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On a variant of the Ailon–Rudnick
theorem in finite characteristic
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and Thomas J. Tucker

Abstract. Let L be a field of characteristic p, and let a, b, c, d ∈ L(T ).
Assume that a and b are algebraically independent over Fp. Then for
each fixed positive integer n, we prove that there exist at most finitely
many λ ∈ L satisfying f(a(λ)) = c(λ) and g(b(λ)) = d(λ) for some
polynomials f, g ∈ Fpn [Z] such that f(a) 6= c and g(b) 6= d. Our result
is a characteristic p variant of a related statement proven by Ailon and
Rudnick.
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1. Introduction

We prove the following result.

Theorem 1.1. Let L be a field of characteristic p > 0, let a, b, c, d ∈ L(T ),
and let q be a power of p. Suppose that a and b are algebraically independent
over Fp. Then there are finitely many λ ∈ L such that there exist some
f, g ∈ Fq[Z] satisfying the following two properties:

(i) f(a(λ)) = c(λ) and g(b(λ)) = d(λ); but
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(ii) f(a) 6= c and g(b) 6= d.

It is immediate to see that the hypothesis in Theorem 1.1 is essential,
as shown by the following example and also by the examples referenced in
[Sil04a] (where a, b ∈ Fp[T ] and c = d = 1).

Example 1.2. Assume a, b ∈ L \ Fp such that a + b = 1; also, assume
c(T ) = d(T ) = T . Then for each n ∈ N, letting

Fn(Z) = Zpn and Gn(Z) = 1− Zpn ,

we have that

Fn(a)− c(T ) = ap
n − T = Gn(b)− d(T );

so, there exist infinitely many t ∈ L satisfying conditions (i)–(ii) in Theo-
rem 1.1.

The following result is an immediate corollary of Theorem 1.1.

Corollary 1.3. Let L be a field of characteristic p > 0 and let a, b, c, d ∈
L[T ] such that a and b are algebraically independent over Fp. Then the
following

S :=
⋃

m,n≥1
am 6=c,bn 6=d

{
λ ∈ L : (T − λ) | gcd(am − c, bn − d)

}
is a finite set.

Remark 1.4. In the special case c = d = 1, we note that Corollary 1.3 also
follows easily from the fact that if a curve defined over an extension of Fp has

infinitely many Fp-points, then the curve itself is defined over Fp. However,
for the full statement of Corollary 1.3 (or more generally, Theorem 1.1)
which allows for arbitrarily polynomials c and d, the points (a(λ), b(λ)) (for

λ ∈ S) need not lie in Fp
2
, and our proof requires information about points

of small height, which is supplied by [Ghi14].

On the other hand, one cannot expect in Corollary 1.3 (nor in the similar
statement from Theorem 1.1) that gcd(am − c, bn − d) has bounded degree,
as we can see from the following construction.

Example 1.5. Let a, b ∈ L[T ] such that a(0) = b(0) = 1, but there is no
nonzero F ∈ Fp[X,Y ] such that F (a, b) = 0. Clearly, gcd

(
ap

n − 1, bp
n − 1

)
has the root λ = 0 with multiplicity at least equal to pn.

If one restricts in Corollary 1.3 to computing gcd(am−1, bn−1) for positive
integersm and n which are coprime to p, then an argument similar to [Sil04b,
Theorem 8 part (b)] yields the uniform boundedness of the degree of this
greatest common divisor as we vary among all m,n ∈ N coprime with p. As
shown in [Sil04b], the key fact is that for any positive integer n not divisible
by p, the endomorphism of Gm given by the map x 7→ xn (defined over Fp)
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is étale. Furthermore, strengthening the hypotheses in Theorem 1.1, we can
prove the uniform boundedness of the degree of gcd(f(a) − c, g(b) − d), as
we let f and g vary in Fq[Z]; we state the next result only for polynomials
a, b, c, d ∈ L[T ], though an appropriate modification (with a similar proof)
holds for rational functions as well.

