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Abstract. Using the machinery of weak fibration categories due to
Schlank and the first author, we construct a convenient model structure
on the pro-category of separable C∗-algebras Pro(SC∗). The opposite
of this model category models the ∞-category of pointed noncommu-
tative spaces NS∗ defined by the third author. Our model structure on
Pro(SC∗) extends the well-known category of fibrant objects structure
on SC∗. We show that the pro-category Pro(SC∗) also contains, as a full
coreflective subcategory, the category of pro-C∗-algebras that are cofil-
tered limits of separable C∗-algebras. By stabilizing our model category
we produce a general model categorical formalism for triangulated and
bivariant homology theories of C∗-algebras (or, more generally, that of
pointed noncommutative spaces), whose stable ∞-categorical counter-
parts were constructed earlier by the third author. Finally, we use our
model structure to develop a bivariant K-theory for all projective sys-
tems of separable C∗-algebras generalizing the construction of Bonkat
and show that our theory naturally agrees with that of Bonkat under
some reasonable assumptions.
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1. Introduction

The Gel’fand–Năımark correspondence implies that the category of poin-
ted compact Hausdorff (metrizable) spaces with pointed continuous maps is
equivalent to the opposite category of commutative (separable) C∗-algebras
with ∗-homomorphisms. In the realm of noncommutative geometry à la
Connes, the category of all (or separable) C∗-algebras constitutes the basic
setup. Let C∗ (resp. SC∗) denote the category of all (resp. separable)
C∗-algebras with ∗-homomorphisms. It is natural to regard its opposite
category as the category of noncommutative pointed compact and Hausdorff
(resp. metrizable) spaces. This category has been studied using tools from
algebraic topology for a very long time (see for instance, [32], [54], [56], [15],
[14], [59]). In particular, there is a natural notion of homotopy that enables
us to define homotopy equivalences in this context.

Quillen introduced model categories in [50] that provide a very general
context in which it is possible to set up the basic machinery of homotopy
theory. Thus an important question that arises is whether there exists a
natural model structure on C∗ or SC∗; preferably one that also models the
homotopy theory induced by the homotopy equivalences. This question was
explicitly raised in Hovey’s book [27, Problem 8.4]. It is not possible to
build such a model structure directly on C∗ or SC∗ because of the following
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argument of Andersen–Grodal [2, Corollary 4.7] (see also [47, 48]): We know
how to construct the analogue of the suspension functor

Σ : Ho(C∗op)→ Ho(C∗op).

Namely, if A ∈ C∗op, then
ΣA := S1 ∧A

is just the separable C∗-algebra of pointed continuous maps from S1 to
(A, 0). However, this functor does not have a right adjoint Ω. An intuitive
reason for this is the inherent compactness of the objects in C∗, since the
functor Ω can take a compact space to a noncompact one (for example,
ΩS1 ' Z). We thus need to extend the category C∗ to include noncompact
noncommutative spaces in order to put a model structure on it. For practical
applications it is often sufficient to restrict one’s attention to separable C∗-
algebras. Thus keeping in mind the contravariant nature of the Gel’fand–
Năımark duality, we formulate the following problem: Find a category D,
that contains SC∗ as a full subcategory, and construct a model structure on
D such that:

(i) The inclusion functor SC∗ → D sends homotopy equivalences to weak
equivalences and the resulting map HoSC∗ → HoD is fully faithful.

(ii) The category D is as close to SC∗ as possible, preferably already
known and studied in C∗-algebra theory.

(iii) The model category D is simplicial, proper and cocombinatorial (i.e.,
the opposite model category is combinatorial).

The first item codifies the requirement that one must build a homotopy
theory for the prevalent notion in the literature. The second item takes into
account the requirement that there should be minimal deviation from the
well established theory of C∗-algebras. The third item stipulates that the
model category possess features that facilitate homotopy theoretic construc-
tions therein (see Appendix A for more detail).

We are aware of the following different model categories in the context of
C∗-algebras (the authors apologise for any omission due to ignorance):

(1) The homotopy theory of cubical C∗-spaces by Østvær [45],
(2) The model structure on ν-sequentially complete l.m.c-C∗-algebras

by Joachim–Johnson [30],
(3) The model category (or the∞-category) of pointed noncommutative

spaces by the third author [38],
(4) The Morita homotopy theory of C∗-categories by Dell’Ambrogio–

Tabuada [17], and
(5) The operadic model structure on the topos P(SC∗un

op) by the third
author, where SC∗un denotes the category of nonzero separable and
unital C∗-algebras with unital ∗-homomorphisms [35].

In item (1), Østvær constructs a model structure on cubical set valued
presheaves on SC∗. He begins with the projective model structure, and
then the appropriate model category is obtained by successive Bousfield
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localizations. The end result has a flavour of the motivic (unstable) model
category. The underlying category of this model category is not so well
known in the theory of C∗-algebras and is much bigger than the candidate
that we put forward. Thus this model category does not satisfy criterion
(ii) above.

The approach in item (2) relies on the quasi-homomorphism picture for
KK-theory due to Cuntz [15] to build a model category, whose homotopy
category contains Kasparov KK-category fully faithfully. The enlargement
of the category of C∗-algebras is carefully chosen by the authors in [30] so
that it permits the small object argument leading to the construction of a
cofibrantly generated model structure. Evidently it does not satisfy criterion
(i) above. The same comment applies to the approaches in items (4) and (5).
Actually the model category of item (5) acts as a bridge between dendroidal
sets and noncommutative spaces; more precisely, it acts as a bridge only
at the level of underlying ∞-categories of ∞-operads and noncommutative
spaces.

Before turning our attention to item (3) let us mention that the most
straightforward way that extends the category of C∗-algebras to include
noncompact noncommutative spaces is to consider the classical notion of pro-
C∗-algebras ([48, 47]). These are topological ∗-algebras that are cofiltered
limits of C∗-algebras (in the category of topological ∗-algebras). Commu-
tative unital pro-C∗-algebras roughly correspond to completely Hausdorff
compactly generated spaces (strictly speaking, one should consider com-
pletely Hausdorff quasitopological spaces). These objects are very close to
C∗-algebras (in particular, they are also topological ∗-algebras), and were
studied in C∗-algebra theory (so they certainly satisfy criterion (ii) above).
There is also a notion of homotopy equivalence between pro-C∗-algebras, so
that homotopy equivalences are natural candidates for weak equivalences.
Hence if we could define a model structure with these weak equivalences,
criterion (i) above would also be satisfied. This attempted model structure
would be similar to the Strøm model structure on topological spaces [57],
where the weak equivalences are the homotopy equivalences, and it is quite
conceivable that Strøm’s construction would generalize to the category of
pro-C∗-algebras. However, it is very likely that the resulting model struc-
ture would fail to be cocombinatorial, and thus violate criterion (iii) above,
much like the Strøm model structure [51, Remark 4.7].

Let us now explain how our article complements the approach of item
number (3). Being an active area of research, the theory of ∞-categories
is considered nowadays to be the most appropriate and conceptual environ-
ment for using homotopy theoretic tools in a generalized context. There are
two natural ways of considering SC∗ as an ∞-category:

(1) We can consider SC∗ as a topologically enriched category, where for
every A,B ∈ SC∗ we endow the set of ∗-homomorphisms SC∗(A,B)
with the point norm topology. Then we can take topological nerve
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of this topological category as in [34, Section 1.1.5]. This approach
was taken by the third author in [38].

(2) We can consider SC∗ as a relative category, with the weak equiv-
alences given by the homotopy equivalences. Then we can take
∞-localization of this relative category. (We refer the reader to
Appendix B.1 for the definition of a relative category and the ∞-
localization of a relative category.) This relative category was con-
sidered in [2, 56, 59].

We are going to show in Proposition 3.17 that these two ways are equivalent.
Let us denote by SC∗∞ the ∞-category obtained by either of the two equiva-
lent ways above. The ∞-category SC∗∞ is not a very convenient one from an
∞-categorical perspective, since it does not permit many natural construc-
tions. For example, while SC∗∞ admits finite ∞-limits [38, Proposition 2.7],
it does not have finite∞-colimits. Indeed, if it did possess finite∞-colimits,
one could define an adjoint pair of ∞-categories, as in Appendix B.2:

ΣSC∗∞ : SC∗∞ � SC∗∞ : ΩSC∗∞ .

Being an adjoint pair of∞-categories, it would descend to an adjoint pair on
their homotopy categories, thereby contradicting the argument of Andersen–
Grodal mentioned above. This is why it is desirable to embed SC∗∞ in a bigger
∞-category, which is complete and cocomplete in an ∞-categorical sense.
One of the most convenient types of ∞-categories is that of presentable ∞-
categories, or even more particularly, compactly generated ∞-categories (see
[34, Chapter 5]). There is a very natural procedure to embed SC∗∞

op in a
compactly generated ∞-category, viz., since SC∗∞

op admits finite colimits,
one may simply take its ∞-categorical ind-completion Ind(SC∗∞

op). This
is a very elegant solution, since Ind(SC∗∞

op) is generated by the objects
in SC∗∞

op, which become compact inside it. The ∞-category Ind(SC∗∞
op)

was called the ∞-category of pointed noncommutative spaces (that are not
necessarily compact) by the third author and denoted by NS∗ in [38].

While the theory of ∞-categories is very conceptual and enables us to
prove theorems using universal properties, when it comes to concrete calcu-
lations it is in many cases quite abstract. For this purpose it is beneficial to
have a convenient model structure that models the ∞-category of pointed
noncommutative spaces (see Appendix B.1 for the exact meaning of this).
This leads us to the model structure constructed in this paper, which fulfils
this requirement and also seems to satisfy all the above-mentioned criteria
(cf. Remark 1.1 below).

In this paper we construct a model structure on the category of projective
systems of separable C∗-algebras, which we denote Pro(SC∗). This is done
in Theorem 3.14, where it is also shown that this model structure satisfies
criterion (iii) above. The construction of our model structure is based on
a general method for constructing model structures on pro-categories that
was developed by T. Schlank and the first author in [9, 7]. In these papers
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the concept of a weak fibration category was introduced. A weak fibration
structure on a category is much weaker than a model structure. It is shown in
[9, 7] that a small weak fibration structure on a category naturally induces a
model structure on its pro-category, provided the induced weak equivalences
satisfy the two out of three property. The verification of this two out of three
property is usually not an easy task. In order to show this in our case we
apply a result proved by the first author in [5] that gives sufficient intrinsic
conditions on a weak fibration category for this two out of three property
to hold.

A weak fibration category is a triple (C,W,F) consisting of a category C
and two subcategories W and F , called weak equivalences and fibrations,
satisfying certain axioms (weaker than those of a model category). This
notion is closely related to Brown’s notion of a category of fibrant objects
[13] and Baues’s notion of a fibration category [10], which were introduced
as more flexible structures than a model category that permit abstract ho-
motopy theory. Andersen–Grodal defined a structure of a Baues fibration
category on SC∗ in their unpublished paper [2]. Uuye later gave a different
proof [59]. Both are building upon the earlier work of Schochet [56]. We
explain why this construction also constitutes a weak fibration structure on
SC∗, and use it as a starting point for constructing our model structure on
Pro(SC∗), as explained in the previous paragraph. Thus we extend the fibra-
tion structure on SC∗ to a much more powerful model structure on Pro(SC∗).

The category of projective systems (as well as inductive systems and some
other diagram categories) of C∗-algebras has already been studied in the
literature on C∗-algebras. For instance, it was considered by Bonkat [12]
with applications to bivariant K-theory and by Puschnigg [49] and Meyer
[42] with applications to bivariant cyclic homology theories. In combination
with Kirchberg’s techniques, diagrams of (separable) C∗-algebras have since
then been used effectively in various classification problems (see for instance,
[20, 21, 43]).

Moreover, we are also able to build a bridge between the objects of our
model category and the classical notion of pro-C∗-algebras mentioned above.
In particular, we show in Proposition 3.22 that the underlying category
of our model category contains, as a full coreflective subcategory, a very
large category of pro-C∗-algebras (namely, those that are cofiltered limits of
separable C∗-algebras). Thus we can say that our model structure satisfies
criterion (ii) above.

We further show in Proposition 3.18 that the opposite category of our
model category models the ∞-category of pointed noncommutative spaces
NS∗ described above. We do this using a general result proved by the first
author, Y. Harpaz and G. Horel in [6], which connects the model structure on
a pro-category defined in [9, 7] with the ∞-categorical pro-construction. A
direct consequence of this is that our model structure also satisfies criterion
(i) above.
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Remark 1.1. Since the ∞-category NS∗ is presentable, there is a general
construction giving a combinatorial simplicial model categoryM, that mod-
els NS∗ (see [34, Proposition A.3.7.6]). However, the underlying category of
the model category produced by this general construction is much bigger
than the one that we construct here. Indeed, the underlying category of
M is the category of simplicial presheaves on a small simplicial category
containing SC∗op; whereas the (opposite of the) underlying category of our
model structure can be realised as a full subcategory of the category of
usual (set valued) presheaves on SC∗op. From the viewpoint of applications
to classification problems and computations of various bivariant homology
theories the simplicity and convenience of our new model structure is quite
significant.

After constructing the∞-category of pointed noncommutative spaces NS∗
as a starting point, the third author constructed in [38] several bivariant
homology theories on NS∗ using∞-categorical tools such as stabilization and
localization. These theories extend the applicability of some known theories
on the category of separable C∗-algebras, like K-theory and noncommutative
stable homotopy theory. Using our model structure, that models pointed
noncommutative spaces by projective systems of separable C∗-algebras, all
these homology theories become homology theories for projective systems
of separable C∗-algebras. Our constructions also develop a parallel world of
stable model categories that model the stable ∞-categories constructed by
the third author in [38, 39, 37] (see Proposition 4.7).

In particular, using the general construction mentioned above, we ob-
tain a bivariant K-theory for projective systems of separable C∗-algebras.
In [12], Bonkat also constructed a bivariant K-theory for certain types of
projective systems of separable C∗-algebras, using analytic tools extend-
ing the Kasparov bimodule picture. In Theorem 5.9, we use our model
structure to show that in certain cases, our bivariant K-theory agrees with
Bonkat’s construction. However, note that our bivariant K-theory applies to
all projective systems of separable C∗-algebras, while Bonkat’s construction
only applies to projective systems that have surjective connecting homomor-
phisms and admit a countable cofinal subsystem. Furthermore we show that
our K-theory has better formal properties (see Theorems 5.2, 5.6 and 5.7).
Further applications of the framework developed in this article will appear
elsewhere.

