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Generating functions and statistics on
spaces of maximal tori in classical Lie

groups
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Abstract. In this paper we use generating function methods to ob-
tain new asymptotic results about spaces of F -stable maximal tori in
GLn(Fq), Sp2n(Fq), and SO2n+1(Fq). We recover stability results of
Church–Ellenberg–Farb and Jiménez Rolland–Wilson for “polynomial”
statistics on these spaces, and we compute explicit formulas for their
stable values. We derive a double generating function for the characters
of the cohomology of flag varieties in type B/C, which we use to obtain
analogs in type B/C of results of Chen: we recover “twisted homological
stability” for the spaces of maximal tori in Sp2n(C) and SO2n+1(C), and
we compute a generating function for their “stable twisted Betti num-
bers”. We also give a new proof of a result of Lehrer using symmetric
function theory.
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1. Introduction

In recent work, Church, Ellenberg, and Farb [ChuEF14] and Jiménez
Rolland and Wilson [JRW16] proved asymptotic stability results for certain
‘polynomial’ statistics on the set of maximal tori in GLn(Fq), Sp2n(Fq), and

SO2n+1(Fq) that are stable under the action of the Frobenius morphism F .
In this paper we use generating function techniques to give new proofs of
these results, and moreover compute explicit formulas for the limiting values
of these statistics. We then compute a double generating function for the
characters of the cohomology of flag varieties in type B/C. With these com-
putations we derive analogs in type B/C of results of Chen [Che16] in type
A: we prove “twisted homological stability” for the spaces of maximal tori in
Sp2n(C) and SO2n+1(C), and we give a generating function for the “stable
twisted Betti numbers”. The form of this generating function implies that
the stable Betti numbers are quasipolynomial and satisfy linear recurrence
relations.

1.1. Statistics on maximal tori in classical Lie groups. The paper
[ChuEF14] proved results on maximal tori in type A, and [JRW16] on maxi-
mal tori in types B and C, by using the following formulas. These formulas,
first obtained by Lehrer, relate the representation theory of the Lie groups’
associated coinvariant algebras with point-counts on the set of F -stable max-
imal tori. Each F -stable maximal torus T of GLn(Fq) is naturally associated
to a conjugacy class of the symmetric group Sn; this correspondence is ex-
plained in Carter [Car85, Chapter 3] or Niemeyer–Praeger [NP10, Sections
2 and 3]. Hence any class function χ of Sn can be interpreted as a function
on maximal tori, with χ(T ) defined to be the value of χ in the corresponding
Sn-conjugacy class. Similarly, for each F -stable maximal torus T of Sp2n(Fq)

or SO2n+1(Fq) there is an associated conjugacy class of the hyperoctahedral
group Bn. Lehrer proved the following.

Theorem 1.1 (Statistics on maximal tori [Leh92, Corollary 1.10]).

(i) (Type A). Let χ be a class function on Sn and let T (n, q) denote
the set of F -stable maximal tori of GLn(Fq). Then

(1)
1

qn2−n

∑
T∈T (n,q)

χ(T ) =

(n2)∑
i=0

q−i〈χ,Rin〉Sn
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where Rin is the ith graded piece of the coinvariant algebra R∗n in type
A, and 〈−,−〉Sn is the standard inner product on Sn class functions.

(ii) (Type B/C). Let χ be a class function on Bn and let T (n, q) denote
the set of F -stable maximal tori of SO2n+1(Fq) or Sp2n(Fq). Then

(2)
1

q2n2

∑
T∈T (n,q)

χ(T ) =

n2∑
i=0

q−i〈χ,Rin〉Bn ,

where Rin is the ith graded piece of the coinvariant algebra R∗n in
type B/C, and 〈−,−〉Bn is the standard inner product on Bn class
functions.

It will always be clear from context whether T (n, q) refers to type A or
to type B/C. In Section 2 we give a new proof of Lehrer’s result in type A,
Theorem 1.1(i), using symmetric function theory. See Church–Ellenberg–
Farb [ChuEF14, Theorem 5.3] for a proof using the Grothendieck–Lefschetz
Theorem.

To obtain their asymptotic stability results on polynomial statistics on
the space of maximal tori, Church–Ellenberg–Farb [ChuEF14] and Jiménez
Rolland–Wilson [JRW16] study the right-hand side of the formulas in The-
orem 1.1 as n tends to infinity. They use results from the field of rep-
resentation stability to show that for sequences of characters χn that are
determined by a character polynomial (Definitions 1.2 and 1.4), the quan-
tities 〈χn, Rin〉Sn and 〈χn, Rin〉Bn stabilize for n sufficiently large relative to
i. They then prove that the stable values are subexponential in i, and so
conclude that the series on the right-hand side of Equations (1) and (2) must
converge.

In this paper we study instead the left-hand side of the formulas in The-
orem 1.1, using generating function techniques analogous to the work of
Fulman [Ful16] and later Chen [Che16]. In Theorem 1.6 we give explicit
formulas for the limiting values of the left-hand sides of these equations for
sequences of characters defined by a character polynomial.

1.2. Character polynomials in type A and B/C. Character polyno-
mials for the symmetric groups are implicit in the work of Murnaghan and
Specht, and are studied explicitly by Macdonald [Mac95, I.7.14]. Here we
recall their definitions and their analogs in type B/C .

Definition 1.2 (The functions Xr; character polynomials in type A). For a
permutation σ ∈ Sn and integer r ≥ 1, let Xr(σ) denote the number of cycles
of size r in the cycle decomposition of σ. A polynomial in the functions Xr

is called a character polynomial for Sn; a character polynomial determines
a class function on Sn for each n ≥ 0. Character polynomials over Q form
a graded ring with generator Xr in degree r.

Definition 1.3 (The Sn character polynomials
(
X
λ

)
). Given a partition λ,

let |λ| be the size of λ, and let nr(λ) denote the number of parts of λ of
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length r. In this notation, define a character polynomial
(
X
λ

)
of degree |λ|

by (
X

λ

)
(σ) :=

|λ|∏
r=1

(
Xr(σ)

nr(λ)

)
for all σ ∈ Sn, for all n ∈ Z≥0.

Character polynomials of the form
(
X
λ

)
span the space of character polyno-

mials with rational coefficients.

Recall that the conjugacy classes of Bn are parameterized by double par-
titions of n, that is, ordered pairs of partitions (µ, λ) such that |µ|+ |λ| = n.
We adopt the convention that the parts of µ encode the lengths of the pos-
itive cycles of a signed permutation, and the parts of λ encode the lengths
of the negative cycles.

Definition 1.4 (The functions Xr and Yr; character polynomials in type
B/C). For σ ∈ Bn, let Xr(σ) be the number of positive r-cycles of σ, and let
Yr(σ) be the number of negative r-cycles. A character polynomial for Bn is
a polynomial in the graded ring Q[X1, Y1, X2, Y2, . . .]. Its degree is defined
by assigning degXr = deg Yr = r for each r ≥ 1.