Theorem 1.6. Let p be a prime number, let n ∈ N, let L be a field of
characteristic p > 0 and let a, b, c, d ∈ L[T ] with the property that there is
no λ ∈ L such that both a(λ) and b(λ) are contained in Fp. Then there exists
a nonzero polynomial D ∈ L[T ] with the property that for any f, g ∈ Fpn [Z]
such that f(a) 6= c and g(b) 6= d, we have that

gcd(f(a(T ))− c(T ), g(b(T ))− d(T )) | D(T ).

Corollary 1.3 (along with Theorem 1.6) is in the spirit of the main result of
Ailon–Rudnick [AR04], who proved that if a, b ∈ C[T ] are multiplicatively
independent, then there exists a nonzero polynomial c ∈ C[t] such that
gcd(ak − 1, bk − 1) | c for all k ∈ N. In turn, the result of Ailon–Rudnick
was motivated by the work of Bugeaud–Corvaja–Zannier [BuCZ03] who es-
tablished an upper bound for gcd(ak − 1, bk − 1) (as k varies in N) for given
a, b ∈ Q. We also mention that this problem of bounding the greatest com-
mon divisor has been studied in several other directions as well: for elements
close to S-units (see [CZ13b, Luc05]), for elliptic divisibility sequences (see
[Sil04b]), and also for compositional iterates of complex polynomials (see
[HT]). Furthermore, we note that the result of [CZ13b] extends in arbitrary
characteristic the main theorem of [CZ08], which in turn had interesting
applications to a special case of a conjecture of Vojta concerning integral
points for the complement in P2 of certain curves (see [CZ13a]) and to ra-
tional curves on projective surfaces (see [CZ11]). We also mention that our
Theorem 1.1 bears resemblance to [Mas14, Theorem 1.1]; one of the dif-
ferences is that our result holds in the absence of an algebraic group, even
though, a special case of our result (when a, b and c are algebraically in-
dependent over Fp and d = 1) can be recovered from the main theorem of
[Mas14]. Finally, we note that our Theorem 1.1 answers in the affirmative
the following special case of [HT, Question 17].

Corollary 1.7. Let p be a prime number, let f, g ∈ Fp[Z], let L be a field of
characteristic p, and let a, b, c, d ∈ L[T ] such that a and b are algebraically
independent over Fp. Then there exist at most finitely many λ ∈ L with
the property that for some m,n ∈ N we have that f◦m(a(λ)) = c(λ) (but
f◦m(a) 6= c) and g◦n(b(λ)) = d(λ) (but g◦n(b) 6= d).

On the other hand, Silverman [Sil04a] showed that for nonconstant a, b ∈
Fp[T ], there exist infinitely many λ ∈ Fp which are roots of gcd(am−1, bn−1).
Actually, the same analysis as in [Sil04a] suggests that more generally, when
the polynomials a, b, c and d are all defined over a finite field Fq, the
polynomials gcd(am − c, bn − d) may have infinitely many distinct roots as
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we vary m and n. Indeed, if a and b were primitive roots for infinitely many
distinct prime ideals p of Fq[T ] (i.e., that both a and b modulo p generate
the cyclic group (Fq[T ]/p)∗, which often times happens, as it is shown in
[PS95]), then there exist m,n ∈ N such that gcd(am − c, bn − d) ∈ p, thus
showing that there are infinitely many roots of these gcd-polynomials as we
vary m and n.

In Corollary 1.3 (and more generally, in Theorem 1.1) we show that if a
and b are algebraically independent over Fp (which is the same as algebraic

independence over Fp), then gcd(am − c, bn − d) has at most finitely many
distinct roots as we vary m and n. As an aside, note that in Corollary 1.3,
if L is a finite field, as it is the case in Silverman’s examples from [Sil04a],
then a and b must be algebraically dependent over Fp, and then also

gcd(am − 1, bn − 1)

may have arbitrarily many distinct roots.
We also note (see the next example) that it is essential in Theorem 1.1

to restrict ourselves to polynomials f, g ∈ Fq[Z], rather than considering all

polynomials in Fp[Z].

Example 1.8. Let L = Fp(t), let a, b ∈ L(T ) such that there is no F ∈
Fp[X,Y ] so that F (a, b) = 0, and let c(T ) := a(T )−T and d(T ) := b(T )−T .