Overview of the paper. In Section 2 we review some of the necessary
background on pro-categories and homotopy theory in pro-categories. In
particular, we recall the definition of the pro-category of a general category,
as well as some related theory. In the homotopical part, we recall the defini-
tion of a simplicial weak fibration category and state Theorem 2.15, which
is the main tool for constructing our model structure. We end the section
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by considering the relation between the model structure on a pro-category
defined in Theorem 2.15 with the ∞-categorical pro-construction.

In Section 3 we construct our model structure on the category of pro-
jective systems of separable C∗-algebras. We begin in Subsection 3.1 by
defining a simplicial weak fibration structure on the category SC∗ of sep-
arable C∗-algebras (see Propositions 3.8 and 3.13). In Subsection 3.2 we
use the results of the previous subsection and Theorem 2.15 to construct
our model structure on Pro(SC∗) (see Theorem 3.14). In Subsection 3.3,
we begin by showing that the two ways to look at SC∗ as an ∞-category
mentioned above are equivalent (see Proposition 3.17). We then deduce in
Propositions 3.18 that the underlying ∞-category of our model structure is
naturally equivalent to the opposite ∞-category of pointed noncommuta-
tive spaces defined in [38]. We also obtain a stable version of this last result
in Proposition 3.19. We end this section with Subsection 3.4, in which we
connect the underlying category of our model structure on Pro(SC∗) with
the more classical category of pro-C∗-algebras ([48],[47]). More precisely,
we show in Proposition 3.22 that Pro(SC∗) contains, as a full coreflective
subcategory, a very large category of pro-C∗-algebras (namely, those that
are cofiltered limits of separable C∗-algebras).

In Section 4 we consider bivariant homology theories on projective sys-
tems of separable C∗-algebras. We begin with Subsection 4.1, in which we
define the notion of a triangulated homology theory on a pointed cocomplete
∞-category. In Subsection 4.2 we recall a construction defined by the third
author in [38], which associates a triangulated homology theory on the ∞-
category of pointed noncommutative spaces to any set of morphisms in SC∗

(see Theorem 4.5). For any set of morphisms in SC∗, by taking the opposite
category and using our model structure, we get a bivariant homology theory
which is applicable to all projective systems of separable C∗-algebras. We
then transform this construction, which uses the language of ∞-categories,
to the world of model categories (see Theorem 4.7). We end in Subsection
4.3 by considering several examples of this general construction. In partic-
ular, we construct a bivariant K-theory category for projective systems of
separable C∗-algebras, and show that it extends Kasparov’s bivariant K-
theory. We also show how to use our model structure in order to obtain a
representing projective system for K-theory.

Originally Bonkat constructed a bivariant K-theory for certain types of
projective systems of separable C∗-algebras [12]. In Section 5 we com-
pare the bivariant K-theory for projective systems constructed in 4.3 with
Bonkat’s construction. We begin with Theorem 5.2, in which we show that
our bivariant K-theory satisfies the same defining properties as Bonkat’s,
namely, homotopy invariance, C∗-stability and split exactness. While our
bivariant K-theory satisfies these properties for all projective systems of
separable C∗-algebras, Bonkat’s construction only applies to projective sys-
tems that have surjective connecting homomorphisms and admit a countable



PROJECTIVE SYSTEMS OF C∗-ALGEBRAS 391

cofinal subsystem. We then show, in Theorems 5.6 and 5.7, that the main
calculational tools of Bonkat’s K-theory also hold for ours, and in fact, under
less restrictive assumptions. We end with Theorem 5.9 in which we use the
results above to show that in certain cases, our bivariant K-theory agrees
with Bonkat’s construction. In this last section we use our model structure
and its properties in an essential way.

Notations and conventions. Throughout the article we use the language
of model categories and that of ∞-categories. We refer the readers to [27]
or [26] for the prerequisites from the theory of model categories. For the
benefit of the readers we have gathered some of the main results that we
need about model categories in Appendix A. By an∞-category we mean the
quasicategory model of Joyal and Lurie (see [31, 34]). We have also compiled
some of the main results that we need about ∞-categories in Appendix B.

We denote by SC∗ the category of separable C∗-algebras and ∗-homomor-
phisms between them. Whenever we mention a tensor product on SC∗ we
mean the maximal C∗-tensor product. Whenever we mention a morphism
between objects in SC∗ we mean a ∗-homomorphism.

Acknowledgements. The first author thanks Tomer M. Schlank for useful
conversations. The third author has benefited from the hospitality of Max
Planck Institute for Mathematics, Bonn and Hausdorff Research Institute
for Mathematics, Bonn under various stages of development of this project.

2. Preliminaries: homotopy theory in pro-categories

In this section we review some of the necessary background on pro-
categories and homotopy theory in pro-categories. Standard references on
pro-categories include [3] and [4]. For the homotopical parts the reader is
referred to [8, 9, 7, 5]. See also [19] and [29].

2.1. Pro-categories. In this subsection we bring general background on
pro-categories.

Definition 2.1. A category I is called cofiltered if the following conditions
are satisfied:

(1) I is nonempty.
(2) For every pair of objects s, t ∈ I, there exists an object u ∈ I,

together with morphisms u→ s and u→ t.
(3) For every pair of morphisms f, g : s→ t in I, there exists a morphism

h : u→ s in I such that f ◦ h = g ◦ h.

If T is a poset, then we view T as a category which has a single morphism
u → v iff u ≥ v. Thus, a poset T is cofiltered iff T is nonempty, and for
every a, b ∈ T there exists c ∈ T such that c ≥ a, b. A cofiltered poset will
also be called directed. Additionally, in the following, instead of saying a
directed poset we will just say a directed set.
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Definition 2.2. A poset T is called cofinite if for every element x in T the
set Tx := {z ∈ T | z ≤ x} is finite.

A category is called small if it has only a set of objects and a set of
morphisms.

Definition 2.3. Let C be a category. The category Pro(C) has as objects
all diagrams in C of the form I → C such that I is small and cofiltered (see
Definition 2.1). The morphisms are defined by the formula

HomPro(C)(X,Y ) := lim
s

colim
t

HomC(Xt, Ys).

Composition of morphisms is defined in the obvious way.

Thus, if X : I → C and Y : J → C are objects in Pro(C), providing a
morphism X → Y means specifying for every s in J an object t in I and a
morphismXt → Ys in C. These morphisms should satisfy some compatibility
condition. In particular, if p : J → I is a functor, and φ : p∗X := X ◦p→ Y
is a natural transformation, then the pair (p, φ) determines a morphism

νp,φ : X → Y

in Pro(C) (for every s in J we take the morphism φs : Xp(s) → Ys). Taking
Y = p∗X and φ to be the identity natural transformation, we see that p
determines a morphism νp,X : X → p∗X in Pro(C). If I = J and we take
p = id, we see that every natural transformation X → Y determines a
morphism in Pro(C).

The word pro-object refers to objects of pro-categories. A simple pro-
object is one indexed by the category with one object and one (identity)
map. Note that for any category C, Pro(C) contains C as the full subcategory
spanned by the simple objects. We will thus abuse notation and treat C as
a full subcategory of Pro(C).

Definition 2.4. Let p : J → I be a functor between small categories. The
functor p is said to be (left) cofinal if for every i in I the over category p/i
is nonempty and connected (This means that the geometric realization is a
nonempty connected space).

Cofinal functors play an important role in the theory of pro-categories
mainly because of the following well known lemma:

Lemma 2.5. Let p : J → I be a cofinal functor between small cofiltered
categories, and let X : I → C be an object in Pro(C). Then νp,X : X → p∗X
is an isomorphism in Pro(C).

The following lemma can be found in [3, Proposition 8.1.6] and in [8,
Corollary 3.11]:

Lemma 2.6. Let I be a small cofiltered category. Then there exists a small
cofinite directed set A and a cofinal functor A→ I.



PROJECTIVE SYSTEMS OF C∗-ALGEBRAS 393

Definition 2.7. Let C be a category with finite limits, M a class of mor-
phisms in C, I a small category, and F : X → Y a morphism in CI . Then:

(1) The map F will be called a levelwise M -map, if for every i in I the
morphism Xi → Yi is in M . We will denote this by F ∈ Lw(M).

(2) The map F will be called a special M -map, if the following hold:
(a) The indexing category I is a cofinite poset (see Definition 2.2).
(b) The natural map Xt → Yt×lims<t Ys lims<tXs is in M , for every

t in I.
We will denote this by F ∈ Sp(M).

Definition 2.8. Let C be a category and let f : A→ B and g : X → Y be
morphisms in C. Then we say that f has the left lifting property with respect
to g, or equivalently, that g has the right lifting property with respect to f ,
if in every commutative square of the form

A //

f
��

X

g

��

B // Y

we have a lift B → X, making the diagram commutative.

Definition 2.9. Let C be a category and let M be a class of morphisms in
C.

(1) We denote by R(M) the class of morphisms in C that are retracts of
morphisms in M . Note that R(R(M)) = R(M).

(2) We denote by M⊥ (resp. ⊥M) the class of morphisms in C having the
right (resp. left) lifting property with respect to all the morphisms
in M .

(3) We denote by Lw
∼=(M) the class of morphisms in Pro(C) that are

isomorphic to a morphism that comes from a natural transformation
which is a levelwise M -map.

(4) If C has finite limits, we denote by Sp
∼=(M) the class of morphisms

in Pro(C) that are isomorphic to a morphism that comes from a
natural transformation which is a special M -map.

Everything we did so far (and throughout this paper) is completely dual-
izable. Thus we can define:

Definition 2.10. A category I is called filtered if the following conditions
are satisfied:

(1) I is nonempty.
(2) for every pair of objects s, t ∈ I, there exists an object u ∈ I, together

with morphisms s→ u and t→ u.
(3) for every pair of morphisms f, g : s→ t in I, there exists a morphism

h : t→ u in I such that h ◦ f = h ◦ g.

The dual to the notion of a pro-category is the notion of an ind-category:
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Definition 2.11. Let C be a category. The category Ind(C) has as objects
all diagrams in C of the form I → C such that I is small and filtered (see
Definition 2.10). The morphisms are defined by the formula:

HomInd(C)(X,Y ) := lim
s

colim
t

HomC(Xs, Yt).

Composition of morphisms is defined in the obvious way.

Clearly for every category C we have a natural isomorphism of categories
Ind(C)op ∼= Pro(Cop).

In general, we are not going to write the dual to every definition or theo-
rem explicitly, only in certain cases.

2.2. From a weak fibration category to a model category. In this
subsection we discuss the construction of model structures on pro-categories.

Definition 2.12. Let C be category with finite limits, and let M ⊆ C be
a subcategory. We say that M is closed under base change if whenever we
have a pullback square:

A

g

��

// B

f
��

C // D

such that f is in M, then g is in M.

Definition 2.13. A weak fibration category is a category C with an addi-
tional structure of two subcategories:

F ,W ⊆ C

that contain all the isomorphisms such that the following conditions are
satisfied:

(1) C has all finite limits.
(2) W has the 2 out of 3 property.
(3) The subcategories F and F ∩W are closed under base change.

(4) Every map A→ B in C can be factored as A
f−→ C

g−→ B, where f is
in W and g is in F .

The maps in F are called fibrations, the maps in W are called weak equiva-
lences, and the maps in F ∩W are called acyclic fibrations.

Let Sfin denote the category of finite simplicial sets, that is, simplicial
sets having a finite number of nondegenerate simplicies. Note that there is
a natural equivalence of categories Ind(Sfin)

∼−→ S, given by taking colimits
(see [1]). We define a map in Sfin to be a cofibration or a weak equivalence,
if it is so in the usual model structure on simplicial sets.
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Definition 2.14. A simplicial weak fibration category is a weak fibration
category C together with a bifunctor hom(−,−) : Sop

fin×C → C and coherent
natural isomorphisms

hom(L,hom(K,X)) ∼= hom(K × L,X),

hom(∆0, X) ∼= X,

for X in C and K,L in Sfin, such that:

(1) The bifunctor hom commutes with finite limits in every variable
separately.

(2) For every cofibration j : K → L in Sfin and every fibration p : A→ B
in C, the induced map:

hom(L,A)→ hom(K,A)
∏

hom(K,B)

hom(L,B)

is a fibration (in C), which is acyclic if either j or p is.

We now give our main tool for constructing our model structure. This is
the main theorem in the paper [5] by the first author. It is based on earlier
joint work with Tomer M. Schlank [8, 9, 7]. See also [19] and [29] for related
results. Note that the result in [5] is stated for the dual ind-picture, but we
bring it here in the form appropriate to the application that we need.

Theorem 2.15 ([5, Theorem 4.13]). Let (C,W,F) be a small simplicial
weak fibration category that satisfies the following conditions:

(1) C has finite colimits.
(2) Every object in C is fibrant.
(3) A map in C that is a homotopy equivalence in the simplicial category
C is also a weak equivalence.

(4) Every acyclic fibration in C admits a section.

Then there exists a simplicial model category structure on Pro(C) such that:

(1) The weak equivalences are W := Lw
∼=(W).

(2) The fibrations are F := R(Sp
∼=(F)).

(3) The cofibrations are C := ⊥(F ∩W).

Moreover, this model category is cocombinatorial, with set of generating
fibrations F and set of generating acyclic fibrations F ∩W.

The model category Pro(C) has the following further properties:

(1) The acyclic fibrations are given by F ∩W = R(Sp
∼=(F ∩W)).

(2) Every object in Pro(C) is cofibrant.
(3) Pro(C) is proper.

Remark 2.16. The simplicial structure on Pro(C) in the theorem above is
given by the natural prolongation of the cotensor action of Sfin on C, using
the natural equivalence of categories S ' Ind(Sfin). Namely, if K = {Ki}i∈I
is an object in S ' Ind(Sfin) and A = {Aj}j∈J is an object in Pro(C) then

hom(K,A) = {hom(Ki, Aj)}(i,j)∈Iop×J ∈ Pro(C).
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Remark 2.17. If (M,W,F , C) is a model category, (Mop,Wop, Cop,Fop)
is also a model category. Thus, if (C,W,F) is a weak fibration category
satisfying the hypothesis of Theorem 2.15, so that there is an induced sim-
plicial model structure on Pro(C), there is also an induced simplicial model
structure on Pro(C)op ∼= Ind(Cop), with properties dual to those stated in
Theorem 2.15.

2.3. Relation to pro-infty-categories. We finish this preliminary sec-
tion by connecting the model structure of Theorem 2.15 with the∞-categori-
cal construction of the pro-category. In [34, Section 5.3], Lurie defines the
ind-category of a small∞-category. The pro-category of a small∞-category
C can be simply defined as Pro(C) := Ind(Cop)op.

