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On the classification of certain inductive
limits of real circle algebras

Andrew J. Dean, Dan Kucerovsky
and Aydin Sarraf

Abstract. In this paper, a classification of simple unital real C∗-al-
gebras that are inductive limits of certain real circle algebras such as
C(T,Mn

2
(H)) is given. The invariant consists of certain triples of real

K-groups and the tracial state space of the complexification.
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1. Introduction

For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, we say that a real C∗-algebra A is a
real ATJ -algebra if it is isomorphic to an inductive limit of a sequence

A1 −→ A2 −→ A3 −→ · · · −→ A

where Ai =
⊕mi

k=1A
j
k, j ∈ J , and each Ajk is of one of the following forms:

A1
k = C(T,R)⊗R Mnk

(C)

A3
k = C(T,R)⊗R Mnk

2
(H)

A4
k = C(T, η0)⊗R Mnk

(R)

A5
k = C(T, η0)⊗R Mnk

2
(H)
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where C(T, η0) = {f ∈ C(T,C) | f(z) = f(z)}.
The invariant for the classification of simple unital real ATJ -algebras

where J ∈ {{1}, {3, 4}, {3, 5}} consists of

(K0(A), [1A])
qC // (K0(A⊗R C), [1A⊗RC])

qH
��

(K0(A⊗R H)/Tor(K0(A⊗R H)), [1A⊗RH])

T (A⊗R C)
r // S(K0(A⊗R C))

K1(A)/Tor(K1(A))
c̃ // K1(A⊗R C)

r̃ // K1(A)/Tor(K1(A))

where qC, qH are the canonical embedding maps and c̃, r̃ are defined as
follows:

The complexification map c : A −→ A ⊗R C, c(a) = a ⊗ 1, and the re-
alification map r : A ⊗R C −→ M2(A), r(a + bi) = ( a b

−b a
)

induce the maps
c∗ : K1(A) −→ K1(A ⊗R C), c∗([a]) = [c(a)] and r∗ : K1(A ⊗R C) −→
K1(M2(A)) ' K1(A), r∗([a]) = [r(a)]. Since K1(A⊗R C) is a finitely gener-
ated torsion-free abelian group, Tor(K1(A)) is a normal subgroup of Ker(c∗).
We define c̃ as the composition of the following maps:

K1(A)/Tor(K1(A))

��
K1(A)/Tor(K1(A))/Ker(c∗)/Tor(K1(A))

'

��
K1(A)/Ker(c∗)

'

��
Im(c∗) // K1(A⊗R C)

where the first map is the quotient map and the second map is inclusion.
We define r̃ by r̃ := π ◦ r∗ where π : K1(A) −→ K1(A)/Tor(K1(A)) is the
quotient map.

It is worth mentioning that the classification of real AT-algebras (cf. Def-
inition 2.1) is fundamentally different from the complex case in many ways.
Period eight for real K-theory and the appearance of torsion are among the
K-theoretical problems. Regarding regularity properties, there is a building
block of stable rank greater than one and consequently a real circle algebra
(cf. Definition 2.1) is not necessarily of stable rank one. Complex vector
bundles over the circle are determined by their rank and their Chern class
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while real vector bundles over the circle are determined by their rank and
Stiefel–Whitney class. The existence of a nontrivial line bundle (Möbius
strip) over the circle is another difficulty. Disconnectedness of the orthog-
onal group in comparison with the unitary group is another obstruction.
Furthermore, two of the eight basic building blocks of a real AT-algebra
have isomorphic K-groups (cf. Theorem 3.2).

2. Building blocks of real circle algebras

Definition 2.1. A complex C∗-algebra is called a complex circle algebra if
it is isomorphic to a C∗-algebra of the form C(T,C)⊗ F for some complex
finite-dimensional C∗-algebra F . A real C∗-algebra A is called a real circle
algebra if A ⊗R C is isomorphic to a complex circle algebra. An inductive
limit of real circle algebras is called a real AT-algebra.

Definition 2.2. Let A be a complex C∗-algebra. A ∗-antiautomorphism φ
of A is a ∗-preserving C-linear antimultiplicative bijective map from A to A.
The map φ is called involutive if φ ◦ φ = id. Moreover,

Aφ = {a ∈ A | φ(a) = a∗}
is a real C∗-algebra for which Aφ ∩ iAφ = {0} and A = Aφ + iAφ.

Theorem 2.3. Let A be a prime complex C∗-algebra and φ be an involutive
∗-antiautomorphism of A. Then, A is simple if and only if Aφ is simple.

Proof. Assume Aφ is not simple. Then, there exists a nontrivial ideal I in
Aφ, and hence I + iI is a nontrivial ideal of A. Conversely, assume that
A is not simple and I is its nontrivial ideal. Then, φ(I) is also an ideal in
A. Since A is prime, J = I ∩ φ(I) is a nontrivial ideal of A and φ(J) = J .
Thus, Jφ = J ∩ Aφ is a nonzero proper ideal of Aφ. Therefore, Aφ is not
simple. �

Theorem 2.4. Let A be a complex unital C∗-algebra, L(A) be the dis-
tributive complete lattice of closed ideals of A, φ be an involutive ∗-anti-
automorphism of A, Max(A) be the set of maximal ideals of A and Prim(A)
be the lattice of primitive ideals of A. Then:

(i) φ : L(A) −→ L(A) is an involutive lattice isomorphism.
(ii) φ induces an involutive homeomorphism of Max(A).

(iii) If A is separable then φ induces an involutive homeomorphism of
Prim(A).

Proof. (i) Obviously, φ takes a closed ideal to a closed ideal, preserves the
ordering given by inclusion and the intersection operation. It also preserves
the join, linearity of φ implies φ(I∨J) = φ(I+J) = φ(I)+φ(J) = φ(I)∨φ(J).
Therefore, φ is an involutive lattice isomorphism.

(ii) Let I be a maximal ideal in A. Assume that there exists a maximal
ideal M such that φ(I) & M then I & φ(M) which is a contradiction. The

map defined by φ̃(I) := φ(I) is an involutive homeomorphism of Max(A)
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because F j Max(A) is closed if there exists a M j A such that F =
hull(M) = {P ∈ Max(A) | M j P} and φ(F ) = φ−1(F ) = hull(φ(M)) is a
closed set.

(iii) Let O(Prim(A)) denote the lattice of open subsets of Prim(A). Define
the lattice isomorphism map h : L(A) −→ O(Prim(A)) by

h(I) = UI = {J ∈ Prim(A) | I * J}.

Then φ̃ : O(Prim(A)) −→ O(Prim(A)) defined by φ̃ := h ◦ φ ◦ h−1 is an

involutive lattice isomorphism. In particular, φ̃ preserves UA = Prim(A).
By [16, Corollary A.12], if A is separable then Prim(A) is point-complete in
the sense that every closed prime (cf. [16, Definition A.1.ii]) subset is the
closure of a singleton, and therefore φ induces an involutive homeomorphism
of Prim(A). �

The above theorem insures the existence of the involutive homeomorphism
φ̃ referred to in the following theorem:

Theorem 2.5. Let A be a unital separable complex C∗-algebra and let φ be
an involutive ∗-antiautomorphism of A. Then, Z(Aφ) is isomorphic to the
following real C∗-algebra

C(X, φ̃) = {f ∈ C(X,C) | f(φ̃(x)) = f(x)}

where X = Prim(A) and φ̃ : X −→ X is the involutive homeomorphism
induced by φ.

Proof. Since A = Aφ+iAφ, we conclude Z(Aφ) = (Z(A))φ. By the Dauns–
Hofmann Theorem, Z(A) ' C(Prim(A),C) and if we denote the isomor-

phism map by ψ : Z(A) −→ C(Prim(A),C) then φ́ := ψ ◦ φ ◦ ψ−1 is the

involutive ∗-automorphism of C(Prim(A),C). By Theorem 2.4, φ́ induces
an involutive homeomorphism of Prim(A). Moreover, any maximal ideal of
C(Prim(A),C) is of the form

Iφ̃(p) = {f ∈ C(Prim(A),C) | f(φ̃(p)) = 0}

for some p ∈ Prim(A) and φ́(Iφ̃(p)) = Iφ̃(φ̃(p)) = Ip. Let e be the unit of

C(Prim(A),C). Since for any f ∈ C(Prim(A),C) the function

g = f − f(φ̃(p))e

vanishes at φ̃(p), g ∈ Iφ̃(p) and consequently φ́(g) ∈ φ́(Iφ̃(p)) = Ip. Hence,

φ́(f)(p) = f(φ̃(p)) and

Z(Aφ) = (Z(A))φ ' (C(Prim(A),C))φ́

= {f ∈ C(Prim(A),C) | f(φ̃(p)) = φ́(f)(p) = f(p)}. �
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Theorem 2.6. Let A = C0(X,Mn(C)) be a complex C∗-algebra where X is
a locally compact Hausdorff space with Lebesgue covering dimension zero or
one and let φ be an involutive ∗-antiautomorphism of A, then

φ(f)(x) = ut(x)ft(ψ(x))ut(x)∗, ft ∈ A, x ∈ X

where ft(x) = (f(x))t, t denotes the transpose, u is a unitary in M(A) and
ψ is an involutive homeomorphism of X. Moreover, d(φ(f)) = d(f ◦ ψ) for
any f in A+ where d is a lower semicontinuous dimension function.

Proof. Define the map T : A −→ A by T (f) = ft such that ft(x) = (f(x))t.
Since T is an involutive ∗-antiautomorphism of A, T ◦φ is a ∗-automorphism
of A. By a result of [6], the cohomology dimension of X with respect to
the group Z is less than or equal to the covering dimension of X. Thus,
Ȟm(X;Z) = 0 for m ≥ 2 and the result follows by [31, Corollary 5]. By the
bijection between lower semicontinuous dimension functions and quasitraces
[3, Theorem II.2.2], using the fact that quasitraces on exact C∗-algebras are
traces, and the unitary invariance of traces we conclude that

d(φ(f)) = dτ (φ(f)) = lim
n→∞

τ
(
φ(f)

1
n

)
= lim

n→∞
τ
(

(f ◦ ψ)
1
n

)
= dτ (f ◦ ψ)

= d(f ◦ ψ). �

Remark 2.7. In the case of the circle as a compact Hausdorff CW-complex,
the Čech cohomology is naturally isomorphic to singular cohomology and it
is well-known that Hm(T;Z) = 0 for m ≥ 2.

Theorem 2.8. Let F be a finite dimensional complex C∗-algebra and φ
be an involutive ∗-antiautomorphism of A = C(T, F ), then Aφ is of the
following form:

Aφ '
⊕
k

Ajk

where j ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and

A1
k = C(T,R)⊗R Mnk

(C)

A2
k = C(T,R)⊗R Mnk

(R)

A3
k = C(T,R)⊗R Mnk

2
(H)

A4
k = C(T, η0)⊗R Mnk

(R)

A5
k = C(T, η0)⊗R Mnk

2
(H)

A6
k = C(T, η1)⊗R Mnk

(R)

A7
k = {f ∈ C([0, 1],Mnk

(C)) | f(0) ∈Mnk
(R), f(1) ∈Mnk

2
(H)}

A8
k =

{
f ∈ C([0, 1],Mnk

(R))
∣∣∣ f(1) =

(
−1 0
0 Ink−1

)
f(0)

(
−1 0
0 Ink−1

)}
where η1(z) = −z.
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Proof. It is well-known that F is isomorphic to
⊕

l plF where pl are central
minimal projections of F . Therefore,

A = (C(T,C)⊗ F ) '

(
C(T,C)⊗

(⊕
l

plF

))
'
⊕
l

(C(T,C)⊗ plF )

'
⊕
l

elA

where el = 1⊗pl is a central minimal projection of A (since T is a connected
compact Hausdorff space, the unit of C(T,C) is the only nonzero minimal
projection). Since A '

⊕
l elA '

⊕
k(ek + φ(ek))A, we conclude

Aφ '
⊕
k

((ek + φ(ek))A)φ

where φ on the components is defined by restriction. There are two cases to
consider:

(1) If φ(ek) 6= ek: In this case, we have

(ek + φ(ek))A ' C(T,Mnk
(C))⊕ C(T,Mnk

(C)).

Since φ interchanges the summands, the associated real C∗-algebra
{(eka, φ(eka)∗) : a ∈ A} is isomorphic to C(T,Mnk

(C)). On the
other hand,

C(T,Mnk
(C)) ' C(T,R)⊗R Mnk

(C) ' C(T,C)⊗R Mnk
(R).

(2) If φ(ek) = ek: In this case, [29, Section 2] gives the other seven
forms. �

Definition 2.9. For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, a real C∗-algebra A
is called a real ATJ -algebra if it is isomorphic to an inductive limit of a
sequence

A1 −→ A2 −→ A3 −→ · · · −→ A

where Ai =
⊕mi

k=1A
j
k, j ∈ J , and the algebras Ajk are defined in the state-

ment of Theorem 2.8. The real C∗-algebra A is called real AT1-algebra, real
AT2-algebra or real AT-algebra if J = {1, 2, 3, 4, 5}, J = {1, 2, 3, 4, 5, 6} or
J = {1, 2, 3, 4, 5, 6, 7, 8} respectively.

3. The existence theorem

Proposition 3.1. For any exact real C∗-algebra A, we have

Kn(C(T, η0)⊗R A) ' Kn(A)⊕Kn−1(A),

Kn(C(T,R)⊗R A) ' Kn(A)⊕Kn+1(A).

Proof. By [27, Theorem 1.5.4], Kn(C(T, η0)⊗R A) ' Kn(A)⊕Kn−1(A).
To prove Kn(C(T,R) ⊗R A) ' Kn(A) ⊕ Kn+1(A), define the following

sequence:

0 −→ C0(R,R)
i−→ C(T,R)

ev−→ R −→ 0.
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It is known that

SR := C0(R,R) ' C0((0, 1),R) ' {C([0, 1],R) | f(0) = f(1) = 0}
' {C(T,R) | f(1) = 0}.