Definition 1.5 (The Bn character polynomials
(
X
µ

)(
Y
λ

)
). The space of ratio-

nal character polynomials in type B/C is spanned by character polynomials
of the following form. Given a double partition (µ, λ), define a degree |µ|+|λ|
character polynomial

(
X
µ

)(
Y
λ

)
by the formula(

X

µ

)(
Y

λ

)
(σ) :=

|λ|+|µ|∏
r=1

(
Xr(σ)

nr(µ)

)(
Yr(σ)

nr(λ)

)
for all σ ∈ Bn, n ∈ Z≥0.

1.3. Asymptotic results for polynomial statistics on F-stable max-
imal tori. Given an F -stable maximal torus T in GLn(Fq) and a character
polynomial P , the value P (T ) is given by evaluating P on the Sn-conjugacy
class associated to T . Specifically, the statistic Xr(T ) counts the number of
r-dimensional irreducible F -stable subtori of T ; see Church–Ellenberg–Farb
[ChuEF14, Section 5].

For an F -stable maximal torus T in SO2n+1(Fq) or Sp2n(Fq) we call the
associated double partition (µT , λT ) the type of T . The value of a character
polynomial P in T is given by the value of P on the conjugacy class (µT , λT ).
The statisticXr(T ) (respectively, Yr(T )) counts the number of r-dimensional
F -stable subtori that are irreducible over Fq and that split (respectively, do
not split) over Fqr . See Jiménez Rolland–Wilson [JRW16, Section 4.1.4] for
a more detailed explanation of this interpretation.

In types A, B, and C, we say that a character polynomial P defines a
polynomial statistic on the corresponding sequence of spaces of maximal
tori. In Theorem 1.6 we give formulas for the limits of the expected values
of polynomial statistics on F -stable maximal tori in type A and B/C. To
state this theorem, define the following notation.
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For a partition λ of n, let

zλ =

|λ|∏
r=1

nr(λ)! rnr(λ)

so zλ is defined such that n!
zλ

is the number of permutations in Sn of cycle

type λ. Analogously, for a partition µ, let

vµ =

|µ|∏
r=1

nr(µ)! (2r)nr(µ)

so 2nn!
vµvλ

is the number of signed permutations in Bn of signed cycle type

(µ, λ).

Theorem 1.6 (Asymptotics for polynomial statistics on maximal tori).

(i) (Type A). Let λ be a fixed partition. Let T (n, q) denote the set of
F -stable maximal tori of GLn(Fq). Then

lim
n→∞

1

qn2−n

∑
T∈T (n,q)

(
X

λ

)
(T ) =

1

zλ

|λ|∏
r=1

(
qr

qr − 1

)nr(λ)
.

(ii) (Type B/C). Fix partitions µ and λ. Let T (n, q) denote the set of
F -stable maximal tori of SO2n+1(Fq) or Sp2n(Fq). Then

lim
n→∞

1

q2n2

∑
T∈T (n,q)

(
X

µ

)(
Y

λ

)
(T )

=
1

vµvλ

|µ|∏
r=1

(
qr

qr − 1

)nr(µ) |λ|∏
r=1

(
qr

qr + 1

)nr(λ)
.

Theorem 1.6(i) is proved in Section 2 and Theorem 1.6(ii) in Section 3.
In particular, Theorem 1.6 implies that the left-hand side of both equa-

tions converge for any character polynomial and any field Fq. Hence The-
orem 1.6 recovers a primary result of Church, Ellenberg, and Farb in type
A, a consequence of [ChuEF14, Theorem 5.6]. In types B/C, it recovers
a primary result of Jiménez Rolland and Wilson, [JRW16, Theorem 4.3].
Theorem 1.6 improves upon both convergence results by providing explicit
formulas for the limits. In Examples 2.3 and 3.6 below we use Theorem 1.6
to recompute the explicit asymptotic identities from [ChuEF14, Section 1]
and [JRW16, Table 1].

1.4. Cohomology of flag varieties and maximal tori in type B/C.
Chen [Che16] uses generating function techniques to count F -stable max-
imal tori of GLn(Fq) and uses the formula in Theorem 1.1(i) to extract
topological information about the complex flag manifolds in type A, and
the space of maximal tori in the complex group GLn(C). In Section 3 we
use Theorem 1.1(ii) and follow his approach to study the cohomology of
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generalized flag manifolds and the spaces of maximal tori of Sp2n(C) and
SO2n+1(C).

In what follows we denote by R∗n the complex coinvariant algebra of type
B/C. Consider the action of Bn on the polynomial ring C[x1, . . . , xn] by
permuting and negating the n variables xi. The coinvariant algebra R∗n is
defined as the quotient R∗n

∼= C[x1, . . . , xn]/In by the homogeneous ideal In
generated by the Bn-invariant polynomials with constant term zero.

Borel [Bor53] proved that R∗n is isomorphic as a graded C[Bn]-algebra to
the cohomology of the generalized complete complex flag manifolds in type
B and C. In type C, the flag manifold is the variety of complete flags equal
to their symplectic complements. The flag manifold in type B is the variety
of complete flags equal to their orthogonal complements. The cohomology
groups of these flag manifolds are supported in even cohomological degree,
and the isomorphism from R∗n to the cohomology ring multiplies the grading
by two.

Wilson [Wil14] uses the theory of FIW-modules to prove that, in each
cohomological degree, the characters of the cohomology of these flag vari-
eties are given by a character polynomial — independent of n — for all n
sufficiently large.

Theorem 1.7 (Existence of character polynomials for Rin [Wil14, Corollary
6.5]). For each i ≥ 0, there exists a unique hyperoctahedral character poly-
nomial Qi such that χRin = Qi for all n sufficiently large (depending on i).
Moreover the degree of the polynomial Qi is at most i.

Following a suggestion made by Chen, we obtain in Section 3.1 a gener-
ating function for the Bn characters of Rin.

Theorem 1.8 (A generating function for the Bn characters of Rin). Fix an
integer n ≥ 1. For all signed permutations σ ∈ Bn,

n2∑
i=0

χRin(σ)zi =
(1− z2)(1− z4) · · · (1− z2n)∏n
r=1(1− zr)Xr(σ)(1 + zr)Yr(σ)

.

Using this result we can recover Theorem 1.7 and give a generating func-
tion for the polynomials Qi. Chen and Specter [CheS16] compute the cor-
responding result in type A.

Theorem 1.9 (Character polynomials for Rin in type B/C). Define char-
acter polynomials Qi by the generating function

∞∑
i=0

Qi t
i =

∞∏
k=1

(1− t2k)
(1− tk)Xk(1 + tk)Yk

=
∞∏
k=1

 ∞∑
j=0

(
1−Xk

j

)
(−tk)j

 ∞∑
j=0

(
1− Yk
j

)
(tk)j

 .
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Then the character of the Bn-representation Rin, the ith graded piece of the
coinvariant algebra R∗n in type B/C, is given by

χRin = Qi for all i ≤ 2n+ 1.

Equivalently, in fixed degree i, the character of the group Rin is given by
the character polynomial Qi for all n ≥ d i−12 e. Theorem 1.9 is proved in
Section 3.