Let (C,W,F) be a weak fibration category satisfying the conditions of
Theorem 2.15. Clearly, we have a natural relative functor

(C,W)→ (Pro(C), Lw∼=(W)).

This relative functor induces an ∞-functor between the ∞-localizations

C∞ → Pro(C)∞.
(See Appendix B.1 for the definition of a relative category and the ∞-
localization of a relative category.) The following theorem is a corollary
of the main result in [6]:

Theorem 2.18. Extending the natural functor C∞ → Pro(C)∞ according to
the universal property of the ∞-categorical pro-construction gives an equiv-
alence of ∞ categories

Pro(C∞) ' Pro(C)∞.
In particular, the natural functor C∞ → Pro(C)∞ is derived fully faithful.

Remark 2.19. By Remark 2.17 we have an induced model structure on
Ind(Cop). It thus follows from Theorem 2.18 that there is a natural equiva-
lence of ∞ categories

Ind(Cop
∞ ) ' Ind(Cop)∞.

3. Model structure on the pro-category of C∗-algebras

In this section we construct our model structure on the category Pro(SC∗),
where SC∗ is the category of separable C∗-algebras.

3.1. SC∗ as a weak fibration category.

Definition 3.1. Let SC∗ denote the category of separable C∗-algebras and
∗-homomorphisms between them.

Remark 3.2. As noted in [59], the category SC∗ is naturally enriched over
Top, the Cartesian closed category of compactly generated weakly Hausdorff
topological spaces. Indeed, if A,B ∈ SC∗, we can give HomSC∗(A,B) the
subspace topology of the space of all continuous maps Top(A,B), endowed
with the compact open topology. We denote this space by SC∗(A,B). Since
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A is separable it follows that SC∗(A,B) is metrizable and hence compactly
generated Hausdorff (see [59, Remark 2.1]).

Remark 3.3. The category SC∗ is essentially small, since any separable
C∗-algebra is isomorphic to a sub C∗-algebra of the C∗-algebra of bounded
operators on `2. We can therefore assume that we are working with an
equivalent small category, and we will do so without mentioning.

We now define a structure of a simplicial weak fibration category on SC∗.

Definition 3.4 ([59, Definition 2.14]). A map p : A→ B in SC∗ is called a
Schochet fibration if for every D ∈ SC∗ and every commutative diagram of
the form

{0}

��

// SC∗(D,A)

p∗
��

[0, 1] // SC∗(D,B),

there exists a lift [0, 1]→ SC∗(D,A).

Remark 3.5. The definition of a Schochet fibration was originally intro-
duced by Schochet in [56], where such maps were called cofibrations.

Definition 3.6. For every K in Sfin and A in SC∗ we denote by

hom(K,A) := C(|K|)⊗A = C(|K|, A)

the separable C∗ algebra of continuous maps |K| → A, where |K| is the
geometric realization of K.

Let A ∈ SC∗, and consider the simplicial unit interval ∆1 ∈ Sfin. Then
hom(∆1, A) is just the C∗-algebra of continuous maps from the topological
unit interval I = |∆1| to A. We have two simplicial maps ∆0 → ∆1, taking
the values 0 and 1. These maps induce two maps in SC∗, which we denote

π0, π1 : hom(∆1, A)→ hom(∆0, A) ∼= A.

These maps are given by evaluation at 0 and 1 respectively. There is a
unique simplicial map ∆1 → ∆0, which induces a map which we denote

ι : A ∼= hom(∆0, A)→ hom(∆1, A).

This map sends an element to the constant map at that element. The
C∗ algebra hom(∆1, A) together with the maps π0, π1 and ι is called the
standard path object for A given by the simplicial structure.

Definition 3.7. We define W to be the class of homotopy equivalences in
SC∗, and F to be the class of Schochet fibrations in SC∗.

Proposition 3.8 (Andersen–Grodal, Uuye). The triple (SC∗,W,F) is a
weak fibration category.
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Proof. In [2, Corollary 3.9] it is shown that (SC∗,W,F) is a fibration cate-
gory in the sense of Baues [10]. Since SC∗ as finite limits, we obtain that it
is also a weak fibration category (see also [59]).

It is worthwhile to describe explicitly a factorization of the morphisms in
SC∗ into a weak equivalence followed by a fibration. Let f : A → B be a
morphism in SC∗. We define P (f) ∈ SC∗ to be the pull back

P (f) //

��

hom(∆1, B)

π0
��

A
f

// B.

We define a morphism i : A → P (f) = A ×B hom(∆1, B) to be the one
induced by the commutative square

A

id
��

// hom(∆1, B)

π0

��

A
f

// B,

the upper horizontal map being the composite: A
f−→ B

ι−→ hom(∆1, B).
We define a morphism p : P (f) = A ×B hom(∆1, B) → B to be the

composition:

P (f) −→ hom(∆1, B)
π1−→ B.

Clearly f = pi, and we call this the mapping cylinder factorization. It is
shown in [56] that the mapping cylinder factorization is a indeed a factor-
ization into a weak equivalence followed by a fibration. We note that this
factorization is furthermore functorial. �

We now want to show that the weak fibration category (SC∗,W,F) is
simplicial. First, it is not hard to see that Definition 3.6 indeed defines a
bifunctor

hom(−,−) : Sop
fin × C → C

that commutes with finite limits in every variable separately, and that there
are coherent natural isomorphisms

hom(L,hom(K,A)) ∼= hom(K × L,A),

hom(∆0, A) ∼= A,

for A in SC∗ and K,L in Sfin.

Definition 3.9. Using Definition 3.6, we can turn SC∗ into a category en-
riched in simplicial sets by defining for every A,B ∈ SC∗ and n ≥ 0

MapSC∗(A,B)n := HomSC∗(A,hom(∆n, B)).
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It is not hard to see that for every K ∈ Sfin and A,B ∈ SC∗ we have a
natural isomorphism

MapS(K,MapSC∗(A,B)) ∼= MapSC∗(A, hom(K,B)).

Since SC∗ is enriched in simplicial sets, we can consider the enriched Yoneda
embedding

Y : A 7→ MapSC∗(−, A) : SC∗ → SSC∗
op

.

Lemma 3.10. The Yoneda embedding Y : SC∗ → SSC∗op commutes with
finite limits and the simplicial coaction.

Proof. The fact that Y commutes with finite limits is clear. It is left to
show that there are coherent natural isomorphisms

MapSC∗(−,hom(K,A)) ∼= hom(K,MapSC∗(−, A))

for K ∈ Sfin and A ∈ SC∗. Thus, for every K ∈ Sfin and A,B ∈ SC∗ we need
to supply an isomorphism

MapSC∗(B, hom(K,A)) ∼= MapS(K,MapSC∗(B,A)),

but this is clear. �

Lemma 3.11. For every A,B ∈ SC∗ we have a natural isomorphism

Sing(SC∗(B,A)) ∼= MapSC∗(B,A),

where Sing denotes the singular simplices functor and SC∗(A,B) is the space
of ∗-homomorphisms defined in Remark 3.2.

Proof. By [59, Lemma 2.4], for every n ≥ 0 there is a natural isomorphism

Sing(SC∗(B,A))n = HomTop(|∆n|, SC∗(B,A))

∼= HomSC∗(B,C(|∆n|, A))

= HomSC∗(B, hom(∆n, A)) = MapSC∗(B,A)n.

From this the result clearly follows. �

Proposition 3.12. Consider the Yoneda embedding Y : SC∗ → SSC∗op, and
let SSC∗op be endowed with the projective model structure. Let p : A→ B be
a map in SC∗. Then the following hold:

(1) The map p is a homotopy equivalence in SC∗ iff Y (p) is a weak
equivalence in SSC∗op.

(2) The map p is a Schochet fibration in SC∗ iff Y (p) is a fibration in
SSC∗op.

Proof.
(1) This follows from Lemma 3.11 and [34, Proposition 1.2.4.1].
(2) Suppose that p is a Schochet fibration. Then, by [59, Proposition

2.18], for every D ∈ SC∗ the induced map SC∗(D,A) → SC∗(D,B) is a
Serre fibration. It follows from Lemma 3.11 and the fact that that the
functor Sing : Top → S sends Serre fibrations to Kan fibrations that for
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every D ∈ SC∗ the induced map MapSC∗(D,A) → MapSC∗(D,B) is a Kan
fibration. Thus Y (p) is a projective fibration.

Now suppose that Y (p) is a projective fibration, that is, for every D ∈ SC∗

the induced map MapSC∗(D,A) → MapSC∗(D,B) is a Kan fibration. Let
D ∈ SC∗, and consider a commutative diagram of the form

|∆{0}|

��

// SC∗(D,A)

p∗

��

|∆1| // SC∗(D,B).

We need to show that there exists a lift |∆1| → SC∗(D,A). Using the fact
that we have an adjoint pair

| − | : S � Top : Sing

and Lemma 3.11, we see that it is enough to find a lift in the following
diagram:

∆{0}

��

// MapSC∗(D,A)

p∗

��

∆1 // MapSC∗(D,B).

But such a lift exists since MapSC∗(D,A)→ MapSC∗(D,B) is a Kan fibration.
�

Proposition 3.13. With the cotensor action of Definition 3.6, SC∗ is a
simplicial weak fibration category (see Definition 2.14).

Proof. By what is explained after Proposition 3.8, we only need to show
that for every cofibration j : K → L in Sfin and every fibration p : A → B
in SC∗, the induced map:

hom(L,A)→ hom(K,A)
∏

hom(K,B)

hom(L,B)

is a fibration (in SC∗), which is acyclic if either j or p is. But this follows
from Lemma 3.10, Proposition 3.12 and the fact that the projective model
structure on SSC∗op is simplicial (see for example [34, Remark A.3.3.4]). �

3.2. The model structure on Pro(SC∗). We now turn to our main the-
orem.

Theorem 3.14. There exists a simplicial model category structure on the
category Pro(SC∗) such that:

(1) The weak equivalences are W := Lw
∼=(W).

(2) The fibrations are F := R(Sp
∼=(F)).

(3) The cofibrations are C := ⊥(F ∩W).
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Moreover, this model category is cocombinatorial, with set of generating
fibrations F and set of generating acyclic fibrations F ∩W.

The model category Pro(SC∗) has the following further properties:

(1) The acyclic fibrations are given by F ∩W = R(Sp
∼=(F ∩W)).

(2) Every object in Pro(SC∗) is cofibrant.
(3) Pro(SC∗) is proper.

Proof. The triple (SC∗,W,F) is an (essentially) small simplicial weak fi-
bration category by Proposition 3.8 and Proposition 3.13. Thus it remains
to show that SC∗ satisfies the conditions of Theorem 2.15.

(1) The fact that SC∗ has finite colimits follows from the existence of
amalgamated free products in SC∗ (see [46]).

(2) Let A be an object in SC∗. We need to show that the map A→ 0 is
a Schochet fibration. Let D ∈ SC∗ and let

{0}

��

f
// SC∗(D,A)

p∗
��

[0, 1] // SC∗(D, 0) ∼= ∗

be a commutative diagram. We can define a lift [0, 1] → SC∗(D,A)
in the diagram above to be the constant map at f(0), so we are done.

(3) By Lemma 3.11, a map in SC∗ is a weak equivalence iff that is a
homotopy equivalence in the simplicial category SC∗.

(4) The fact that every map in F ∩W admits a section is shown in [56,
Proposition 1.13 (a)]. �

Remark 3.15. By Theorem 3.14 and Remark 2.17, there exists a simplicial
model category structure on the category Pro(SC∗)op ∼= Ind(SC∗op), given
by (Ind(SC∗op),Wop,Cop,Fop), with the following properties:

(1) The model category Ind(SC∗op) is combinatorial, with set of gen-
erating cofibrations Fop and set of generating acyclic cofibrations
Fop ∩Wop.

(2) Every object in Ind(SC∗op) is fibrant.
(3) Ind(SC∗op) is proper.

We note that the pro picture is more in accordance with the tradition in
noncommutative geometry, while the dual ind picture is more in alliance with
the conventions in homotopy theory. We will thus be using both pictures,
at our convenience, throughout the paper.

3.3. Relation to the ∞-category Pro(SC∗∞). As we explained in the
introduction, there are two natural ways of considering SC∗ as an∞-category.
One is to consider SC∗ as a topologically enriched category and take its
topological nerve as in [34, Section 1.1.5]. This approach was taken by
the third author in [38], where the opposite of this ∞-category was called
“the ∞-category of pointed compact metrizable noncommutatives spaces”.
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The other approach is to take the ∞-localization of SC∗ as a weak fibration
category. (See Appendix B.1 for the definition of the ∞-localization of a
relative category.) This∞-category will be denoted by SC∗∞. In Proposition
3.17 we show that these two ways are equivalent.

Remark 3.16. The notation used by the third author in [38] to denote
the ∞-category of pointed compact metrizable noncommutative spaces is
(SC∗∞)op, so by Proposition 3.17 we have no ambiguity of notation.

Proposition 3.17. The ∞-category (SC∗∞)op is naturally equivalent to the
∞-category of pointed compact metrizable noncommutatives spaces defined
in [38].

Proof. Recall that SC∗ is a simplicial weak fibration category. The simpli-
cial coaction is given by:

hom(K,A) := C(|K|)⊗A = C(|K|, A) ∈ SC∗op,

for K in Sfin and A in SC∗. By Theorem 3.14, Pro(SC∗) is a simplicial model
category where for every K in Sfin and {At}t∈T in Pro(SC∗op) the simplicial
coaction is just objectwise

hom(K, {At}t∈T ) ∼= {hom(K,At)}t∈T .
Furthermore, for every A = {At}t∈T and B = {Bs}s∈S in Pro(SC∗) the
simplicial enrichment is given by

MapPro(SC∗)(A,B)n = HomPro(SC∗)(A,hom(∆n, B)),

for n ≥ 0. In particular, if A and B belong to SC∗ the simplicial enrichment
is given by

MapPro(SC∗)(A,B)n = HomSC∗(A, hom(∆n, B)) = MapSC∗(A,B)n,

for n ≥ 0. By Lemma 3.11 we have a natural isomorphism

Sing(SC∗(A,B)) ∼= MapSC∗(A,B).

By Theorem 2.18 we deduce that the natural functor

SC∗∞ → Pro(SC∗)∞

is derived fully faithful. Furthermore, since Pro(SC∗) is a simplicial model
category and every object in SC∗ is both fibrant and cofibrant in Pro(SC∗),
we have that

MapPro(SC∗)∞(A,B) ' MapPro(SC∗)(A,B).