Let h : C0(R,R) −→ {C(T,R) | f(1) = 0} denote the isomorphism map.
Define i : C0(R,R) −→ C(T,R) by i(f) := h(f), ev : C(T,R) −→ R by
ev(f) := f(1) and j : R −→ C(T,R) by j(λ) := λe where e is the unit of
C(T,R). Since the map j satisfies ev ◦ j = id, this is a split exact sequence.
Therefore, it induces the following split exact sequences:

0 −→ C0(R,R)⊗R A−→C(T,R)⊗R A−→R⊗R A −→ 0

0 −→ Kn(C0(R,R)⊗R A)−→Kn(C(T,R)⊗R A)−→Kn(R⊗R A) −→ 0

Since Kn(C0(R,R)⊗R A) ' Kn+1(A), we conclude that

Kn(C(T,R)⊗R A) ' Kn(A)⊕Kn+1(A). �

Theorem 3.2. Let F be a finite-dimensional complex C∗-algebra and φ be
an involutory ∗-antiautomorphism of A = C(T, F ), then the following table
gives the K-groups of the building blocks of Aφ (cf. Theorem 2.8):

n 0 1 2 3 4 5 6 7
Kn(A1) Z Z Z Z Z Z Z Z
Kn(A2) Z⊕ Z2 Z2 ⊕ Z2 Z2 Z Z 0 0 Z
Kn(A3) Z 0 0 Z Z⊕ Z2 Z2 ⊕ Z2 Z2 Z
Kn(A4) Z Z⊕ Z2 Z2 ⊕ Z2 Z2 Z Z 0 0
Kn(A5) Z Z 0 0 Z Z⊕ Z2 Z2 ⊕ Z2 Z2

Kn(A6) Z Z2 0 Z Z Z2 0 Z
Kn(A7) Z Z Z2 0 Z Z Z2 0
Kn(A8) Z⊕ Z2 Z2 ⊕ Z2 Z2 Z Z 0 0 Z

Proof. The results for A1 to A5 follow from Proposition 3.1 and [17, The-
orem III.5.19], and the results for A6 to A8 follow from [29, Section 2]. �

Theorem 3.3. Let X be a compact Hausdorff space and let τ be a topological
involution of X. Denote the set of fixed points of τ by E. Then

tsr(C(X, τ)⊗R Mn(R)) =

⌈
max{bdim(X)

2 c, dim(E)}
n

⌉
+ 1.

Proof. The result follows from [23, Theorem 5.9] and the proof of [26,
Theorem 6.1]. �

Corollary 3.4. Let Ai denote the building block of a real AT2-algebra.
Then, tsr(A2) = 2 and tsr(Ai) = 1 for i ∈ {1, 3, 4, 5, 6}.

Proof. For τ = ηi where i ∈ {0, 1}, we have dim(Eηi) = 0 and clearly
dim(Eid) = dim(T) = 1. The result follows from the vector space isomor-
phism Mn

2
(H) 'Mn(R). �
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Proposition 3.5. The real C∗-algebra C(T, η0) is singly generated by the
function g0(z) = z. The real C∗-algebras C(T,R) and C(T, η1) are generated
by two functions g1(z) = Re(z), g2(z) = Im(z) and g3(z) = iRe(z), g4(z) =
i Im(z) respectively.

Proof. The bivariate polynomial ring R[z, z] is dense in C(T, η0) by the real
version of the Stone-Weierstrass theorem because it separates the points of
T. Similarly, R[i( z+z2 ), z−z2 ] is dense in C(T, η1) and R[ z+z2 , z−z2i ] is dense in
C(T,R). �

Theorem 3.6. Let Aj denote the basic building block of a real AT2-algebra
where j ∈ {1, . . . , 6} and T+ := {eiθ|0 ≤ θ ≤ π} be the upper half-circle.
Then, the following hold:

Aff(T (Aj)) ' Aff(M1(T)) ' C(∂eM1(T),R) ' C(T,R)(i)

for j ∈ {1, 2, 3, 6}.

Aff(T (Aj)) ' Aff(M1(T+)) ' C(∂eM1(T+),R) ' C(T+,R)(ii)

for j ∈ {4, 5}.

Aff(T (Aj ⊗R C)) ' Aff(M1(T)) ' C(∂eM1(T),R) ' C(T,R)(iii)

for j ∈ {2, . . . , 6}.

Aff(T (A1 ⊗R C)) ' Aff(M1(T))⊕Aff(M1(T))(iv)

' C(∂eM1(T),R)⊕ C(∂eM1(T),R)

' C(T,R)⊕ C(T,R).

Proof. The proof follows from the above theorem and the identifications

C(T, η0) ' {f ∈ C(T+,C) | f(±1) ∈ R},

C(T, η1) ' {f ∈ C(T+,C) | f(−1) = f(1)},
together with the fact that states and traces are defined to be zero on the
skew-adjoint elements of a real C∗-algebra (cf. [14]). �

Theorem 3.7. Let A = C(T,R), let θ1, θ2 ∈ {id, η0} be homeomorphisms

of T, let φ̂1, φ̂2 be the associated involutions of A, i.e., φ̂i(f) = f ◦ θi, and

let M : A −→ A be a Markov operator with Mφ̂1 = φ̂2M . Given ε > 0 and
a finite subset F of C(T,R), there exist N > 0 and continuous functions
µ1, . . . , µ2N from T to T with µiθ2 = θ1µ2N+1−i for each i such that∥∥∥∥∥M(f)− 1

2N

2N∑
i=1

f ◦ µi

∥∥∥∥∥ < ε

for all f ∈ F .

Proof. We just point out the important modifications to the proof of [21,
Theorem 2.1]. The proof is divided into four cases:
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(1) If θ1 = θ2 = id then we can define µ2N+1−i = µi for 1 ≤ i ≤ N and
the result follows from [21, Theorem 2.1].

(2) If θ1 = id and θ2 = η0 then M(f)(z) = M(f)(z̄). Let µi : T+ −→ T
be the continuous map of [21, Theorem 2.1], we can extend µi by
(µi)|T−(z) = µi(z̄) and we define µ2N+1−i = µi ◦ η0 for 1 ≤ i ≤ N .

(3) If θ1 = η0 and θ2 = id then M(f) = M(f ◦ η0) which implies that
M is a map from C(T+,R) to C(T,R) and [21, Theorem 2.1] is not
applicable to C(T+,R). However, since

M(f) = M(f ◦ η0) = M

(
1

2
f +

1

2
f ◦ η0

)
,

we can apply [21, Theorem 2.1] to the elements 1
2f+ 1

2f◦η0 of C(T,R)
by considering the finite set {f, f ◦ η0 : f ∈ F} in [21, Theorem 2.1].
Therefore, M(f) can be approximated by

1

N

N∑
i=1

(
1

2
f +

1

2
f ◦ η0

)
◦ µi

where µi : T −→ T+ and we define µ2N+1−i = η0 ◦ µi for 1 ≤ i ≤ N .
(4) If θ1 = η0 and θ2 = η0 then we can proceed as follows:

For any ε > 0, there is a δ1 > 0 such that for x1, x2 ∈ X = T+,
d(x1, x2) < δ1 implies that |f(x1)−f(x2)| < ε

3 for all f ∈ F . Choose
a finite subset {x1, . . . , xm} ⊂ X which is δ1-dense in X and xi 6∈
{−1, 1} for all 1 ≤ i ≤ m. Choose a partition of X, denoting it
by {X1, X2, . . . , Xm}, such that X1 contains 1, Xm contains -1 and
with each Xi being a Borel set, satisfying:
(a) xi ∈ Xi for i = 1, . . . ,m;
(b) X = ∪mi=1Xi, Xi ∩Xj = ∅ for i 6= j;
(c) d(x, xi) < δ1 if x ∈ Xi.

We extend this partition to T by X̃i = Xi for 2 ≤ i ≤ m − 1,
X̃i = η0(X2m−i) for m + 1 ≤ i ≤ 2m − 2, X̃m = Xm ∪ η0(Xm) and

X̃1 = X1 ∪ η0(X1).
Therefore,

(a) xi ∈ X̃i for i = 2, . . . ,m − 1; η0(x2m−i) ∈ X̃i for i = m + 1,

. . . , 2m− 2; x1, η0(x1) ∈ X̃1 and xm, η0(xm) ∈ X̃m;

(b) T = ∪2m−2
i=1 X̃i, X̃i ∩ X̃j = ∅ for i 6= j;

(c) d(x, x̃i) < δ1 if x ∈ X̃i where x̃i = xi for i = 2, . . . ,m − 1,
x̃i = η0(x2m−i) for i = m + 1, . . . , 2m − 2, d(x, y) < 2δ1 if

x ∈ X̃1, y ∈ {x1, η0(x1)} and d(x, y) < 2δ1 if x ∈ X̃m and
y ∈ {xm, η0(xm)}.

We proceed as on page 62 of [21] by picking the point x0 = 1 and
an integer N > 0 satisfying 1

4N < δ2. Since T+ is path connected,
there are maps βj : [0, 1] −→ T+ where j = 1, . . . ,m such that
βj(0) = x0 and βj(1) = xj . For j = m + 1, . . . , 2m, we define
βj(t) = η0(β2m−j+1(t)). The last paragraph on page 62 of [21] needs
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to be changed as well. We cover Y = T+ with {Vj}Rj=1 such that 1
only belongs to V1 and -1 only belongs to VR and yj ∈ Vj such that∣∣∣∣∣M(f)(y)−

m∑
i=1

λiyif(xi)

∣∣∣∣∣ < ε

3

for all y ∈ Vj and f ∈ F .
Let {h1, . . . , hR} be a partition of unity subordinate to the cover

{Vj}Rj=1 such that h1(1) = hR(−1) = 1.

We extend this cover to T by defining Ṽj = Vj for 2 ≤ j ≤ R− 1,

Ṽj = η0(V2R−j) for R + 1 ≤ j ≤ 2R − 2, ṼR = VR ∪ η0(VR) and

Ṽ1 = V1 ∪ η0(V1). We define hj = h2R−j ◦ η0 for R + 1 ≤ j ≤
2R − 2, h1 = h1 ◦ η0 and hR = hR ◦ η0. On page 63 of [21], we
can choose λi such that λi(η0(y)) = λ2m−i+1(y) for i = 1, . . . , 2m
and consequently 1 −G2m−j+1(η0(y)) = Gj−1(y) for j = 1, . . . , 2m.
Therefore, G2m−j(η0(y)) < 1 − t < G2m−j+1(η0(y)) if and only if
Gj−1(y) < t < Gj(y). Hence, αj which is defined on page 64 of [21]
satisfies αj(y, t) = α2m−j+1(η0(y), 1− t). We use the Greek letter µ
for the map h which is defined on page 64 of [21]. It follows that

µi(η0(y)) = β2m−j+1

(
α2m−j+1

(
η0(y),

2i− 1

4N

))
= β2m−j+1

(
αj

(
y, 1− 2i− 1

4N

))
= η0

(
βj

(
αj

(
y, 1− 2i− 1

4N
=

2(2N + 1− i)− 1

4N

)))
= η0(µ2N+1−i)(y)

We can complete the proof as on pages 64–66 of [21]. �

Lemma 3.8. Let µ1, µ2 : T −→ T be continuous and let θ1, θ2 ∈ {id, η0, η1}
such that µ1θ2 = θ1µ2. Then, there exists a ∗-homomorphism

ψ : C(T,C) −→ C(T,C)⊗M2(C)

such that ψ ◦ φ1 = T ◦ φ2 ◦ ψ where φi(f) = f ◦ θi and T (f) = f t where t
denotes the transpose.

Proof. As in [30, Lemma 4.2], we can define ψ(f) = W diag(f◦µ1, f◦µ2)W ∗

where W = 1⊗ 1√
2

(
i −i
1 1

)
is a unitary element of C(T,C)⊗M2(C). �

Theorem 3.9. If A = C(T,R)⊗RMn(R) and p ∈ A is a projection of rank
k then pAp⊗R M2(R) ' C(T,R)⊗R M2k(R).

Proof. By classification of vector bundles, Vect1
R(T) ' H1(T;Z2) ' Z2.

Therefore, there are two real line bundles over the circle up to isomor-
phism, i.e., the trivial line bundle and the Möbius strip. Since Vect2

R(T) '
π0(SO(2,R)) = 0, the Whitney sum of two Möbius line bundle is a trivial
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bundle of rank 2. On the other hand, there is a one-to-one correspondence
between the isomorphism classes of real vector bundles over the space X and
the Murray–von Neumann equivalence classes of projections in C(X,K(H))
where H is a real Hilbert space. Thus, it follows that the direct sum of two
Möbius projections is Murray–von Neumann equivalent to a trivial projec-
tion. If p is a trivial projection then pAp ' C(T,R) ⊗R Mk(R) and conse-
quently pAp⊗RM2(R) ' C(T,R)⊗RM2k(R). If p is the Möbius projection,
then

pAp⊗R M2(R) ' (p⊗ I2)(A⊗R M2(R))(p⊗ I2)

' I2k(C(T,R)⊗R M2n(R))I2k

' C(T,R)⊗R M2k(R)

where we used the fact that for a (complex or real) C∗-algebra A, if p ∼ q
then pAp ' qAq. �

Remark 3.10. Let A be a real C∗-algebra. The order structure of

K0(A⊗R C)⊕K1(A⊗R C)

is determined by the order structure in K0(A⊗R C) together with the ideal
structure of K0(A⊗R C)⊕K1(A⊗R C) and this is determined by the map
α(I0) = I1 associating to each ideal I0 of K0(A⊗RC) the unique subgroup I1

of K1(A⊗RC) such that I = I0⊕ I1 is an ideal of K0(A⊗RC)⊕K1(A⊗RC)
(cf. [11, 4.27]).

Theorem 3.11. For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, let A = ⊕ri=1Ai and
B = ⊕sj=1Bj where Ai and Bj are the building blocks of a real ATJ -algebra.

Let T (A ⊗R C) and T (B ⊗R C) be the tracial state spaces with involutions
φ∗A, φ∗B defined by φ∗A(τ) = τ ◦φA and φ∗B(τ) = τ ◦φB where φA and φB are
the involutive ∗-antiautomorphisms of A ⊗R C and B ⊗R C. Let ε > 0, let
F be a finite subset of Aff(T (A⊗R C)), and let

M : Aff(T (A⊗R C)) −→ Aff(T (B ⊗R C))

be a Markov operator with Mφ́A = φ́BM where φ́A and φ́B are defined by
φ́A(g) = g ◦ φ∗A and φ́B(g) = g ◦ φ∗B. Let

ρA : K0(A⊗R C) −→ Aff(T (A⊗R C)),

ρB : K0(B ⊗R C) −→ Aff(T (B ⊗R C)),

be the canonical maps defined by ρA([p]) = rA([p]) and ρB([p]) = rB([p]),
where

rA : T (A⊗R C) −→ S(K0(A⊗R C)),

rB : T (B ⊗R C) −→ S(K0(B ⊗R C)),

are defined by rA([p])(τ) = τ([p]) and rB([p])(τ) = τ([p]). Suppose given
order unit preserving positive group homomorphisms

h0 : K0(A) −→ K0(B),
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hC0 : K0(A⊗R C) −→ K0(B ⊗R C),

hH0 : K0(A⊗R H)/Tor(K0(A⊗R H)) −→ K0(B ⊗R H)/Tor(K0(B ⊗R H))

as well as a group homomorphism

h1 : K1(A)/Tor(K1(A)) −→ K1(B)/Tor(K1(B))

and a group homomorphism

hC1 : K1(A⊗R C) −→ K1(B ⊗R C)

that is compatible with hC0 in the sense of preserving the subgroups associated
with the ideals of K0 of complexification (see Remark 3.10), and suppose that
the following diagrams commute:

(K0(A), [1A])

h0

��

qC // (K0(A⊗R C), [1A⊗RC])
qH //

hC0

��

(K0(A⊗R H)/Tor(K0(A⊗R H)), [1A⊗RH])

hH0

��
(K0(B), [1B])

qC // (K0(B ⊗R C), [1B⊗RC])
qH // (K0(B ⊗R H)/Tor(K0(B ⊗R H)), [1B⊗RH])

K0(A⊗R C)

hC0
��

ρA // Aff(T (A⊗R C))

M
��

K0(B ⊗R C)
ρB // Aff(T (B ⊗R C))

K1(A)/Tor(K1(A))

h1

��

c̃A // K1(A⊗R C)
r̃A //

hC1

��

K1(A)/Tor(K1(A))

h1

��
K1(B)/Tor(K1(B))

c̃B // K1(B ⊗R C)
r̃B // K1(B)/Tor(K1(B))

where qC, qH are the canonical induced maps, i.e., qC([a]) = [a ⊗ 1] and
qH([a⊗ (n+mi)]) = [a⊗ (n+mi+ 0j + 0k)].

