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Algebraic nonhyperbolicity of hyperkähler
manifolds with Picard rank greater than

one

Ljudmila Kamenova and Misha Verbitsky

Abstract. A projective manifold is algebraically hyperbolic if the de-
gree of any curve is bounded from above by its genus times a constant,
which is independent from the curve. This is a property which follows
from Kobayashi hyperbolicity. We prove that hyperkähler manifolds are
not algebraically hyperbolic when the Picard rank is at least 3, or if the
Picard rank is 2 and the SYZ conjecture on existence of Lagrangian
fibrations is true. We also prove that if the automorphism group of a
hyperkähler manifold is infinite then it is algebraically nonhyperbolic.

Contents

1. Introduction 489

2. Basic notions 490

3. Main results 491

References 493

1. Introduction

In [V2] M. Verbitsky proved that all hyperkähler manifolds are Kobayashi
nonhyperbolic. It is interesting to inquire if projective hyperkähler mani-
folds are also algebraically nonhyperbolic (Definition 2.5). For a given pro-
jective manifold algebraic nonhyperbolicity implies Kobayashi nonhyperbo-
licity. We prove algebraic nonhyperbolicity for projective hyperkähler man-
ifolds with infinite group of automorphisms.

Theorem 1.1. Let M be a projective hyperkähler manifold with infinite
automorphism group. Then M is algebraically nonhyperbolic.
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If a projective hyperkähler manifold has Picard rank at least three, we
show that it is algebraically nonhyperbolic. For the case when the Picard
rank equals to two we need an extra assumption in order to prove alge-
braic nonhyperbolicity. The SYZ conjecture states that a nef parabolic line
bundle on a hyperkähler manifold gives rise to a Lagrangian fibration (Con-
jecture 2.4).

Theorem 1.2. Let M be a projective hyperkähler manifold with Picard rank
ρ. Assume that either ρ > 2, or ρ = 2 and the SYZ conjecture holds. Then
M is algebraically nonhyperbolic.

2. Basic notions

Definition 2.1. A hyperkähler manifold of maximal holonomy (or irre-
ducible holomorphic symplectic) manifold M is a compact complex Kähler
manifold with π1(M) = 0 and H2,0(M) = Cσ, where σ is everywhere nonde-
generate. From now on we would tacitly assume that hyperkähler manifolds
are of maximal holonomy.

Due to results of Matsushita, holomorphic maps from hyperkähler mani-
folds are quite restricted.

Theorem 2.2 (Matsushita, [Mat]). Let M be a hyperkähler manifold and
f : M → B a proper surjective morphism with a smooth base B. Assume
that f has connected fibers and 0 < dimB < dimM . Then f is Lagrangian
and dimCB = n, where dimCM = 2n.

Following Theorem 2.2, we call the surjective morphism f : M → B a
Lagrangian fibration on the hyperkähler manifold M . A dominant map
f : M 99K B is a rational Lagrangian fibration if there exists a birational
map ϕ : M 99KM ′ between hyperkähler manifolds such that the composition
f ◦ϕ−1 : M ′ → B is a Lagrangian fibration. J.-M. Hwang proved that if the
base B of a hyperkähler Lagrangian fibration is smooth, then B ∼= Pn (see
[Hw]).

Definition 2.3. Given a hyperkähler manifold M , there is a nondegenerate
primitive form q on H2(M,Z), called the Beauville–Bogomolov–Fujiki form
(or the “BBF form” for short), of signature (3, b2 − 3), and satisfying the
Fujiki relation ∫

M
α2n = c · q(α)n for α ∈ H2(M,Z),

with c > 0 a constant depending on the topological type of M . This form
generalizes the intersection pairing on K3 surfaces. A detailed description
of the form can be found in [Be], [Bog] and [F].

Notice that given a Lagrangian fibration f : M → Pn, if h is the hyper-
plane class on Pn, and α = f∗h, then α belongs to the birational Kähler cone
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of M and q(α) = 0. The following SYZ conjecture states that the converse
is also true.