Thus we obtain
MapSC∗∞

(A,B) ' Sing(SC∗(A,B)). �

In [38], the ∞-category NS∗ of pointed noncommutative spaces (that
are not necessarily compact) was defined to be the ind-category of the ∞-
category of pointed compact metrizable noncommutatives spaces. We thus
obtain the following proposition:
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Proposition 3.18. We have a natural equivalence of ∞-categories

NS∗ ' (Ind(SC∗op))∞

(see Remark 3.15).

Proof. In light of Proposition 3.17 we have that

NS∗ ' Ind((SC∗op)∞).

By Remark 2.19 we have a natural equivalence of ∞-categories

Ind((SC∗op)∞) ' (Ind(SC∗op))∞. �

As we have explained in Remark 3.15, Ind(SC∗op) is a proper combina-
torial pointed simplicial model category, and the domains of the generating
cofibrations of Ind(SC∗op) can be taken to be cofibrant (note that every
object in SC∗op is cofibrant in Ind(SC∗op)). Thus, as explained in Appen-
dix A.5, we can construct the stable left proper combinatorial simplicial
model category SpN(Ind(SC∗op)), together with the natural simplicial left
Quillen functor

G0 : Ind(SC∗op)→ SpN(Ind(SC∗op)).

Proposition 3.19. The ∞-category SpN(Ind(SC∗op))∞ is naturally equiva-
lent to the ∞-category Sp(NS∗) considered in [38], and

LG0 : Ind(SC∗op)∞ → SpN(Ind(SC∗op))∞

is equivalent to

Σ∞ : NS∗ → Sp(NS∗)

under this natural equivalence.

Proof. As explained in Appendix B.2, we have a natural equivalence of
∞-categories

SpN(Ind(SC∗op))∞ ' Sp(Ind(SC∗op)∞),

and

LG0 : Ind(SC∗op)∞ → SpN(Ind(SC∗op))∞

is equivalent to

Σ∞Ind(SC∗op)∞
: Ind(SC∗op)∞ → Sp(Ind(SC∗op)∞)

under this natural equivalence. Combining this with Proposition 3.18 we
obtain the desired result. �
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3.4. Relation of the category Pro(SC∗) to pro-C∗-algebras. In this
section we connect the underlying category of our model structure, Pro(SC∗),
with the more classical notion of pro-C∗-algebras, namely, topological ∗-
algebras that are cofiltered limits of (separable) C∗-algebras (see [48],[47]).

Let TPro(SC∗) denote the full subcategory of the category of topological
∗-algebras, spanned by those objects which are cofiltered limits of objects
in SC∗ (the limit is taken in the category of topological ∗-algebras).

Let A be an object in TPro(SC∗). Let S(A) denote the set of all continuous
C∗-seminorms on A. We regard S(A) as a directed set in the obvious way.
Namely, given p, q ∈ S(A) we say q ≥ p if q(a) ≥ p(a) holds for all a ∈ A.

We define L(A) ∈ Pro(C∗) to be the diagram L(A) : S(A) → C∗ which
sends p ∈ S(A) to the C∗-algebra given by A/kerp, with the norm inherited
from p (the fact that this is indeed a C∗-algebra is shown in [47, Corollary
1.12]).

Lemma 3.20. For every p ∈ S(A) the C∗-algebra L(A)p is separable.

Proof. We adapt arguments of Phillips from [48, on page 131]. Since A
is in TPro(SC∗) we can assume A = limi∈I Xi for some cofiltered system
X : I → SC∗. For each i ∈ I let pi ∈ S(A) denote the pullback of the C∗-
norm of Xi along the natural map A→ Xi. Now pick any p ∈ S(A). Since
the C∗-seminorms pi determine the topology of A there is a constant c > 0
such that p(a) ≤ cmax{pi1(a), ..., pir(a)} for all a ∈ A. The indexing set I
is cofiltered, therefore there is an index i such that pi ≥ pij for all 1 ≤ j ≤ r.
Hence we have a quotient map L(A)pi → L(A)p. But L(A)pi is isomorphic
to a sub C∗-algebra of Xi, namely, the image of the natural map A → Xi.
Since Xi is separable, we conclude that L(A)p is also separable. �

Thus, we have defined an object L(A) ∈ Pro(SC∗). In fact, it is not hard
to see that we actually obtain a functor

L : TPro(SC∗)→ Pro(SC∗).

We now define a functor in the other direction:

Definition 3.21. Consider the inclusion i : SC∗ ↪→ TPro(SC∗). Since the
category TPro(SC∗) has cofiltered limits, it follows from the universal prop-
erty of the Pro construction that i can be extended naturally to a functor
lim : Pro(SC∗) → TPro(SC∗) that commutes with cofiltered limits. We call
this functor lim since it is indeed given by taking the limit in TPro(SC∗) of
the input diagram.

Proposition 3.22. The above defined functors form an adjoint pair:

L : TPro(SC∗) � Pro(SC∗) : lim,

where the unit id→ lim ◦L is a natural isomorphism.
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Proof. Let A be an object in TPro(SC∗) and let {Xi}i∈I be an object in
Pro(SC∗). We need to show that there is a natural bijection

HomTPro(SC∗)(A, lim
i∈I

Xi) ∼= HomPro(SC∗)(L(A), {Xi}i∈I).

We thus need to show that

lim
i∈I

HomTPro(SC∗)(A,Xi) ∼= lim
i∈I

HomPro(SC∗)(L(A), Xi).

It follows that it is enough to show that for any object X in SC∗ we have

HomTPro(SC∗)(A,X) ∼= HomPro(SC∗)(L(A), X) ∼= colim
p∈S(A)

HomSC∗(L(A)p, X),

but this follows from [48, Lemma 1.1.5]. Now the unit id → lim ◦L of
this adjunction is a natural ∗-isomorphism by [47, Proposition 1.2] (citing
[55]). �

Corollary 3.23. The left adjoint L : TPro(SC∗)→ Pro(SC∗) is fully faithful.
It follows that the functor

R := L ◦ lim : Pro(SC∗)→ Pro(SC∗)

is a colocalization functor (a coreflector). Let us denote by LTPro(SC∗)
the essential image of TPro(SC∗) under L. Then LTPro(SC∗), which is
equivalent to TPro(SC∗), is a coreflective full subcategory of Pro(SC∗) and
we have an adjoint pair

i : LTPro(SC∗) � Pro(SC∗) : R,
where i is the inclusion.

Remark 3.24. It might be possible to transfer our model structure on
Pro(SC∗) through the adjunction

L : TPro(SC∗) � Pro(SC∗) : lim,

and obtain a model structure also on TPro(SC∗).

4. Triangulated homology theories on Ind(SC∗op)

4.1. Definition of triangulated homology theories. In this subsection
we define the notion of triangulated homology theories on a pointed cocom-
plete ∞-category.

Let C be a pointed finitely cocomplete ∞-category. A diagram

X0 → X1 → X2 → · · ·
in C is called a cofiber sequence if each Xi+2 is the cofiber of the previous
map Xi → Xi+1. Thus, a cofiber sequence is completely determined, up
to equivalence, by the first map X0 → X1. Note that if C = M∞, where
M is a pointed model category, a cofiber sequence can be calculated using
homotopy colimits, that is, by turning each map into a cofibration and then
taking the cofiber in the underlying pointed category of M.
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Let A → B → C → D be a cofiber sequence in C. Then we have the
following diagram of pushout squares:

A //

��

B //

��

∗

��

∗ // C // D.

It follows that D ' ΣA (see Appendix B.2). Thus, every cofiber sequence
in C has the form

A→ B → C → ΣA→ ΣB → ΣC → Σ2A→ · · · .
The following definition is motivated by [50, 27, 56, 58]:

Definition 4.1. Let C be a pointed cocomplete ∞-category.

(1) Let T be a triangulated category with coproducts. A triangulated
homology theory on C, with values in T , is a pointed functor H :
HoC → T such that:
• For any cofiber sequence in C of the form A → B → C → ΣA

the diagram H(A) → H(B) → H(C) → H(ΣA) is a distin-
guished triangle in T .
• H preserves coproducts.

(2) A cohomology theory on C is a Z indexed sequence of pointed func-
tors Hn : HoCop → Ab together with natural isomorphisms

Hn ∼= Hn+1 ◦ Σ

such that:
• For any cofiber sequence in C of the form A → B → C → ΣA

the diagram Hn(C)→ Hn(B)→ Hn(A) is exact.
• Hn preserves products.

If M is a pointed model category, then we define a triangulated homology
theory or a cohomology theory onM to be a triangulated homology theory
or a cohomology theory on M∞. (It is shown in [6] that M∞ is indeed a
pointed cocomplete ∞-category.)

Note that any triangulated homology theory H : HoC → T and any object
S in T give rise to a cohomology theory

Hn := HomT (Σ−n ◦H(−), S) : HoCop → Ab,

where Σ here denotes the suspension functor in T (see [44] Example 1.1.13).

Remark 4.2.

(1) Note that if C is a cocomplete∞-category then HoC admits arbitrary
coproducts, and they can be calculated as coproducts in C.

(2) The original definition of a triangulated homology theory on SC∗

appeared in [58]. After a suitable reversal of arrows our definition,
when applied to (Ind(SC∗op))∞, is a little more general than the
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original one when restricted to SC∗. It is similar in spirit to cofiber
homology theories in [56].

Recall from Appendix B.2 that a pointed ∞-category with finite colimits
is called stable if the suspension functor Σ : C → C is an equivalence. If
C is a stable ∞-category then it is shown in [33] that HoC is naturally a
triangulated category; the suspension functor in HoC is the one induced by
Σ : C → C, and the distinguished triangles are given by the cofiber sequences
in C, after projection to HoC.

Let C be a stable ∞-category with small colimits. Note that a coho-
mology theory Hn on C is entirely determined by H0 since we have nat-
ural isomorphisms Hn ∼= H0(Σ−n(−)). Thus we see that if T is a trian-
gulated category with coproducts then a triangulated homology theory on
C, with values in T , is just a triangulated coproduct preserving functor
H : HoC → T , and a cohomology theory on C is just a decent cohomological
functor H0 : HoCop → Ab (we refer to [44] for the terminology concerning
triangulated categories). The following lemma is straightforward:

Lemma 4.3. Let C and D be pointed cocomplete ∞-categories and suppose
that D is stable. Let F : C → D be a colimit preserving functor. Then HoD
is naturally a triangulated category with coproducts and

HoF : HoC → HoD

is a triangulated homology theory on C.

Now suppose that C is a pointed presentable∞-category. Then we have a
natural choice of a triangulated homology theory on C. Namely, as explained
in Appendix B.2, we can construct a stable presentable ∞-category Sp(C),
together with a left adjoint

Σ∞ : C → Sp(C).

If C were the∞-category of pointed spaces, then Sp(C) would correspond to
the stable ∞-category of spectra. Then according to Lemma 4.3, HoSp(C)
is naturally a triangulated category with coproducts and

HoΣ∞ : HoC → HoSp(C)

is a triangulated homology theory on C.

Remark 4.4. Since NS∗ ' Ind(SC∗∞
op) is a compactly generated∞-category

it follows from [33, Proposition 1.4.3.7] that Sp(NS∗) is a stable compactly
generated ∞-category. Thus, HoSp(NS∗) is a compactly generated triangu-
lated category (see [33, Proposition 1.4.4.1]). It follows from [44, Theorem
8.3.3] that any cohomology theory on Sp(NS∗) is representable. That is, if
H0 : HoSp(NS∗)op → Ab is a cohomology theory on Sp(NS∗) then there exists
an object T in HoSp(NS∗) such that H0 is naturally isomorphic to

HoSp(NS∗)(−, T ).
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This is called Brown representability. We will define in the next subsection
several cohomology theories on Sp(NS∗), but we will not need this result
since we will be able to give a rather explicit description of a representing
object.

4.2. Triangulated homology theories on Ind(SC∗op). In this subsec-
tion we construct several triangulated homology theories on Ind(SC∗op) (see
Remark 3.15). By taking the opposite category they become bivariant ho-
mology theories that are applicable to all projective systems of separable
C∗-algebras. Using Proposition 3.18 we see that a triangulated homology
theory on Ind(SC∗op) is equivalent to a triangulated homology theory on
Ind(SC∗op)∞ ' NS∗. We thus recall a construction defined by the third au-
thor in [38], which associates a triangulated homology theory on NS∗ to any
set of morphisms in SC∗op. Due to certain improvements we incorporate in
it, and for the convenience of the reader, we bring a detailed account of this
construction here (see Theorem 4.5). We then transform this construction,
which uses the language of ∞-categories, to the world of model categories
(see Theorem 4.7). We end by considering several examples of this general
construction.

Note, that the simplicial model category Ind(SC∗op) is pointed, where
the zero object in Ind(SC∗op) is just the zero C∗ algebra. Thus the ∞-
category (Ind(SC∗op))∞ is indeed a pointed cocomplete∞-category. If (K,x)
in a pointed finite simplicial set and A ∈ SC∗op, then the smash product
K ∧ A ∈ SC∗op is just the separable C∗-algebra of pointed continuous maps
from (|K|, x) to (A, 0).

We begin with a small introduction. As was shown in [38], and also
follows easily from the model structure constructed here, the ∞-category
SC∗∞

op admits finite colimits. Thus, as explained in Appendix B.2, there is
a natural equivalence of ∞-categories

Sp(NS∗) ' Sp(Ind(SC∗∞
op)) ' Ind(SW(SC∗∞

op)).

Recall that the objects of the stable∞-category SW(SC∗∞
op) are pairs (A,n)

where A ∈ SC∗∞
op and n ∈ N, and the mapping spaces are given by

MapSW(SC∗∞
op)((A,n), (B,m)) = colim

k
MapSC∗∞

op(Σk−nA,Σk−mB).

If C were the ∞-category of finite pointed spaces, then SW(C) would cor-
responed to the ∞-categorical analogue of the Spanier–Whitehead category
of finite spectra. We denote the natural map from SC∗∞

op to SW(SC∗∞
op)

by Σ∞. Note that this is indeed the restriction of Σ∞ : NS∗ → Sp(NS∗) to
SC∗∞

op.
Using the fact that π0 commutes with filtered homotopy colimits of sim-

plicial sets, we see that HoSW(SC∗∞
op) is equivalent to the triangulated cat-

egory denoted HoSC∗[Σ−1]op in [38] (obtained from HoSC∗op by inverting the
endofunctor Σ). In particular we see that we have a natural fully faithful
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inclusion of triangulated categories

HoSC∗[Σ−1]op ↪→ HoSp(NS∗).