Remark 1.10. Theorem 1.9 significantly improves upon Wilson’s result
Theorem 1.7: not only does Theorem 1.9 present an explicit generating
function for the character polynomials, it also gives a quantitative range i ≤
2n+1 for when the equality χRin = Qi holds. The bound i ≤ 2n+1 is sharp;
see Remark 3.7. Moreover, from the form of the generating function we can
infer that the polynomial Qi includes the terms Xi− Yi, hence deg(Qi) = i.
Thus Theorem 1.9 implies that the bound on the degree of the character
polynomials Qi in Theorem 1.7 is also sharp.

Expanding the generating function in Theorem 1.9, we recover and extend
the list of explicit character polynomials given by Wilson [Wil14, Section 6].

1 +
(
X1 − Y1

)
t

+
(
− 1 + 1

2X1 + 1
2Y1 + 1

2X
2
1 + 1

2Y
2
1 −X1Y1 +X2 − Y2

)
t2

+
(
− 2

3X1 + 2
3Y1 + 1

2X
2
1 − 1

2Y
2
1 + 1

6X
3
1 − 1

6Y
3
1 − 1

2X
2
1Y1

+X1X2 + Y1Y2 + 1
2X1Y

2
1 −X2Y1 −X1Y2 +X3 − Y3

)
t3

+
(
− 1− 1

4X1 − 1
4Y1 −

1
24X

2
1 − 1

24Y
2
1 + 7

12X1Y1 + 3
2Y2 −

1
2X2 + 1

4X
3
1

+ 1
4Y

3
1 − 1

4X
2
1Y1 − 1

4X1Y
2
1 + 1

2X1X2 − 1
2X1Y2 − 1

2Y1Y2 + 1
2X2Y1

+ 1
24X

4
1 + 1

24Y
4
1 − 1

6X
3
1Y1 − 1

6X1Y
3
1 + 1

4X
2
1Y

2
1 + 1

2X
2
1X2 − 1

2X
2
1Y2

+ 1
2X2Y

2
1 − 1

2Y
2
1 Y2 − 1

2Y
2
1 Y2 −X1X2Y1 +X1Y1Y2 + 1

2X
2
2 + 1

2Y
2
2

+X1X3 −X1Y3 −X3Y1 + Y1Y3 −X2Y2 +X4 − Y4
)
t4 + · · ·

1.5. Stable twisted Betti numbers.

Definition 1.11 (Twisted Betti numbers in type B/C). Let T (n,C)
denote the space of maximal tori in Sp2n(C) or (equivalently) SO2n+1(C).
For a Bn-representation Vn, the twisted Betti numbers of T (n,C) in Vn are
the values

dimCH
2i(T (n,C), Vn) = 〈Rin, Vn〉Bn .

For a virtual Bn-representation Vn, we again call the values 〈Rin, Vn〉Bn ∈ C
the twisted Betti numbers of T (n,C) in Vn.
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Theorem 1.9 and Jiménez Rolland–Wilson [JRW16, Proposition 3.1] im-
ply that if P is any hyperoctahedral character polynomial, then the inner
product 〈P,Rin〉Bn is independent of n for n ≥ deg(P ) + i. We conclude the
following theorem.

Corollary 1.12 (Twisted homological stability for complex tori). Let P be
a hyperoctahedral character polynomial and V P

n the associated sequence of
virtual representations of Bn. For every i ≥ 0 and all n ≥ deg(P ) + i,

〈V P
n , R

i
n〉Bn = 〈V P

n+1, R
i
n+1〉Bn+1 .

For genuine representations V P
n this implies in particular

dimC
(
H2i(T (n,C), V P

n )
)

= dimC
(
H2i(T (n+ 1,C), V P

n+1)
)
.

We remark that the stable range in Corollary 1.12 relies on the result of
Theorem 1.9 that the character of Rin agrees with its character polynomial
for all i ≤ 2n+ 1, and in particular for all i ≤ n.

If P is the character polynomial associated to a sequence of irreducible
Bn-representations (as constructed in Wilson [Wil15, Theorem 4.11]), Corol-
lary 1.12 can be interpreted as the statement that the cohomology groups
of the flag varieties are representation stable in the sense of Church–Farb
[ChuF13, Definition 1.1], a consequence of Wilson [Wil14, Corollary 6.5].

Finally, in Section 3 we prove a type B/C analog of results of Chen [Che16,
Theorem 1 (II) and Corollary 2 (II)]. First we give a double generating
function for the twisted Betti numbers of T (n,C).

Theorem 1.13 (The twisted Betti numbers
〈(

X
µ

)(
Y
λ

)
, Rin

〉
Bn

). Fix a double

partition (µ, λ). Let

βi(n) =

〈(
X

µ

)(
Y

λ

)
, Rin

〉
Bn

.

Then
∞∑
n=0

n2∑
i=0

βi(n)ziun

(1− z2)(1− z4) · · · (1− z2n)

=
1

vµvλ

|µ|∏
r=1

(
ur

1− zr

)nr(µ) |λ|∏
r=1

(
ur

1 + zr

)nr(λ) ∞∏
r=1

1

1− uz2r−2
.

We obtain a generating function for the stable twisted Betti numbers of
T (n,C). From the form of this generating function we can deduce properties
of these sequences such as linear recurrence relationships and quasipolyno-
miality.

Corollary 1.14 (Generating functions for stable Betti numbers). Given a
double partition (µ, λ), let

βi = lim
n→∞

〈(
X

µ

)(
Y

λ

)
, Rin

〉
Bn

,
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where Rin is the ith graded piece of the coinvariant algebra R∗n in type B/C.
Then

∞∑
i=0

βiz
i =

1

vµvλ

|µ|∏
r=1

(
1

1− zr

)nr(µ) |λ|∏
r=1

(
1

1 + zr

)nr(λ)
.

Since character polynomials of the form
(
X
µ

)(
Y
λ

)
form an additive basis

for the space of all hyperoctahedral character polynomials, the result of
Corollary 1.14 is sufficient to derive a generating function for the twisted
stable Betti numbers associated to any given character polynomial. Because
the generating function in Corollary 1.14 is rational with denominator of
degree |µ|+ |λ|, we obtain the following consequence.

Corollary 1.15 (Linear recurrence for stable Betti numbers). Given a hy-
peroctahedral character polynomial P , let

βi = lim
n→∞

〈P,Rin〉Bn ,

where Rin is the ith graded piece of the coinvariant algebra R∗n in type B/C.
Then there exist integers d1, · · · , dN such that for all i ≥ N ,

βi = d1βi−1 + d2βi−2 + · · ·+ dNβi−N .

When P =
(
X
µ

)(
Y
λ

)
, then N = deg(P ). In general N ≤ 2(deg(P ))2.

To state the next consequence of Corollary 1.14, we recall the definition
of a quasipolynomial from Stanley [Sta97, Section 4.4].

Definition 1.16 (Quasipolynomials; quasiperiods). A function p(t) is qua-
sipolynomial of degree d if it can be expressed in the form

p(t) = cd(t)t
d + cd−1(t)t

d−1 + · · ·+ c1(t)t+ c0(t)

where the coefficients ci(t) are periodic functions of t with integer periods,
and cd(t) is not identically zero. Equivalently, the function p(t) is quasipoly-
nomial if for some M ≥ 1 there are polynomials p0(t), p1(t), . . . , pM−1(t),
such that

p(t) = pi(t) for t ≡ i (mod M).