Conjecture 2.4 (Tyurin, Bogomolov, Hassett–Tschinkel, Huybrechts, Sa-
won). If L is a line bundle on a hyperkähler manifold M with q(L) = 0, and
such that c1(L) belongs to the birational Kähler cone of M , then L defines
a rational Lagrangian fibration.

For more reference on this conjecture, please see [HT], [Saw], [Hu3] and
[V1].

This conjecture is known for deformations of Hilbert schemes of points
on K3 surfaces (Bayer–Macr̀ı [BM]; Markman [Mar]), and for deformations
of the generalized Kummer varieties Kn(A) (Yoshioka [Y]).

In [V2] M. Verbitsky proved that all hyperkähler manifolds are Kobayashi
nonhyperbolic. In [KLV] together with S. Lu we proved that the Kobayashi
pseudometric vanishes identically for K3 surfaces and for hyperkähler man-
ifolds deformation equivalent to Lagrangian fibrations under some mild as-
sumptions. In [De] Demailly introduced the following notion.

Definition 2.5. A projective manifold M is algebraically hyperbolic if for
any Hermitian metric h on M there exists a constant A > 0 such that for
any holomorphic map ϕ : C → M from a curve of genus g to M we have
that 2g − 2 > A

∫
C ϕ
∗ωh, where ωh is the Kähler form of h.

In this paper all varieties we consider are smooth and projective. For
projective varieties, Kobayashi hyperbolicity implies algebraic hyperbolicity
([De]). Here we explore nonhyperbolic properties of projective hyperkähler
manifolds. Algebraic nonhyperbolicity implies Kobayashi nonhyperbolicity.

3. Main results

Proposition 3.1. Let M be a hyperkähler manifold admitting a (rational)
Lagrangian fibration. Then M is algebraically nonhyperbolic.

Proof. We use the fact that the fibers of a Lagrangian fibrations are abelian
varieties ([Mat]). The isogeny self-maps on an abelian variety provide curves
of fixed genus and arbirary large degrees, and therefore they are algebraically
nonhyperbolic.

An alternative way of proving this proposition is by using the following
result whose proof was suggested by Prof. K. Oguiso.

Lemma 3.2. If a hyperkähler manifold M admits a Lagrangian fibration,
then there exists a rational curve on M .

Indeed, in [HwO] J.-M. Hwang and K. Oguiso give a Kodaira-type classi-
fication of the general singular fibers of a holomorphic Lagrangian fibration.
All of the general singular fibers are covered by rational curves. The locus
of singular fibers is nonempty (e.g., Proposition 4.1 in [Hw]), and therefore
there is a rational curve on M .
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According to Lemma 3.2, M contains a rational curve, and therefore, M is
algebraically nonhyperbolic. This finishes the proof of Proposition 3.1. �

Lemma 3.3. Let M be a projective hyperkähler manifold with infinite au-
tomorphism group Γ. Consider the natural map

f : Γ−→ Aut(H1,1(M)).

Then the elements of the Kähler cone have infinite orbits with respect to
f(Γ).

Proof. See the discussion in Section 2 of [O2]. �

Lemma 3.4. Let M be a projective hyperkähler manifold, and Γ its auto-
morphism group. Consider the natural map

g : Γ−→ Aut(H2
tr(M))×Aut(H1,1(M)).

Then g(Γ) is finite in the first component Aut(H2
tr(M)).

Proof. This has been proven by Oguiso, see [O1]. The idea is that the BBF
form restricted to the transcendental part H2

tr(M) is of K3-type. Then we
can apply Zarhin’s theorem (Theorem 1.1.1 in [Z]) to deduce that

g(Γ) ⊂ Aut(H2
tr(M))

is finite. �

Theorem 3.5. Let M be a projective hyperkähler manifold with infinite
automorphism group. Then M is algebraically nonhyperbolic.