It is not hard to see that for any set of morphisms R in SW(SC∗∞
op), the set

of objects {cone(g) | g ∈ R} in SW(SC∗∞
op) is the same as{

Z
∣∣∣ there is a triangle in HoSW(SC∗∞

op) of the

form X
g−→ Y → Z → ΣX with g ∈ R

}
.

We now invoke a construction used in [38].

Proposition 4.5 (Mahanta). Let S be a set of morphisms in SC∗op and let
AS denote the smallest stable ∞-subcategory of SW(SC∗∞

op) containing the
set of objects {cone(Σ∞g) | g ∈ S}. We define

HS := Ind(SW(SC∗∞
op)/AS),

where SW(SC∗∞
op)/AS is the cofiber of the inclusion AS ↪→ SW(SC∗∞

op) in
CatEx (see Appendix B.2). Then HS is a compactly generated stable ∞-
category. Moreover, we have the following:

(1) There is a localization functor L : Sp(NS∗) → HS , which after com-
posing with Σ∞

Σ∞S := L ◦ Σ∞ : NS∗ → HS

induces a triangulated homology theory on NS∗

HoΣ∞S : HoNS∗ → HoHS .

(2) There is a canonical fully faithful exact functor of triangulated cate-
gories

HoSC∗[Σ−1]op/〈{cone(Σ∞g) | g ∈ S}〉 ↪→ HoHS ,

where the quotient above is Verdier localization.

Remark 4.6. See [34, Section 5.5.4] for the general theory of localizations
of ∞-categories.

Proof. The ind-category Ind(AS) is a stable∞-subcategory of the∞-cate-
gory Ind(SW(SC∗∞

op)). Since the inclusion AS ↪→ SW(SC∗∞
op) preserves

finite colimits, it follows that the inclusion Ind(AS)→ Ind(SW(SC∗∞
op)) ad-

mits a right adjoint. Thus this inclusion is a morphism in PrLEx (see Appendix
B.2) and we define

HS := Sp(NS∗)/Ind(AS)

to be its cofiber in PrLEx (see [11, Definition 5.4]). By [11, Proposition 5.6]
we have that the natural functor

L : Sp(NS∗)→ HS
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is a localization. Furthermore, since Ind preserves cofibers, we have a natural
equivalence

HS = Sp(NS∗)/Ind(AS)

' Ind(SW(SC∗∞
op))/Ind(AS)

' Ind(SW(SC∗∞
op)/AS).

Thus HS is compactly generated and, in particular, accessible.
By [11, Proposition 5.14], we have a natural equivalence of categories

HoSW(SC∗∞
op)/HoAS ' Ho(SW(SC∗∞

op)/AS),

where the first quotient is the Verdier localization of the triangulated cat-
egory HoSW(SC∗∞

op). It is also easy to see that the triangulated subcat-
egory HoAS of HoSW(SC∗∞

op) is the smallest triangulated subcategory of
HoSW(SC∗∞

op) containing {cone(Σ∞g) | g ∈ S}, or in other words

HoAS = 〈{cone(Σ∞g) | g ∈ S}〉.

Thus we obtain

HoSC∗[Σ−1]op/〈{cone(Σ∞g) | g ∈ S}〉 ' Ho(SW(SC∗∞
op)/AS),

and we see that we have a natural fully faithful inclusion of triangulated
categories

HoSC∗[Σ−1]op/〈{cone(Σ∞g) | g ∈ S}〉 ↪→ HoHS . �

Let S be a set of morphisms in SC∗op. For A,B ∈ HoNS∗, we define

(HS)0(A,B) := HoHS(HoΣ∞S (A),HoΣ∞S (B)) ∈ Ab.

We may extend the HS-theory to a graded theory as follows:

(HS)n(A,B) :=

{
(HS)0(A,Σ−nB) if n < 0,

(HS)0(ΣnA,B) if n ≥ 0.

Since we have a specific model for the∞-category NS∗, namely Ind(SC∗op),
we can also perform the localization described in Proposition 4.5 in the world
of model categories. This gives specific models for the localized∞-categories
described in Proposition 4.5 and studied by the third author in [38] and
other papers. In particular we obtain models for the stable ∞-category of
noncommutative spectra NSp (resp. NSp′) that was constructed in [38] (resp.
[37]).

Proposition 4.7. Let S be a set of morphisms in SC∗op. Then there exists
a small set of morphisms T = TS in HoSpN(Ind(SC∗op)) such that (in the
notation of Proposition 4.5) HS is modeled by the left Bousfield localization
of SpN(Ind(SC∗op)) with respect to T , or in other words

HS ' LTSpN(Ind(SC∗op))∞.
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Furthermore, the left Quillen functor

id : SpN(Ind(SC∗op))→ LTSpN(Ind(SC∗op))

gives rise to an ∞-functor

Lid : SpN(Ind(SC∗op))∞ → LTSpN(Ind(SC∗op))∞

which is equivalent to L. The model category LTSpN(Ind(SC∗op)) is moreover
stable simplicial left proper and combinatorial.

Remark 4.8. It can be shown that our desired set T = TS can be taken to
be

TS = {ΣnLG0(f) | f ∈ S, n ∈ Z},

but we will not need this result in this paper.

Proof. Recall from Proposition 3.19 that we have a natural equivalence of
∞-categories

Sp(NS∗) ' SpN(Ind(SC∗op))∞.

By Theorem A.13, SpN(Ind(SC∗op)) is a left proper combinatorial simplicial
model category. It follows from [34, Proposition A.3.7.8] that every accessi-
ble localization of Sp(NS∗) can be manifested by a left Bousfield localization
of the model category SpN(Ind(SC∗op)) with respect to a small set of mor-
phisms. In particular, there exists a small set of morphisms T = TS in
HoSpN(Ind(SC∗op)) such that

HS ' LTSpN(Ind(SC∗op))∞.

Furthermore, the left Quillen functor

id : SpN(Ind(SC∗op))→ LTSpN(Ind(SC∗op))

gives rise to an ∞-functor

Lid : SpN(Ind(SC∗op))∞ → LTSpN(Ind(SC∗op))∞

which is equivalent to L. It follows in particular, that an object X ∈
LTSpN(Ind(SC∗op)) is fibrant if and only if it is fibrant in SpN(Ind(SC∗op))
and the associated object in

SpN(Ind(SC∗op))∞ ' Sp(NS∗)

belongs to the full subcategory HS . By Proposition A.11 and Theorem A.12
we know that LTSpN(Ind(SC∗op)) is a simplicial left proper combinatorial
model category. �
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4.3. Examples. In this subsection, we consider several applications of Pro-
positions 4.5 and 4.7, for different sets of morphisms S.

We begin with a general construction. Let φ : B → C be a morphism in
SC∗. We denote by hfib(φ) the pullback in SC∗:

hfib(φ)

��

))

B

φ

��

i

""

P (φ),

p
||

0 // C.

where P (φ), i, p are as in the proof of Proposition 3.8. Note that there is an
induced map

θ(φ) : fib(φ)→ hfib(φ)

in SC∗ (where fib(φ) denotes the fiber of φ, that is, the kernel of φ).
Consider the following set of morphisms in SC∗op:

S1 := {θ(φ)op | 0→ A→ B
φ→ C → 0 is a cpc-split extension in SC∗}.

Fix a minimal projection p ∈ K, where K is the C∗ algebra of compact
operators on a separable Hilbert space. For any A ∈ SC∗, there is an induced
morphism ιA : A→ A⊗K in SC∗, sending a to a⊗ p. We define another set
of morphisms in SC∗op

S2 := {ιop
A | A ∈ SC∗}.

We now apply Proposition 4.7 to the set S := S1 ∪ S2. We denote the
left Bousfield localization of SpN(Ind(SC∗op)) with respect to T = TS (as in
Proposition 4.7) by

KKind := LTSpN(Ind(SC∗op)).

Then KKind is a stable simplicial left proper combinatorial model category,
and the ∞-category KKind

∞ is compactly generated. We also denote

KKpro := (KKind)op,

and
KKind := HoKKind, KKpro := HoKKpro.

We have a composite left Quillen functor

πK : Ind(SC∗op)
G0−−→ SpN(Ind(SC∗op))

id−→ KKind,

and its left derived functor

LπK : HoInd(SC∗op) −→ KKind,

is a triangulated homology theory on Ind(SC∗op).
It is well known that

HoSC∗[Σ−1]op/〈{cone(g) | g ∈ S}〉
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is equivalent to the opposite of Kasparov’s bivariant K-theory category. (An
analogous result for E-theory is shown in [58].) Thus we get that the opposite
of Kasparov’s bivariant K-theory category is equivalent to the triangulated
subcategory generated by the image of the composite functor

HoSC∗op → HoInd(SC∗op)
LπK−−→ KKind.

For A,B ∈ HoInd(SC∗op) we define

KKind
0 (A,B) := (HS)0(A,B) = KKind(LπK(A),LπK(B)) ∈ Ab,

and for any n ∈ Z we define

KKind
n (A,B) := (HS)n(A,B) =

{
KKind

0 (A,Σ−nB) if n < 0,

KKind
0 (ΣnA,B) if n ≥ 0.

If A,B ∈ HoSC∗op there is a natural isomorphism

(1) KKind
n (A,B) ∼= KKn(B,A),

where the right hand side denotes Kasparov’s KK-theory.
As noted after Definition 4.1, if we pick any object V in KKind we obtain

a cohomology theory on Ind(SC∗op) by

Kn
V = KKind(Σ−n ◦ LπK(−), V ),

where Σ here denotes the suspension functor in KKind. In particular, choosing
V = LπK(C), we obtain a cohomology theory on Ind(SC∗op) which we denote

Kn = KKind(Σ−n ◦ LπK(−),LπK(C))

=

{
KKind(Σ−n ◦ LπK(−),LπK(C)) if n < 0,

KKind(LπK(−),Σn ◦ LπK(C)) if n ≥ 0.

=

{
KKind

0 (Σ−n(−),C) if n < 0,

KKind
0 (−,ΣnC) if n ≥ 0.

= KKind
−n(−,C).

For n = 0 we obtain

K0 = KKind(LπK(−),LπK(C)) = KKind
0 (−,C).

There is also a corresponding cohomology theory on SpN(Ind(SC∗op))
given by

K0 := KKind(Lid(−),LπK(C)).

(Note that since SpN(Ind(SC∗op)) is stable this determines Kn for all n.)
As noted in Remark 4.4, by the general Brown-Neeman representability
theorem, this cohomology theory is representable, that is, there exists an
object U in HoSpN(Ind(SC∗op)) and a natural isomorphism

K0 ∼= HoSpN(Ind(SC∗op))(−, U).
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But as also noted there, we can actually give a rather explicit descrip-
tion of a representing object. We have isomorphisms, natural in A ∈
HoSpN(Ind(SC∗op)), using the functor G0(−) constructed at the end of Ap-
pendix B.2

K0(A) = KKind(Lid(A),LπK(C))

∼= π0MapKKind
∞

(Ac, G0(C))

∼= π0MapKKind(Ac, G0(C)f )

∼= π0MapSpN(Ind(SC∗op))(A
c, G0(C)f )

∼= π0MapSpN(Ind(SC∗op))∞
(A,G0(C)f )

∼= HoSpN(Ind(SC∗op))(A,G0(C)f ).

where (−)c denotes a functorial cofibrant replacement in SpN(Ind(SC∗op))
and G0(C)f denotes a fibrant replacement of G0(C) in KKind. Thus we
see that G0(C)f is a representing object for the cohomology theory K0 on
SpN(Ind(SC∗op)).

Remark 4.9. It is plausible that KKind is a model for the stable∞-category
KK∞ that was constructed by the third author in [37].

Remark 4.10. One can use the KKind-theory to define a bivariant K-theory
for certain pro-C∗-algebras. Let L : TPro(SC∗) → Pro(SC∗) be the functor
constructed in Section 3.4. For two objects A and B in TPro(SC∗) we define,
in analogy to Equation (1) above

KK∗(B,A) := KKind
∗ (L(A),L(B)).

This KK-theory will agree with the bivariant K-theory for separable σ-C∗-
algebras [16] that was denoted by σ-kk-theory in [36] (not to be confused
with the diffotopy invariant bivariant K-theory for locally convex algebras)
on a reasonably large subcategory (cf. Theorem 5.9 below and Proposi-
tion 36 of [36]).

4.3.1. Other triangulated homology theories. Repeating the proce-
dure of the previous subsection with other sets S of morphisms in SC∗op

we obtain other stable model categories, and induced triangulated homol-
ogy theories on Ind(SC∗op), extending well known triangulated homology
theories on SC∗op. We list a few examples.

(1) If we define

S′1 := {θ(φ)op | 0→ A→ B
φ→ C → 0 is an extension in SC∗},

and take the set S to be S′1 ∪ S2 we obtain an extension of Connes–
Higson bivariant E-theory category.
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(2) If we take the set S to be just S′1, we obtain an extension of the
noncommutative stable homotopy category NSH. The correspond-
ing∞-category is the stable∞-category of noncommutative spectra
constructed in [38].

(3) Let M2(C) be the C∗ algebra of 2 × 2 matrices over C. For any
A ∈ SC∗ there is an induced morphism χA : A→ A⊗M2(C) in SC∗,
sending a to a⊗ e11. We define a set of morphisms in SC∗op by

S′2 := {χop
A | A ∈ SC∗}.

If we take the set S to be S1 ∪ S′2 we obtain an extension of the
connective bivariant K-theory category.

(4) If we take the set S to be S′1 ∪S′2 we obtain an extension of the con-
nective bivariant E-theory category that is modelling the (opposite
of the) stable ∞-category Ecn∞ of [39, Section 3].

5. Comparison with Bonkat’s bivariant K-theory category

In the previous subsection we have constructed a bivariant K-theory that
is applicable to all projective systems of separable C∗-algebras. In [12],
Bonkat constructed a bivariant K-theory that is applicable to projective
systems of separable C∗-algebras that have surjective connecting homomor-
phisms and admit a countable cofinal subsystem. In this subsection we
will show that our K-theory agrees with Bonkat’s construction in certain
cases, and admits better formal properties. We first recall some facts about
Bonkat’s construction.

Let ProBon(SC∗) denote the full subcategory of Pro(SC∗) spanned by the
objects X : J → SC∗ that have surjective connecting homomorphisms and
such that there exists a countable cofiltered category K and a cofinal functor
K → J . In [12] Bonkat constructed an additive category BKK and a pointed
functor H : ProBon(SC∗) → BKK. Extending Higson’s universal character-
ization of KK-theory [23] it is shown in [12, Satz 3.5.10] that the functor
H : ProBon(SC∗) → BKK is the universal additive category valued functor
that has the following properties:

(1) Homotopy invariance, i.e., the functor H is invariant under simplicial
homotopy. Simplicial homotopy is the homotopy relation between
maps generated by the standard path object given by the underlying
simplicial structure. See Definition 3.6.