Then, there exists a T ∈ N such that for each set {r1, . . . , rR} of integers
with 2rj ≥ T for each j, there is a unital ∗-homomorphism

λ : A −→ B ⊗R H

where H = M2r1(R) ⊕M2r2(R) · · · ⊕M2rR(R), such that λ∗ = d∗ ◦ h0 on
K0(A), λC∗ = d∗◦hC0 on K0(A⊗RC), λH∗ = d∗◦hH0 on K0(A⊗RH), λ∗ = d∗◦h1

on K1(A)/Tor(K1(A)), λC∗ = d∗ ◦ hC1 on K1(A⊗R C) and

‖λ̂C(f)− d̂C ◦M(f)‖ < ε

for all f ∈ F where for τ ∈ T (B ⊗R H ⊗R C), λ̂C(f)(τ) = f(τ ◦ λCi ), and
d∗ arises from the diagonal embedding d : B −→ B ⊗R H defined by d(b) =
b⊗ 1H .
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Proof. Let πj : B −→ Bj be the projection map and idi : Ai −→ A be the

ith coordinate embedding. If 1i is the unit of Ai then πj∗ ◦h0◦idi∗([1i]) = [pi]
where pi is a projection in P∞(Bj). Since πj∗ ◦ h0 is unital we have

[1Bj ] = πj∗ ◦ h0([1A]) = πj∗ ◦ h0([⊕ri=11i]) =
r∑
i=1

πj∗ ◦ h0 ◦ idi∗ [1i]

=
r∑
i=1

[pi] = [⊕ri=1pi].

Thus, 1Bj ∼ ⊕ri=1pi and by [22, Lemma 3.4.2] there exist mutually or-
thogonal projections {qi}ri=1 such that

∑r
i=1 qi = 1Bj and qi ∼ pi for all

i ∈ {1, . . . , r}. Hence, πj∗ ◦ h0 ◦ idi∗ [1i] = [qi]. We can replace A by Ai and
B by qiBjqi to reduce the problem to a single building block. Let

αij0 : K0(Bj) −→ K0(qiBjqi),

αCij

0 : K0(Bj ⊗R C) −→ K0(qiBjqi ⊗R C),

αHij

0 : K0(Bj ⊗R H)/Tor(K0(Bj ⊗R H))

−→ K0(qiBjqi ⊗R H)/Tor(K0(qiBjqi ⊗R H)),

be order unit preserving group homomorphisms,

αij1 : K1(Bj)/Tor(K1(Bj)) −→ K1(qiBjqi)/Tor(K1(qiBjqi)),

αCij

1 : K1(Bj ⊗R C) −→ K1(qiBjqi ⊗R C)

be group homomorphisms and let

α̂ij : Aff(T (Bj ⊗R C)) −→ Aff(T (qiBjqi ⊗R C))

and γ : K0(Bj) −→ Z be the canonical isomorphism maps. Then, we define
the appropriate maps

hij0 := αij0 ◦ πj∗ ◦ h0 ◦ idi∗ : K0(Ai) −→ K0(qiBjqi)

hC
ij

0 := αCij

0 ◦ πj∗ ◦ hC0 ◦ idi∗ : K0(Ai ⊗R C) −→ K0(qiBjqi ⊗R C)

hH
ij

0 := αHij

0 ◦ πj∗ ◦ hH0 ◦ idi∗ : K0(Ai ⊗R H)/Tor(K0(Ai ⊗R H)) −→
K0(qiBjqi ⊗R H)/Tor(K0(qiBjqi ⊗R H))

hij1 := αij1 ◦ πj∗ ◦ h1 ◦ idi∗ : K1(Ai)/Tor(K1(Ai)) −→
K1(qiBjqi)/Tor(K1(qiBjqi))

hC
ij

1 := αCij

1 ◦ πj∗ ◦ hC1 ◦ idi∗ : K1(Ai ⊗R C) −→ K1(qiBjqi ⊗R C)

M ij :=
γ([1j ])

γ([qi])
α̂ij ◦ π̂j ◦M ◦ îdi : Aff(T (Ai ⊗R C)) −→

Aff(T (qiBjqi ⊗R C)).
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Case 1. Assume that Ai and qiBjqi both are not of type 1, i.e., they are
not of the form C(T,R)⊗R Mn(C). Since the Markov map

M ij : (Aff(T (Ai ⊗R C)), φ́iA) −→ (Aff(T (qiBjqi ⊗R C)),
´
φjB)

has the property M ijφ́iA =
´
φjBM

ij where

φ́iA = π̂i ◦ φ́A ◦ îdi,
´
φjB = π̂j ◦ φ́B ◦ îdj ◦ α̂ij

−1
,

if we denote the isomorphism maps (as order unit spaces) by

ψA : (Aff(T (Ai ⊗R C)), φ́iA)
∼=−→ (C(T,R), φ̃iA),

ψB : (Aff(T (qiBjqi ⊗R C)),
´
φjB)

∼=−→ (C(T,R),
˜
φjB),

then we get the Markov map M̃ ij : (C(T,R), φ̃iA) −→ (C(T,R),
˜
φjB) defined

by M̃ ij := ψB◦M ij◦ψ−1
A and we have M̃ ijφ̃iA =

˜
φjBM̃

ij where the involutions

φ̃iA and
˜
φjB are defined by φ̃iA = ψA ◦ φ́iA ◦ψ

−1
A and

˜
φjB = ψB ◦

´
φjB ◦ψ

−1
B . We

define the relative finite set F̃ ij := {f ◦ ψ−1
A ◦ îdi ∈ (C(T,R), φ̃iA)|f ∈ F}.

The involutions φ̃iA and
˜
φjB are of the form φ̃(f) = f ◦ θ where θ ∈ {id, η0}.

Therefore, for δ by Theorem 3.7 there exist Nij > 0 and continuous functions
µ̃1, . . . , µ̃2Nij from T to T with µ̃kθ2 = θ1µ̃2N+1−k for each k such that∥∥∥∥∥∥M̃ ij(f)− 1

2Nij

2Nij∑
k=1

f ◦ µ̃k

∥∥∥∥∥∥ < δ

for all f ∈ F̃ ij . For 1 ≤ l ≤ Nij , let

ψijl : (C(T,C))
φ̃iA
−→ (C(T,C)) ˜

φjB
⊗R M2(R)

be the ∗-homomorphisms of Lemma 3.8. Let DAi be the triple

(K0(Ai), [1Ai ])
// (K0(Ai ⊗R C), [1Ai⊗RC])

��
(K0(Ai ⊗R H)/Tor(K0(Ai ⊗R H)), [1Ai⊗RH]).

We define DqiBjqi similarly. Here,

Ai = C(T, ηi)⊗R Mni(Fi),
qiBjqi = C(T, ηj)⊗R Mnj (Fj),

where nj = rank(qi), Fi,Fj ∈ {R,H}, and ηi, ηj ∈ {η0, id}.
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Since DAi ' DMni (Fi) and DqiBjqi ' DMnj (Fj), it follows from [28, Theo-

rem 2.4] or [15, Theorem 14.1] that the homomorphism

σ : DMni (Fi) −→ DMnj (Fj)

induces a standard ∗-homomorphism βij : Mni(Fi) −→Mnj (Fj).
Therefore, we get a family of unital ∗-homomorphisms

λijl : (C(T,C))
φ̃iA
⊗R Mni(Fi) −→ (C(T,C)) ˜

φjB
⊗R Mnj (Fj)⊗R M2(R)

where λijl is defined by λijl := ψijl ⊗ β
ij for 1 ≤ l ≤ Nij .

Let d̃∗ be the induced map from diagonal embedding in M2(R). Since

rank(ψijl (p)) = 2 rank(p), it follows from [13, Theorem 8.3] that (ψijl ⊗β
ij)∗ =

d̃∗ ◦ hij0 .
For u ∈ U∞(Ai ⊗R C), we have

λijl∗([u]) = (ψijl ⊗ β
ij)∗([u]) = (ψijl ⊗ id)∗((id⊗ βij)∗([u])).

Since tsr(Ai ⊗R C) = 1, it follows from [2, Theorem V.3.1.26] that

K1(Ai ⊗R C) ' U(Ai ⊗R C)/U0(Ai ⊗R C).

Since U(Mn(C)) ' U0(Mn(C)), we conclude that (id ⊗ βij)∗([u]) = [u].

Hence, λijl∗([u]) = (ψijl ⊗ id)∗([u]) = [W diag(u ◦ µ̃1, u ◦ µ̃2) W ∗].

We first reduce the problem from Ai and qiBjqi to Ãi = Z(Ai) and

B̃i = Z(qiBjqi)⊗RM2(R). For each 1 ≤ l ≤ Nij , if (ψijl ⊗ id)∗ doesn’t have
the correct K1 behavior, we show that there exists a real ∗-homomorphisms
φij between basic building blocks giving rise to the following commutative
diagram (i.e., φij has the correct K1 behavior):

K1(Ãi)/Tor(K1(Ãi))

hij1

��

c̃Ãi // K1(Ãi ⊗R C)
r̃Ãi //

hC
ij

1

��

K1(Ãi)/Tor(K1(Ãi))

hij1

��
K1(B̃j)/Tor(K1(B̃j))

c̃B̃j // K1(qiBjqi ⊗R C)
r̃B̃j // K1(B̃j)/Tor(K1(B̃j))

Since K1(Ãi)/Tor(K1(Ãi)) and K1(B̃j)/Tor(K1(B̃j)) are isomorphic to

either Z or 0 and furthermore K1(Ãi ⊗R C) and K1(B̃j ⊗R C) are iso-
morphic to either Z or Z ⊕ Z, any nonzero group homomorphism from
K1(Ãi)/Tor(K1(Ãi)) to K1(Ãi ⊗R C) and from K1(B̃j)/Tor(K1(B̃j)) to

K1(B̃j ⊗R C) is injective. Therefore, if a ∗-homomorphism from Ãi to B̃j
gives rise to hC

ij

1 , it must give rise to hij1 as well so that the diagram com-
mutes. We consider a case by case analysis. Note that r̃ ◦ c̃ is multiplication
by 2.

In the following cases, the commutativity of the diagram gives a zero
map from K1(Ãi ⊗R C) to K1(B̃j ⊗R C). Therefore, we can pick any real

∗-homomorphism from Ãi to B̃j (i.e., φij = ψijl ⊗ id), since they all induce
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the zero map from K1(Ãi⊗R C) to K1(B̃j ⊗R C); in the following diagrams,

k in Ak denotes the type of Ãi or B̃j :

K1(A3)/Tor(K1(A3)) ' 0

��

// K1(A3 ⊗R C) ' Z //

0

��

K1(A3)/Tor(K1(A3)) ' 0

��
K1(A4)/Tor(K1(A4)) ' Z

OO

// K1(A4 ⊗R C) ' Z

0

OO

// K1(A4)/Tor(K1(A4)) ' Z

OO

K1(A3)/Tor(K1(A3)) ' 0

��

// K1(A3 ⊗R C) ' Z //

0

��

K1(A3)/Tor(K1(A3)) ' 0

��
K1(A5)/Tor(K1(A5)) ' Z

OO

// K1(A5 ⊗R C) ' Z

0

OO

// K1(A5)/Tor(K1(A5)) ' Z

OO

For the following diagrams, the maps φkij : Ak −→ Ak where k ∈ {3, 4, 5}
defined by φkij(f) = diag(f ◦ µ, f ◦ µ) where µ(z) = zm do the job.

K1(A3)/Tor(K1(A3)) ' 0

��

// K1(A3 ⊗R C) ' Z //

m

��

K1(A3)/Tor(K1(A3)) ' 0

��
K1(A3)/Tor(K1(A3)) ' 0 // K1(A3 ⊗R C) ' Z // K1(A3)/Tor(K1(A3)) ' 0

K1(A4)/Tor(K1(A4)) ' Z

��

// K1(A4 ⊗R C) ' Z //

m

��

K1(A4)/Tor(K1(A4)) ' Z

��
K1(A4)/Tor(K1(A4)) ' Z // K1(A4 ⊗R C) ' Z // K1(A4)/Tor(K1(A4)) ' Z

K1(A5)/Tor(K1(A5)) ' Z

��

// K1(A5 ⊗R C) ' Z //

m

��

K1(A5)/Tor(K1(A5)) ' Z

��
K1(A5)/Tor(K1(A5)) ' Z // K1(A5 ⊗R C) ' Z // K1(A5)/Tor(K1(A5)) ' Z

In order to have the right effect on K1, we can proceed as in the proof of

[10, Theorem 3], i.e., if any of our maps doesn’t give rise to hC
ij

1 and hij1 , we
take out that map and replace it with one of the above constructed maps

and these new maps will give rise to both hij1 and hC
ij

1 . This replacements
will not change the average of ∗-homomorphisms by more than 1

Nij
. We can

also make 1
Nij

smaller by repeating each map more than once, each one the

same number of times so as not to change the average. Moreover,∥∥∥∥∥∥ 1

2Nij

2Nij∑
l=0

ψijl (f)− d̃ ◦ M̃ ij(f)

∥∥∥∥∥∥ < δ

for all f ∈ F̃ ij .
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We can construct λl : A −→ B ⊗R M2(R) as in [24, Lemma 4.2] and [24,
Corollary 4.3] such that ∥∥∥∥∥1

k

k∑
l=0

λ̂Cl (f)−M(f)

∥∥∥∥∥ < ε

for all f ∈ F (refer to [24, Corollary 4.3] for the definition of T ∈ N and k).