The integer M is called a quasiperiod of p(t).

Corollary 1.17 (Stable Betti numbers are quasipolynomial). Given a hy-
peroctahedral character polynomial P , again let

βi = lim
n→∞

〈P,Rin〉Bn ,

where Rin is the ith graded piece of the coinvariant algebra R∗n in type B/C.
Then for i ≥ 1 the Betti numbers βi are quasipolynomial in i, with degree at
most deg(P )− 1, and have a quasiperiod at most the least common multiple
of {2k | 1 ≤ k ≤ deg(P )}. If the character polynomial P has constant term
zero, then the above statement holds for all i ≥ 0.
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Let Cn denote the canonical representation of Bn by signed permutation
matrices. To illustrate Corollaries 1.14, 1.15, and 1.17, Example 1.18 gives
the character polynomial for the sequence of Bn-representations {Sym2Cn}n
and their associated stable twisted Betti numbers.

Example 1.18. (Sym2Cn).
Character polynomial:

X1 +

(
X1

2

)
+ Y1 +

(
Y1
2

)
+X2 − Y2 −X1Y1

=

(
X
)

+

(
X
)

+

(
Y
)

+

(
Y
)

+

(
X
)
−
(
Y
)
−
(
X
)(

Y
)
.

Betti numbers:
∞∑
i=0

βiz
i =

−z4 + z2 + 1

(1− z2)2(1 + z2)

= 1 + 2z2 + 2z4 + 3z6 + 3z8 + 4z10 + 4z12 + · · ·+
⌊
d+ 3

2

⌋
z2d + · · · .

Recurrence: βd = βd−2 + βd−4 − βd−6 for d ≥ 7.

Quasipolynomiality: For d ≥ 0,

βd =


d+4
4 d ≡ 0 (mod 4)

d+6
4 d ≡ 2 (mod 4)

0 d ≡ 1, 3 (mod 4).

Additional examples of stable twisted Betti numbers are given in Sec-
tion 3.2, with their associated generating functions, recurrence relations,
and quasipolynomials.

2. Maximal tori in the general linear groups

In this section, we let T (n, q) denote the set of F -stable maximal tori of
GLn(Fq). Fulman [Ful16, Theorem 3.2] proved the following:

(3) 1 +

∞∑
n=1

un

|GLn(Fq)|
∑

T∈T (n,q)

∞∏
i=1

x
Xi(T )
i =

∞∏
k=1

exp

[
xku

k

(qk − 1)k

]
.

Chen [Che16] deduced from (3) that for any partition λ,

(4)
∞∑
n=0

un

|GLn(Fq)|
∑

T∈T (n,q)

(
X

λ

)
(T ) =

1

zλ

|λ|∏
k=1

(
uk

qk − 1

)nk(λ) ∞∏
r=1

1

(1− u/qr)
.

Here if λ is the empty partition, we take the constant n = 0 term on the left
hand side to be 1; otherwise, the constant term is 0.
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To analyze these formulas, we use the following elementary and well-
known lemma. We adopt the following notation: given a power series f(u),
we let [un]f(u) denote the coefficient of un.

Lemma 2.1 (The limit of a series’ coefficients). If the Taylor series of f(u)
around 0 converges at u = 1, then

lim
n→∞

[un]
f(u)

1− u
= f(1).

Proof. Write the Taylor expansion f(u) =
∑∞

n=0 anu
n. Then observe that

[un]
f(u)

1− u
=

n∑
i=0

ai. �

We can now prove Theorem 1.6(i), which gives formulas for the stable
values of polynomial statistics on the space of F -stable maximal tori in

GLn(Fq). Recall that the number of such tori is qn
2−n.

Proof of Theorem 1.6(i). It follows from (4) that

1

qn2−n

∑
T∈T (n,q)

(
X

λ

)
(T )

is equal to

|GLn(Fq)|
qn2−n [un]

1

zλ

|λ|∏
k=1

(
uk

qk − 1

)nk(λ)
·
∞∏
r=1

1

1− u/qr
.

Since [un]f(u) = [un]
f(uq)

qn
for any function f , this expression is equal to

|GLn(Fq)|
qn2 [un]

1

zλ

|λ|∏
k=1

(
ukqk

qk − 1

)nk(λ)
· 1

1− u

∞∏
r=1

1

1− u/qr

= (1− 1/q) · · · (1− 1/qn)[un]
1

zλ

|λ|∏
k=1

(
ukqk

qk − 1

)nk(λ)
· 1

1− u

∞∏
r=1

1

1− u/qr
.

The result now follows by taking the limit as n tends to infinity, and using
Lemma 2.1. To see that Lemma 2.1 is applicable, note that the Taylor series
of
∏
r≥1

1
1−u/qr around 0 converges at u = 1. Indeed, this Taylor series is

given by part 2 of Lemma 3.3, and

(1− 1/q) · · · (1− 1/qn) ≥ 1− 1

q
− 1

q2

for all n, as is well known from Euler’s pentagonal number theorem (page
11 of [And98]). �
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Remark 2.2. We remark that there is an alternate approach to proving
Theorem 1.6(i). Chen computed a generating function for the stable twisted
Betti numbers for maximal tori in type A [Che16, Proof of Corollary (II)].
Combining this with [ChuEF14, Theorem 5.6] proves the result.

Theorem 1.6(i) gives an efficient way to recover some computations of
Church–Ellenberg–Farb [ChuEF14].

Example 2.3 ([ChuEF14, Theorems 5.9 & 5.10]).

lim
n→∞

1

qn2−n

∑
T∈T (n,q)

X1(T ) =
q

q − 1
.(a)

lim
n→∞

1

qn2−n

∑
T∈T (n,q)

[(
X1

2

)
(T )−X2(T )

]
=

1

2

(
q

q − 1

)2

− 1

2

q2

(q2 − 1)
(b)

=
1

q(1− 1/q)(1− 1/q2)
.

2.1. A new proof of Lehrer’s theorem. In what follows we give a new
proof of Theorem 1.1(i) using symmetric function theory. It should be pos-
sible to extend these methods to types B/C, but the argument is more
involved and we do not pursue it here. For the remainder of this section,
Rin denotes the ith graded piece of the coinvariant algebra R∗n in type A.
All necessary background in symmetric function theory can be found in
Macdonald [Mac95] or Stanley [Sta99]. The following two lemmas will be
crucial. Lemma 2.4 is stated in Fulman [Ful16] and is immediate from
Springer–Steinberg [SpS70, Section 2.7].

Lemma 2.4 (Enumerating tori in GLn(Fq) of a given type [SpS70, Ful16]).

Fix a partition λ of n. The number of F -stable maximal tori of GLn(Fq) of
type λ is equal to

|GLn(Fq)|
zλ
∏n
r=1(q

r − 1)nr(λ)
.

Here nr(λ) is the number of parts of λ of size r, and zλ =
∏|λ|
r=1 r

nr(λ)nr(λ)!