(2) C∗-stability, i.e., for any {Aj} ∈ ProBon(SC∗), and any minimal pro-
jection p ∈ K, the induced morphism H({Aj})→ H({Aj ⊗K}) is an
isomorphism in BKK.

(3) Split exactness, i.e., whenever

0 // {Ai} // {Bj}
g
// {Ck}

s
vv

// 0



416 ILAN BARNEA, MICHAEL JOACHIM AND SNIGDHAYAN MAHANTA

is a split exact sequence in ProBon(SC∗), then

H{Bj} ∼= H{Ai} ⊕H{Ck}

in BKK.

Remark 5.1. In Bonkat’s notation the category ProBon(SC∗) is denoted
SCall, the category BKK is denoted KKSCall and the functor H is denoted
KKCall . See the beginning of Section 2.3, Section 2.4 and Definition 3.5.1 in
[12].

We constructed above a triangulated homology theory on Ind(SC∗op),

LπK : HoInd(SC∗op) −→ KKind.

It will be more convenient for us now to work with the opposite functor

Lπop
K : HoPro(SC∗)→ KKpro.

We denote the composition

Pro(SC∗)→ HoPro(SC∗)
Lπop

K−−−→ KKpro

also by Lπop
K .

We denote the restriction of Lπop
K to ProBon(SC∗) by

τ : ProBon(SC∗)→ HoPro(SC∗)
Lπop

K−−−→ KKpro.

We now wish to show that τ has homotopy invariance, C∗-stability and
split exactness. It will certainly be enough to show the following:

Theorem 5.2. The functor Lπop
K : Pro(SC∗) → KKpro has the following

properties:

(1) Invariance under simplicial homotopy.
(2) For any {Aj} ∈ Pro(SC∗), and any minimal projection p ∈ K, the

induced morphism Lπop
K {Aj} → Lπop

K {Aj⊗K} is an isomorphism in
KKpro.

(3) Whenever

0 // {Ai} // {Bj}
g
// {Ck}

s
vv

// 0

is a split exact sequence in Pro(SC∗), then

Lπop
K {Bj} ∼= Lπop

K {Ai} ⊕ Lπop
K {Ck}

in KKpro.

We will need the following lemma:

Lemma 5.3. A cofiltered limit of weak equivalences, in the category of mor-
phisms of KKpro, is a weak equivalence.
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Proof. By [52, Proposition 3.6] it is enough to show that KKind has a
generating set of cofibrations between finitely presentable objects. This is
easily seen by following the construction of KKind. �

Proof of Theorem 5.2.
(1) Let {Ai} and {Bj} be objects in Pro(SC∗) and let

f, g : {Ai} → {Bj}
be simplicially homotopic maps in Pro(SC∗). We show Lπop

K f = Lπop
K g. We

have f, g : {Bj} → {Ai} as morphisms in Pro(SC∗)op ' Ind(SC∗op). There
exists a morphism H : ∆1⊗{Bj} → {Ai} in Ind(SC∗op) such that H ◦ i0 = f
and H◦i1 = g. We need to show that LπKf = LπKg. Clearly it is enough to
show that χf = χg in HoInd(SC∗op), where χ : Ind(SC∗op) → HoInd(SC∗op)
is the natural functor.

We now wish to show that

i0 : {Bj} → ∆1 ⊗ {Bj} and p : ∆1 ⊗ {Bj} → {Bj}
are inverse simplicial homotopy equivalences in Ind(SC∗op). Clearly

p ◦ i0 = id{Bj}

so it is enough to show that i0 ◦ p is simplicially homotopic to id∆1⊗{Bj}.
We define

K : ∆1 ⊗ (∆1 ⊗ {Bj}) ∼= (∆1 ×∆1)⊗ {Bj} → ∆1 ⊗ {Bj}

to be the map that is induced by the simplicial map ∆1×∆1 → ∆1 that sends
(0, 0), (0, 1), (1, 0) to 0 and (1, 1) to 1. Clearly K is a simplicial homotopy
from i0 ◦ p to id∆1⊗{Bj}.

Since Ind(SC∗op) is a simplicial model category, we know that every sim-
plicial homotopy equivalence is a weak equivalence (see for example [26,
Proposition 9.5.16]). Thus we obtain that i0 : {Bj} → ∆1 ⊗ {Bj} and
p : ∆1 ⊗ {Bj} → {Bj} are weak equivalences. It follows that

χi0 : {Bj} → ∆1 ⊗ {Bj} and χp : ∆1 ⊗ {Bj} → {Bj}
are isomorphisms in HoInd(SC∗op). Since χp ◦ χi0 = χ(p ◦ i0) = χid = id,
we know that they are inverse isomorphisms. By a similar argument we
obtain that χi1 : {Bj} → ∆1⊗{Bj} and χp : ∆1⊗{Bj} → {Bj} are inverse
isomorphisms in HoInd(SC∗op). Thus we obtain

χi0 = (χp)−1 = χi1

in HoInd(SC∗op).
We now see that we have

χf = χ(H ◦ i0) = χH ◦ χi0 = χH ◦ χi1 = χ(H ◦ i1) = χg

in HoInd(SC∗op).
(2) Let {Aj} ∈ Pro(SC∗), and let p ∈ K be a minimal projection. By

Lemma 2.6 there exists a small cofinite directed set A and a cofinal functor
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A → J . We pull back the morphism {Aj} → {Aj ⊗ K} along the cofinal

functor A→ J and obtain a morphism in SC∗A which we denote by

{Ba} → {Ba ⊗K}.
By employing the construction described in [8, Definition 4.3] we have a

functorial factorization of the morphisms in SC∗A into a map in Lw(W)
followed by a map in Sp(F). We apply this functorial factorization to the

morphisms {Ba} → ∗ and {Ba ⊗K} → ∗ in SC∗A, and obtain the following

diagrams in SC∗A:

{Ba}
Lw(W)−−−−→ {Bf

a}
Sp(F)−−−−→ ∗,

{Ba ⊗K} Lw(W)−−−−→ {(Ba ⊗K)f} Sp(F)−−−−→ ∗.
Note that {Bf

a} and {(Ba⊗K)f} are fibrant, as objects in the model category
Pro(SC∗) (see Theorem 3.14). By the functoriality of the factorization we

obtain a commutative square in SC∗A of the form

{Ba}

Lw(W)
��

// {Ba ⊗K}

Lw(W)
��

{Bf
a} // {(Ba ⊗K)f},

where the upper horizontal map is induced by the minimal projection p.
This is also a square in Pro(SC∗)A, so we can apply the right Quillen functor

πop
K : Pro(SC∗) ∼= Ind(SC∗op)op Gop

0−−→ SpN(Ind(SC∗op))op id−→ KKpro

objectwise on this square and then take the limit in KKpro. We obtain a
diagram in KKpro of the form

limKKpro

a∈A πop
K (Ba)

��

// limKKpro

a∈A πop
K (Ba ⊗K)

��

limKKpro

a∈A πop
K (Bf

a ) // limKKpro

a∈A πop
K ((Ba ⊗K)f ).

It follows from Proposition 4.5, that for every a ∈ A the map

πop
K (Ba)→ πop

K (Ba ⊗K)

is a weak equivalence in KKpro. (Actually, Proposition 4.5 only shows this
for the map induced by the specific minimal projection by which we localized;
but it follows from, for instance, Lemma 2.1 of [24] that any two minimal
projections will produce homotopic maps.) By Lemma 5.3, we get that

limKKpro

a∈A πop
K (Ba)→ limKKpro

a∈A πop
K (Ba ⊗K)

is also a weak equivalence in KKpro.
Being a right Quillen functor, πop

K transfers weak equivalences between
fibrant objects to weak equivalences. Since every object in SC∗ is fibrant in
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Pro(SC∗), we see that for every a ∈ A the map πop
K (Ba)→ πop

K (Bf
a ) is a weak

equivalence in KKpro. By Lemma 5.3, we get that

limKKpro

a∈A πop
K (Ba)→ limKKpro

a∈A πop
K (Bf

a )

is also a weak equivalence in KKpro. By the same argument one shows that

limKKpro

a∈A πop
K (Ba ⊗K)→ limKKpro

a∈A πop
K ((Ba ⊗K)f )

is a weak equivalence in KKpro.
From the two out of three property in KKpro and the fact that πop

K com-
mutes with limits, we get that

πop
K ({Bf

a}) ∼= πop
K (lim

Pro(SC∗)
a∈A Bf

a )

∼= limKKpro

a∈A πop
K (Bf

a )→ limKKpro

a∈A πop
K ((Ba ⊗K)f )

∼= πop
K (lim

Pro(SC∗)
a∈A (Ba ⊗K)f )

∼= πop
K ({(Ba ⊗K)f})

is a weak equivalence in KKpro.

Since {Bf
a} is a fibrant replacement to {Aj} and {(Ba ⊗ K)f} is a fi-

brant replacement to {Aj ⊗ K}, in the model category Pro(SC∗), the map
(LπK)op({Aj})→ (LπK)op({Aj ⊗K}) is isomorphic to

πop
K ({Bf

a})→ πop
K ({(Ba ⊗K)f})

as a morphism in KKpro, so we get (2).
(3) Let

0 // {Ai} // {Bj}
g
// {Ck}

s
vv

// 0

be a split exact sequence in Pro(SC∗). We need to show that we have
(LπK)op{Bj} ∼= (LπK)op{Ai}⊕ (LπK)op{Ck} in KKpro. It is enough to show
that

(LπK)op{Ai} // (LπK)op{Bj}
(LπK)opg

// (LπK)op{Ck}

(LπK)ops

yy

is part of a triangle in KKpro (because then, this triangle clearly splits so
(LπK)op{Bj} ∼= (LπK)op{Ai} ⊕ (LπK)op{Ck}).

We denote by T the category freely generated by the following graph

0
a // 1

b
}}

with the single relation that a ◦ b = id1. This is a finite category (finite
number of morphisms). By [41, Section 4], we have that the natural functor

Pro(SC∗T )→ Pro(SC∗)T
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is an equivalence of categories. The following diagram

{Bj}
g
// {Ck}

s
vv

gives an object in Pro(SC∗)T . Thus, from the equivalence of categories above,

we get that there exists a cofitered category L and a diagram in SC∗L of the
form

{Yl}
f
// {Zl}

t
ww

such that for any l ∈ L we have fl ◦ tl = idZl
, that is isomorphic to

{Bj}
g
// {Ck}

s
vv

as an object in Pro(SC∗)T .
Let {Xl} denote the levelwise kernel of f

{Xl} // {Yl}
f
// {Zl}.

Since this is also the kernel of f in Pro(SC∗), we obtain a commutative
diagram in Pro(SC∗)

{Xl} //

∼=
��

{Yl}
f
//

∼=
��

{Zl}
t

vv

∼=
��

{Ai} // {Bj}
g
// {Ck}

s
vv

such that the vertical maps are isomorphisms.
By Lemma 2.6 there exists a small cofinite directed set A and a cofinal

functor A → L. We pull back the diagram {Xl} → {Yl} → {Zl} along the

cofinal functor A → L and obtain a diagram in SC∗A which we denote by
{Xa} → {Ya} → {Za}.

We now follow a line of arguments similar to the one used in (2) above,
where it is explained in more detail. We begin by employing the functorial
factorization in SC∗A, into a map in Lw(W) followed by a map in Sp(F),

and obtain a commutative diagram in SC∗A of the form

{Xa}

Lw(W)
��

// {Ya}

Lw(W)
��

// {Za}

Lw(W)
��

{Xf
a } // {Y f

a } // {Zfa }

such that {Xf
a }, {Y f

a } and {Zfa } are fibrant, as objects in Pro(SC∗). Apply-
ing πop

K objectwise and taking the limit in KKpro we obtain a diagram in
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KKpro

limKKpro

a∈A πop
K (Xa)

��

// limKKpro

a∈A πop
K (Ya)

��

// limKKpro

a∈A πop
K (Za)

��

limKKpro

a∈A πop
K (Xf

a ) // limKKpro

a∈A πop
K (Y f

a ) // limKKpro

a∈A πop
K (Zfa ).

For every a ∈ A the map πop
K (Xa) → πop

K (Xf
a ) is a weak equivalence in

KKpro. By Lemma 5.3, it follows that

limKKpro

a∈A πop
K (Xa)→ limKKpro

a∈A πop
K (Xf

a )

is also a weak equivalence in KKpro. By the same argument one shows that

limKKpro

a∈A πop
K (Ya)→ limKKpro

a∈A πop
K (Y f

a )

limKKpro

a∈A πop
K (Za)→ limKKpro

a∈A πop
K (Zfa )

are weak equivalence in KKpro.
From the fact that πop

K commutes with limits we get that the diagram
πop

K {Xa} → πop
K {Ya} → πop

K {Za} is isomorphic to

πop
K {X

f
a } → πop

K {Y
f
a } → πop

K {Z
f
a }

in KKpro.
Since {Xf

a }, {Y f
a } and {Zfa } are fibrant replacements for {Ai}, {Bj} and

{Ck}, in the model category Pro(SC∗), the diagram

(LπK)op{Ai} → (LπK)op{Bj} → (LπK)op{Ck}

is isomorphic to

πop
K {X

f
a } → πop

K {Y
f
a } → πop

K {Z
f
a }

as a diagram in KKpro. So we are left to show that

πop
K {Xa} → πop

K {Ya} → πop
K {Za}

is part of a triangle in KKpro.
We apply the functorial factorization to the morphism {Ya} → {Za} in

SC∗A, and obtain {Ya}
Lw(W)−−−−→ {Y ′a}

Sp(F)−−−−→ {Za}. By [9, Proposition 2.19]
we know that the morphism {Y ′a} −→ {Za} is levelwise in F . Thus, for every

a ∈ A we obtain a factorization Ya
W−→ Y ′a

F−→ Za, in SC∗. Let {X ′a} denote
the levelwise fiber of {Y ′a} −→ {Za}.

Let a ∈ A.