Case 2. Assume that Ai and qiBjqi are both of type 1: In this case, we
have:

Z

hij0

��

(id,id) // Z2 id+id //

hC
ij

0

��

Z

hH
ij

0

��
Z

(id,id) // Z2 id+id // Z

Assume hC
ij

0 (1, 0) = (k, l) and hC
ij

0 (0, 1) = (ḱ, ĺ). By commutativity of
the above diagram,

k + l = (id+ id)(hC
ij

0 (1, 0)) = hH
ij

0 ((id+ id)(0, 1)) = hH
ij

0 ((id+ id)(1, 0))

= (id+ id)(hC
ij

0 (1, 0)) = ḱ + ĺ

and (k + ḱ, l + ĺ) = hC
ij

0 (id, id)(1) = (id, id)(hij0 (1)) = (hij0 (1), hij0 (1)) which

implies ḱ = l and ĺ = k. If we assume M̃ ij(f, g) = (m1(f, g),m2(f, g))
then the equation (m1(g, f),m2(g, f)) = (m2(f, g), m1(f, g)) follows from

M̃ ijφ̂Ai = φ̂qiBjqiM̃
ij . Thus, M̃ ij(f, g) = (m(f, g),m(g, f)). By commuta-

tivity of the following diagram,

Z2

hC
ij

0
��

ρA // C(T,R2)

M̃ ij

��
Z2 ρB // C(T,R2)

it follows that m(1, 0) = k
k+l and m(0, 1) = l

k+l . Therefore, the Markov
maps

m1,m2 : C(T,R) −→ C(T,R)

defined by m1(f) = k+l
k m(f, 0) and m2(g) = k+l

l m(0, g) can be approxi-

mated by 1
2N

2N∑
i=1

f ◦ µ̃i and 1
2M

2M∑
i=1

g ◦ ν̃i. If we let R = lcm(2N, 2M), then

m(f, g) can be approximated by 1
R(k+l)

R∑
i=1

(lg ◦ ν̃i + kf ◦ µ̃i). If we define

λil : (C(T,R)⊕ C(T,R))⊗R Mni(R) −→
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(C(T,R)⊕ C(T,R))⊗R Mmj=ni(k+l)(R)⊗R M2(R)

by λil(f, g) = (diag(f ◦ µ̃i ⊗ Ik, g ◦ ν̃i ⊗ Il),diag(g ◦ µ̃i ⊗ Ik, f ◦ ν̃i ⊗ Il))⊗ I2

then∥∥∥∥∥d̃ ◦ (diag(m1(f),m2(g)),diag(m1(g),m2(f)))− 1

R

R∑
l=1

λil(f, g)

∥∥∥∥∥ < δ.

Moreover, λil∗([p ⊕ q]) = d̃∗ ◦ hC
ij

0 ([p] + [q]) because [p ◦ µ̃i] = [p] and

[q ◦ ν̃i] = [q]. Similarly, the effect on hij0 and hH
ij

0 is right. For the effect
on K1, we proceed as in Case 1 and [10, Theorem 3]. First, we reduce the
problem to Z(Ai) and Z(qiBjqi)⊗R M2(R).

For the following diagram, the commutativity of the diagram implies that
the map has the form (m n

n m ). The map φ : A1 −→ A1 ⊗RM2(R) defined by
φ(f) = diag(f ◦ µ, f ◦ ν) where µ(z) = zm and ν(z) = zn induces the map
(m n
n m ).

K1(A1)/Tor(K1(A1)) ' Z

��

(id,id) // K1(A1 ⊗R C) ' Z⊕ Z id+id //

(m n
n m )

��

K1(A1)/Tor(K1(A1)) ' Z

��
K1(A1)/Tor(K1(A1)) ' Z

(id,id) // K1(A1 ⊗R C) ' Z⊕ Z id+id // K1(A1)/Tor(K1(A1)) ' Z

If any of our maps doesn’t give rise to hC
ij

1 and hij1 , we can take out that
map and replace it by the above constructed maps and proceed as in [10,
Theorem 3]. �

4. The uniqueness theorem

Lemma 4.1. Let A and B be direct sums of building blocks of a real AT2-
algebra and let φ and ψ be ∗-homomorphisms from A to B giving rise to the
same map from K0(A) to K0(B), then there exists a unitary u ∈ B such
that φ(a) = uψ(a)u∗ for each central minimal projection a ∈ A.

Proof. Let e ∈ A be a central minimal orthogonal projection. By equal-
ities [φ(e)] = [ψ(e)], [1 − φ(e)] = [1 − ψ(e)], [1, Proposition 4.2.5] and [1,
Proposition 4.6.5], there exists ue ∈ B such that φ(e) = ueψ(e)u∗e. If we let

u =
∑
e∈A

φ(e)ueψ(e)

then φ(a) = uψ(a)u∗ for each central minimal projection a ∈ A. �

Lemma 4.2. If φ is an involutive ∗-antiautomorphism of A = C(T,Mn(C))
and f ∈ U(A), then w(Det(φ(f))) = w(Det(f ◦ψ)) = ± w(Det(f)) where w
denotes the winding number map, and ψ is the associated involutive home-
omorphism of T.
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Proof. By Theorem 2.6, φ(f) = ut(ft ◦ ψ)u∗t . Since

w(Det(u∗t )) = −w(Det(ut)),

we conclude w(Det(φ(f))) = w(Det(f ◦ ψ)). Since ψ is an involutive home-
omorphism, it can just change the sign of winding number. �

Lemma 4.3. Let A be a non-type-1 basic building block of a real AT2-algebra
with a unital subalgebra C isomorphic to Mn(R) or Mn

2
(H) for some n and

whose commutant is the center. If φ and ψ are ∗-homomorphisms from A to
a real algebra B which is a direct sum of building blocks with φ(1) = ψ(1) = e,
then there exists a unitary ν ∈ eBe with φ(c) = νψ(c)ν∗ for each c ∈ C.

Proof. By Lemma 4.1, it suffices to assume that eBe is a single building
block which can be written as Z ⊗R Mm(R) or Z ⊗R Mm

2
(H) where Z ∈

{C(T,R), C(T,C), C(T, η0), C(T, η1)}. Since

φ∗, ψ∗ : K0(A⊗R C) −→ K0(eBe⊗R C)

are positive order unit preserving group homomorphisms, we conclude that
n|m, i.e., m = nk. Since Mn(F) is simple, we conclude that φ(C) '
ψ(C) ' C (we denote the isomorphism map by h : ψ(C) −→ φ(C)), and
consequently there exists a subalgebra H of eBe isomorphic to Mk(R) or
M k

2
(H) such that eBe ' Z ⊗R H ⊗R φ(C) ' Z ⊗R H ⊗R ψ(C). We de-

fine the map γ ∈ Aut(eBe) by γ = id ⊗ id ⊗ h. By [31, Corollary 5],
γC ∈ Aut(e(B⊗RC)e) is inner, i.e., there exists a unitary u ∈ e(B⊗RC)e such
that γC = Ad(u). Let Φ be an involutive ∗-antiautomorphism of e(B⊗RC)e
such that (e(B ⊗R C)e)Φ ' eBe. Then,

γC(Φ(a)) = γC(a∗) = (γC(a))∗ = Φ(γC(a))

for each a ∈ eBe. Hence,

γC(Φ(a)) = uΦ(a)u∗ = Φ(γC(a)) = Φ(uau∗) = Φ(u∗)Φ(a)Φ(u)

for each a ∈ eBe which implies w = u∗Φ(u∗) ∈ Z ⊗R C and Φ(w) = w.
By Lemma 4.2, winding number of w is either zero or even. Moreover, if
e(B ⊗R C)e ' C(T,Mn(C)) ⊕ C(T,Mn(C)) and φ switches the summands,
then winding number of w will be even as well. In any case, the square root
of a central unitary with winding number even or zero always exists; hence
square root of w exists.

For f ∈ Z ⊗R C, if Z ⊗R C ' C(T,C) then Φ(f) = f ◦ α where α ∈
{η0, η1, id} and if Z ⊗R C ' C(T,C2) then Φ(f, g) = (g, f) and in each case

Φ(w1/2) = w1/2. Thus,

Φ(w1/2u) = Φ(u)w1/2 = u∗w∗w1/2 = u∗w1/2∗ = (w1/2u)∗

and ν = w1/2u ∈ eBe is the required unitary element. �

Lemma 4.4. Let A be a basic building block of type 1 with the unital subal-
gebra C isomorphic to Mn(C) and whose commutant is the center and let φ
and ψ be real-linear ∗-homomorphisms from A to a real algebra B which is
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a direct sum of building blocks with φ(1) = ψ(1) = e giving rise to the same
map from K0(A ⊗R C) to K0(B ⊗R C) then there exists a unitary ν ∈ eBe
with φ(c) = νψ(c)ν∗ for each c ∈ C.

Proof. In [30, Lemma 2.3], it is enough to replace [0, 1] by T. �

Lemma 4.5. Let

C(T,R)⊗R Mm(F) where F ∈ {R,C,H},
C(T, η0)⊗R Mm(F) where F ∈ {R,H},

and C(T, η1) ⊗R Mm(R) be the basic building blocks where m ∈ {n, n2 } de-
pending on the type of the block. Then we have the following identifications:

C(T,R)⊗R Mm(F) ' {f ∈ C([0, 1],R)⊗R Mm(F)|f(0) = f(1)}
C(T, η0)⊗R Mn(R) ' {f ∈ C([0, 1],C)⊗R Mn(R)|f(0), f(1) ∈Mn(R)}
C(T, η0)⊗R Mn

2
(H) ' {f ∈ C([0, 1],C)⊗R Mn(R)|f(0), f(1) ∈Mn

2
(H)}

C(T, η1)⊗R Mn(R) ' {f ∈ C([0, 1],C)⊗R Mn(R)|f(1) = f(0)}.

Proof. The first isomorphism is given by the map h(f) = gf where gf (t) =
f(e2πit). As we mentioned before, C(T, η0) ' {f ∈ C(T+,C) | f(±1) ∈ R}
and C(T, η1) ' {f ∈ C(T+,C) | f(−1) = f(1)}. The homeomorphism
α : T+ −→ [0, 1] defined by α(eiπt) = t yields the other isomorphisms. �

Remark 4.6. From now on, we may use the above isomorphisms without
explicitly mentioning them.

Lemma 4.7. Let A belong to Mn(R):

(i) If A is skew-symmetric, then there are block diagonal matrices D ∈
Mn(R), D̃ ∈Mn(C) and an orthogonal matrix U ∈Mn(R) such that

UTAU = D and W ∗UTAUW = D̃ where

W = diag(V1, . . . , Vm, 0n−2m), D̃ = diag(D̃1, . . . , D̃m, 0n−2m),

D = diag(D1, . . . , Dm, 0n−2m),

Dj = βj

(
0 −1
1 0

)
, D̃j = λj

(
−1 0
0 1

)
, Vj =

1√
2

(
1 1
i −i

)
,

βj > 0, SpC(A) = {±iβj , 0} and λj ∈ SpC(A)− {0} for 1 ≤ j ≤ m.
(ii) If A is orthogonal, then there are block diagonal matrices

K ∈Mn(R), K̃ ∈Mn(C)

and an orthogonal matrix P ∈Mn(R) such that

P TAP = K and W̃ ∗P TAPW̃ = K̃

where

W̃ = diag(V1, . . . , Vm, In−2m), K̃ = diag(K̃1, . . . , K̃m, Jn−2m),

K = diag(K1, . . . ,Km, Jn−2m), Jn−2m = diag(±1, . . . ,±1),
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Kj =

(
cos(θj) − sin(θj)
sin(θj) cos(θj)

)
, K̃j =

(
µj 0
0 µj

)
,

0 < θj < π, SpC(A) = {eiθj ,±1} and µj ∈ SpC(A) − {±1} for
1 ≤ j ≤ m.

Proof. The proof is well-known. Note that V ∗j DjVj = D̃j and V ∗j KjVj =

K̃j for 1 ≤ j ≤ m. �

Remark 4.8. If f ∈ A is unitary, self-adjoint or skew-adjoint, where A is
a basic building block, then its eigenfunctions are T-valued, real-valued or
purely imaginary-valued (other than zero) respectively, and its eigenprojec-
tions are orthogonal. Furthermore, assume that f has a spectral decompo-
sition, i.e.,

f(z) =

n∑
i=1

λi(z)Pi(z)

where the eigenfunctions λi are distinct and Pi are the orthogonal eigenpro-
jections with sum 1. Let φ be an involutive ∗-antiautomorphism of A⊗R C
such that (A⊗R C)φ = A. By orthogonality of eigenprojections, fPi = λiPi
for all i = 1, .., n. The involutive ∗-antiautomorphism

φ : C(T,Mn(C)) −→ C(T,Mn(C)), φ(f) = (ut)(f ◦ ψ)t(u∗)t,

u ∈ U(C(T,Mn(C))) (cf. Theorem 2.6), is extendible to the involutive ∗-
antiautomorphism

φ̃ : C([0, 1],Mn(C)) −→ C([0, 1],Mn(C))

as follows (the map β : [0, 1] −→ T is defined by β(t) = e2πit):
If ψ : T −→ T, ψ = id then define

φ̃(f) = (u ◦ β)t(f ◦ α)t(u∗ ◦ β)t

where α : [0, 1] −→ [0, 1], α = id.
If ψ : T −→ T, ψ = η0 where η0(z) = z̄ then define

φ̃(f) = (u ◦ β)t(f ◦ α)t(u∗ ◦ β)t

where α : [0, 1] −→ [0, 1], α(t) = 1− t.
We can rewrite f as follows (note that φ(f∗) = f):

f =
1

2
(f + φ(f∗)) =

1

2

(
n∑
i=1

λiPi + φ

(
n∑
i=1

λ̄iPi

))

=
1

2

n∑
i=1

(λiPi + φ̃(λ̄i)φ̃(Pi)).

Let gi ∈ C(SpC(λi), η0) be such that ‖gi(λi) − λi‖ < ε
n . Then, we can

consider the function

f̃ =
1

2

n∑
i=1

(gi(λi)Pi + gi(φ̃(λ̄i))φ̃(Pi)).
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Since gi(φ̃(λ̄i)) = gi(φ̃(λi)), we conclude φ̃(f̃) = f̃∗. Moreover, ‖f̃ − f‖ < ε.

Lemma 4.9. Let A be a basic building block of a real AT1-algebra, ε > 0
and f ∈ A be a unitary (self-adjoint) such that only two of its eigenfunctions
touch at only one point x0, then there exists a unitary (self-adjoint) g ∈ A
such that g has distinct eigenfunctions and ‖g − f‖ < ε.

Proof. If f(x0) ∈Mn
2
(H), then we can decompose f(x0) as f(x0) = C+Dj

where C and D are in Mn
2
(C) and we can embed f(x0) in Mn(C) as a

symplectic matrix by the injective ∗-homomorphism h : Mn
2
(H) −→Mn(C):

h(C +Dj) =

(
C D
−D C

)
If we define an antilinear unitary map K : Cn −→ Cn by

K(x1, x2, . . . , xn) = (−x2, x1, . . . ,−xn, xn−1)

and an involutive ∗-antiautomorphism φ : Mn(C) −→Mn(C) by

φ(f(x0)) = −K∗f(x0)∗K∗ = Kf(x0)∗K∗,

then U = [V1, . . . , Vn
2
,KV1, . . . ,KVn

2
] belongs to (Mn(C))φ 'Mn

2
(H) where

Vj and KVj , 1 ≤ j ≤ n
2 are the eigenvectors of h(f(x0)) and Uh(f(x0))U∗ =

D is the spectral decomposition of h(f(x0)) in Mn(C).
It follows that each real eigenvalue of f(x0) after embedding in Mn(C) has

even multiplicity and the complex eigenvalues of f(x0) appear as conjugate
pairs [19]. If f(x0) is self-adjoint, then all eigenvalues are real and we have
forced double degeneracy. Since the summation of n2 geometric multiplicities
should be equal to n, the eigenprojections of f(x0) are of rank two.

