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Alexander polynomial obstruction of
bi-orderability for rationally

homologically fibered knot groups

Tetsuya Ito

Abstract. We show that if the fundamental group of the complement
of a rationally homologically fibered knot in a rational homology 3-
sphere is bi-orderable, then its Alexander polynomial has at least one
positive real root. Our argument can be applied for a finitely generated
group which is an HNN extension with certain properties.
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1. Introduction

A total ordering ≤G on a group G is a bi-ordering if a ≤G b implies both
ga ≤G gb and ag ≤G bg for all a, b, g ∈ G. A group is called bi-orderable if
it admits a bi-ordering.

The Alexander polynomial of knots and groups provides a useful criterion
for the (non) bi-orderbility. In [PR03], Perron–Rolfsen showed that for a
fibered knot K, the knot group π1(S3 \ K) is bi-orderable if its Alexander
polynomial ∆K(t) has only positive real roots. In [ClR12], Clay–Rolfsen
proved the partial converse: if the knot group π1(S3 \ K) for a fibered knot
K, is bi-orderable, then its Alexander polynomial ∆K(t) has at least one
positive real root. Actually their argument can be applied for not only a
fibered knot group, but also a finitely generated group with finitely generated
commutator subgroup.

In [ChGW15] Chiswell–Glass–Wilson showed the same result under the
assumption that the group G admits a certain two generator, one relator
presentation: under certain assumptions on the presentation, they showed
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that G is bi-orderable if all roots of its Alexander polynomial are positive
and real, and that if G is bi-orderable then its Alexander polynomial has
at least one positive real root. In [ClDN16] Clay–Desmarais–Naylor ex-
plored Chiswell–Glass–Wilson criteria to find various nonfibered knots with
bi-orderable or non-bi-orderable knot groups.

In this note we prove the following (non)-bi-orderability criterion for a
rationally homologically fibered knot.

Definition 1 ([GS13]). A null-homologous knot K in a rational homology
3-sphere M is rationally homologically fibered if deg ∆K(t) = 2g(K), where
g(K) denotes the genus of the knot K.

Theorem 2. Let K be a rationally homologically fibered knot in a rational
homology 3-sphere M . If the Alexander polynomial ∆K(t) has no positive
real root, then the knot group π1(M \ K) is not bi-orderable.

Although not all knots are rationally homologically fibered, compared
with fibered knots the class of rationally homologically fibered knots is
much larger. For example, the alternating knots (in S3) are rationally ho-
mologically fibered [Cr59, Mu58], and all knots with less than or equal to
11 crossings are rationally homologically fibered, except 11n34,11n42,11n45,
11n67,11n73, 11n07, 11n152 (in the table KnotInfo [ChaL]).

Example 3. An alternating knot K = 11a1 has the Alexander polynomial
∆K(t) = 2− 12t+ 30t2 − 39t3 + 30t4 − 12t5 + 2t6 which has no positive real
root. Thus the fundamental group of its complement is not bi-orderable.
(K is not fibered and [ClDN16] fails to find a presentation that satisfies the
assumption of Chiswell–Glass–Wilson’s criterion so they could not detect
the non-bi-orderability)

Our argument relies on the rationally homologically fibered condition
which in particular forces the Alexander polynomial to be nontrivial. Thus
it is interesting to ask whether π1(M \ K) is bi-orderable or not when
∆K(t) = 1.

2. Proof of theorem

Let X = M \K be the knot complement and G = π1(M \K) be the knot

group. Let π : X̃ → X be the infinite cyclic covering of X which corresponds
to the kernel of the abelianization map φ : G→ Z = 〈t〉.

The first homology group of the infinite cyclic covering H1(X̃;Q) has the

structure of a Q[t, t−1] module, where t acts on X̃ as a deck translation.
There exist p1(t), . . . , pn(t) ∈ Q[t, t−1] and f ∈ Z≥0 such that

H1(X̃;Q) ∼= Q[t, t−1]f ⊕
n⊕
i=1

Q[t, t−1]/(pi(t)).
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The Alexander polynomial ∆K(t) is defined by

∆K(t) =

{
p1(t)p2(t) · · · pn(t) (f = 0)

0 (f > 0).

Thus ∆K(t) · h = 0 for every h ∈ H1(X̃;Q).
Let Σ be a minimum genus Seifert surface of K, and let Y = M \N(Σ),

where N(Σ) ∼= Σ × (−1, 1) denotes a regular neighborhood of Σ. Let ι± :
Σ ↪→ Σ × {±1} ⊂ Y be the inclusion maps. As is well-known, the infinite

cyclic covering X̃ is obtained by gluing infinitely many copies {Yi}i∈Z of Y
along Σ, where the i-th copy Yi and the (i + 1)-st copy Yi+1 are glued by
identifying ι−(Σ) ⊂ Yi and ι+(Σ) ⊂ Yi+1. In the rest of argument, we will

always take a base point of X̃ so that it lies in Y0.