Xa
// Ya

fa
// Za

ta
yy

is a split exact sequence in SC∗. In particular, it is a cpc-split exact sequence,
so the map

πop
K (Xa)→ πop

K (X ′a)
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is a weak equivalence in KKpro (see Proposition 4.5). By Lemma 5.3 and
the fact that πop

K commutes with limits, we get that

πop
K {Xa} ∼= limKKpro

a∈A πop
K (Xa)→ limKKpro

a∈A πop
K (X ′a)

∼= πop
K {X

′
a}

is also a weak equivalence in KKpro.
For every a ∈ A the map Ya → Y ′a is a weak equivalence between fibrant

objects in Pro(SC∗), so the map

πop
K (Ya)→ πop

K (Y ′a)

is a weak equivalence in KKpro. By Lemma 5.3 and the fact that πop
K

commutes with limits, we get that

πop
K {Ya} ∼= limKKpro

a∈A πop
K (Ya)→ limKKpro

a∈A πop
K (Y ′a) ∼= πop

K {Y
′
a}

is also a weak equivalence in KKpro.
We thus obtain the following diagram in KKpro:

πop
K {Xa} //

∼
��

πop
K {Ya}

∼
��

// πop
K {Za}

=

��

πop
K {X ′a} // πop

K {Y ′a} // πop
K {Za}.

It follows that it is enough to show that

πop
K {X

′
a} → πop

K {Y
′
a} → πop

K {Za}

is part of a triangle in KKpro. But this follows from the fact that {Y ′a} → {Za}
is a fibration in Pro(SC∗) and πop

K is a right Quillen functor. �

We have thus shown that τ : ProBon(SC∗) → KKpro has homotopy invari-
ance, C∗-stability and split exactness. It follows that there exists a unique
additive functor i : BKK→ KKpro such that the following diagram commutes

ProBon(SC∗)
H //

τ
))

BKK

i
��

KKpro.

We will now bring two computational tools for calculating Bonkat’s K-
theory for diagrams. The first is a Milnor type lim1-sequence.

Theorem 5.4 ([12, Satz 4.5.4]). Let {An}n∈N be a sequence of nuclear
separable C∗-algebras with surjective connecting ∗-homomorphisms An+1 →
An, and let {Bj} be an object of ProBon(SC∗). Then there is a natural short
exact sequence

0→ lim1
nBKK(H{Bj},HΣAn)

→ BKK(H{Bj},H{An})→ limnBKK(H{Bj},HAn)→ 0.
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Theorem 5.5 ([12, Satz. 4.5.5]). Let {An}n∈N be a sequence of nuclear
separable C∗-algebras with surjective connecting ∗-homomorphisms An+1 →
An, and let B be an object in SC∗. Then there exists a natural isomorphism

colim
n

BKK(HAn,HB) ∼= BKK(H{An},HB).

We will now show that our K-theory, namely (LπK)op : Pro(SC∗)→ KKpro,
also has the same type of computational tools as Bonkat’s, but in an even
more general setting.

Theorem 5.6. Let {An}n∈N be a sequence of separable C∗-algebras (that
need not be nuclear) with connecting ∗-homomorphisms An+1 → An (that
need not be surjective), and let {Bj} be an object of Pro(SC∗). Then there
is a natural short exact sequence

0→ lim1
nKK

pro(Lπop
K {Bj},Lπ

op
K ΣAn)

→ KKpro(Lπop
K {Bj},Lπ

op
K {An})→ limnKK

pro(Lπop
K {Bj},Lπ

op
K An)→ 0.

Proof. We need to show that there is a natural short exact sequence

0→ lim1
nKK

ind(LπKΣAn,LπK{Bj})
→ KKind(LπK{An},LπK{Bj})→ limnKK

ind(LπKAn,LπK{Bj})→ 0.

Let N denote the cofinite directed poset of natural numbers. By employ-
ing the construction described in [8, Definition 4.3] we have a functorial

factorization of the morphisms in SC∗N into a map in Lw(W) followed by
a map in Sp(F). We apply this functorial factorization to the morphisms

{An} → ∗ in SC∗N, and obtain the following diagram in SC∗N:

{An}
Lw(W)−−−−→ {Afn}

Sp(F)−−−−→ ∗.

By [9, Proposition 2.17], we know that every map Afn+1 → Afn is a Schochet
fibration. Thus, we have a sequence of cofibrations

∗ −→ Af0 −→ Af1 −→ · · · −→ Afn −→ · · ·

in the pointed model category Ind(SC∗op), with colimit {Afn}. It follows that

∗ −→ πKA
f
0 −→ πKA

f
1 −→ · · · −→ πKA

f
n −→ · · ·

is a sequence of cofibrations in the pointed model category KKind, with

colimit πK{Afn}. By [27, Proposition 7.3.2], for every fibrant Y ∈ KKind we
have an exact sequence

0 −→ lim1
n[Σ(πKA

f
n), Y ] −→ [πK{Afn}, Y ] −→ limn[πKA

f
n, Y ] −→ 0.

(Note that for every X ∈ Ind(SC∗op) we have S1 ∧ (πKX) ∼= πK(S1 ∧ X).
See Theorem A.13.) �

Theorem 5.7. Let {Aj}n∈J be an object in Pro(SC∗) and let B be an object
in SC∗. Then there exists a natural isomorphism

colim
j

KKpro(Lπop
K Aj ,Lπ

op
K B) ∼= KKpro(Lπop

K {Aj},Lπ
op
K B).
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Proof. For every X ∈ S and every A ∈ Set we have a natural isomorphism

HomSet(π0(X), A) ' MapS∞(X,D(A)),

where D(A) denotes the constant simplicial set on A. Thus, there is an
adjunction between ∞-categories

π0 : S∞ � N(Set) : D.

It follows that π0 : S∞ → N(Set) commutes with ∞-colimits. Thus we have
natural isomorphisms

KKpro(Lπop
K {Aj},Lπ

op
K B) ' π0MapKKpro

∞ (Lπop
K {Aj},Lπ

op
K B)

' π0MapKKpro
∞ (Lπop

K lim∞j Aj ,Lπ
op
K B)

' π0MapKKpro
∞ (lim∞j Lπop

K Aj ,Lπ
op
K B)

' π0colim∞j MapKKpro
∞ (Lπop

K Aj ,Lπ
op
K B)

' colim∞j π0MapKKpro
∞ (Lπop

K Aj ,Lπ
op
K B)

' colimjKK
pro(Lπop

K Aj ,Lπ
op
K B).

In the diagram above we take the derived functors in the higher categorical
sense:

LπK : Ind(SC∗op)∞ � KKind
∞ : RχK

where πK := id ◦G0 and χK := Ev0 ◦ id. The fact that

{Aj} ∼= limjAj ' lim∞j Aj

in Ind(SC∗op)∞ follows from the fact that the model category Ind(SC∗op) has
a generating set of cofibrations between finitely presentable objects. The fact
that Lπop

K B is compact in KKind
∞ follows from the fact that B is compact in

Ind(SC∗op)∞ and RχK commutes with filtered colimits. �

Remark 5.8. Theorems 5.6 and 5.7 remain true for all triangulated homol-
ogy theories defined in Section 4.2.

We are now ready to state our result connecting Bonkat’s K-theory and
ours.

Theorem 5.9. Let {An}n∈N and {Bm}m∈N be sequences of nuclear separable
C∗-algebras with surjective connecting ∗-homomorphisms An+1 → An and
Bm+1 → Bm. Then i : BKK→ KKpro induces a natural isomorphism

BKK(H{Bm},H{An}) ∼= KKpro(Lπop
K {Bm},Lπ

op
K {An}).
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Proof. By Theorems 5.4 and 5.6 we get a commutative diagram

lim1
n BKK(H{Bm},HΣAn)� _

��

// lim1
n KK

pro(Lπop
K {Bm},Lπ

op
K ΣAn)

� _

��

BKK(H{Bm},H{An})

����

// KKpro(Lπop
K {Bm},Lπ

op
K {An})

����

limn BKK(H{Bm},HAn) // limn KK
pro(Lπop

K {Bm},Lπ
op
K An).

By the Five Lemma it suffices to show that the extremal horizontal arrows
above are isomorphisms.

By Theorem 5.5 there is a natural isomorphism

colim
m

BKK(HBm,HAn) ∼= BKK(H{Bm},HAn).

By Theorem 5.7 there is a natural isomorphism

colim
m

KKpro(Lπop
K Bm,Lπ

op
K An) ∼= KKpro(Lπop

K {Bm},Lπ
op
K An).

Since KKpro and BKK both agree with Kasparov KK-theory for separable
C∗-algebras, we conclude that the bottom horizontal arrow in the diagram
above is an isomorphism. A similar argument shows that the top horizontal
arrow is also an isomorphism and hence we are done. �

Remark 5.10. Using Theorem 5.9 and the results of [12, Kapitel 5], it
is possible to compare our K-theory with other extensions of Kasparov’s
K-theory considered in the literature.

Appendix A. Model categories

In this appendix we recall the notion of model categories and some of
their theory that we need in this paper. For the basic theory the reader is
referred to [27], [26] and the appendix of [34].

Definition A.1. A model category is a quadruple (M,W,F , C) satisfying
the following:

(1) M is a complete and cocomplete category.
(2) W,F , C are subcategories of M that are closed under retracts.
(3) W satisfies the two out of three property.
(4) C ∩W ⊆ ⊥F and C ⊆ ⊥(F ∩W).
(5) There exist functorial factorizations of the morphisms in M into a

map in C ∩W followed by a map in F , and into a map in C followed
by a map in F ∩W.

Definition A.2. Let (M,W,F , C) be a model category. Then the model
category M is called combinatorial if it is locally presentable (see [1]) and
there are sets I and J of morphisms in M (called generating cofibrations
and generating acyclic cofibrations) such that F = J⊥ and F ∩W = I⊥. In
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particular, a combinatorial model category is cofibrantly generated (see [27,
Definition 2.1.17]).

A.1. Simplicial model categories.

Definition A.3. LetM and C be categories. An adjunction of two variables
from M×C to C is a quintuple (⊗,Map, hom, φr, φl), where

(−)⊗ (−) :M×C → C,
Map(−,−) : Cop × C →M,

hom(−,−) :Mop × C → C

are bifunctors, and φr, φl are natural isomorphisms

φr : C(K ⊗X,Y )
∼=−→M(K,Map(X,Y )),

φl : C(K ⊗X,Y )
∼=−→ C(X,hom(K,Y )).

In the sequel we will suppress the natural isomorphisms φr, φl and write the
adjunction of two variables just as (⊗,Map, hom).

Definition A.4. Let M and C be model categories and let

(−)⊗ (−) :M×C → C

be a bifunctor. The bifunctor ⊗ is called a left Quillen bifunctor if ⊗ is a
part of a two variable adjunction (⊗,Map,hom), and for every cofibration
j : K → L in M and every cofibration i : X → Y in C the induced map

K ⊗ Y
∐
K⊗X

L⊗X → L⊗ Y

is a cofibration (in C), which is acyclic if either i or j is.

Proposition A.5 ([27, Lemma 4.2.2]). Let M and C be model categories.
Let (⊗,Map,hom) be a two variable adjunction. Then the following condi-
tions are equivalent:

(1) The bifunctor ⊗ is a left Quillen bifunctor.
(2) For every cofibration j : K → L inM and every fibration p : A→ B

in C, the induced map:

hom(L,A)→ hom(K,A)
∏

hom(K,B)

hom(L,B)

is a fibration (in C), which is acyclic if either j or p is.
(3) For every cofibration i : X → Y in C and every fibration p : A→ B

in C the induced map:

Map(Y,A)→ Map(X,A)
∏

Map(X,B)

Map(Y,B)

is a fibration (in M), which is acyclic if either i or p is.
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Definition A.6. Let S = Set∆op
denote the category of simplicial sets. The

category S has a standard model structure where a map X → Y in S is:

(1) A cofibration, if it is one to one (at every degree).
(2) A weak equivalence, if the induced map of geometric realizations
|X| → |Y | is a weak equivalence of topological spaces.

(3) A fibration, if it has the right lifting property with respect to all
acyclic cofibrations.

Definition A.7. A simplicial model category is a model category C together
with a left Quillen bifunctor ⊗ : S × C → C and coherent natural isomor-
phisms

L⊗ (K ⊗X) ∼= (K × L)⊗X,

∆0 ⊗X ∼= X,

for X in C and K,L in S.

A.2. Left and right proper model categories.

Definition A.8 ([34, Section A.2.4]). A model category C is called:

(1) Left proper, if for every push out square in C of the form

A

i
��

f
// B

j
��

C // D,

such that i is a weak equivalence and f is a cofibration, the map j
is also a weak equivalence.

(2) Right proper, if for every pull back square in C of the form

C

j
��

// D

i
��

A
f
// B,

such that i is a weak equivalence and f is a fibration, the map j is
also a weak equivalence.

(3) Proper, if it is both left and right proper.

A.3. Pointed simplicial model categories. Recall that a category is
called pointed if it has a zero object, that is, an object which is both initial
and terminal.

Let M be any pointed simplicial model category. It follows from the
general theory of simplicial model categories thatM can be turned naturally
into an S∗-enriched model category, where S∗ = (S∗,∧, S0) is the symmetric
monoidal model category of pointed simplicial sets. (This just means that
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we replace S by S∗ and × by ∧ in Definition A.7.) Thus, for every A and
B in M there is a pointed simplicial set Map∗(A,B). Actually we have:

Map∗(A,B) = Map(A,B),

as simplicial sets, where the distinguished morphism from A to B is the zero
morphism, given by the composition:

A→ 0→ B.

Moreover, for every A,B,C in M the pointed enriched composition

◦ : Map∗(B,C) ∧Map∗(A,B)→ Map∗(A,C),

is just the quotient of the unpointed composition

◦ : Map(B,C)×Map(A,B)→ Map(A,C).

Furthermore, for every object A inM and every pointed simplicial set K
we have the pointed left and right actions:

K ∧A ∈M, hom∗(K,A) ∈M.

It can be shown that for every (unpointed) simplicial set K we have natural
isomorphisms

K+ ∧A ∼= K ⊗A, hom∗(K+, A) ∼= hom(K,A),

where K+ denotes K with a disjoint basepoint.
The cofiber of a map in M is defined to be the coequalizer of this map

with the zero map. In the pointed simplicial model category S∗ we define
the object S1 as

S1 := cofib(∂∆1
+ ↪→ ∆1

+) ∈ S∗

SinceM is an S∗-enriched model category and S1 is cofibrant in S∗, we have
a Quillen pair

S1 ∧ (−) :M�M : hom∗(S
1,−).

We define Σ and Ω to be the adjoint pair of derived functors induced by this
Quillen pair

Σ := L(S1 ∧ (−)) : HoM� HoM : R(hom∗(S
1,−)) =: Ω.

Thus, for every object A in M we have:

ΣA ∼= S1 ∧Ac , ΩA ∼= hom∗(S
1, Af ),

where Ac and Af are any cofibrant and fibrant replacements for A respec-
tively.
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A.4. Left Bousfield localizations of model categories. Let M be a
simplicial model category. It follows that HoM is naturally enriched ten-
sored and cotensored over the monoidal category (HoS,×, ∗).
Definition A.9. Let T be a class of morphisms in HoM.

