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The automorphism group of the
hyperelliptic Torelli group

Leah R. Childers

Abstract. The hyperelliptic Torelli group, SI(Sg), is the subgroup of
the mapping class group consisting of those elements that commute with
a fixed hyperelliptic involution ι and act trivially on the homology of the
surface Sg. The group SI(Sg) appears in a variety of contexts, e.g., as
a kernel of a Burau representation and as the fundamental group of the
branch locus of the period mapping on Torelli space. The main result of
this paper is that, for g ≥ 3, we have Aut(SI(Sg)) ∼= SMod±(Sg)/〈ι〉,
where SMod±(Sg) is the extended hyperelliptic mapping class group.
Our main tool is the symmetric separating curve complex, Cssep(Sg), and
we show that if g ≥ 3, Aut(Cssep(Sg)) ∼= SMod±(Sg)/〈ι〉. Another key
ingredient is an algebraic characterization of Dehn twists about symmet-
ric separating curves. These results are analogous to results of Ivanov,
Farb–Ivanov, and Brendle–Margalit for the mapping class group, the
Torelli group, and the Johnson kernel.
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1. Introduction

Let Sg,b,p be an oriented surface of genus g with b boundary components
and p punctures. We will often omit b and p when they are equal to 0. We
define the mapping class group of a surface Sg, Mod(Sg), to be

Mod(Sg) := Homeo+(Sg)/Homeo+
0 (Sg)

where Homeo+(Sg) is the group of orientation-preserving homeomorphisms
of Sg and Homeo+

0 (Sg) is the normal subgroup consisting of elements isotopic
to the identity.

For a surface with boundary, we restrict to homeomorphisms that fix
boundary components pointwise. For a surface with punctures (or marked
points), we restrict to homeomorphisms that leave the set of punctures in-
variant. Let Mod±(Sg) denote the extended mapping class group, the group
of isotopy classes of all homeomorphisms of Sg. See [1], [13], and [18] for
background information.

Mapping class groups act naturally on the first homology group of the sur-
face and preserve the intersection form, giving rise to a surjective map onto
Sp(2g,Z) called the symplectic representation. A subgroup of the mapping
class group of primary importance is the Torelli group, I(Sg), the kernel of
this representation (see Chapter 6 of [13]).

Let ι be a fixed hyperelliptic involution of Sg. That is, ι is a homeomor-
phism of order two that acts by −I on the homology of Sg, or equivalently
has 2g + 2 fixed points. The hyperelliptic involution is unique up to conju-
gacy. The hyperelliptic mapping class group, SMod(Sg), is the centralizer in
Mod(Sg) of ι, CMod(Sg)(ι). Define the hyperelliptic Torelli group, SI(Sg) as
follows:

SI(Sg) := SMod(Sg) ∩ I(Sg).

The hyperelliptic Torelli group is closely related to the kernel of the Burau
representation evaluated at t = −1 and also the fundamental group of the
branch locus of the period mapping. As such, SI(Sg) appears in many areas
of mathematics including algebraic geometry, number theory and topology:
see the introduction of [9] for more details. Other work, greatly motivated
by Hain’s problem list [14], includes [5], [6], [8], and [10]. In this paper we
will characterize Aut(SI(Sg)).

Main Theorem 1. For Sg a surface with genus g ≥ 3, we have:

Aut(SI(Sg)) ∼= Mod±(S0,0,2g+2) ∼= SMod±(Sg)/〈ι〉.

The second congruence is due to Birman–Hilden [2]. This work is inspired
by similar results for Mod(Sg), I(Sg), and K(Sg), the group generated by
Dehn twists about separating curves. In particular Ivanov [16], Farb–Ivanov
[12], and Brendle–Margalit [7], proved that for high enough genus

Aut(Mod(Sg)) ∼= Aut(I(Sg)) ∼= Aut(K(Sg)) ∼= Mod±(Sg).
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The key step in each of their arguments was to find an appropriate com-
plex for the group and consider the automorphism group of that complex.
Motivated by this, we define an abstract simplicial flag complex, the symmet-
ric separating curve complex Cssep(Sg), whose 1-skeleton is given by vertices
corresponding to isotopy classes of symmetric separating curves and edges
are between vertices with disjoint representatives. A simple closed curve is
symmetric, if it is fixed by ι.