For N ≥ 0, let Y[−N,N ] =
⋃N
i=−N Yi ⊂ X̃, and let iN : Y0 ↪→ Y[−N,N ] and

jN : Y[−N,N ] ↪→ X̃ be the inclusion maps. We denote the fundamental group

π1(Y[−N,N ]) and π1(X̃) = Kerφ by KN and K, respectively. Since Y[−N,N ]

is compact, KN is finitely generated.
Since ι±∗ : π1(Σ)→ π1(X) are injective, by van-Kampen theorem it follows

that both (iN )∗ : K0 → KN and (jN )∗ : KN → K are injective. By these
inclusion maps we will always regard K0 as a subgroup of KN , and KN as
a subgroup of K. For x ∈ K0, we will often simply denote (iN )∗(x) ∈ KN

by the same symbol x, by abuse of notation.

Proof of Theorem 2. Assume that K is rationally homologically fibered,
and that the Alexander polynomial ∆K(t) has no positive real roots.

A theorem of Dubickas [Du07] says that a one-variable polynomial f(t) ∈
Q[t, t−1] has no positive real roots if and only if there is a nonzero polynomial
g(t) ∈ Q[t, t−1] such that all the nonzero coefficients of g(t)f(t) are positive.
Thus there is a nonzero polynomialD(t) such that all the nonzero coefficients
of D(t)∆K(t) are positive. We take such D(t) so that D(t)∆K(t) =

∑
i≥0 ait

i

with a0 > 0 and ai ≥ 0 (i > 0).

For x ∈ K = π1(X̃), we denote by [x] ∈ H1(X̃;Q) the homology class
represented by x. Then [x] = 0 if and only if xr ∈ [K,K] for some r > 0.

Let s ∈ π1(X) be an element represented by a meridian of the knot K.
Then ti[x] = [s−ixsi]. By definition of the Alexander polynomial, for each
x ∈ K

D(t)∆K(t)[x] =
∑
i≥0

ait
i[x] =

∑
i≥0

[s−ixaisi]

=

[∏
i≥0

(s−ixaisi)

]
= 0 ∈ H1(X̃;Q).
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This implies that there is r(x) > 0 such that(∏
i≥0

(s−ixaisi)

)r(x)

∈ [K,K].

Moreover, since K =
⋃
n≥0Kn, there is N(x) ∈ Z such that(∏

i≥0

(s−ixaisi)

)r(x)

∈ [KN(x),KN(x)].

Take a finite symmetric generating set X of K0. Here symmetric we mean
that x ∈ X implies x−1 ∈ X . Let N = max{N(x) | x ∈ X}, and let r be the
least common multiple of r(x) for x ∈ X . Then for every x ∈ X we have

(2.1)

(∏
i≥0

(s−ixaisi)

)r
∈ [KN ,KN ].

Now assume to the contrary that, G is bi-orderable. Let <KN
be a bi-

ordering on KN which is the restriction of a bi-ordering of G. Since KN

is finitely generated, by [ClR12, Lemma 2.4] there is a <KN
convex normal

subgroup C ofKN such that the quotient group AN := KN/C is a nontrivial,
torsion-free abelian group. Then AN has the bi-ordering <AN

coming from
<KN

; a <AN
a′ if and only if a = P (k), a′ = P (k′) (k, k′ ∈ KN ) with

k <KN
k′, where P : KN → AN denotes the quotient map (see [It13,

Section 2] for details on abelian, bi-ordered quotients).

Lemma 1. Let q = P ◦ (iN )∗ : K0
(iN )∗−→ KN

P−→ AN . If both

(ι±)∗ : H1(Σ;Q)→ H1(Y ;Q)

are surjections, then q is a surjection.

Proof. By Meyer-Vietoris sequence, the surjectivity of (ι±)∗ implies the
surjectivity of (iN )∗ : H1(Y0;Q)→ H1(Y[−N,N ];Q). Thus

(iN )∗ : H1(Y0;Z)→ H1(Y[−N,N ];Z)

is a surjection modulo torsion elements.
On the other hand, AN is an abelian group so the map q is written as

compositions

K0 = π1(Y0) −→ H1(Y0;Z)

(iN )∗−→ H1(Y[−N,N ];Z) = KN/[KN ,KN ]

−→ KN/C = AN .