Proof. For any Kähler class w on M , its f(Γ)-orbit is infinite by Lem-
ma 3.3. Fix a polarization w on M with normalization q(w) = 1. For a
given constant C > 0 consider the set

DC = {x ∈ H1,1(M,Z) | q(x) > 0, q(x,w) 6 C}.
Notice that DC is compact. Indeed, y = x − q(x,w)w is orthogonal to w
with respect to the BBF form q. The quadratic form q is of type (1, b2 − 1)
on H1,1(M,Z) and since q(w) > 0, the restriction q|w⊥ is negative-definite.
A direct computation shows that

q(y) = q(x)− 2q(x,w)2 + q(x,w)2q(w) = q(x)− q(x,w)2 > −C2.

The set DC is equivalent to the set of elements {y ∈ w⊥|q(y) > −C2}, which
is compact because q|w⊥ is negative-definite. Since the set DC is compact,
supx∈Γ·η deg x =∞, which means there is a class of a curve η with q(η) > 0.
However, all curves in the orbit Γ·η have constant genus. Since their degrees
could be arbitrarily high, then M is algebraically nonhyperbolic. �

Lemma 3.6. Let M be a hyperkähler manifold such that the positive cone
does not coincide with the Kähler cone. Then M contains a rational curve.

Proof. This is a classical result that Boucksom and Huybrechts knew in
the early 2000’s [Bou, Hu2]. �
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Theorem 3.7. Let M be a hyperkähler manifold with Picard rank ρ. As-
sume that either ρ > 2 or ρ = 2 and the SYZ conjecture holds. Then M is
algebraically nonhyperbolic.

Proof. Notice that the Hodge lattice H1,1(M,Z) of a hyperkähler mani-
fold has signature (1, k). Therefore, for ρ > 2, the Hodge lattice contains
a vector with positive square, and M is projective ([Hu1]). First, con-
sider the case when ρ > 2. If the Kähler cone coincides with the positive
cone, then the automorphism group Aut(M) is commensurable with the
group of isometries SO(H2(M,Z)) (Theorem 2.17 in [AV]) preserving the
Hodge type. By Lemma 3.4, this group is commensurable with the group of
isometries of the Hodge lattice H1,1(M,Z). By Borel and Harish-Chandra’s
theorem ([BorHC]), if ρ > 2, any arithmetic subgroup of SO(1, ρ − 1) is a
lattice. However, Borel density theorem implies that any lattice in a non-
compact simple Lie group is Zariski dense ([Bor]). Therefore, for ρ > 2,
SO(H1,1(M,Z)) is infinite. In this case Aut(M) is also infinite and we can
apply Theorem 3.5. On the other hand, if the Kähler cone does not coincide
with the positive cone, then by Lemma 3.6 there is a rational curve on M .
Therefore, M is algebraically nonhyperbolic.

Now let ρ = 2. Assume the positive cone and the Kähler cone coincide.
If there is no η ∈ H1,1(M,Z) with q(η) = 0, then by Theorem 87 in [Di],
SO(H1,1(M,Z)) is isomorphic to Z×Z/2Z. Therefore, both SO(H1,1(M,Z))
and Aut(M) are infinite and we can apply Theorem 3.5. If there is η ∈
H1,1(M,Z) with q(η) = 0, then the SYZ conjecture implies that η defines
a rational fibration on M and we could apply Proposition 3.1. If ρ = 2
and the positive and the Kähler cones are different (i.e., the positive cone
is divided into Kähler chambers), then there is a nef class η ∈ H1,1(M,Z)
with q(η) = 0. Since we assumed that the SYZ conjecture holds, the class η
defines a Lagrangian fibration on M . Applying Proposition 3.1 we conclude
that M is algebraically nonhyperbolic. �

Remark 3.8. We conjecture that all projective hyperkähler manifolds are
algebraically nonhyperbolic. However, our proof fails for manifolds with
Picard rank 1.
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