5(T ) with T = t2 (actually, x(Q) = T 2(T − 2)).
In this concrete case one can improve the estimates even further as follows:
we observe that the set of differences αi − αj belongs to

{2T 2, T 2(T 2 + 1), T 2(T 2 − 1)},
so max{n0(a), n0(b)} ≤ 3 and max{h(a), h(b)} ≤ 4; going through the esti-
mates using these values, we find

(`− 1)h(X) ≤ 8; h(aX2`) ≤ 28; h(Z∆) ≤ 60; h(x(nP )) ≤ 132,

from which we conclude (using ĥ(P ) = 1/2) that n ≤ 11; and it is easy to
compute in SAGE [19] that each Bn for 3 ≤ n ≤ 11 has a simple factor.
We conclude that the only perfect power denominators occur for n = 1 and
n = 2, which corresponds to B1 = B2 = 1.

6. Nonconstant j-invariants

Suppose that E is an elliptic curve with nonconstant j-invariant j /∈ F.

Then there exists an integer s such that jE ∈ Kps −Kps+1
. Write j = (j′)p

s

for a uniquely determined j′ ∈ K. There exists an elliptic curve E′ over
K with j-invariant jE′ = j′ such that E is the image of E′ under the ps-
Frobenius map

Frps : (x, y) 7→ (xp
s
, yp

s
)

(see, e.g., [22], Lemma I.2.1).

Proposition 6.1. Let K be a global function field over a finite field F of
characteristic p ≥ 5 and S a finite set of places of K. Suppose that E is an

elliptic curve over K with j-invariant jE ∈ Kps −Kps+1
for some integer s.

Let f denote a function in K(E) with a pole of order − ordO(f) > 0 at the
zero point O = OE of E. Let E′ denote the curve as above, and define

P(E,K, S, f) :=
⋃

n-ordO(f)·ps
P(E,K, S, f)n

Then

(24) P(E,K, S, f) ∩ Frps(E
′(K))

is finite.
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Proof. A point P ∈ P(E,K, S, f) ∩ Frps(E
′(K)) satisfies that for all K-

valuations v /∈ S, if ν(f(P )) < 0 then n | ν(f(P )) for some n not dividing
ordOE

f · ps. We have to show that P belongs to a finite set. There exists
a (unique) Q ∈ E′(K) such that Frps(Q) = P . The given function f ∈
K(E)−K extends to a function

f ′ := f ◦ Frps ∈ K(E′)−K,
and for any valuation ν ∈MK , we have

ν(f(P )) = ν(f(Frps(Q)) = ν(f ′(Q)).

Finally, we have that ordOE′ f
′ = ps ordOE

f. Now Q satisfies the same
conditions as P , but for some n not dividing ordOE

f · ps = ordOE′ f
′, so

Q ∈ P(E′,K, S, f ′). Since we have already proven the proposition for E′

over K (jE′ /∈ Kp), this set is finite, so that P also belongs to a finite set. �

One may wonder whether more generally, P(E,K, S, f) itself (as defined
in the above proposition) is finite when j /∈ F (cf. also Remark 1.7). Note
that there is an embedding

E(K)/Frps(E
′(K)) ↪→ Sel(K,Frps),

where the p-Selmer group Sel(K,Frps) is finite p-group, as shown by Ulmer
[20] (Theorem 3.2 in loc. cit. if s = 1 and E has a rational p-torsion point;
if s = 1 in general by the argument at the start of Section 3 of that paper,
and for general s by iteration).
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[8] Ingram, Patrick; Mahé, Valéry; Silverman, Joseph H.; Stange, Kather-
ine E. ; Streng, Marco. Algebraic divisibility sequences over function fields.
J. Aust. Math. Soc. 92 (2012), no. 1, 99–126. MR2945679, Zbl 1251.11008,
arXiv:1105.5633, doi: 10.1017/S1446788712000092.

[9] Lang, Serge. Integral points on curves. Inst. Hautes Études Sci. Publ. Math. 6
(1960), 27–43. MR0130219 (24 #A86), Zbl 0112.13402, doi: 10.1007/BF02698777.
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