Then, for any λ ∈ Fp, letting f(Z) := Z − λ, we have that

f(a)− c = f(b)− d = T − λ,
thus showing that in the conclusion of Theorem 1.1 we have to restrict
ourselves to the case when f, g ∈ Fq[Z] for some given prime power q.

Our Theorem 1.1 can also be interpreted from the point of view of the
principle of unlikely intersections in arithmetic geometry (for a compre-
hensive discussion on this topic, see [Zan12]). Indeed, let L be a field of
characteristic p, and let a, b, c, d ∈ L(T ); then these rational functions pa-
rametrize a (rational) curve C defined over L inside (P1)4. More precisely,
C consists of all points of the form

(1.9)
{

(a(t), b(t), c(t), d(t)) : t ∈ L
}
.

Then for a given q (which is a power of p), and for any f, g ∈ Fq[Z], we
define the surface Yf,g ⊂ (P1)4 given by the equations

x3 = f(x1) and x4 = g(x2),

where (x1, x2, x3, x4) are the coordinates of (P1)4. In Theorem 1.1, we prove
that if C is not contained in a hypersurface of (P1)4 defined by an equation
of the form

(1.10) F (x1, x2) = 0 for some nonzero F ∈ Fp[Z1, Z2],

then C(L) ∩
(⋃

f,g∈Fq [Z] Yf,g(L)
)

is finite. This geometric reformulation is

similar to [CGMM13, Theorem 1.2], which is a function field version of the
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classical Pink–Zilber conjecture; in the same spirit, see also [GMZ15] for par-
tial results on the Bounded Height Conjecture for function fields formulated
in [CGMM13]. Indeed, a special case of [CGMM13, Theorem 1.2] yields that
as long as the curve C from (1.9) is not contained in a proper subvariety
of (P1)4 defined over Fp (which is a significantly stronger hypothesis than
(1.10)), then the intersection of C with the union of all surfaces S ⊂ (P1)4

defined over Fp is finite. Actually, the result from [CGMM13, Theorem 1.2]
is stated for affine subvarieties, but the exact same proof works for subvari-
eties of (P1)n. The following result (which is in the same spirit as [Ost16,
Theorem 1.3]) is an immediate consequence of [CGMM13, Theorem 1.2] (for
fields of arbitrary characteristic).

Corollary 1.11. Let L be a function field over an algebraically closed field
K, let m, k, n, ` ∈ N, and let

a1, . . . , am, b1, . . . , bk, c1, . . . , cn, d1, . . . , d` ∈ L(T )

with the property that there exists no nonzero F ∈ K [X1, . . . , Xm+n+k+`]
such that F (a1, . . . , am, b1, . . . , bk, c1, . . . , cn, d1, . . . , d`) = 0. Then there ex-
ist at most finitely many t ∈ L with the property that there exist some
f ∈ K [X1, . . . , Xm] and h ∈ K [Z1, . . . , Zn] (not both constant) and some
g ∈ K [Y1, . . . , Yk] and j ∈ K [W1, . . . ,W`] (not both constant) such that

f (a1(t), . . . , am(t)) = h (c1(t), . . . , cn(t)) ,(1.12)

g (b1(t), . . . , bk(t)) = j (d1(t), . . . , d`(t)) .(1.13)

Indeed, the hypothesis from Corollary 1.11 yields that the curve C in
(P1)m+k+n+`

L
, given by the parametrization

(a1(t), . . . , am(t), b1(t), . . . , bk(t), c1(t), . . . , cn(t), d1(t), . . . , d`(t))

is not contained in any proper subvariety defined over K, and therefore
[CGMM13, Theorem 1.2] yields that its intersection with the union of all
subvarieties of (P1)m+nk+` of codimension 2 is finite. Conditions (1.12)–
(1.13) in Corollary 1.11 simply tell us that we intersect the curve C with all
codimension-2 subvarieties of (P1)m+k+n+` given by equations of the form

f (x1, . . . , xm) = h (xm+k+1, . . . , xm+k+n) ,

g (xm+1, . . . , xm+k) = j (xm+k+n+1, . . . , xm+k+n+`) ,

for (nonconstant) polynomials f, g, h, j with coefficients in K, and therefore
the intersection must be finite.