Main Theorem 2. Let Cssep(Sg) be the symmetric separating curve complex
and g ≥ 3. Then

Aut(Cssep(Sg)) ∼= Mod±(S0,0,2g+2) ∼= SMod±(Sg)/〈ι〉.

As above the second congruence is due to Birman–Hilden [2]. Ivanov
proved the analogous result that Aut(Mod(Sg)) is isomorphic to the auto-
morphism group of the classical curve complex (Theorem 1, [19]). Similar
results were proven by Farb–Ivanov for I(Sg) and the so-called Torelli geom-
etry (Theorem 3.1, [12]) and Brendle–Margalit for K(Sg) and the separat-
ing curve complex (Theorem 1.5, [7]). Ivanov’s proof relies on an algebraic
characterization of nonseparating Dehn twists which are known to generate
Mod(Sg). Farb–Ivanov and Brendle–Margalit use an algebraic characteri-
zation of separating twists and BP-maps, known generators of I(Sg) (see
Birman and Powell [4], [22]). In Theorem 3.4 we provide an algebraic char-
acterization of Dehn twists about symmetric separating curves.

Outline of the argument.

Step 1. First let φ ∈ Aut(SI(Sg)). Our goal is to find f ∈ SMod±(Sg)
so that φ(h) = fhf−1 for all h ∈ SI(Sg). In Section 2 we prove basic
algebraic properties of SI(Sg) and basic facts of the symmetric separating
curve complex.

Step 2. We show in Section 3 that φ induces a map φ∗ ∈ Aut(Cssep(Sg))
because φ takes powers of Dehn twists about symmetric separating curves
to powers of Dehn twists about symmetric separating curves. This relies on
Theorem 3.4 which gives an algebraic characterization of Dehn twists about
symmetric separating curves and we show φ preserves this characterization.
We defer the somewhat technical proof of Theorem 3.4 until Section 7.

Step 3. In Section 4 we show that φ∗ ∈ Aut(Cssep(Sg)) detects topological
properties of curves on Sg.

Step 4. In Section 5 we extend φ∗ to a map on all symmetric curves, thus
showing φ∗ induces φ∗∗ ∈ Aut(Csym(Sg)), where Csym(Sg) is the symmet-
ric curve complex. Any nonseparating symmetric curve c maps to an arc,
c̄, connecting two marked points in S0,0,2g+2. Note that c̄ is uniquely de-
termined up to isotopy by any two genus one symmetric separating curves
which both contain the marked endpoints of c̄ in S0,0,2g+2. Since we know
where φ∗ maps symmetric separating curves, this determines φ∗∗(c) up to
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isotopy. Furthermore this extension preserves disjointness between symmet-
ric curves, making φ∗∗ a simplicial map.

Step 5. In Section 6 we extend φ∗∗ ∈ Aut(Csym(Sg)) to “presymmetric
curves,” which correspond to a boundary component of a regular neigh-
borhood of a chain of symmetric curves in S0,0,2g+2. Hence φ∗∗ induces

φ̂ ∈ Aut(C(S0,0,2g+2)). Disjointness properties are preserved in S0,0,2g+2, so

we have now shown φ̂ ∈ Aut(C(S0,0,2g+2)).

Step 6. Using results of Korkmaz [21] and Birman–Hilden [2] we show

φ̂ ∈ Aut(C(S0,0,2g+2)) induces a map in SMod±(Sg)/〈ι〉. To recap, we started
with φ ∈ Aut(SI(Sg)) and extended the map as follows:

(1) φ 7→ φ∗ 7→ φ∗∗ 7→ φ̂.

Step 7. To show this map is an isomorphism note that every element
in SMod±(Sg) restricts to an element of Aut(SI(Sg)) as follows. If f ∈
SMod±(Sg), then f 7→ φ, where φ(h) = fhf−1 for h ∈ SI(Sg) and it is
clear ι is in the kernel of this map. Surjectivity follows directly from the
Alexander method because symmetric separating curves fill a surface, see
Chapter 2 of [13]. This completes the proof of Main Theorems 1 and 2.

Our argument can be simplified in Step 5 if we apply the main result of
[9] which states that SI(Sg) is generated by Dehn twists about symmetric
separating curves. This immediately implies (1) is surjective.

2. Background

In this section we prove basic algebraic properties of SI(Sg) and basic
facts about the symmetric separating curve complex.