Recall that a standard tableau of shape λ is a bijective labeling of the boxes
of the Young diagram for λ by the numbers 1, · · · , n with the property that
in each row and in each column the labels are increasing. The descent set
of such a tableau is the set of numbers i ∈ {1, · · · , n− 1} for which the box
labeled (i + 1) is in a lower row than the box labeled i. The major index
maj(Y ) of a tableau Y is the sum of the numbers in its descent set. We let
fλ,i be the number of standard Young tableaux of shape λ and major index
i.
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For example, consider the Young diagram for the partition λ = (2, 1, 1)
and its three associated standard tableaux

Y1 =
1 2

3

4

Y2 =
1 3

2

4

Y3 =
1 4

2

3

Their descent sets are {2, 3}, {1, 3}, and {1, 2}, respectively. Hence

maj(Y1) = 5 maj(Y2) = 4, and maj(Y3) = 3.

In this example,

f(2,1,1),i =

{
1, i = 3, 4, 5

0, otherwise.

Lemma 2.5 is due to Stanley, Lusztig, and Kraskiewicz–Weyman. See
Reutenauer [Reu93, Theorem 8.8] for a proof.

Lemma 2.5 (Decomposing the Sn-representations Rin [Reu93, Theorem
8.8]). The multiplicity of the irreducible representation of Sn indexed by λ
in Rin is equal to fλ,i.

We now prove Theorem 1.1(i).

Proof of Theorem 1.1(i). It suffices to prove Theorem 1.1(i) in the spe-
cial case that χ is the class function which is equal to pµ on elements of type
µ, where pµ denotes the power sum symmetric function corresponding to
a partition µ. Indeed, taking the coefficient of the Schur function sλ in pµ
gives the irreducible character value χλµ of the symmetric group, and these
are a basis for the space of class functions.

By Lemma 2.4, the left hand side of (1) is equal to

1

qn2−n

∑
|µ|=n

|GLn(Fq)|
zµ
∏n
k=1(q

k − 1)nk(µ)
pµ.

On the other hand, since

pµ =
∑
|λ|=n

χλµsλ,

it follows from Lemma 2.5 that the right hand side of (1) is equal to

(n2)∑
i=0

q−i

〈∑
|λ|=n

χλsλ,
∑
|λ|=n

fλ,iχ
λ

〉
=

(n2)∑
i=0

q−i
∑
|λ|=n

fλ,isλ

=
∑
|λ|=n

sλ
∑

sh(Y )=λ

1

qmaj(Y )
,
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where the sum is over standard Young tableaux Y of shape λ. By Stanley
[Sta99, p. 363] this is equal to∑

|λ|=n

sλsλ(1, 1/q, 1/q2, · · · )
n∏
i=1

(1− 1/qi)

=
|GLn(Fq)|
qn2−n

∑
|λ|=n

sλsλ(1/q, 1/q2, · · · ).

By Macdonald [Mac95, Section 1.4], this is

|GLn(Fq)|
qn2−n

∑
|µ|=n

1

zµ
pµpµ(1/q, 1/q2, · · · )

=
1

qn2−n

∑
|µ|=n

|GLn(Fq)|
zµ
∏n
k=1(q

k − 1)nk(µ)
pµ.

Thus we have shown that the two sides of the formula in Theorem 1.1(i)
are equal, completing the proof. �

3. Maximal tori in symplectic and special orthogonal groups

In this section we use generating function techniques to study F -stable
maximal tori in Sp2n(Fq), and (equivalently) in SO2n+1(Fq). We prove The-
orem 1.6(ii) and use it to recover results from Jiménez Rolland–Wilson
[JRW16]. In the second half of the section, we derive analogs of results
from Chen’s lovely paper [Che16] for the special orthogonal and symplectic
groups, as well as analogs of results in a personal communication from Chen
and Specter [CheS16].

The next two results are symplectic versions of results from Fulman
[Ful16].

Lemma 3.1 (Enumerating tori in Sp2n(Fq) of a given type). Let (µ, λ) be
an ordered pair of partitions satisfying |µ| + |λ| = n. Let nr(µ) denote the
number of parts of µ of size r, and let nr(λ) denote the number of parts of
λ of size r. Then the number of F -stable maximal tori of Sp2n(Fq) of type
(µ, λ) is equal to

|Sp2n(Fq)|∏n
r=1 nr(µ)!nr(λ)! (2r)nr(µ)+nr(λ)

∏n
r=1(q

r − 1)nr(µ)(qr + 1)nr(λ)
.

Proof. This is immediate from Springer–Steinberg [SpS70, Section 2.7], to-
gether with the fact that the centralizer size of an element of Bn of type
(µ, λ) is equal to

n∏
r=1

nr(µ)!nr(λ)! (2r)nr(µ)+nr(λ). �
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In this section, T (n, q) denotes the set of F -stable maximal tori T of
Sp2n(Fq) (or SO2n+1(Fq)).

Theorem 3.2 (A generating function for statistics on T (n, q)).

1 +
∞∑
n=1

un

|Sp2n(Fq)|
∑

T∈T (n,q)

n∏
r=1

xXr(T )r yYr(T )r

=
∞∏
k=1

exp

[
xku

k

(qk − 1)2k
+

yku
k

(qk + 1)2k

]
.

Proof. Lemma 3.1 implies that the left-hand side of the theorem is equal
to

1 +

∞∑
n=1

∑
(µ,λ)

|µ|+|λ|=n

un
∏n
r=1 x

nr(µ)
r y

nr(λ)
r∏

r nr(µ)!nr(λ)! (2r)nr(µ)+nr(λ)(qr − 1)nr(µ)(qr + 1)nr(λ)

By the Taylor expansion of the exponential function, this is equal to

∞∏
k=1

exp

[
xku

k

(qk − 1)2k
+

yku
k

(qk + 1)2k

]
. �

The following lemma will be helpful in manipulating the generating func-
tion of Theorem 3.2.

Lemma 3.3 (Two generating function identities).

(i)

∞∏
i=1

exp

[
1

(qi − 1)

ui

i

]
=

∞∏
r=1

1

1− u/qr
.

(ii)

∞∏
r=1

1

(1− u/qr)
= 1 +

∞∑
n=1

un

qn(1− 1/q) · · · (1− 1/qn)
.

Proof. The first assertion is proved in the proof of Fulman [Ful16, Theorem
3.4]. The second assertion is classical and goes back to Euler; see Andrews
[And98, Corollary 2.2]. �

As a corollary, we recover Steinberg’s enumeration of the number of F -
stable maximal tori of Sp2n(Fq) [Ste68, Corollary 14.16]. Recall that given
a power series f(u), we let [un]f(u) denote the coefficient of un.

Corollary 3.4 (Enumerating tori in Sp2n(Fq) [Ste68, Corollary 14.16]). The

number of F -stable maximal tori of Sp2n(Fq) is q2n
2
.
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Proof. By setting all variables xr = yr = 1 in Theorem 3.2, we find that
the number of maximal tori is equal to

|Sp2n(Fq)| [un]
∞∏
r=1

exp

[
ur

(qr − 1)2r
+

ur

(qr + 1)2r

]

= |Sp2n(Fq)| [un]

∞∏
r=1

exp

[
urqr

r(q2r − 1)

]
.