In Corollary 1.11, if K = Fp then we recover a result similar to our
Theorem 1.1. However, the difference is that in Corollary 1.11 we have a
stronger hypothesis, i.e., with the notation as in Theorem 1.1, we would
have to ask that a, b, c, d are algebraically independent over Fp, while in
Theorem 1.1 we only ask that a and b are algebraically independent over
Fp.
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We present now the plan for our paper. We start in Section 2 by intro-
ducing the necessary notation for our paper. In Section 3 we prove various
results which we will use later in order to establish the conclusion of Theo-
rem 1.1. In Section 3, we also state (see Theorem 3.6) a result from [Ghi14]
(which, in turn, generalizes [Ghi09]) regarding points of small height on
curves. We discuss next these results and their connection to our problem
in the special case when trdegFp

L = 1. So, in [Ghi09, Theorem 2.2] it is

proven that if C ⊂ P1 × P1 is a curve defined over Fp(t), but which is not

defined over Fp, then there exists a positive constant c0 such that for all but

finitely many points (x, y) ∈ C
(
Fp(t)

)
, we have that

max{h(x), h(y)} ≥ c0,

where h(·) is the usual Weil height on P1 corresponding to the function field
Fp(t) (for more details regarding heights on function fields, see Section 2).

Now, we note that we may assume in Theorem 1.1 that L is finitely
generated; thus, assuming further that trdegFp

L = 1, we have that L is a

finite extension of Fp(t). Our hypothesis from Theorem 1.1 yields that if at
least one of a or b is in L(T ) \ L, then the rational curve{

(a(t), b(t)) : t ∈ L
}
⊂ P1

L
× P1

L

is not defined over Fp. However, as shown by our Lemma 3.1, if a, b ∈
L(T )\L, then the existence of infinitely many λi satisfying the conditions (i)–
(ii) from Theorem 1.1 yields that

max {h(a(λi)), h(b(λi))} → 0,

contradicting thus Theorem 3.6 (in the special case when trdegFp
L = 1).

In Section 4, we finish the proof of Theorem 1.1; we also note that the case
when a (or b) is in L requires a different argument than the general case
(see Claim 4.1). The conclusion in Theorem 1.6 follows then easily from
Theorem 1.1.

Acknowledgments. We thank Joe Silverman, Alina Ostafe, and the ano-
nymous referee for their useful comments and suggestions which improved
our presentation.

2. Preliminaries

In this section, we set up our notation and recall facts from the theory of
height functions and specializations that will be used in this paper.

2.1. Global (function) fields. A product formula field L is a field equip-
ped with a set of inequivalent absolute values (places) ΩL, normalized so
that the product formula holds (see (2.1)); the corresponding absolute value
to a place v ∈ ΩL is denoted by | · |v. More precisely, for each v ∈ ΩL there
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exists a positive integer Nv such that for all α ∈ L∗ we have the product
formula:

(2.1)
∏
v∈ΩL

|α|Nv
v = 1.

Examples of product formula fields (or global fields) are number fields and
function fields of projective varieties which are regular in codimension 1 over
another field k (see [Lan83, § 2.3] or [BoG06, § 1.4.6]). We remark that if
L = k(V ) is a function field of a projective variety which is regular in codi-
mension 1, then each place in ΩL corresponds to an irreducible subvariety
of codimension one in V ; also, as proven in [deJ96, Remark 4.2], at the
expense of replacing L by a finite extension, we may even assume that it is
the function field of an irreducible, smooth, projective variety defined over
a finite extension of k.

2.2. Weil height. Let L′ be a finite extension of L, and let ΩL′ be the set
of all absolute values of L′ which extend the absolute values in ΩL. For each
w ∈ ΩL′ extending some v ∈ ΩL we let Nw := Nv · [L′w : Lv], where Lv and
L′w are the corresponding completions of L and L′ with respect to | · |v and
| · |w. The (naive) Weil height of any point x ∈ L′ is defined as

h(x) =
1

[L′ : L]

∑
w∈ΩL′

Nw · log max{1, |x|w}.

As shown in [Lan83] (see also [BoG06]), the above definition of the height
h(x) is independent of the field L′ containing x. Since we will work with
heights on P1, we simply define h([x : 1]) := h(x) for any x ∈ L, and also
define h([1 : 0]) := 0.