All maps are surjections modulo torsion elements and AN is torsion-free so
q is a surjection. �

The following lemma clarifies a role of the rationally homologically fibered
assumption (cf. [GS13, Proposition 2]).
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Lemma 2. Both (ι±)∗ : H1(Σ;Q) → H1(Y ;Q) are surjections if and only
if K is rationally homologically fibered.

Proof. Let g be the genus of K. By Alexander duality,

dimH1(Σ;Q) = dimH1(Y ;Q) = 2g.

This shows that (ι±)∗ are surjections if and only if (ι±)∗ are isomorphisms,
that is, if and only if they are invertible.

By the Mayer–Vietoris sequence, H1(X̃;Q) is written as

H1(X̃;Q) = Q[t, t−1]/{t(ι+)∗(h) = (ι−)∗(h) ∀h ∈ H1(Σ)}
Thus ∆K(t) is equal to the determinant of

t(ι+)∗ − (ι−)∗ : Q2g = H1(Σ;Q)→ H1(Y ;Q) ∼= Q2g.

If (ι±)∗ are surjective, then they are invertible so

∆K(t) = det(t− (ι+)−1
∗ (ι−)∗) det(ι+).

Since (ι+)−1
∗ (ι−)∗ is invertible, deg ∆K(t) = 2g.

Conversely, if deg ∆K(t) = 2g then

∆K(0) = det((ι−)∗) = det((ι+)∗) 6= 0

so both (ι±)∗ are invertible. �

Now we are ready to complete the proof of Theorem 2.
By Lemma 1 and Lemma 2, if K is rationally homologically fibered, then

q is surjective. Since X is a symmetric generating set, the surjectivity of q
implies that there exists x ∈ X such that 1 <AN

q(x). By definition of the
quotient ordering <AN

, 1 <KN
x. The ordering <KN

is the restriction of a
bi-ordering of G and 0 ≤ ai so 1 ≤KN

s−ixaisi. Therefore 1 ≤AN
P (s−ixaisi)

for all i ≥ 0. Since a0 > 0, as a consequence we get

1 <AN
q(x) ≤AN

P

(∏
i≥0

(s−ixaisi)

)r
.

On the other hand, [KN ,KN ] ⊂ C so (2.1) implies

P

(∏
i≥0

(s−ixaisi)

)r
= 1 ∈ KN/C = AN .

This is a contradiction. �

We state and prove our main theorem for the case that the group is the
fundamental group of a knot complement. However, our proof can be applied
for a finitely generated group represented by a certain HNN extension.

For a finitely generated group G and a surjection φ : G → Z = 〈t〉,
H1(Kerφ;Q) has the structure of a finitely generated Q[t, t−1]-module. The

Alexander polynomial ∆φ
G(t) (with respect to φ) is defined similarly, and

has the same property that ∆φ
G(t) · h = 0 for all h ∈ H1(Kerφ;Q).



502 TETSUYA ITO

In the proof of Theorem 2, besides the assumption that the Alexander
polynomial has no positive real roots, what we really needed and used can
be stated in terms of the groups Kerφ, π1(Σ) and π1(Y ): we used the
amalgamated product decomposition

(2.2) Kerφ = π1(X̃) = · · · ∗π1(Σ) π1(Y ) ∗π1(Σ) π1(Y ) ∗π1(Σ) π1(Y ) ∗π1(Σ) · · ·
having the properties

π1(Y ) is finitely generated.(2.3)

The inclusions ι±∗ : π1(Σ)→ π1(Y ) induce surjections(2.4)

ι±∗ : H1(π1(Σ);Q)→ H1(π1(Y );Q).

Note that we used the topological assumption that K is a rationally homo-
logically fibered knot in a rational homology sphere M only at Lemma 2,
which is used to show the property (2.4).

In the language of group theory, the amalgamated product decomposition
(2.2) comes from an expression of π1(M \ K) as an HNN extension

π1(M \ K) = ∗π1(Σ)π1(Y ) = 〈t, π1(Y ) | t−1ι+(s)t = ι−(s) (∀s ∈ π1(Σ))〉.
In summary, our proof of Theorem 2 actually shows the following non-bi-

orderbility criterion.

Theorem 4. Let H be a finitely generated group and A be a group (not
necessarily a finitely generated). Let ι± : A → H be homomoprhisms such
that

(ι±)∗ : H1(A;Q)→ H1(H;Q)

are surjective. Let G be a finitely generated group given by an HNN extension

G = ∗AH = 〈t,H | t−1ι+(a)t = ι−(a) (∀a ∈ A)〉.
Let φ : G → Z is a surjection given by φ(t) = 1, φ(h) = 0 for all h ∈ H.

If the Alexander polynomial ∆φ
G(t) has no positive real root, then G is not

bi-orderable.
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