Assume λi, λj are two eigenfunctions of f that touch at the point x0.
If f is self-adjoint, we may choose real-valued functions ci, cj ∈ C(T,R)
with norm less than one and supported in a neighborhood of x0 such that
g defined by g = f + ε

4(ciPi + cjPj + (ci ◦ ψ)φ̃(Pi) + (cj ◦ ψ)φ̃(Pj)) meets
our requirements (cf. Remark 4.8). If f(x0) ∈Mn

2
(H) and f is self-adjoint,

then g(x0) has n
2 distinct eigenvalues, each of multiplicity two and n

2 rank
two eigenprojections.

If f is unitary, we may choose real-valued functions ci, cj ∈ C([0, 1],R)
with norm less than one and supported in a neighborhood of arg(x0) such

that g defined by g = f+ ε
4(e2πiciPi+e

2πicjPj+e
2πici◦ψ̂φ̃(Pi)+e2πicj◦ψ̂φ̃(Pj)),

where ψ̂ is the involutive homeomorphism of [0, 1] induced by ψ, meets our
requirements. �

Lemma 4.10. Let ε > 0 and let B be a basic building block of a real AT1-
algebra.

(i) If f ∈ B is a self-adjoint element and B is of type 1, 2, 4, 6 (3) then
there exists a self-adjoint element g ∈ B such that ‖f − g‖ < ε and
g(z) has n (n2 ) distinct eigenvalues for each z ∈ T. If B is of type 5
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then g has n
2 distinct eigenvalues at the points 0 and 1 and it has n

distinct eigenvalues everywhere else.
(ii) If f ∈ B is a unitary element then there exists a unitary element

g ∈ B such that ‖f − g‖ < ε and g(z) has n distinct eigenvalues for
each z ∈ T.

Proof. (i) Let h be the piecewise analytic approximation of f (in the com-
plex case, for unitary and self-adjoint elements, the proof of its existence is
on page 186 of [9, Theorem 4.4] and on page 75 of [5, Theorem 4] respec-
tively. In the real case, the essential difference is when h is unitary, in that
case, on a suitable subinterval h is either of the form h = ek or of the form
h = ekw, depending on its winding number, where k is a skew-adjoint ele-
ment and w is a constant unitary with winding number -1. By [18, Theorem
II.6.1], the eigenfunctions and eigenprojections of h are piecewise analytic.
It follows that unequal eigenfunctions of h coincide at finitely many points,
because if they coincide at infinitely many points then by identity theorem
they must be equal. By passing to subintervals, we may further assume
that they coincide at one point. Moreover, we can reduce to the case that
just two of the eigenfunctions coincide at the degenerate point. If at the
remaining degenerate point the eigenfunctions touch but do not cross then
we can remove this degeneracy by Lemma 4.9. If the eigenfunctions λj and
λk cross at t0 ∈ [a, b] ⊆ [0, 1], i.e., λj(a) < λk(a) and λj(b) > λk(b), where
the interval [a, b] is picked such that λjPλj + λkPλk over [a, b] is sufficiently
close to λjPλj + λkPλk at t0 and λj is sufficiently close to λk over [a, b],
then let {Q(t) : t ∈ [a, b]} be a path of projections such that Q ≤ Pλj +Pλk ,

Q(a) = Pλj (a) and Q(b) = Pλk(b). If we define h̃ by replacing λjPλj +λkPλk
in h with min(λj , λk)Q+ max(λj , λk)(Pλj + Pλk −Q) over [a, b] and setting

h̃ = h everywhere else, then h̃(a) = h(a), h̃(b) = h(b), h̃ is sufficiently close
to h over [a, b] and its eigenfunctions touch but do not cross. By Lemma 4.9,
we can construct the function g.

(ii) In this case, eigenfunctions are of the form exp(2πiF ) : [0, 1] −→ T
where F : [0, 1] −→ [0, 1] is a continuous function. If the eigenfunctions
λj = exp(2πiF ) and λk = exp(2πiG) cross at t0 ∈ [a, b] ⊆ [0, 1], i.e., G(t) >
F (t) for t ∈ [a, t0), G(t) < F (t) for t ∈ (t0, b] and G(t0) = F (t0), (where the
interval [a, b] is picked such that λjPλj +λkPλk over [a, b] is sufficiently close
to λjPλj + λkPλk at t0 and λj is sufficiently close to λk over [a, b]) then let
{Q(t) : t ∈ [a, b]} be a path of projections such that Q ≤ Pλj + Pλk , Q(a) =

Pλj (a) and Q(b) = Pλk(b). If we construct h̃ by replacing λjPλj + λkPλk
in h with exp(2πi min{F,G})Q+exp(2πi max{F,G})(Pλj + Pλk −Q) then

h̃(a) = h(a), h̃(b) = h(b), h̃ is sufficiently close to h over [a, b] and its
eigenfunctions touch but do not cross. By Lemma 4.9, we can construct the
function g. If eigenfunctions appear as conjugate pairs, then we replace

λj(Pλj − φ̃(Pλj )) + λk(Pλk − φ̃(Pλk))
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in h with

exp(2πi min{F,G})Q+ exp(2πi max{F,G})(Pλj + Pλk −Q)

+ exp(2πi min{−F,−G})φ̃(Q)

+ exp(2πi max{−F,−G})(φ̃(Pλj )

+ φ̃(Pλk)− φ̃(Q)). �

Remark 4.11. Let B be a basic building block of a real AT1-algebra and
φ : C(T,R) −→ B be a unital ∗-homomorphism. There exists a unital

∗-homomorphism φ̃ : C(T,R) −→ B such that φ̃C(g1 + ig2) has distinct

eigenfunctions and approximates φC(g1 + ig2). Therefore, φ̃(g1) approxi-

mates φ(g1) and φ̃(g2) approximates φ(g2). Since φ̃(g1) and φ̃(g2) have the

same set of eigenprojections, φ̃(g1) commutes with φ̃(g2). Hence, φ̃(g1) and

φ̃(g2) are simultaneously diagonalizable.

Lemma 4.12. Let f ∈ B be unitary (self-adjoint) with distinct eigenfunc-
tions where B is a basic building block of type 1, 3, 5 (or type 4 only if f ∈ B
is self-adjoint) of a real ATJ -algebra and let

f =
n∑
i=1

λiPi

be its spectral decomposition. There exists a unitary s ∈ B such that sfs∗

is diagonal. Furthermore, if B is a building block of type 4 and f ∈ B is a
unitary, then there exists a unitary s ∈ B such that sfs∗ is block diagonal
with two by two blocks.

Proof. Embed the building blocks of type 1 and 3 in C([0, 1],Mm(F)) where
F ∈ {C,H},m ∈ {n, n2 } respectively and embed the building blocks of type
4 and 5 in C([0, 1], η2) ⊗R Mm(F)) where F ∈ {R,H},m ∈ {n, n2 }, η2(t) =

1 − t. The embedding map is ι(f) = f ◦ β where β(t) = e2πit. According
to [30, Lemma 2.5], for type 1 and 3 blocks there exists a unitary u ∈
C([0, 1],Mm(F)) such that ufu∗ is diagonal. As in the proof of [30, Lemma
2.5], we can set u = [e1, . . . , en] where ei are normalized eigenvector functions
(i.e., for each t ∈ [0, 1], ei(t) is an eigenvector). Since f(0) = f(1), there
exists a permutation σ ∈ Sn such that λσ(i)(0) = λi(1) and Pσ(i)(0) = Pi(1).
Since Pσ(i)(0) = Pi(1), we conclude eσ(i)(0) = ei(1). If f is self-adjoint, then
σ = id and hence u belongs to the real building block (type 1 or 3). If f is
unitary then we proceed as follows:

Define p ∈ C([0, 1],Mm(F)) by p(t) = P where P is an elementary per-
mutation matrix (a column-switching transformation) where the permuta-
tion corresponds to σ ∈ Sn. It is known that P is a self-adjoint unitary
and Det(P ) = (−1)d where d is the number of transpositions in the de-
composition of σ. For a building block of type 1 (3), there exists a path
of unitaries z ∈ C([0, 1],R) ⊗R Mn(C) (z ∈ C([0, 1],R) ⊗R Mn

2
(H)) that

connects I to P . For example, we can connect I to iI through the path
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u1(t) = I cos(πt2 ) + iI sin(πt2 ) and we can connect iI to P through the path

u2(t) = iI cos(πt2 ) + P sin(πt2 ). Let’s denote the composition of these two
paths by u. If we set s = uz, then s belongs to the real building block (type
1 or 3).

For building blocks of type 4 and 5, we use the fact they are isomorphic
to

{f ∈ C([0, 1],C)⊗R Mn(R)|f(0), f(1) ∈Mn(R)}
and

{f ∈ C([0, 1],C)⊗R Mn(R)|f(0), f(1) ∈Mn
2
(H)},

respectively. If B is a building block of type 4 (5) and f ∈ B is self-adjoint
(unitary or self-adjoint), then the unitary u = [e1, . . . , en] is not necessarily
in the building block because u(0), u(1) may not be in Mn(R) (Mn

2
(H)).

However, since eigenvalues are distinct, there exist unitary diagonal matrices
Λ1,Λ2 ∈ Mn(C) such that Λ1u(0),Λ2u(1) ∈ Mn(R) (Mn

2
(H)). Let Λ ∈

C([0, 1],Mn(C)) be a path of unitary diagonal matrices that connects Λ1 to
Λ2. Then s = Λ∗u is a unitary in the building block 4 (5) and s diagonalizes
f . If B is of type 4 and f ∈ B is unitary, the same proof works with the
difference that sfs∗ is block diagonal instead of diagonal. �

Remark 4.13. If A = C(T, η0), B is a basic building block of a real
AT2-algebra, φ and ψ are unital ∗-homomorphisms from A to B such that
they give rise to the same maps from K1(A ⊗R C) to K1(B ⊗R C). Then,
w(Det(φ(g0))) = w(Det(ψ(g0))) because φ(g0) = φC(g0 ⊗ 1) and ψ(g0) =
ψC(g0 ⊗ 1).

Lemma 4.14. Let A ∈ {C(T,R), C(T, η0)} and B be a basic building block
of a real ATJ -algebra and let φ, ψ be unital ∗-homomorphisms from A to B
such that they give rise to the same maps from

K1(A)/Tor(K1(A)) −→ K1(A⊗R C) −→ K1(A)/Tor(K1(A))

to

K1(B)/Tor(K1(B)) −→ K1(B ⊗R C) −→ K1(B)/Tor(K1(B)).

Let φ̃ and ψ̃ be their multiplicity-free approximants on the set of canonical
central generators G = {g0, g1, g2} such that

φ̃(g) =
k∑
i=1

θipi and ψ̃(g) =
k∑
i=1

βiqi

are the corresponding spectral decompositions for g ∈ G. Then, there is a
unitary V ∈ B (V ∈ B⊗RC if B is of type 4 and φ̃(g) is unitary) such that

‖V φ̃(g)V ∗ − ψ̃(g)‖ =

∥∥∥∥∥
k∑
i=1

θiqi −
k∑
i=1

βiqi

∥∥∥∥∥
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Proof. (i) Let A = C(T, η0):
If B is a building block of type 1, 3, or 5, then there exists a permutation

σ ∈ Sn for φ̃(g0) such that θi(1) = θσ(i)(0) where i ∈ {1, . . . , n}. Since

φ̃(g0) is multiplicity-free, it follows from [32, Lemma 1.7] that σ is a cyclic
permutation of some order m1. Moreover, there exists an integer x ∈ Z such
that w(Det(φ̃(g0))) = nx + m1 (cf. [24, Lemma 2.2]). Similarly, we have

w(Det(ψ̃(g0))) = ny + m2 where m2 is the order of a cyclic permutation

µ ∈ Sn. As stated in Remark 4.13, w(Det(φ̃(g0))) = w(Det(ψ̃(g0))) and we
conclude that m1 = m2 or equivalently σ = µ. By Lemma 4.12, there is a
unitary V ∈ B with the required property. If B is of type 4, then there is a
unitary V ∈ B ⊗R C with the required property.

(ii) Let A = C(T,R):

If B is a building block of type 1, 3, 4, or 5 and if

n∑
i=1

θipi and

n∑
i=1

βiqi are

the spectral decompositions of φ̃C(g0) and ψ̃C(g0) respectively, then there
exist cyclic permutations σ, µ ∈ Sn such that θi(1) = θσ(i)(0) and βi(1) =
βµ(i)(0) where i ∈ {1, . . . , n}. Hence,

φ̃(g1) =

n∑
i=1

Re(θi)pi, φ̃(g2) =

n∑
i=1

Im(θi)pi,

ψ̃(g1) =

n∑
i=1

Re(βi)qi, ψ̃(g2) =

n∑
i=1

Im(βi)qi.

Therefore, σ = µ. By Lemma 4.12, there is a unitary V ∈ B with the
required properties. �

Lemma 4.15. Let A ∈ {C(T,R), C(T, η0)} and B be a basic building block
of a real ATJ -algebra and let φ and ψ be unital ∗-homomorphisms from A
to B such that they give rise to the same maps from

K1(A)/Tor(K1(A)) −→ K1(A⊗R C) −→ K1(A)/Tor(K1(A))

to

K1(B)/Tor(K1(B)) −→ K1(B ⊗R C) −→ K1(B)/Tor(K1(B)).

Moreover, let φ̃ and ψ̃ be their multiplicity-free approximants on the set of
generators. Let g0 be the canonical unitary generator of C(T,C) and let χrj
be the characteristic function of Irj = {e2πit|t ∈ [ j−1

r , jr )}. If for every pair

m,n ∈ N with n > 12 there is a finite subset F ⊂ C(T∪{0}, [0, 1]) and δ > 0
such that:

(i) τ(χmj (φ̃C(g0))) > 1
n for all j = 1, . . . ,m and τ ∈ T (B ⊗R C),

(ii) τ(χ3n
j (φ̃C(g0))) > 2δ for all j = 1, . . . , 3n and τ ∈ T (B ⊗R C),

(iii) Det(φ̃C(g0))(z) = λ1z
r and Det(ψ̃C(g0))(z) = λ2z

r for some con-
stants λ1, λ2 ∈ T and r ∈ Z,
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(iv) |τ(φ̃C(f(g0)))− τ(ψ̃C(f(g0)))| ≤ δ, f ∈ F and τ ∈ T (B ⊗R C),

then there is a unitary V ∈ B such that

‖V φ̃(g)V ∗ − ψ̃(g)‖ ≤ π
(

28

m
+

6

n

)
where g ∈ {g0, g1, g2} is one of the canonical central generators of A.