2.1. Curves. We refer to a simple closed curve as a curve unless stated
otherwise and we will often not distinguish between a curve and its isotopy
class unless necessary.

Classification of curves. Recall a curve is symmetric if it is fixed by the
hyperelliptic involution ι. We say an isotopy class of curves is symmetric if
it has a symmetric representative. A curve c is presymmetric if c and ι(c)
are disjoint. Similarly, an isotopy class of curves is presymmetric if it has
a presymmetric representative. Birman–Hilden show the following relating
the symmetric mapping class group to the mapping class group of a 2g + 2
punctured sphere.

Theorem 2.1 (Birman–Hilden, Theorem 1, [2]). Let Sg be a surface of
genus g, then SMod(Sg)/〈ι〉 ∼= Mod(S0,0,2g+2).

Birman–Hilden use the 2-fold branched cover of Sg with 2g + 2 cone
(or marked) points to classify curves in Sg by looking at their projection in
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S0,0,2g+2. We call a curve odd (or even) if its projection in S0,0,2g+2 partitions
the marked points into an odd (or even) collection of points. Birman–Hilden
created the following dictionary relating curves in Sg to their projection in
S0,0,2g+2. We will denote the projection of a curve, c, in S0,0,2g+2 by c̄.

Curve in Sg Curve/arc in S0,0,2g+2

Symmetric nonseparating curve Arc between marked points
Symmetric separating curve Odd curve
Pre-symmetric (nonseparating) curve Even curve

(a) Symmetric nonsepa-
rating curve

(b) Symmetric separat-
ing curve

(c) Pre-symmetric (non-
separating) curve

Rank. The rank of a group G, rkG, is the rank of a largest maximal free
abelian subgroup contained in G. We will find the rank of SI(S). This will
be a key fact used later to classify twists about symmetric separating curves
as well as in Section 4. In order to find the rank of SI(S) we will use the
following theorem about the generation of SI(S). This is the only place
that depends on the generators of SI(S).

Theorem 2.2 (Brendle–Margalit–Putman, Theorem A, [9]). For g ≥ 0,
the group SI(Sg) is generated by Dehn twists about symmetric separating
curves.

Proposition 2.3. For any surface S with genus g ≥ 3 and b boundary
components (where b = 0 or 1), then rkSI(Sg,b) = g − 1 + b.

Proof. When b = 0 (or b = 1), it suffices to show that the maximal number
of disjoint symmetric separating curves in Sg is g− 1 (or g). Suppose g = 3
and b = 0. It is clear a maximal collection of symmetric separating curves
contains at least 2 curves as shown in S0,0,8 here:

Figure 1. The projection of disjoint symmetric separating
curves is S0,0,2g+2 when g = 3 and b = 0.
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It is also clear that there cannot be a distinct third such curve else the
curves would no longer be disjoint. Furthermore if g = 3 and b = 1, a max-
imal collection of symmetric separating curves contains 3 curves as shown
below in S0,0,8.

Figure 2. The projection of disjoint symmetric separating
curves is S0,0,2g+2 when g = 3 and b = 1.

Assume the proposition is true for g ≤ n (when b = 0 or 1). Suppose
g = n + 1 and b = 0. Consider a maximal collection of disjoint symmetric
separating curves and their projections in S0,0,2n+4. We know this collection
contains at least n curves because Figure 3 is a collection of n such curves
projected in S0,0,2n+4.

Figure 3. The projection of disjoint symmetric separating
curves is S0,0,2g+2 when g = n+ 1 and b = 0.

What remains to be shown is that this collection contains no more than
n curves. Let c be a curve in this collection whose projection in S0,0,2n+4

partitions the marked points into two regions of say x and y marked points
so that |x − y| is maximal. Without loss of generality, assume x > y and
x = 2k + 1 for some k.

By the inductive hypothesis, the side of c̄ that has x marked points has
at most the projection of k curves (including c). The remaining number of
marked points (those on the side of c̄ with y marked points) is 2(n− k) + 3,
and those contain the projection of at most n−k curves. Thus the collection
has at most n symmetric separating curves.