Since [un]f(u) = qn[un]f(u/q) for any function f , this coefficient is equal to

|Sp2n(Fq)| qn[un] exp

[ ∞∑
r=1

ur

r(q2r − 1)

]
.

By Lemma 3.3(i), this is

|Sp2n(Fq)| qn[un]
∞∏
r=1

1

(1− u/q2r)

and by Lemma 3.3(ii), this expression equals

|Sp2n(Fq)| qn
1

q2n(1− 1/q2) · · · (1− 1/q2n)
.

Finally, we use the identity

|Sp2n(Fq)| = qn
2
n∏
i=1

(q2i − 1)

to conclude that the number of F -stable maximal tori is q2n
2

as claimed. �

Table 1 of the paper Jiménez Rolland–Wilson [JRW16] gives explicit ex-
pressions for the average values of the following statistics on T (n, q):

X1, X1 + Y1,

(
X1 + Y1

2

)
− (X2 + Y2), X2 − Y2

These average values can be derived more efficiently from the generating
function given in Theorem 3.5, and their limiting values are special cases of
Theorem 1.6(ii). Theorem 3.5, which we now prove, is an analog of Chen’s
Equation (4) from Section 2.

Theorem 3.5 (Average values of the statistic
(
X
µ

)(
Y
λ

)
on T (n, q)). Fix a

double partition (µ, λ). Then
∞∑
n=0

un

|Sp2n(Fq)|
∑

T∈T (n,q)

(
X

µ

)(
Y

λ

)
(T )

is equal to

1

vµvλ

|µ|∏
r=1

(
ur

qr − 1

)nr(µ) |λ|∏
r=1

(
ur

qr + 1

)nr(λ) ∞∏
k=1

1

1− u/q2k−1
.
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If both µ and λ are the empty partitions, we define the constant n = 0 term
to be 1; otherwise, the constant term is 0.

Proof. We take the generating function of Theorem 3.2, and for each r ≥ 1
we differentiate nr(µ) many times with respect to the variable xr, and nr(λ)
many times with respect to yr. We then set all variables xr = yr = 1. The
result is that the quantity ∑

T∈T (n,q)

(
X

µ

)(
Y

λ

)
(T )

is equal to

|Sp2n(Fq)|
vµvλ

[un]

|µ|∏
r=1

(
ur

qr − 1

)nr(µ) |λ|∏
r=1

(
ur

qr + 1

)nr(λ)
·
∞∏
k=1

exp

[
uk

(qk − 1)2k
+

uk

(qk + 1)2k

]
.

By Lemma 3.3(i), this is

|Sp2n(Fq)|
vµvλ

[un]

|µ|∏
r=1

(
ur

qr − 1

)nr(µ) |λ|∏
r=1

(
ur

qr + 1

)nr(λ) ∞∏
k=1

1

1− u/q2k−1

as claimed. �

With the result of Theorem 3.5, we can now prove Theorem 1.6(ii), which
gives explicit formulas for the stable mean values of the polynomial statistics(
X
µ

)(
Y
λ

)
on T (n, q), in the limit as n tends to infinity.

Proof of Theorem 1.6(ii). By Theorem 3.5,

1

q2n2

∑
T∈T (n,q)

(
X

µ

)(
Y

λ

)
(T )

is equal to

|Sp2n(Fq)|
q2n2 vµ vλ

[un]

|µ|∏
r=1

(
ur

qr − 1

)nr(µ) |λ|∏
r=1

(
ur

qr + 1

)nr(λ) ∞∏
k=1

1

1− u/q2k−1
.

Since [un]f(u) = [un]
f(uq)

qn
for any function f , this can be rewritten as

|Sp2n(Fq)|
q2n2+n vµ vλ

[un]

|µ|∏
r=1

(
urqr

qr − 1

)nr(µ) |λ|∏
r=1

(
urqr

qr + 1

)nr(λ) ∞∏
k=1

1

1− u/q2k−2
,
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which is equal to

(1− 1/q2)(1− 1/q4) · · · (1− 1/q2n)

· 1

vµ vλ
[un]

|µ|∏
r=1

(
urqr

qr − 1

)nr(µ) |λ|∏
r=1

(
urqr

qr + 1

)nr(λ) 1

1− u

∞∏
k=1

1

1− u/q2k
.

Now applying Lemma 2.1 proves the theorem. �

With Theorem 1.6(ii) we recover the following four results from Table 1
of Jiménez Rolland–Wilson [JRW16].

Example 3.6 ([JRW16, Table 1]).

lim
n→∞

1

q2n2

∑
T∈T (n,q)

X1(T ) =
q

2(q − 1)
.(a)

lim
n→∞

1

q2n2

∑
T∈T (n,q)

[X1(T ) + Y1(T )] =
q

2(q − 1)
+

q

2(q + 1)
=

q2

q2 − 1
.(b)

lim
n→∞

1

q2n2

∑
T∈T (n,q)

[(
X1(T ) + Y1(T )

2

)
− (X2(T ) + Y2(T ))

]
(c)

= lim
n→∞

1

q2n2

∑
T∈T (n,q)

[(
X1(T )

2

)
+

(
Y1(T )

2

)
+X1(T )Y1(T )

− (X2(T ) + Y2(T ))

]

=
1

2

[
q

2(q − 1)

]2
+

1

2

[
q

2(q + 1)

]2
+

q

2(q − 1)

q

2(q + 1)

− q2

4(q2 − 1)
− q2

4(q2 + 1)

=
q4

(q2 − 1)(q4 − 1)
.

lim
n→∞

1

q2n2

∑
T∈T (n,q)

[X2(T )− Y2(T )] =
q2

4(q2 − 1)
− q2

4(q2 + 1)
(d)

=
q2

2(q4 − 1)
.

3.1. Maximal tori in Sp2n(C) and SO2n+1(C). Next we follow Chen
and Specter’s approach [Che16, CheS16] and use our statistical computa-
tions on maximal tori in Sp2n(Fq) and SO2n+1(Fq) to obtain information
about cohomology of the spaces of maximal tori T (n,C) in the complex
algebraic groups Sp2n(C) and SO2n+1(C). The bridge between the combi-
natorial and the topological data is given by Lehrer’s Theorem 1.1(ii). In
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the remainder of this section Rin always denotes the ith graded piece of the
complex coinvariant algebra R∗n in type B/C. We first prove Theorem 1.8.

Proof of Theorem 1.8. Fix n and σ ∈ Bn. In Theorem 1.1(ii) let χ be
the class function on Bn which is 1 on elements of type σ and 0 else. Since
the centralizer size of σ is equal to

n∏
r=1

Xr(σ)!Yr(σ)!(2r)Xr(σ)+Yr(σ)

it follows that the number of maximal tori of type σ is equal to

q2n
2
n2∑
i=0

χRin(σ)q−i
1∏n

r=1Xr(σ)!Yr(σ)!(2r)Xr(σ)+Yr(σ)
.

On the other hand, Lemma 3.1 indicates that the number of maximal tori
of type σ is equal to

|Sp2n(Fq)|∏n
r=1Xr(σ)!Yr(σ)!(2r)Xr(σ)+Yr(σ)

∏n
r=1(q

r − 1)Xr(σ)(qr + 1)Yr(σ)
.