(1) An object W in HoM is called T -local if for every element f : A→ B
in T the induced map

f∗ : RMap(B,W )→ RMap(A,W )

is an isomorphism in HoS.
(2) A morphism g : X → Y in HoM is called a T -local isomorphism if

for every T -local object W in HoM the induced map

g∗ : RMap(Y,W )→ RMap(X,W )

is an isomorphism in HoS.
(3) A morphism g : X → Y in M is called a T -local equivalence if the

induced morphism X → Y in HoM is a T -local isomorphism.
(4) If the cofibrations in M and the T -local equivalences constitute a

model structure onM then the left Bousfield localization ofM with
respect to T is said to exist and is defined to be this model structure
and denoted LTM.

Remark A.10. Sometimes we will apply Definition A.9 and other results
on Bousfield localization to a class of morphisms T in M, the intended
meaning being that we are considering the image of T under the natural
functor M→ HoM.

The following proposition is shown in [26] Propositions 3.3.5, 3.3.16, 3.4.1,
3.4.4 and Theorem 3.3.19.

Proposition A.11. Let T be a class of morphisms in HoM and suppose
that the left Bousfield localization of M with respect to T exists. Then the
following hold:

(1) If M is left proper then LTM is also left proper and the fibrant
objects in LTM are precisely the fibrant objects in M that are T -
local as objects in HoM.

(2) The left Quillen functor id :M→ LTM is initial among left Quillen
functors F : M → N such that LF transfers morphisms in T to
isomorphisms in HoN . That is, if F : M → N is a left Quillen
functor as above, then F itself is also a left Quillen functor from
LTM to N .

We now state the main theorem in the theory of left Bousfield localiza-
tions. It is shown in [34, Proposition A.3.7.3] (see also [26, Theorem 4.1.1]).

Theorem A.12. Suppose thatM is left proper and combinatorial. Then the
left Bousfield localization ofM with respect to any small set T of morphisms
in HoM exists and is again combinatorial. Moreover the model category
LTM is simplicial, with the same simplicial structure as M.
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A.5. Stabilization of model categories. In this subsection we recall the
notion of a stable model category and the process of stabilization in the world
of model categories. We will be using results from [28].

A pointed simplicial model category M is called stable if the suspension
functor Σ : HoM→ HoM is an equivalence of categories, or in other words,
if the Quillen pair

S1 ∧ (−) :M�M : hom∗(S
1,−),

is a Quillen equivalence.
LetM be any pointed simplicial model category. It is desirable to have at

our disposal a stable model category that is as close toM as possible. This
can be achieved using a construction of Hovey [28], providedM satisfies the
following conditions:

(1) M is left proper.
(2) M is combinatorial.
(3) The domains of the generating cofibrations ofM can be taken to be

cofibrant.

(The results in [28] are stated under the assumption that M is cellular but
according to the results in [34, Section A.3.7], it suffices that it is combi-
natorial.) In the notation of [28] the category that we need is SpN(M, S1),
but we denote it here simply by SpN(M). We sketch the construction of
SpN(M) and the natural functor G0 :M→ SpN(M).

An object of SpN(M) is a sequence {X0, X1, . . . } of objects ofM together
with structure maps S1 ∧Xn → Xn+1. A morphism

{X0, X1, . . . } → {Y0, Y1, . . . }

in SpN(M) consists of a sequence of morphisms Xn → Yn preserving the
structure maps.

We now define a model structure on SpN(M) which is called the stable
model structure. We begin with the projective model structure on SpN(M)
in which a morphism {X0, X1, . . . } → {Y0, Y1, . . . } is a weak equivalence or
fibration if Xn → Yn is a weak equivalence or fibration for every n.

An object {X0, X1, . . . } of SpN(M) is called an Ω-spectrum if for every
n the map Xn → hom∗(S

1, Xn+1), adjoint to the structure map

S1 ∧Xn → Xn+1,

is a weak equivalence.
The stable structure on SpN(M) is obtained from the projective structure

by a process of left Bousfield localization (see Definition A.9). We take
the left Bousfield localization in such a way that the fibrant objects in the
localized model structure are precisely the projective fibrant objects that
are also Ω-spectra.

For every n ≥ 0 we have a Quillen adjunction

Gn :M� SpN(M) : Evn,
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where Evn is the evaluation functor sending the object {X0, X1, . . . } to Xn,
and Gn is its left adjoint. The functor G0 sends X to the sequence of objects
{X,S1 ∧X, · · · , Sn ∧X, . . . }.

The following Proposition follows from [28, Theorem 6.3 and the para-
graph before it], [28, Corollary 6.5] and [28, Theorem 10.3].

Theorem A.13. The model category SpN(M) is stable, left proper, simpli-
cial and combinatorial. The functors Gn : M → SpN(M) are left Quillen
and preserve the simplicial action up to a natural isomorphism.

Appendix B. ∞-categories

In this appendix we recall the notion of ∞-categories and some of their
theory that we need in this paper. Our approach is based on quasi-categories,
and the reader is referred to [34] for the basic theory.

Definition B.1 (Joyal, Lurie). An∞-category is a simplicial set C satisfying
the right lifting property with respect to the maps Λni → ∆n for 0 < i < n
(where Λni is the simplicial set obtained by removing from ∂∆n the i’th face).
If C and D are ∞-categories, then an ∞-functor C → D is just a simplicial
set map. In fact, we have an∞-category of∞-functors from C to D denoted
Fun(C,D) and defined by

Fun(C,D)n := HomS(∆n × C,D).

B.1. Relative categories and their associated∞-categories. In this
subsection we will recall the notion of ∞-localization which associates an
underlying ∞-category to any relative category. The material here is based
on [25].

Definition B.2. A relative category is a category C equipped with a sub-
category

W ⊆ C
containing all the identities. We will refer to the maps in W as weak equiv-
alences.

Given a relative category (C,W) one may associate to it an ∞-category
C∞ = C[W−1], equipped with a map C −→ C∞, which is characterized by the
following universal property: for every ∞-category D, the natural map

Fun(C∞,D) −→ Fun(C,D)

is fully-faithful, and its essential image is spanned by those functors C −→
D which send W to equivalences. The ∞-category C∞ is called the ∞-
localization of C with respect toW. In this paper we will also refer to C∞ as
the underlying ∞-category of C, or the ∞-category modelled by C. We note
that this notation and terminology is slightly abusive, as it makes no direct
reference to W.

The∞-category C∞ may be constructed in one of the following equivalent
ways:
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(1) One may construct the Hammock localization of C with respect to
W (see [18]), and obtain a simplicial category LH(C,W). The ∞-
category C∞ can then be obtained by taking the coherent nerve of
any fibrant model of LH(C,W) (with respect to the Bergner model
structure).

(2) One may consider the marked simplicial set N+(C,W) = (N(C),W),
where N denotes the nerve functor. The ∞-category C∞ can then be
obtained by taking the underlying simplicial set of any fibrant model
of N+(C,W) (with respect to the Cartesian model structure, see [34,
Chapter 3]).

B.2. Stabilization of ∞-categories. In this subsection we consider the
notion of stabilization of ∞-categories. The following is based on the very
accessible presentation of Harpaz [22]. For a more detailed account see [33].

Let Catfincolim∗ denote the (big)∞-category of pointed finitely cocomplete
small ∞-categories and finite-colimit-preserving functors between them. If
C is an object in Catfincolim∗ then we can define the suspension functor on C

ΣC : C → C

by the formula

ΣC(X) := ∗
∐
X

∗.

We define CatEx to be the full subcategory of Catfincolim∗ spanned by the
objects where the suspension functor is an equivalence. CatEx is called the
∞-category of small stable ∞-categories and exact functors between them.

Let C be an object in Catfincolim∗ . We denote by SW(C) the colimit of the
sequence

C ΣC−−→ C ΣC−−→ · · ·
in the ∞-category Catfincolim∗ . In fact, SW(C) is also the colimit of the
sequence above in Cat∞, which is the ∞-category of all small ∞-categories
and all ∞-functors between them. Thus, the objects of SW(C) are pairs
(X,n) where X ∈ C and n ∈ N, and the mapping spaces are given by

MapSW(C)((X,n), (Y,m)) = colim
k

MapC(Σ
k−n
C X,Σk−m

C Y ),

where the colimit is taken in the ∞-category of spaces. This construction
will yield a left adjoint to the inclusion CatEx → Catfincolim∗ . More precisely,
we have a unit map

Σ∞C : C → SW(C)
given by X 7→ (X, 0), which satisfies the following universal property: For
every stable∞-category D, pre-composition with Σ∞C induces an equivalence
of ∞-categories

FunEx(SW(C),D)→ Funfincolim∗ (C,D).
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Let Catfinlim∗ denote the (big) ∞-category of pointed finitely complete
small ∞-categories and finite-limit-preserving functors between them. If C
is an object in Catfinlim∗ then we can define the loop functor on C

ΩC : C → C
by the formula

ΩC(X) := ∗
∏
X

∗.

It can be shown that the ∞-category CatEx is equivalent to the full sub-
category of Catfinlim∗ spanned by the objects where the loop functor is an
equivalence.

We will denote by Sp(C) the limit of the tower

C ΩC←−− C ΩC←−− · · ·
in the∞-category Catfinlim∗ . In fact, Sp(C) is also the limit in Cat∞, namely,
an object of Sp(C) is given by a sequence {Xn} of objects of C together with
equivalences Xn ' ΩCXn+1 and maps are given by compatible families of
maps.

This construction will yield a right adjoint to the inclusion CatEx →
Catfinlim∗ . More precisely, we have a counit map

Ω∞C : Sp(C)→ C
given by {Xn} 7→ X0, which satisfies the following universal property: For
every stable ∞-category D, composition with Ω∞C induces an equivalence of
∞-categories

FunEx(D,Sp(C))→ Funfinlim∗ (D, C).
We now discuss the process of stabilization in the context of presentable

∞-categories. Let PrL∗ denote the (big) ∞-category of pointed presentable
∞-categories and left functors between them (i.e. functors which admit right
adjoints) and PrR∗ the ∞-category of pointed presentable ∞-categories and
right functors between them (i.e. functors which admit left adjoints). The
categories PrL∗ and PrR∗ are naturally opposite to each other. The adjoint
functor theorem for presentable∞-categories tells us that a functor f : C →
D between presentable∞-categories is a left functor if and only if it preserves
all colimits and is a right functor if and only if it is accessible and preserves
all limits. In particular, if C and D are stable presentable∞-categories then
any left functor between them and any right functor between them is exact.
We will denote by PrLEx ⊆ PrL∗ the full subcategory spanned by the stable
∞-categories and similarly by PrREx ⊆ PrR∗.

Observe that for a pointed presentable ∞-category C the following are
equivalent:

(1) C is stable.
(2) ΣC is an equivalence.
(3) ΩC is an equivalence.
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We thus see that in order to perform the stabilization process inside the
world of pointed presentable ∞-categories one just needs to invert either
the suspension or the loop functor. As above, this can be done from the left
or from the right. However, since PrL∗ and PrR∗ are opposite to each other,
it will be enough to understand just one of these procedures. In this case
the right option has an advantage, and that is that limits in PrR∗ can be
computed just as limits in Cat∞ (where the same is not true for colimits in
PrL∗).

Now the functor ΩC has a left adjoint ΣC , so we see that ΩC is a right
functor, i.e., a legitimate morphism in PrR∗. As above, we can invert it by
taking the inverse limit of the tower

C ΩC←−− C ΩC←−− · · ·

in the∞-category PrR∗. Fortunately, this procedure is the same as computing
the limit in Cat∞, i.e., it will coincide with Sp(C) described above. However,
we are now guaranteed that Sp(C) will be a presentable∞-category and that
the projection map

Ω∞C : Sp(C)→ C
will be a right functor of presentable ∞-categories. Now if D is any stable
presentable ∞-category then composition with Ω∞C induces an equivalence
of ∞-categories

FunR(D,Sp(C))→ FunR(D, C)
The duality between PrR∗ and PrL∗ means that we can automatically get a
dual result with no extra work. Namely, the left adjoint

Σ∞C : C → Sp(C)

of Ω∞C will also exhibit Sp(C) as a stabilization of C from the left in the
∞-category PrL∗. In other words, if D is any stable presentable ∞-category
then pre-composition with Σ∞C induces an equivalence of ∞-categories

FunL(Sp(C),D)→ FunL(C,D).

Now suppose that C ∈ PrL∗ is also compactly generated, i.e. it is of the
form Ind(C0) where C0 is a small pointed ∞-category with finite colimits.
Then one can attempt to left-stabilize C by first left-stabilizing C0 using
the construction SW(C0) considered previously, and then considering its
ind-completion Ind(SW(C0)). This construction will yield again a stable
presentable ∞-category satisfying the same universal property as Sp(C).
We will hence deduce that there is a natural equivalence

Ind(SW(C0)) ' Sp(C).

Note that in the equivalence above we are referring to the ∞-categorical
construction of the ind-category (see [34, Section 5.3]).

We now wish to connect the ∞-categorical stabilization presented above
to the model categorical stabilization presented in Appendix A.5.
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Let M be a left proper combinatorial pointed simplicial model category
such that the domains of the generating cofibrations of M can be taken to
be cofibrant. Since M is combinatorial, it follows from [34] that M∞ is a
presentable ∞-category.

As explained in Appendix A.3 we have a Quillen pair

S1 ∧ (−) :M�M : hom∗(S
1,−).

By [40, Theorem 2.1] this Quillen pair induces an adjoint pair of∞-categories

Σ := L(S1 ∧ (−)) :M∞ �M∞ : R(hom∗(S
1,−)) =: Ω.

(The adjoint pair of usual categories

Σ : HoM� HoM : Ω

considered in Appendix A.3, is obtained from the ∞-categorical adjoint
pair by passing to the homotopy categories.) Then we have Σ = ΣM∞ and
Ω = ΩM∞ . In particular, we see thatM is a stable model category iffM∞
is a stable ∞-category.

According to [53, Proposition 4.15], we have a natural equivalence of ∞-
categories

SpN(M)∞ ' Sp(M∞).

Moreover, if we consider the Quillen adjunction

G0 :M� SpN(M) : Ev0,

then the adjunction between the underlying∞-categories given by [40, The-
orem 2.1]

Σ∞ := LG0 :M∞ � SpN(M)∞ : REv0 =: Ω∞,

is equivalent to the adjunction (Σ∞M∞ ,Ω
∞
M∞) defined above, under this nat-

ural equivalence.
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