If g = n + 1 and b = 1 then again let c be a curve in the collection
whose projection in S0,0,2n+4 partitions the marked points into two regions
of say x and y marked points so that |x − y| is maximal. Without loss of
generality, we assume x > y and x = 2k + 1 for some k. If k < n + 1 the
argument above shows the result. If k = n+ 1, then let d be a curve whose
projection is on the x side of c̄ so that d̄ partitions the x marked points into
two regions of say w and z marked points and |w− z| is maximal. Without
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loss of generality we can assume w > z and w = 2l+1 for some l < k. So by
the inductive hypothesis there are at most l curves on the w side of d̄ and
at most n − l − 1 curves on the x side of c̄ and the z side of d̄. Note there
are no curves on the y side of c̄. Hence there are a total of at most n + 1
curves as desired. �

2.2. Curve complexes. When studying Mod(Sg) and its subgroups it is
natural to try to find a simplicial complex on which the group acts nicely.
For Mod(Sg), Harvey introduced the curve complex C(Sg) in [15]. It is the
simplicial flag complex with vertices corresponding to simple closed curves
on Sg and edges between vertices which can be realized as disjoint curves in
Sg.

Symmetric separating curve complex. For SI(Sg), the natural sub-
complex of C(Sg) to consider is the one spanned by symmetric separating
curves, called the symmetric separating curve complex, Cssep(Sg). In order
to prove that Cssep(Sg) is connected we will use the following lemma by
Putman that will also be used in Section 5.

Lemma 2.4 (Putman, Lemma 2.1, [23]). Consider a group G acting upon

a simplicial complex X. Fix a basepoint v ∈ X(0), and a set S of generators
for G. If:

(1) For all v′ ∈ X(0), the orbit G · v intersects the connected component
of X containing v′,

(2) for all s ∈ S±1, there is some path Ps in X from v to s · v,

then X is connected.

We now apply the previous lemma to the complex of symmetric separating
curves.

Lemma 2.5. If g ≥ 3, then Cssep(Sg) is connected.

Proof. Given a symmetric separating curve, c, on Sg, we know its image c̄
in S0,0,2g+2 is an odd curve, so c̄ will partition the marked points in S0,0,2g+2

into two regions, one of which will have more than three marked points. Thus
we can find a genus 1 symmetric separating curve disjoint from c. Now it
suffices to show that the subcomplex of all genus one symmetric separating
curves is connected. Let the genus one symmetric separating curve v shown
in Figure 4 act as the base point for the genus one subcomplex of Cssep(Sg).

Figure 4. The curves needed for the proof of Lemma 2.5.



678 LEAH R. CHILDERS

The group SMod(Sg) acts transitively on the set of genus one symmetric
separating curves, so Condition (1) of Lemma 2.4 is satisfied. Birman–
Hilden showed that the group SMod(Sg) is generated by Dehn twists about
the 2g + 1 curves b1, b2, · · · , b2g+1 shown in Figure 5 (Theorem 3, [2]).

Figure 5. Dehn twists about the curves b1, b2, · · · , b2g+1

generate SMod(Sg).

Call this set of generators S. To show Condition (2) is satisfied we will
use the curve v′ shown in Figure 4. Consider s ∈ S±. If s = T±b3 , then

v − v′ − s · v is the desired path. Otherwise, we have s ∈ S± but s 6= T±b3 ,

so s · v = v. Thus by Lemma 2.4 the genus one subcomplex of Cssep(Sg) is
connected. �

Note that if X is a flag complex, then Aut(X) = Aut(X(1)), where X(1)

is the 1-skeleton of X. Hence we only need to focus on vertices and edges
when looking at automorphisms of C(Sg) and Cssep(Sg). In order to prove
Main Theorem 2 we will use the result of Birman–Hilden in Theorem 2.1
and the following result of Korkmaz.

Theorem 2.6 (Korkmaz, Theorem 1, [21]). Let C(S0,0,2g+2) be the curve
complex associated to S0,0,2g+2 with g > 1. Then

Aut(C(S0,0,2g+2)) ∼= Mod±(S0,0,2g+2).

For the remainder of this paper let φ ∈ Aut(SI(Sg)). In Section 3 we
show that φ induces an element φ∗ ∈ Aut(Cssep(Sg)). We will proceed to
show that φ∗ induces an element of SMod±(Sg)/〈ι〉 by extending φ∗ to a
simplicial map on all symmetric and presymmetric curves.

3. Characterizing symmetric separating curves

The goal of this section is to give an algebraic characterization in terms of
centers and centralizers that classifies when a mapping class is a Dehn twist
about a symmetric separating curve. We will show that this characterization
is preserved by automorphisms of SI(Sg). First we will need a few definitions
and lemmas about the structure of elements in I(Sg) and in SI(Sg).