Thus

q2n
2
n2∑
i=0

χRin(σ)q−i =
|Sp2n(Fq)|∏n

r=1(q
r − 1)Xr(σ)(qr + 1)Yr(σ)

.

Since |Sp2n(Fq)| = q2n
2+n(1 − 1/q2)(1 − 1/q4) · · · (1 − 1/q2n), it follows

that
n2∑
i=0

χRin(σ)q−i =
(1− 1/q2)(1− 1/q4) · · · (1− 1/q2n)∏n
r=1(1− 1/qr)Xr(σ)(1 + 1/qr)Yr(σ)

.

Since this equality holds for any prime power q, we can set z = 1/q to
complete the proof. �

Now we prove Theorem 1.9, giving a generating function for the character
polynomials associated to the cohomology groups of the generalized flag
varieties in type B/C.

Proof of Theorem 1.9. Fix a positive integer n and signed permutation
σ ∈ Bn. Let Qi be the character polynomial defined by the generating
function

∞∑
i=0

Qi(σ)ti =

∞∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

.

Our goal is to show that the terms in the series

n2∑
i=0

χRin(σ)ti −
∞∑
i=0

Qi(σ)ti
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vanish for i ≤ 2n+ 1. By Theorem 1.8 this difference is equal to
n∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

−
∞∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

=

n∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

[
1−

∏
k>n

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

]
.

Since σ ∈ Bn, the class functions Xk(σ) and Yk(σ) vanish when k > n, and
so this series equals

n∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

[
1−

∏
k>n

(1− t2k)

]
.

The smallest power of t in this series is t2n+2, which completes the proof. �

Remark 3.7 (The stable range in Theorem 1.9 is sharp). The bound given
in Theorem 1.9 is optimal: since for all σ ∈ Bn the power series

n∏
k=1

(1− t2k)
(1− tk)Xk(σ)(1 + tk)Yk(σ)

[
1−

∏
k>n

(1− t2k)

]
appearing in the proof includes the term t2n+2, the equality χRin = Qi holds
only for i ≤ 2n+ 1. We can see this concretely in small degrees: the spaces
R2

0 and R4
1 are both zero, but by inspection the character polynomials Q2

and Q4 for the sequences {R2
n}n and {R4

n}n (given explicitly in Section 1.4)
do not vanish identically on the groups B0 and B1, respectively.

Next we prove Theorem 1.13, which gives a double generating function
for the twisted Betti numbers of T (n,C).

Proof of Theorem 1.13. For q a prime power,

∞∑
n=0

n2∑
i=0

βi(n)

(1− 1/q2) · · · (1− 1/q2n)
q−iun

=
∞∑
n=0

1

|Sp2n(Fq)|

q2n2
n2∑
i=0

βi(n)q−i

 (uq)n.

By Theorem 1.1(ii), this is

∞∑
n=0

1

|Sp2n(Fq)|

 ∑
T∈T (n,q)

(
X

µ

)(
Y

λ

)
(T )

 (uq)n

which (by evaluating the series in Theorem 3.5 at uq) equals

1

vµvλ

|µ|∏
r=1

(
urqr

qr − 1

)nr(µ) |λ|∏
r=1

(
urqr

qr + 1

)nr(λ) ∞∏
r=1

1

1− u/q2r−2
.
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Since the equality holds for all prime powers q, the equality also holds when
q−1 is replaced by a formal variable z. �

We now prove Corollary 1.14, a generating function for the stable twisted
Betti numbers associated to the character polynomial

(
X
µ

)(
Y
λ

)
. We are grate-

ful to Weiyan Chen for help with filling in the details of this proof.

Proof of Corollary 1.14. Fix a double partition (µ, λ), and let

βi(n) =

〈(
X

µ

)(
Y

λ

)
, Rin

〉
Bn

.

For each n ≥ 0, define the power series fn(z) by

fn(z) :=
n2∑
i=0

βi(n)zi

(1− z2)(1− z4) · · · (1− z2n)
.

By Theorem 1.13, we have equality

∞∑
n=0

fn(z)un =
∞∑
n=0

n2∑
i=0

βi(n)ziun

(1− z2)(1− z4) · · · (1− z2n)

=
1

vµ vλ

|µ|∏
r=1

(
ur

1− zr

)nr(µ) |λ|∏
r=1

(
ur

1 + zr

)nr(λ) ∞∏
r=1

1

1− uz2r−2
.

Let f(z) denote the pointwise limit of the sequence {fn(z)} on the open
unit disk {z ∈ C : |z| < 1}. Then for fixed z with |z| < 1,

f(z) = lim
n→∞

[un]
∞∑
n=0

fn(z)un

= lim
n→∞

[un]
1

vµ vλ

|µ|∏
r=1

(
ur

1− zr

)nr(µ) |λ|∏
r=1

(
ur

1 + zr

)nr(λ) ∞∏
r=1

1

1− uz2r−2
.

By Lemma 2.1 this pointwise limit is

f(z) =
1

vµ vλ

|µ|∏
r=1

(
1

1− zr

)nr(µ) |λ|∏
r=1

(
1

1 + zr

)nr(λ) ∞∏
r=1

1

1− z2r
.

Next, recall that by Wilson [Wil14, Corollary 6.5] and Jiménez Rolland–
Wilson [JRW16, Proposition 3.1], for each fixed i the sequence βi(n) is even-
tually constant, with stable value βi := limn→∞ βi(n); see Corollary 1.12.
It follows that the sequence {fn(z)} also converges as a sequence of formal
power series, that is, for each i ≥ 0 the coefficient [zi]fn(z) is eventually con-
stant in n. Its limit, the power series g(z) with [zi]g(z) = limn→∞[zi]fn(z),
is

g(z) =
z-adic
lim
n→∞

n2∑
i=0

βi(n)zi

(1− z2)(1− z4) · · · (1− z2n)
=
∞∑
i=0

βiz
i∏∞

r=1(1− z2r)
.
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To complete the proof, we wish to equate the pointwise limit f(z) and the
formal power series limit g(z) of the sequence {fn(z)}. (These limits need not
be equal in general, even when both limits exist and are analytic functions
on the unit disk.) In order to do this, we will prove that the sequence
{fn(z)} converges uniformly to f(z) on the closed disk

{
z ∈ C : |z| ≤ 1

2

}
,

and then equality f(z) = g(z) follows from an application of the Cauchy
integral formula.