In our paper we will often use height functions relative to different global
(function) fields; therefore, to avoid confusion, we will use the notation h(L)

to indicate that the height is computed with respect to the global field
(L,ΩL). Furthermore, if the places in ΩL correspond to viewing L as a
function field over (a finite exension of) the field k, we will use the notation

h(L/k). An important property for the Weil height h(L/k) is that if α ∈ L,
then

(2.2) h(L/k)(α) = 0 if and only if α ∈ k.

2.3. Properties of the Weil height. Let L be a product formula field
and let f ∈ L(x) \ L. We will often use the following standard fact (see
[Lan83, Theorem 1.8, p. 81])

(2.3) h(L)(f(x)) = deg(f) · h(L)(x) +O(1),

i.e., there is a positive constant C (depending on f , but independent of
x ∈ L) such that ∣∣∣h(L)(f(x))− deg(f) · h(L)(x)

∣∣∣ ≤ C.
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Now, assume L is a function field over some other field k, let x ∈ L and
let f ∈ k[T ] \ k. Then we will often use the following easy fact (which
strengthens (2.3) under our assumption that each coefficient of f is in k)

(2.4) h(L/k)(f(x)) = deg(f) · h(L/K)(x).

Indeed, formula (2.4) follows from the fact that for each v ∈ ΩL, if |x|v ≤ 1

then also |f(x)|v ≤ 1, while if |x|v > 1 then |f(x)|v = |x|deg(f)
v since each

coefficient of f belongs to the constants field k.

3. Some useful results

The following result is crucial in the proof of Theorem 1.1.

Lemma 3.1. Let L be a global field of characteristic p, let q be a power of p,
let a ∈ L(T )\L, let c ∈ L(T ), and let (λi)

∞
i=1 ⊂ L be a nonrepeating sequence

such that for each i, there is a polynomial fi ∈ Fq[Z] with the property that

fi(a(λi)) = c(λi), but fi(a) 6= c. Then limi→∞ h
(L)(a(λi)) = 0.

Proof. We let a sequence {λi} ⊂ L satisfying the above hypotheses with
respect to some polynomials fi ∈ Fq[Z]. Since there are finitely many poly-
nomials in Fq[Z] of any given degree, we may assume each fi is nonconstant,
and furthermore, deg(fi)→∞. Then for each i, we have

(3.2) h(L)(fi(a(λ))) = (deg fi)h
(L)(a(λi)) (by (2.4))

and

(3.3) h(L)(c(λi)) ≤ (deg c)h(L)(λi) +O(1) (by (2.3)).

Combining (3.2) with (3.3), along with the fact that fi(a(λi)) = c(λi), we
obtain

(3.4) h(L)(a(λi)) ≤
1

deg fi
·
(

deg c · h(L)(λi) +O(1)
)
.

On the other hand,

(3.5) (deg a)h(L)(λi) ≤ h(L) (a(λi)) +O(1) (by (2.3));

so, combining (3.4) with (3.5), along with the fact that deg(fi) → ∞ and
deg(a) ≥ 1, we obtain that the heights of the λi must be bounded. Then
(3.4) finishes the proof of Lemma 3.1 because deg(fi)→∞. �

We will also use the following result from [Ghi14, Theorem 1.4] (see also
[Ghi14, Remark 1.5]).

Theorem 3.6. Let L be a function field of transcendence degree 1 over
another field k, and let C be an irreducible curve in P1× P1 defined over L.
If C is not defined over k, then there is an ε > 0 such that there are at most
finitely many (x, y) ∈ C(L) for which max

{
h(L/k)(x), h(L/k)(y)

}
< ε.
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4. Proof of our main results

Proof of Theorem 1.1. Without loss of generality (at the expense of re-
placing L with a suitable subfield), we may assume L is finitely generated.
Indeed, for any field L0 such that a, b, c, d ∈ L0(T ), then any λ satisfying
conditions (i)-(ii) from Theorem 1.1 must be algebraic over the field L0. So,
from now on, we assume L is finitely generated.

First we prove that it suffices to assume that both a and b are nonconstant
in L(T ).