Proof. Note that φ̃C(g0) and ψ̃C(g0) are well-defined because we can write
g0 = g1⊗ 1 + g2⊗ i, or g0 = g0⊗ 1 depending on the type of A. By spectral
mapping theorem,

SpC(φ̃C(g1)) = Re(SpC(φ̃C(g0))), SpC(φ̃C(g2)) = Im(SpC(φ̃C(g0))).

We use the notations λ1
i = Re(λi), µ

1
i = Re(µi), λ

2
i = Im(λi), µ

2
i = Im(µi),

where λi and µi are the eigenfunctions of φ̃C(g0) and ψ̃C(g0) respectively.
(i) If A = C(T, η0) and B is a basic building block of type 1, 3, or 5 then

by Lemma 4.14 there exists a unitary V ∈ B such that

‖V φ̃(g0)V ∗ − ψ̃(g0)‖ =

∥∥∥∥∥
k∑
i=1

λiqi −
k∑
i=1

µiqi

∥∥∥∥∥ .
If B is a building block of type 4, then we proceed as in the last paragraph
of [30, Proposition 2.6]. We block digonalize φ̃(g0) and ψ̃(g0) by unitaries
Uφ̃ ∈ B and Uψ̃ ∈ B taking into account the following:

‖U∗
ψ̃
Uφ̃φ̃(g0)U∗

φ̃
Uψ̃ − ψ̃(g0)‖ = ‖Uφ̃φ̃(g0)U∗

φ̃
− Uψ̃ψ̃(g0)U∗

ψ̃
‖

= ‖W (Uφ̃φ̃(g0)U∗
φ̃
− Uψ̃ψ̃(g0)U∗

ψ̃
)W ∗‖

= ‖ diag(λ1 − µ1, . . . , λk − µk)‖

where W is the constant unitary of Lemma 4.7.
(ii) If A = C(T,R), then by Lemma 4.14 and Remark 4.11 for g ∈ {g1, g2}

there exists a unitary V ∈ B such that

‖V φ̃(g)V ∗ − ψ̃(g)‖ =

∥∥∥∥∥
k∑
i=1

λji qi −
k∑
i=1

µji qi

∥∥∥∥∥
where j ∈ {1, 2}.

Note that if Det(φ̃C(g0))(z) = λ1z
r1 , Det(ψ̃C(g0))(z) = λ2z

r2 and r1 6= r2,

then w(Det(φ̃C(g0))(z) 6= w(Det(ψ̃C(g0))(z) which is a contradiction. Thus,
under our assumption, the continuous function α in condition (3) of [24,
Lemma 2.3] is zero and µ = λ1λ

−1
2 .

In all cases, conditions (i)–(iv) and [24, Lemma 2.3] implies that

‖λi − µi‖ ≤ π
(

28

m
+

6

n

)
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for all 1 ≤ i ≤ k. Hence,∥∥∥∥∥
k∑
i=1

λji qi −
k∑
i=1

µji qi

∥∥∥∥∥ ≤ max{‖λji − µ
j
i‖ : 1 ≤ i ≤ k}

≤ max{‖λi − µi‖ : 1 ≤ i ≤ k} ≤ π
(

28

m
+

6

n

)
. �

Theorem 4.16. For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, let A and B be di-
rect sums of basic building blocks of a real circle-quotient algebra associated
to a real ATJ -algebra (cf. Definition 5.2) and let φ and ψ be unital ∗-
homomorphisms from A to B giving rise to the same map from the pair
K0(A) −→ K0(A⊗R C) to the pair K0(B) −→ K0(B ⊗R C) and from

K1(A)/Tor(K1(A)) −→ K1(A⊗R C) −→ K1(A)/Tor(K1(A))

to

K1(B)/Tor(K1(B)) −→ K1(B ⊗R C) −→ K1(B)/Tor(K1(B)).

If the images of φC and ψC on the basic building blocks having circle as their
spectrum satisfy the conditions in the hypothesis of Lemma 4.15 and on the
basic building blocks having interval as their spectrum satisfy the conditions
in the hypothesis of [30, Proposition 2.6], then there exists a unitary u ∈ B
such that φC and (Ad(u))ψC agree to within π(28

m + 6
n) on the canonical

generators of A⊗R C.

Proof. This is the analogue of [10, Theorem 4] and its proof follows from
Lemma 4.1, Lemma 4.3, Lemma 4.4, [30, Lemma 2.1], [30, Lemma 2.2], [30,
Lemma 2.3], Lemma 4.15 and [30, Proposition 2.6]. �

Remark 4.17. As it is pointed out on page 129 of [10], the determinant
hypothesis in Lemma 4.15 can be weakened to the requirement that the
images of canonical unitary generator under the two (complexified) maps
have the same determinant.

5. The reduction theorem

Lemma 5.1. Let A = C(X, φ̃)⊗RMn(F) and B be a real unital C∗-algebra

where F ∈ {R,C,H}, X is a compact Hausdorff space and φ̃ is the involutive
homeomorphism of X. If ψ : A −→ B is a unital ∗-homomorphism, then
ψ(A) ' C(F ∪ φ̃(F ), φ̃)⊗R Mn(F) where F is a closed subset of X.

Proof. Clearly, ψ(A) ' A/Ker(ψ) and Ker(ψ) as a closed ideal of A is of
the form I ⊗R Mn(F) where

I = {f ∈ C(X, φ̃) | f|F = 0} = {f ∈ C(X, φ̃) | f|F∪φ̃(F ) = 0}

for some closed subset F of X. The map

h : (C(X, φ̃)/I)⊗R Mn(F) −→ C(F ∪ φ̃(F ), φ̃)⊗R Mn(F)
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defined by h([f ]⊗ c) = f|F∪φ̃(F ) ⊗ c is an isomorphism and

A/Ker(ψ) ' (C(X, φ̃)/I)⊗R Mn(F). �

In the above lemma, the space F is compact but it is not a CW-complex.
Therefore, we need the following definition inspired by [24, Lemma 1.3] to
reduce the problem to so-called good quotients:

Definition 5.2. A real C∗-algebra A is called a real circle-quotient algebra
associated to a real AT2-algebra if A =

⊕m
j=1A

i
j , where i ∈ {1, . . . , 6} ∪

{9, . . . , 16} and Aij are of one of the following forms:

A1
j = C(T,R)⊗R Mnj (C)

A2
k = C(T,R)⊗R Mnj (R)

A3
j = C(T,R)⊗R Mnj

2

(H)

A4
j = C(T, η0)⊗R Mnj (R)

A5
j = C(T, η0)⊗R Mnj

2

(H)

A6
j = C(T, η1)⊗R Mnj (R)

A9
j = Mnj (C)

A10
j = Mnj (R)

A11
j = Mnj

2

(H)

A12
j = C([0, 1],R)⊗R Mnj (C)

A13
j = C([0, 1],R)⊗R Mnj (R)

A14
j = C([0, 1],R)⊗R Mnj

2

(H)

A15
j = C([0, 1], η2)⊗R Mnj (R)

A16
j = C([0, 1], η2)⊗R Mnj

2

(H)

where η2(t) = 1 − t (cf. [30]). If C(T, η1) ⊗R Mnj (R) is not in the list
of building blocks then A is called a real circle-quotient algebra associated
to a real AT1-algebra. Moreover, A is called a real circle-quotient algebra
associated to a real ATJ -algebra if j ∈ J and

J ∈ {{1, 9, 12}, {3, 4, 10, 11, 14, 15}, {3, 5, 11, 14, 16}}.

Remark 5.3. The functions g5 ∈ C([0, 1],R) and g6 ∈ C([0, 1], η2) defined
by g5(t) = t and g6(t) = i(1

2−t) are generators of C([0, 1],R) and C([0, 1], η2)
respectively (cf. [30]).

Lemma 5.4. Let A be a real C∗-algebra and π : A −→ B(HF) be a finite-
dimensional representation of A where F ∈ {R,C,H}. Then, π is unitarily
equivalent to a direct sum of irreducible representations.
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Proof. For complex C∗-algebras, this is proved on page 36 of [8, 2.3.5]. The
proof carries to the real case as well. Note that a nondegenerate represen-
tation is a direct sum of cyclic representations. For HF = HR, combine
[20, Proposition 5.8.8, (2)], [20, Proposition 5.2.7, (3)], and [20, Proposition
5.3.7, (3)]. �

Lemma 5.5. Let A be a real commutative C∗-algebras and let B = A ⊗R
Mn(F) where F ∈ {R,C,H}. Then, every irreducible representation of B is
unitarily equivalent to π1 ⊗ π2 where π1 is an irreducible representation of
A and π2 is an irreducible representation of Mn(F).

Proof. For complex C∗-algebras, this is proved in [25, Lemma B.48] and its
proof carries to any real GCR (postliminal) C∗-algebra including the real
C∗-algebra B. �

Proposition 5.6. Let φ : C(Xi, ηi)⊗RMni(Fi) −→ C(Xj , ηj)⊗RMnj (Fj) be
a ∗-homomorphism, Fi,Fi ∈ {R,C,H}, Xi, Xj be compact Hausdorff spaces
and ηi, ηj be the involutive homeomorphisms of Xi, Xj, then given

f = g ⊗ a ∈ C(Xi, ηi)⊗R Mni(Fi)

and y ∈ Xj, there exist x1, . . . , xk ∈ Xi, a standard homomorphism (cf. [13,
Definition 3.1]) µ : Mni(Fi) −→ Mm(Fj) and a unitary u ∈ F ⊗R Mnj (Fj)
where F ∈ {R,C} and nj ≥ mk such that

φ(f)(y) = Ad(u)(diag(g(x1)⊗ µ(a), . . . , g(xk)⊗ µ(a), 0, .., 0)).

Proof. By Lemma 5.4, the representation

π := evy ◦ φ : C(Xi, ηi)⊗R Mni(Fi) −→ F⊗R Mnj (Fj),

F ∈ {R,C}, is unitarily equivalent to ⊕ki=1πi where each πi is irreducible
(note that some of them may be zero). By Lemma 5.5, each πi is unitarily
equivalent to π1

i ⊗ π2
i where π1

i is an irreducible representation of C(Xi, ηi)
and π2

i is an irreducible representation of Mni(Fi). An irreducible represen-
tation of C(Xi, ηi) is a point-evaluation map. By [13, Lemma 3.5], any homo-
morphism (including irreducible representations) from Mni(Fi) into another
real matrix algebra is unitarily equivalent to a standard homomorphism. In
summary, there exist a unitary u ∈ F ⊗R Mnj (Fj), F ∈ {R,C}, a standard
homomorphism µ : Mni(Fi) −→ Mm(Fj) and points x1, . . . , xk ∈ Xi such
that π(f) = φ(f)(y) = Ad(u)(diag(g(x1)⊗ µ(a), . . . , g(xk)⊗ µ(a), 0, . . . , 0))
where f = g ⊗ a. Note that there is no incompatibility or inconsistency
issue because nonexistence of the representation π implies nonexistence of
the homomorphism φ. �

Definition 5.7. In Proposition 5.6, the set {x1, . . . , xk} is called the spec-
trum of φ(f) at y, and is denoted by Spec(φ(f)(y)). We define the spectrum
of φ(f) by

Spec(φ(f)) := ∪y∈Xj Spec(φ(f)(y)).
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Moreover, if A = ⊕i∈IAi where Ai and B are of the type defined in Propo-
sition 5.6, φ : A −→ B is a ∗-homomorphism, and y ∈ Xj then

Spec(φ(f)(y)) := ∪i∈I Spec(φi(f)(y)).

Theorem 5.8. For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, let A ' lim
→

(Ai, φi,i+1)

be a simple unital infinite-dimensional real ATJ -algebra. Then,

(i) A is also the direct limit of a sequence of real circle-quotient algebras
associated to the real ATJ -algebra A with unital injective connecting
maps.

(ii) The above inductive sequence with injective connecting maps can be
perturbed so that its complexification satisfies the uniformly varying
determinant property (preserving the injectivity and agreeing with
the above sequence approximately at the level of traces):

Det(φCi,i+1(g0))(z) = λzk

for all i where λ ∈ T, k ∈ Z are constants, and g0(z) = z is the
generator of C(T,C) and Det(φCi,i+1(g5))(t) = c where c ∈ R is a

constant and g5(t) = t is the generator of C([0, 1],C). Moreover, A
is also the direct limit of this new inductive system.

Proof. (i) We divide the proof into three steps:

Step 1. Let I1 ⊂ Ker(φ1,2) be an ideal of A1 such that the spectrum of I1

is a union of finitely many arc-segments and points. If we define

ψ1,2 : A1
π1−→ A1/I1

β1−→ A1/Ker(φ1,2)
γ1−→ A2

where π1, β1 are the unital surjective canonical homomorphisms and γ1 is
the canonical unital injective homomorphism, then ψ1,2 = φ1,2. Next, we
define

ψ2,3 : A2
π2−→ A2/I2

β2−→ A2/Ker(φ2,3)
γ2−→ A3

and

α1,2 : A1/I1
π2◦γ1◦β1−−−−−−→ A2/I2.

Therefore, we have the following intertwining diagram:

A1

π1

��

φ1,2 // A2
φ2,3 //

π2

��

. . . . . . . . . // A

A1/I1
α1,2 //

γ1◦β1

<<

A2/I2
α2,3 // . . . . . . . . . // A

Hence, A = lim
→

(Bi, αi,i+1) where Bi = Ai/Ii are real circle-quotient alge-

bras.
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Step 2. If there exits an Bl
i in Bi = ⊕mk=1B

k
i such that spectrum of Bl

i is T
and αli,∞ is injective, then we leave it untouched. However, if there exists an

Bj
i in Bi = ⊕mk=1B

k
i such that spectrum of Bj

i is T and αji,i+1 is not injective,

then we choose an ideal Ij ⊂ Ker(αji,i+1) such that Bj
i /Ij is a direct sum

of blocks with spectrum the interval or point. Define Di by replacing Bj
i

in Bi with Bj
i /Ij and αji,i+1 in αi,i+1 with γj ◦ βj . Therefore, we have the

following intertwining diagram:

B1

��

α1,2 // B2
α2,3 //

��

. . . . . . . . . // A

D1
λ1,2 //

>>

D2
λ2,3 // . . . . . . . . . // A

Hence, A = lim
→

(Di, λi,i+1) where the maps λi,i+1 are injective on the sum-

mands with spectrum the circle.

Step 3. In this step, all the partial maps on the summands with spec-
trum the circle or point are injective where the former is the consequence of
Step 2 and the latter is the consequence of the simplicity of matrix algebras.

Suppose that Dj
1 is an interval building block summand of D1 and that

λj1,∞ := λ1,∞|
D

j
1

is not injective. Let Un denote the spectrum of Ker(λj1,n)

and U the spectrum of Ker(λj1,∞) identified in the canonical way as open

subsets of the spectrum of Dj
1. Then, we have Un ⊆ Un+1 for all n, and

U = ∪∞n=1Un. Let K denote the spectrum of λj1,∞ identified as a closed sub-
set of the spectrum in the canonical way, i.e., K is the compliment of U .
Choose a summable sequence {δn} of positive real numbers. Choose a finite

set J1, . . . , Jl of pairwise disjoint closed subintervals of the spectrum of Dj
1

with the following properties:

(1) The endpoints of the Ji’s are in U.
(2) The compliment of J1 ∪ J2 ∪ · · · ∪ Jl is contained in U. Denote this

compliment by V.
(3) The set V is invariant under the involution.
(4) The set K which by (2) is contained in the union of the J ’s, is

δ1-dense in this union.