To show uniform convergence, by Dini’s theorem, it suffices to show that
at each point z in the closed disk, the sequence {fn(z)} is monotone increas-
ing. But

∞∑
n=0

(
fn(z)− fn−1(z)

)
un = (1− u)

∞∑
n=0

fn(z)un

=
1

vµ vλ

|µ|∏
r=1

(
ur

1− zr

)nr(µ) |λ|∏
r=1

(
ur

1 + zr

)nr(λ) ∞∏
r=1

1

1− uz2r
,

and by inspection, for each n ≥ 0 and z with |z| ≤ 1
2 , the coefficient

(
fn(z)−

fn−1(z)
)

of un is positive as desired. We can therefore equate f(z) = g(z),
and we conclude

∞∑
i=0

βiz
i =

1

vµ vλ

|µ|∏
r=1

(
1

1− zr

)nr(µ) |λ|∏
r=1

(
1

1 + zr

)nr(λ)
as claimed. �

Remark 3.8. Corollary 1.14 can also be proven using Theorem 1.6 and
results of Jiménez Rolland and Wilson [JRW16]. Specifically, combining
Theorem 1.6(ii) and Lehrer’s identity Theorem 1.1(ii), we obtain the formula

lim
n→∞

n2∑
i=0

q−iβi(n) =
1

vµvλ

|µ|∏
r=1

(
qr

qr − 1

)nr(µ) |λ|∏
r=1

(
qr

qr + 1

)nr(λ)
.

By [JRW16, Theorem 4.3] the left-hand side of this formula is equal to
∞∑
i=0

lim
n→∞

q−iβi(n) =
∞∑
i=0

q−iβi,

and so by the substitution z = 1
q we conclude Corollary 1.14. The proof of

Corollary 1.14 given above avoids the nontrivial combinatorial and analytic
work performed in [JRW16].

Using the generating function from Corollary 1.14, we now prove Corol-
lary 1.15, on linear recurrence relations satisfied by the stable twisted Betti
numbers.

Proof of Corollary 1.15. A general character polynomial P may be writ-
ten as a linear combination of character polynomials of the form

(
X
µ

)(
Y
λ

)
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with |µ| + |λ| ≤ deg(P ). Hence, its generating function can be written as
a rational function with denominator given by the common denominator of
the generating functions

1

vµvλ

|µ|∏
r=1

(
1

1− zr

)nr(µ) |λ|∏
r=1

(
1

1 + zr

)nr(λ)
|µ|+ |λ| ≤ deg(P ).

A coarse bound on the degree of this denominator follows from the obser-
vation that, for each 1 ≤ r ≤ deg(P ), the corresponding factors (1 − zr)
and (1 + zr) each appear in this common denominator with multiplicities at

most deg(P )
r , and hence together contribute at most 2r

(
deg(P )
r

)
= 2 deg(P )

to its degree. This gives a total degree of at most 2 deg(P )2. �

The form of the generating functions in Corollary 1.14 also implies that
the stable twisted Betti numbers βd will be quasipolynomial, as in Corol-
lary 1.17.

Proof of Corollary 1.17. Stanley [Sta97, Proposition 4.4.1] proves that
an integer function p(t) is quasipolynomial with period M if and only if the
associated generating function

∑∞
n≥0 p(n)xn is a rational functionA(x)/B(x)

(reduced to lowest terms) such that all roots of B(x) are M th roots of unity,
and deg(A) <deg(B). Moreover, the degree of p(t) is strictly bounded above
by the largest multiplicity of a root of B(x).

If the character polynomial P has constant term zero, we may write P
as a linear combination of character polynomials

(
X
µ

)(
Y
λ

)
with |µ|+ |λ| > 0.

Then by Corollary 1.14, the generating function for the associated stable
Betti numbers is given by a linear combination of functions of the form

1

vµvλ

|µ|∏
i=1

(
1

1− zi

)ni(µ) |λ|∏
i=1

(
1

1 + zi

)ni(λ)
such that 0 < |µ|+|λ| ≤ deg(P ). Since the denominators (1−zi) and (1+zi)
have positive degree and all roots are (2i)th roots of unity, we conclude that
these stable Betti numbers are quasipolynomial, and have a quasiperiod
bounded by the least common multiple of the numbers 2, 4, . . . 2 deg(P ).
Moreover, in the common denominator for this generating function the max-
imum multiplicity of any root is deg(P ), and so the quasipolynomial has
degree at most deg(P )− 1 as claimed.

Now suppose that P has constant term c. Only the 0th graded piece R0
n

of the coinvariant algebra contains the trivial Bn representation, hence the
stable Betti numbers for P and (P − c) will be the same for all i > 0. This
concludes the proof. �

3.2. Examples of stable twisted Betti numbers in type B/C. We
end the paper using Corollary 1.14 to compute some examples of stable Betti
numbers. Let Cn denote the canonical n-dimensional Bn-representation by
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signed permutation matrices; this is the irreducible representation associ-
ated to the double partition ((n− 1), (1)). Below we describe combinatorial
properties of twisted Betti numbers with coefficients in Cn, and some sym-
metric and exterior powers of Cn in small degree.

Example 3.9. (Example: Cn).
Character polynomial:

PCn =X1 − Y1

=

(
X
)
−
(
Y
)
.

Betti numbers:
∞∑
i=0

βiz
i =

z

(1− z)(1 + z)

=z + z3 + z5 + z7 + z9 + · · ·+ z2d+1 + · · · .
Recurrence: βd = βd−2 for d ≥ 3.

Quasipolynomiality: For d ≥ 0, βd =

{
0 d ≡ 0 (mod 2)

1 d ≡ 1 (mod 2).

Example 3.10. (
∧2Cn).

Character polynomial:

P
∧2 Cn =

(
X1

2

)
+

(
Y1
2

)
−X2 + Y2 −X1Y1

=

(
X
)

+

(
Y
)
−
(
X
)

+

(
Y
)
−
(
X
)(

Y
)
.

Betti numbers:
∞∑
i=0

βiz
i =

z4

(1− z2)2(1 + z2)

=z4 + z6 + 2z8 + 2z10 + 3z12 + 3z14 + · · ·+
⌊
d

2

⌋
z2d + · · · .

Recurrence: βd = βd−2 + βd−4 − βd−6 for d ≥ 6.

Quasipolynomiality: For d ≥ 0,

βd =


d
4 d ≡ 0 (mod 4)

d−2
4 d ≡ 2 (mod 4)

0 d ≡ 1, 3 (mod 4).
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Example 3.11. (
∧3Cn).

Character polynomial:(
X1

3

)
−
(
Y1
3

)
+X1

(
Y1
2

)
− Y1

(
X1

2

)
−X1X2 +X2Y1 + Y2X1 − Y1Y2 +X3 − Y3.

Betti numbers:
∞∑
i=0

βiz
i =

z9

(1− z)2(1 + z)2(1 + z2)(1− z3)(1 + z3)

= z9 + z11 + 2z13 + 3z15 + 4z17 + 5z19 + 7z21 + 8z23

+ 10z25 + 12z27 + 14z29 + 16z31 + 19z33 + 21z35

+ 24z37 + 27z39 + 30z41 + 33z43 + · · · .
Recurrence:

βd = βd−2 + βd−4 − βd−8 − βd−10 + βd−12 for d ≥ 12.

Quasipolynomiality: For d ≥ 0,

βd =



d2

48 −
d
8 + 5

48 d ≡ 1, 5 (mod 12)

d2

48 −
d
8 + 9

48 d ≡ 3 (mod 12)

d2

48 −
d
8 −

7
48 d ≡ 7, 11 (mod 12)

d2

48 −
d
8 + 21

48 d ≡ 9 (mod 12)

0 d ≡ 0, 2, 4, 6, 8, 10 (mod 12).
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