Claim 4.1. If a ∈ L or b ∈ L, then Theorem 1.1 holds.

Proof. Without loss of generality, we may assume a ∈ L. We argue by con-
tradiction and thus assume there exist infinitely many λi ∈ L satisfying con-
ditions (i)-(ii) corresponding to some polynomials fi, gi ∈ Fq[Z]. An impor-
tant observation throughout our proof of Theorem 1.1 is that deg(fi)→∞
and also deg(gi) → ∞, since for any given d ∈ N, there exist finitely many
polynomials of degree d with coefficients in Fq.

We have two cases: either b ∈ L as well, or b ∈ L(T ) \ L.

Case 1. Assume first that b ∈ L. In this case, we immediately get that
c, d ∈ L(T )\L since otherwise conditions (i) and (ii) of Theorem 1.1 can not
be satisfied simultaneously. By assumption trdegFp

(Fp(a, b)) = 2, therefore

we may view L as a function field over L1 := Fp(a). Because b /∈ L1, then
(2.2) yields that

(4.2) h(L/L1)(b) > 0.

Using that gi ∈ Fq[Z], then (2.4) yields that

(4.3) h(L/L1)(d(λi)) = h(L/L1)(gi(b)) = deg(gi) · h(L/L1)(b)→∞ as i→∞,

since deg(gi)→∞ as i→∞. Equation (4.3) combined with equation (2.3)
yields that

(4.4) h(L/L1)(λi)→∞ as i→∞.

On the other hand, since fi(a) ∈ L1 for each i and thus h(L/L1)(fi(a)) = 0,

we also get that h(L/L1)(c(λi)) = 0 (because fi(a) = c(λi)). Again using
equation (2.3) (note that c ∈ L(T ) \ L), we obtain that

(4.5) h(L/L1)(λi) is bounded.

Equations (4.4) and (4.5) yield a contradiction; therefore, there are at most
finitely many λ ∈ L satisfying both conditions (i)–(ii) from the conclusion
of Theorem 1.1.

Case 2. Now, assume b(T ) ∈ L(T ) \ L. We may assume a /∈ Fp because

otherwise, trdegFp
(Fp(a, b)) ≤ 1 < 2 which is not the case. Because a /∈ Fp,

its height h(L/Fp)(a) is positive (where the height h(L/Fp)(·) is constructed
by viewing L as a finite transcendence degree function field over a finite
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extension of Fp). Then, as shown by Lemma 3.1 (note that b ∈ L(T ) \ L),

for any infinite sequence λi ∈ L with the property that there exist some
gi ∈ Fq[T ] for which gi(b) 6= d but gi(b(λi)) = d(λi) we have

(4.6) h(L/Fp)(b(λi))→ 0.

Using (2.3) and (4.6) (note that b is not a constant function in L(T )), we
get that

(4.7) h(L/Fp)(λi) is bounded.

On the other hand, if fi(a) 6= c but fi(a) = c(λi) for some fi ∈ Fq[Z], then
(arguing as in the previous Case 1) we have

(4.8) h(L/Fp)(c(λi)) = h(L/Fp)(fi(a)) = deg(fi) · h(L/Fp)(a)→∞.
Then using (2.3) and (4.8) yields

(4.9) h(L/Fp)(λi)→∞.
Equations (4.7) and (4.9) are contradictory, thus proving that there is no
infinite set of λ ∈ L satisfying conditions (i)–(ii) in Theorem 1.1; this con-
cludes the proof of Claim 4.1. �

So, from now on, we assume that a, b ∈ L(T ) \ L. We argue by con-
tradiction, and so, we suppose that we have an infinite sequence {λi} ⊂ L
satisfying conditions (i)–(ii) in Theorem 1.1 corresponding to some polyno-
mials fi, gi ∈ Fq[Z].

If L is algebraic over Fp, then clearly, trdegFp
(Fp(a, b)) ≤ 1 < 2. So, from

now on, we assume that L has positive transcendence degree over Fp.
Let trdegFp

(L) = n ≥ 1 and let K be any finitely generated subfield of L of

transcendence degree n−1 over Fp. As above, we let h(L/K) denote the Weil
height function corresponding to the function field L/K (of transcendence
degree 1). Lemma 3.1 applied to a and c, respectively to b and d (note that
a, b ∈ L(T ) \ L) yields that

(4.10) lim
i→∞

max
{
h(L/K)(a(λi)), h

(L/K)(b(λi))
}
→ 0.