It follows that the closure of V is contained in U. Since the closure of V is a
compact set, it follows that for some m, we have this closure being contained
in Um, and consequently V is contained in Um. Let IV denote the involution

invariant ideal of Dj
1 corresponding to the open set V. We then have that

Dj
1/IV is a finite direct sum of interval algebras, having spectra the Ji’s.

Furthermore, the map λj1,m factors through this quotient in the canonical
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way: Dj
1 → Dj

1/IV → Dm. Now, we do this for each interval summand of
D1 (possibly having to increase m). We get a new circle quotient algebra C1

and maps π1 : D1 → C1 and ψ1 : C1 → Dm with the following properties:

(1) C1 has the same circle summands as D1, and the map π1 is just the
identity on all of the circle summands.

(2) ψ1 ◦ π1 = λ1,m.
(3) For each interval summand, Cs1 , the spectrum of λm,∞ ◦ ψs1,m is δ1-

dense in the spectrum of Cs1 , when these latter spectra are identified
with the J ’s.

Now, we relabel Dm with D2, and proceed to find C2, π2, and ψ2 in the
same way with δ2. Therefore, we have the following intertwining diagram:

D1

��

λ1,2 // D2
λ2,3 //

��

. . . . . . . . . // A

C1
χ1,2 //

>>

C2
χ2,3 // . . . . . . . . . // A

where the Dn all have the same maps into the limit as they did before. Thus,
all of the partial maps involving circle type summands are injective. Fur-
thermore, passing to the subsequence of the C’s, we have that the spectrum
of the image in the limit is δn-dense in each interval type summand. In the
new inductive system, suppose Cs1 is an interval type summand of C1, and
let gs be the central generator of Cs1 . Then, χ1,2(gs) is a self-adjoint (skew-
adjoint) element of C2 whose spectrum is contained in the appropriate J ,
and, since it gets mapped to the image of the same old λs2,∞ in the new sys-
tem, its spectrum is δ1-dense in this J. Thus it may be perturbed to a new
generator, commuting with the matrix units of the image of χ1,2(Cs1) having
the whole of J as spectrum, and being still within some fixed multiple of δ
away from χ1,2(gs). This defines a new partial map from Cs1 into C2, which
we may assume takes the unit of Cs1 to the same projection of C2 as the old
one, is injective, and agrees with the old map to within some fixed multiple
of δ1 on the generators. Define a map µ1,2 : C1 → C2 to be these new maps
on the interval type summands of C1, and equal to χ1,2 on the circle type
summands. Then µ1,2 is injective, and agrees approximately on generators
with χ1,2.
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Now, we have a new inductive system {Ci, µi,i+1} with injective connect-
ing maps and the following approximately intertwining diagram:

C1

id

��

µ1,2 // C2
µ2,3 //

id

��

. . . . . . . . . // A

C1
χ1,2 // C2

χ2,3 // . . . . . . . . . // A

(ii) Note that injectivity of φ implies injectivity of the complexification
map φC := φ ⊗ id. We can perturb the injective maps such that their
image on the set of canonical central generators has distinct eigenfuncions
and this perturbation has no adverse effect on K0-groups, K1-groups of
complexification, traces and injectivity of maps. It suffices to consider the
center of a single building block in the source algebra which we denote it by
A and a single building block in the target algebra which we denote it by B.

(1) If A = C(T,R) and B = C(T,R)⊗R Mn(C), then

φC(g0) = φ(g1)⊗ 1 + φ(g2)⊗ i
and by spectral decomposition:

n∑
i=1

λi(t)Pi(t) = φC(g0)(t) = φ

(
g0 + g∗0

2

)
(t) + iφ

(
g0 − g∗0

2i

)
(t)

= φ(g1)(t) + iφ(g2)(t)

=

n∑
i=1

Re(λi)(t)Pi(t) + i

n∑
i=1

Im(λi)(t)Pi(t).

Let α =
Det(φC(g0))(1)gk0

Det(φC(g0))
= e2iπF where F ∈ C([0, 1],R) and k =

w(Det(φC(g0))) so that winding number of α becomes zero. Let ψ
be the involutive ∗-antiautomorphism of B ⊗R C such that

(B ⊗R C)ψ = B

and ψ̃ be its extension to its ambient interval algebra. Pick an eigen-
function λj(t) = e2iπGj(t) ∈ Sp(φC(g0)(t)) where Gj ∈ C([0, 1],R)
and perturb it as follows:

φ̃(g1)(t) =
1

2

 n∑
i 6=j

Re(λi)(t)Pi(t) + ψ̃(Re(λj))(t)ψ̃(Pi)(t)


+

1

2
[Re(αλj)(t)Pj(t) + ψ̃(Re(αλj))(t)ψ̃(Pj)(t)]

φ̃(g2)(t) =
1

2

 n∑
i 6=j

Im(λi)(t)Pi(t) + ψ̃(Im(λi))(t)ψ̃(Pi)(t)
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+
1

2
[Im(αλj)(t)Pj(t) + ψ̃(Im(αλj))(t)ψ̃(Pj)(t)].

Hence,

Det(φ̃C(g0))(z) =

 n∏
i=1,i 6=j

λi(z)

α(z)λj(z) = Det(φC(g0))(1)zk.

(2) If A = C(T,R) and B = C(T,R) ⊗R Mn
2
(H), then we have double

degeneracy. Let ψ be the involutive ∗-antiautomorphism of B ⊗R C
such that (B ⊗R C)ψ = B. Since winding number of α (α is de-
fined in case (1)) is zero, the fractional powers of α exist (here, we

set α̃4 = α). On the other hand, one can check that ψ̃ permutes

the eigenprojections (cf. Remark 4.8), i.e., ψ̃(Pj) = Pσ(j) for some
permutation σ where Pj is an eigenprojection in the spectral decom-
position. We can consider the following perturbations:

φ̃(g1)(t) =
1

2

 n∑
i 6∈{j,l,σ(j),σ(l)}

Re(λi)(t)(Pi(t) + ψ̃(Pi)(t))


+

1

2
Re(α̃λj)(t)(Pj(t) + ψ̃(Pj)(t))

+
1

2
Re(α̃λσ(j))(t)(Pσ(j)(t) + ψ̃(Pσ(j))(t))

+
1

2
Re(α̃λl)(t)(Pl(t) + ψ̃(Pl)(t))

+
1

2
Re(α̃λσ(l))(t)(Pσ(l)(t) + ψ̃(Pσ(l))(t))

where Re(λj) = Re(λl) due to the double degeneracy.

φ̃(g2)(t) =
1

2

 n∑
i 6∈{j,l,σ(j),σ(l)}

Im(λi)(t)(Pi(t) + ψ̃(Pi)(t))


+

1

2
Im(α̃λj)(t)(Pj(t) + ψ̃(Pj)(t))

+
1

2
Im(α̃λσ(j))(t)(Pσ(j)(t) + ψ̃(Pσ(j))(t))

+
1

2
Im(α̃λl)(t)(Pl(t) + ψ̃(Pl)(t))

+
1

2
Im(α̃λσ(l))(t)(Pσ(l)(t) + ψ̃(Pσ(l))(t))

where Im(λj) = Im(λl) due to the double degeneracy. Hence,

Det(φ̃C(g0))(z) =

 n∏
i 6∈{j,l,σ(j),σ(l)}

λi(z)

 (α̃(z))4λj(z)λσ(j)(z)λl(z)λσ(l)(z)
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= Det(φC(g0))(1)zk.

(3) If A = C(T,R) and B = C(T, η0) ⊗R Mn(R), and ψ is the invo-
lutive ∗-antiautomorphism of B ⊗R C such that (B ⊗R C)ψ = B,

then ψ̃(Pj) = Pσ(j) for some permutation σ where Pj is an eigen-
projection in the spectral decomposition. According to the diagram
of K1-triples, the map φC : K1(A ⊗R C) −→ K1(B ⊗R C) is zero.

Therefore, w(Det(φC(g0))) = 0 implying that α = Det(φC(g0))(1)
Det(φC(g0))

and

α(z̄) = α(z). Since winding number of α is zero, the fractional pow-
ers of α exist (here, we set α̃2 = α). We can consider the following
perturbations (cf. Remark 4.8):

φ̃(g1)(t) =
1

2

 n∑
i 6∈{j,σ(j)}

Re(λi)(t)Pi(t) + ψ̃(Re(λi))(t)ψ̃(Pi)(t)


+

1

2
Re(α̃λj)(t)Pj(t) +

1

2
ψ̃(Re(α̃λj))(t)ψ̃(Pj)(t)

+
1

2
Re(α̃λσ(j))(t)Pσ(j)(t) +

1

2
ψ̃(Re(α̃λσ(j)))(t)ψ̃(Pσ(j))(t)

φ̃(g2)(t) =
1

2

 n∑
i 6∈{j,σ(j)}

Im(λi)(t)Pi(t) + ψ̃(Im(λi))(t)ψ̃(Pi)(t)


+

1

2
Im(α̃λj)(t)Pj(t) +

1

2
ψ̃(Im(α̃λj))(t)ψ̃(Pj)(t)

+
1

2
Im(α̃λσ(j))(t)Pσ(j)(t) +

1

2
ψ̃(Im(α̃λσ(j)))(t)ψ̃(Pσ(j))(t).

Hence,

Det(φ̃C(g0))(z) =

 n∏
i 6∈{j,σ(j)}

λi(z)

 (α̃(z))2λj(z)λσ(j)(z) = Det(φC(g0))(1).

(4) If A = C(T,R) and B = C(T, η0) ⊗R Mn
2
(H), and ψ is the invo-

lutive ∗-antiautomorphism of B ⊗R C such that (B ⊗R C)ψ = B,

then ψ̃(Pj) = Pσ(j) for some permutation σ where Pj is an eigen-
projection in the spectral decomposition. According to the diagram
of K1-triples, the map φC : K1(A ⊗R C) −→ K1(B ⊗R C) is zero.

Therefore, w(Det(φC(g0))) = 0 implying that α = Det(φC(g0))(1)
Det(φC(g0))

and

α(z̄) = α(z). Since winding number of α is zero, the fractional pow-
ers of α exist (here, we set α̃4 = α). We can consider the following
perturbations (cf. Remark 4.8):

φ̃(g1)(t) =
1

2

 n∑
i 6∈{j,l,σ(j),σ(l)}

Re(λi)(t)Pi(t) + ψ̃(Re(λi))(t)ψ̃(Pi)(t)
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+
1

2
Re(α̃λj)(t)Pj(t) +

1

2
ψ̃(Re(α̃λj))(t)ψ̃(Pj)(t)

+
1

2
Re(α̃λσ(j))(t)Pσ(j)(t) +

1

2
ψ̃(Re(α̃λσ(j)))(t)ψ̃(Pσ(j))(t)

+
1

2
Re(α̃λl)(t)Pl(t) +

1

2
ψ̃(Re(α̃λl))(t)ψ̃(Pl)(t)

+
1

2
Re(α̃λσ(l))(t)Pσ(l)(t) +

1

2
ψ̃(Re(α̃λσ(l)))(t)ψ̃(Pσ(l))(t)

φ̃(g2)(t) =
1

2

 n∑
i 6∈{j,l,σ(j),σ(l)}

Im(λi)(t)Pi(t) + ψ̃(Im(λi))(t)ψ̃(Pi)(t)


+

1

2
Im(α̃λj)(t)Pj(t) +

1

2
ψ̃(Im(α̃λj))(t)ψ̃(Pj)(t)

+
1

2
Im(α̃λσ(j))(t)Pσ(j)(t) +

1

2
ψ̃(Im(α̃λσ(j)))(t)ψ̃(Pσ(j))(t)

+
1

2
Im(α̃λl)(t)Pl(t) +

1

2
ψ̃(Im(α̃λl))(t)ψ̃(Pl)(t)

+
1

2
Im(α̃λσ(l))(t)Pσ(l)(t) +

1

2
ψ̃(Im(α̃λσ(l)))(t)ψ̃(Pσ(l))(t).

Hence,

Det(φ̃C(g0))(z) =

 n∏
i 6∈{j,l,σ(j),σ(l)}

λi(z)

 (α̃(z))4λj(z)λσ(j)(z)λl(z)λσ(l)(z)

= Det(φC(g0))(1).

(5) If A = C(T, η0) and B = C(T,R) ⊗R Mn(C), then consider the
following perturbation:

φ̃(g0)(z) =

 n∑
i=1,i 6=j

λi(z)Pi(z)

+ α(z)λj(z)Pj(z).

(6) If A = C(T, η0) and B = C(T,R) ⊗R Mn
2
(H), then eigenfunctions

appear as conjugate pairs and the determinant is automatically con-
stant.

(7) If A = C(T, η0) and B = C(T, η0)⊗RMn(R), and ψ is the involutive
∗-antiautomorphism of B ⊗R C such that (B ⊗R C)ψ = B, then

ψ̃(Pj) = Pσ(j) for some permutation σ where Pj is an eigenprojection
in the spectral decomposition. Since winding number of α (α is
defined in case (1)) is zero, the fractional powers of α exist (here, we
set α̃(z)4 = α(z)ᾱ(z̄)). We can consider the following perturbation
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(cf. Remark 4.8):

φ̃(g0)(z) =
1

2

 n∑
i 6∈{j,σ(j)}

λi(t)Pi(z) + ψ̃(λi)(t)ψ̃(Pi)(t)


+

1

2
(α̃λj)(t)Pj(t) +

1

2
ψ̃(α̃λj)(t)ψ̃(Pj)(t)

+
1

2
(α̃λσ(j))(t)Pσ(j)(t) +

1

2
ψ̃(α̃λσ(j))(t)ψ̃(Pσ(j))(t).

Hence,

Det(φ̃C(g0))(z) =

 n∏
i 6∈{j,σ(j)}

λi(z)

 (α̃(z))2λj(z)λσ(j)(z) = zk.

(8) If A = C(T, η0) and B = C(T, η0) ⊗R Mn
2
(H), then we proceed

similar to case (7) taking into account the double degeneracy.

If A is the center of a basic building block of a real AI-algebra and B is
a basic building block of a real AI-algebra (the map from A to B must be
allowable, see the definition of circle-quotient algebra associated to a real
ATJ -algebra, Definition 5.2), then we can proceed similar to the above (a

case by case argument). If
n∑
j=1

λjPj is the spectral decomposition of φC(g5)

then

φ(g6) =

n∑
j=1

(
i

2
− iλj

)
Pj .

The other cases, i.e., when A is a basic building block of a real AF-
algebra or A is the center of a basic building block of a real AI-algebra (real
ATJ -algebra) and B is a basic building block of a real ATJ -algebra (real
AI-algebra, real AF-algebra), can be handled similarly (note that the map
from A to B must be allowable, see the definition of circle-quotient algebra
associated to a real ATJ -algebra, Definition 5.2).