Hence, by Theorem 3.6, the curve C parametrized by (a(t), b(t)) over all
t ∈ L must be defined over K. However, we can repeat this argument for
any finitely generated subfield K of L such that trdegKL = 1. Since the
intersection (inside L) of all algebraic closures of such subfields equals Fp, we

conclude that C is defined over Fp. Hence there exists a nonzero polynomial

F ∈ Fp[X,Y ] such that F (a, b) = 0, contradicting our hypothesis. This
concludes the proof of Theorem 1.1. �

Proof of Theorem 1.6. We first note that the hypothesis that there is
no λ ∈ L such that both a(λ) and b(λ) are contained in Fp is actually
stronger than the hypothesis from Theorem 1.1 that a and b are algebraically
independent over Fp. Indeed, the hypothesis of Theorem 1.6 yields that the
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L-rational curve in P1 × P1 parametrized by (a(t), b(t)) is not defined over
Fp; hence a and b are algebraically independent over Fp. So, Theorem 1.1

yields the existence of only finitely many λ ∈ L which are roots of the
greatest common divisors of the nonzero polynomials f(a)(T ) − c(T ) and
g(b)(T ) − d(T ) for some f, g ∈ Fpn . Hence, all we have left to prove is
that for each of these finitely many λ’s, their corresponding multiplicity in
gcd(f(a)(T ) − c(T ), g(b)(T ) − d(T )) is uniformly bounded independent of
f, g ∈ Fpn (as long as f(a) 6= c and g(b) 6= d). The desired conclusion
follows from the following easy claim.

Claim 4.11. Let f1, f2, g1, g2 ∈ Fp[Z] such that f1 6= f2 and g1 6= g2. Then
the polynomials f1(a)− c, g1(b)− d, f2(a)− c and g2(b)− d are coprime.

Proof of Claim 4.11. Assume there exists some λ ∈ L such that

f1(a(λ)) = c(λ) = f2(a(λ)) and g1(b(λ)) = d(λ) = g2(b(λ)).

Thus, letting f0 := f1 − f2 and g0 := g1 − g2 (which are both nonzero
polynomials according to our hypotheses), we get that

f0(a(λ)) = g0(b(λ)) = 0,

which yields that a(λ), b(λ) ∈ Fp. This contradicts the hypothesis of Theo-
rem 1.6, thus proving Claim 4.11. �

Claim 4.11 yields that for each of the finitely many λ which is a root
of some gcd(f1(a)(T ) − c(T ), g1(b)(T ) − d(T )) (for some f1, g1 ∈ Fpn), its
multiplicity in any of the greatest common divisors of f(a)−c and of g(b)−d
as we vary f, g ∈ Fpn is uniformly bounded in terms of the maximum of the
multiplicity of λ as a root either of f1(a)(T ) − c(T ) or of g1(b)(T ) − d(T ).
This concludes the proof of Theorem 1.6. �
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[AR04] Ailon, Nir; Rudnick, Zéev. Torsion points on curves and common divisors
of ak − 1 and bk − 1. Acta Arith. 113 (2004), no. 1, 31–38. MR2046966
(2004m:11045), Zbl 1057.11018, arXiv:math/0202102, doi: 10.4064/aa113-1-
3.

[BoG06] Bombieri, Enrico; Gubler, Walter. Heights in Diophantine geometry.
New Mathematical Monographs, 4. Cambridge Univ. Press, Cambridge,
2006. xvi+652 pp. ISBN: 978-0-521-84615-8; 0-521-84615-3. MR2216774
(2007a:11092), Zbl 1115.11034.

[BuCZ03] Bugeaud, Yann; Corvaja, Pietro; Zannier, Umberto. An upper bound
for the G.C.D. of an − 1 and bn − 1. Math. Z. 243 (2003), no. 1, 79–84.
MR1953049 (2004a:11064), Zbl 1021.11001, doi: 10.1007/s00209-002-0449-z.
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