The above perturbation has the following properties:

(I) It has no effect on K0-groups because it changes the eigenfunctions
and not the eigenprojections.

(II) Since w(α) = w(α̃) = 0, it has no effect on the induced map from
K1(A⊗R C) to K1(B ⊗R C).

(III) The perturbed sequence agrees approximately at the level of traces
of the complexification (cf. [10, Theorem 6]).

Moreover, A is also the direct limit of this new inductive system because
the approximate intertwining argument used in [10, Theorem 6] is exactly
applicable to the diagram of complexifications and the maps constructed
there are all real C∗-algebra maps preserving the real structures (of course,
we are dealing with different generators but the key point is the relationship
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of other generators (gi, i = 1, . . . , 4) with the unitary generator g0). The
only significant change is the replacement of Theorem 4 in that proof with
Theorem 4.16. �

6. Approximate divisibility

Definition 6.1 ([4]). A C∗-algebra A is said to be approximately divisible
if for any finite subset F ⊂ A, any ε > 0 and any integer N > 0 there is a
finite-dimensional sub-C∗-algebra A0 ⊂ A and a finite subset F0 ⊂ A such
that F0 commutes with A0, F ⊂ε F0 (i.e., for any f ∈ F , dist(f, F0) < ε)
and each simple direct summand of A0 is of order at least N .

Theorem 6.2. Let A be a simple unital infinite-dimensional real ATJ -
algebra. It follows that A is approximately divisible.

Proof. By Theorem 5.8, A ' lim
→

(An, φn,n+1) where each φn,n+1 is injective

and unital, and each An is a real circle-quotient algebra (associated to the
real ATJ -algebra A). We do not discuss the summands that involve basic
building blocks of real interval algebras as the argument for these building
blocks is not different from what is discussed in [30, Proposition 3.6], see
also [10, Theorem 2]. We need to prove that for each n ∈ N, each N ∈
N, each finite set F ⊆ An and each ε > 0 there exists m > n and a ∗-
homomorphism ψ : An −→ Am such that ‖φn,m(f) − ψ(f)‖ < ε for f ∈ F
where φn,m = φm−1,m◦φm−2,m−1◦· · ·◦φn,n+1, and a unital finite-dimensional
C∗-subalgebra H of Am ∩ (ψ(An))′ such that each summand of H has order
at least N .

It suffices to consider An to be the center of a single basic building block
(i.e., a basic building block of a real ATJ -algebra). Simplicity of the limit to-
gether with injectivity of the connecting maps gives the approximate density
of the eigenvalues in the primitive ideal space of the source algebra. In the
complex case, this is proved in [7, Proposition 2.1]. We sketch the proof here
to affirm its validity for real C∗-algebras. Let Bδ(z) ⊆ Prim(An) be open and
nonempty. Take any f ∈ An with ∅ 6= supp(f) ⊆ Bδ(z). Assume that for any
m > n there exists ym ∈ Prim(Am) such that Spec(φn,m(f)(ym)) is not δ-
dense in Prim(An). In other words, Spec(φn,m(f)(ym))∩Bδ(z) = ∅ or equiv-
alently φn,m(f)(ym) = 0. Hence, Iym = {φn,m(f) ∈ Am | φn,m(f)(ym) = 0}
is a nontrivial proper closed two-sided ideal of Am (it is nontrivial because

f 6= 0 implies φn,m(f) 6= 0 by injectivity). Set J =
⋃∞
i=1 Iyi , then J is a

nontrivial proper closed two-sided ideal of A because if J is not proper then
1A ∈ J which implies 1Ak

∈ Iyk at some finite stage.
Once we established δ-density, we no longer need injectivity of connecting

maps and we can define the map φ : An −→ Ajm by φ := πj ◦ φn,m where πj
is the projection map and Ajm = C(T, ηj) ⊗R Mnj (F), ηj = id, F ∈ {C,H}
or ηj = η0, F ∈ {R,H}, is a single basic building block of Am.
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If p is an eigenprojection for the map φj : An → Ajm of multiplicity k,

then, as in the complex case, we may find a subalgebra of Ajm isomorphic to
Mk(R) and commuting with the image φj(An) by taking as matrix units k
trivial projections whose sum is p, and partial isometries implementing the
equivalences.

We divide the proof into two cases (by K1, we mean the K1 of the com-
plexification):

(i) An = C(T, η0):

Case 1. We approximate φ(g0) by φ̃(g0) with distinct eigenfunctions
such that this approximation does not change the K1-class. If the
K1-class of the φ̃(g0) or equivalently w(Det(φ̃(g0))) is a multiple of
the rank of the unit of the target algebra, then the coalescing process
produces eigenfunctions with large multiplicity, i.e., we can repeat
each one at least N times (eigenfunctions are 2Nδ-dense) and this

perturbation will not change w(Det(φ̃(g0))) or equivalently the K1-
class.

If φ̃(g0) does not belong to a type 4 building block, then we can

consider its diagonalization φ̃(g0) = udiag(λ1, . . . , λnj )u
∗ and define

ψ(g0) = udiag(µ1 ⊗ Il1 , . . . , µk ⊗ Ilk)u∗

where µi are the perturbed eigenfunctions and li ≥ N , and ψ(An)
commutes with a finite-dimensional sub-C∗-algebra

H =

k⊕
i=1

Mli(R)

of Ajm.
Since ‖µi − λs‖ ≤ 2Nδ where i = 1, . . . , k, s = 1, . . . , nj ,

‖ψ(g0)− φ̃(g0)‖
= ‖udiag(µ1 ⊗ Il1 , . . . , µk ⊗ Ilk)u∗ − udiag(λ1, . . . , λnj )u

∗‖

≤ max{‖µi − λs‖} ≤ 2Nδ ≤ ε

2
.

Hence,

‖φ(g0)− ψ(g0)‖ ≤ ‖φ̃(g0)− φ(g0)‖+ ‖ψ(g0)− φ̃(g0)‖ ≤ ε

2
+
ε

2
= ε.

If φ̃(g0) belongs to a type 4 building block Am, then we can pro-

ceed as in [30, Proposition 3.6], i.e., instead of diagonalizing φ̃(g0)
which may not be in Am anymore, we perturb it such that the di-
mension of each of its eigenprojections Pi is at least N and we then
cut it by the projections of the form (Pi +Pj) ∈ Am (if α is an invo-
lutive ∗-antiautomorphism of Am⊗RC such that (Am⊗RC)α = Am
then Pj = α̃(Pi)).
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Case 2. If K1-class of the image of the canonical central generator is
not a multiple of nj , then we can reduce this case to Case 1 through a
procedure called ”eigenvalue crossover”. The eigenvalue crossover is
explained on pages 101-107 of [10]. The difference with the complex
case is that we can now have two types of eigenfunctions: those
that satisfy α̃(λi) = λi and those that do not, but they undergo a
permutation such that α̃(λi) = λj for some j 6= i. Nevertheless, this
issue can be resolved as follows:

Let π : A→ B be a map of the form

π(f) =
∑
i

f ◦ λiPi +
∑
j

(f ◦ γjQj + f ◦ (ΦB ◦ γj ◦ ΦA)ΦB(Qj))

where the Pi have even multiplicity, and {Pi, Qj , φB(Qj)} is a pair-
wise orthogonal system. Form a (not necessarily real) homomor-
phism π1 as follows. First split each Pi into two equivalent subpro-
jections Pi = p1

i ⊕ p2
i , and take the first one from each pair. Then

take one projection from each Qj , φB(Qj) pair. Take as π1 the cut
down of π by the sum of the selected projections. We then have
π = π1 ⊕ π2, were π2 is completely determined by π1. Now use El-
liott’s method on π1 to get a new π′1 with all eigenvalues having a
certain multiplicity, and use the correspondence to do exactly the
matching perturbation to π2, so that π′1⊕π′2 is real. Notice that the
eigenvalue density of π2 is exactly the same as that of π1.

We provide a sketch of the “eigenvalue crossover” process for the
sake of completeness. Let w(Det(φ̃(g0))) = pnj + q and r = dnj

8 e
where p, q ∈ Z, |q| ≤ nj

2 , and choose nj large enough, i.e., nj ≥ 16.

Divide SpC(φ̃(g0)) into three subsets where each of them is strictly
δ
2 -dense in T; namely

G1 = {λ1, . . . , λ|q|+r},
G2 = {λ|q|+r+1, . . . , λ|q|+2r},
G3 = {λ|q|+2r+1, . . . , λnj}.

First, cross over each element of G3 with λ|q|+2r, λ|q|+2r−1, . . . , λ2r+1

of G2 (and possibly G1 depending on |q|). Next, cross over

λ|q|+2r, λ|q|+2r−1, . . . , λ2r+1

with the remaining 2r elements of G2 and G1. We always cross over
with the closest eigenvalue to G3 (by relabeling as necessary) in the
clockwise direction. In other words, we consider the sub-algebras
M|q|+r(F), Mr(F) and Mnj−|q|−2r(F) of Mnj (F) and inside of each
sub-algebra the K1-class of the image of the canonical generators
(namely, p + sign(q), p − sign(q) and p respectively) is a multiple
of the rank of the unit of that sub-algebra and consequently we are
back to Case 1.
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(ii) An = C(T,R): In this case, it is sufficient to repeat the above ar-
gument for φC(g0). We consider φC(g0) = φ(g1)⊗ 1 + φ(g2)⊗ i. As
above, we have two cases, for Case 1 we perturb both Re(λi) and
Im(λi). For Case 2, we perturb the functions Fi ∈ C([0, 1],R) in
λi = e2πiFi such that we have the appropriate coalescing of λi with
other eigenfunctions of φ̃C(g0). �

7. The classification theorem

Theorem 7.1. For a fixed J ∈ {{1}, {3, 4}, {3, 5}}, let A ' lim
→

(An, φn,n+1)

and B ' lim
→

(Bn, ψn,n+1) be simple unital real infinite-dimensional ATJ -

algebras. Suppose the following diagrams commute

(K0(A), [1A])

h0

��

qC // (K0(A⊗R C), [1A⊗RC])
qH //

hC0

��

(K0(A⊗R H)/Tor(K0(A⊗R H)), [1A⊗RH])

hH0

��
(K0(B), [1B])

qC // (K0(B ⊗R C), [1B⊗RC])
qH // (K0(B ⊗R H)/Tor(K0(B ⊗R H)), [1B⊗RH])

K1(A)/Tor(K1(A))

h1

��

c̃A // K1(A⊗R C)
r̃A //

hC1

��

K1(A)/Tor(K1(A))

h1

��
K1(B)/Tor(K1(B))

c̃B // K1(B ⊗R C)
r̃B // K1(B)/Tor(K1(B))

K0(A⊗R C)

hC0
��

ρA // Aff(T (A⊗R C))

M
��

K0(B ⊗R C)
ρB // Aff(T (B ⊗R C))

where the maps h0, h
C
0 , h

H
0 are positive order unit preserving group isomor-

phisms,

h1 : K1(A)/Tor(K1(A)) −→ K1(B)/Tor(K1(B)),

hC1 : K1(A⊗R C) −→ K1(B ⊗R C),

are group isomorphisms, φT : T (B ⊗R C) −→ T (A ⊗R C) is a continuous
affine isomorphism and φTφ

∗
B = φ∗AφT .

Then, there exists a ∗-isomorphism φ : A −→ B giving rise to the maps
h0, h

C
0 , h

H
0 , h1, hC1 , and φT .

Proof. For each i, letDi
A, Di

B, EiA, EiB be the followings triples respectively:

(K0(Ai), [1Ai ])
// (K0(Ai ⊗R C), [1Ai⊗RC])(K0(Ai ⊗R H)/Tor(K0

��
(Ai ⊗R H)), [1Ai⊗RH])
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(K0(Bi), [1A]) // (K0(Bi ⊗R C), [1Bi⊗RC])

��
(K0(Bi ⊗R H)/Tor(K0(Bi ⊗R H)), [1Bi⊗RH])

K1(A)/Tor(K1(A)) // K1(A⊗R C) // K1(A)/Tor(K1(A))

K1(B)/Tor(K1(B)) // K1(B ⊗R C) // K1(B)/Tor(K1(B))

The diagrams in the statement of the theorem induce the following three
diagrams. The argument in sections 5.1.1-5.1.3 of [10] applies directly to the
current situation (this step is the analogue of [30, Lemma 5.1]).

D1
A

��

// D2
A

//

��

. . . . . . . . . // DA

��
D1
B

//

>>

D2
B

// . . . . . . . . . // DB

OO

E1
A

��

// E2
A

//

��

. . . . . . . . . // EA

��
E1
B

//

>>

E2
B

// . . . . . . . . . // EB

OO

Aff(T (A1 ⊗R C))

��

// Aff(T (A2 ⊗R C)) //

��

. . . . . . . . . // Aff(T (A⊗R C))

��
Aff(T (B1 ⊗R C)) //

77

Aff(T (B2 ⊗R C)) // . . . . . . . . . // Aff(T (B ⊗R C))

OO

where the first two diagrams are commutative and the third diagram is ap-
proximately commutative and the three diagrams giving rise to the diagrams
in the statement of the theorem. Furthermore, exactly as in [10], since the
limit algebra is simple, we may assume, by passing to subsequences if nec-
essary, that the condition in the existence theorem (Theorem 3.11) on the
K1 groups associated to ideals of K0 is met.

In applying the existence theorem, we use approximate divisibility and by
passing to subsequences and relabeling, we get the following diagram such
that the induced diagrams at the level of K-groups commute and at the level
of affine function spaces approximately commute. The argument in sections
5.1.4-5.1.7 of [10] applies directly to the current situation (this step is the
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analogue of [30, Lemma 5.2]).

A1

��

// A2
//

��

. . . . . . . . .

B1
//

>>

B2
// . . . . . . . . .

By reduction theorem, we can write A and B as the inductive limit of
direct sums of real circle-quotient algebras with injective connecting maps
satisfying the uniformly varying determinant property at the level of com-
plexification.

The above diagram is not approximately commutative, by the unique-
ness theorem and passing to subsequences and relabeling we however get
the following approximately commutative diagram which is commuting at
the level of K-groups and approximately commuting at the level of affine
function spaces and satisfying the necessary compatibility conditions. The
argument in sections 5.2.1-5.2.4 of [10] applies directly to the current situa-
tion (this step is the analogue of [30, Theorem 5.3.]).

A1

��

// A2
//

��

. . . . . . . . . // A

��
B1

//

>>

B2
// . . . . . . . . . // B

OO �
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[7] Dădărlat, Marius; Nagy, Gabriel; Némethi, András; Pasnicu, Cornel.
Reduction of topological stable rank in inductive limits of C∗-algebras. Pacific
J. Math. 153 (1992), no. 2, 267–276. MR1151561 (93d:46119), Zbl 0809.46054,
doi: 10.2140/pjm.1992.153.267.
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