3.1. Classification of mapping class groups. Mapping classes are often
classified according to whether or not they fix any curves in the surface as
follows. A curve, c, is called a reducing curve for a mapping class f , if
fn(c) = c for some n.
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Nielson–Thurston trichotomy. We are able to classify any mapping
class, f , into one of the following categories: f is either a finite order el-
ement that is, there exists an n such that fn = id, reducible if it has a
reducing curve, or pseudo-Anosov if it is not finite order or reducible. As
stated, there is nontrivial overlap between the finite order and reducible ele-
ments. In order to make this a true trichotomy, we can replace the condition
of having a reducing curve with that of having an essential reducing curve,
where we call a reducing curve c essential for a mapping class h if for each
simple close curve b on the surface such that i(c, b) 6= 0, and for each integer
m 6= 0, the classes hm(b) and b are distinct.

Theorem 3.1 (Birman–Lubotzky–McCarthy, [3]). For every mapping class
h there exists a system of essential reducing curves. Moreover, the system
is unique up to isotopy, and cutting along it, the restriction of h to each
component of the cut-open surface is either pseudo-Anosov or finite order.

A fixed curve of a finite order mapping class is never essential. The
canonical reduction system for a mapping class, f , is the collection of all
essential reducing curves for f . We call a mapping class f pure if f contains
a homeomorphism f ′ which satisfies the following conditions on some closed
one-dimensional submanifold C of S: the components of C are nontrivial
and are pairwise disjoint, the homeomorphism f ′ is fixed on C and does not
rearrange the components of S−C, and f ′ induces the identity or a pseudo-
Anosov homeomorphism on each component of S−C. It is well known that
all elements of I(Sg) are pure (Ivanov, Theorem 3, [17]).

A curve system C is a one-dimensional submanifold of S, where no com-
ponent of C is homotopically trivial or boundary parallel. A curve system,
C, determines a surface S−C which is obtained from S by cutting along C.
Observe that each component of C determines two boundary components
of the surface S − C. Any homeomorphism f : S −→ S with f(C) = C
induces a homeomorphism fC : S − C −→ S − C. If Q is a component of
S − C and fC(Q) = Q then fC induces a homeomorphism fQ : Q −→ Q.

For a group Γ and f ∈ Γ, let CΓ(f) be the subgroup of elements g ∈ Γ
commuting with f , and let Z(Γ) be the center of Γ. We will need the
following result of Ivanov–McCarthy in order to complete the proof of our
characterization.

Lemma 3.2 (Ivanov–McCarthy, Lemma 5.6, [20]). Let Γ be any subgroup
of finite index in Mod(S) consisting entirely of pure elements. Let f, h ∈ Γ
and let Cf denoted a representative on S of a canonical reduction system for
f . Then h ∈ CΓ(f) if and only if hQ commutes with fQ for every component
Q of S − Cf .

Note that hQ makes sense in this context because the canonical reduction
system for h, Ch, equals Cf because h(Cf ) = Chfh−1 (see Lemma 2.6 of [3]).



680 LEAH R. CHILDERS

Characterizing Dehn twists about symmetric separating curves.
Ivanov in Section 2 of [16] characterized Dehn twists about nonseparating
curves based on purely algebraic properties. In a similar fashion, Farb–
Ivanov characterized powers of a Dehn twist about a separating curve or
a BP-map. Where given two disjoint, nonseparating, homologous simple
closed curves c and d, a bounding pair map (BP-map) is the product TcT

−1
d .

Proposition 3.3 (Farb–Ivanov, Proposition 8, [12]). Let Sg be a closed,
oriented surface of genus g ≥ 3 and f ∈ I(Sg) is nontrivial. Then f is a
power of a Dehn twist about a separating curve or a power of a BP-map if
and only if:

(1) Z(CI(f)) ∼= Z.
(2) CI(f) � Z.
(3) maxI(f) ∼= 2g − 3.

Where maxI(f) is the rank of a maximal abelian subgroup of I that has
f as a generator. Modifying the arguments of Farb–Ivanov [11], we charac-
terize Dehn twists about symmetric separating curves denoted Tα using the
additional characterization called a parity changing pseudo-Anosov, PCPA.
We define PCPA as follows:

Let f ∈ SI(Sg), then f is a PCPA if and only if:

• f is pseudo-Anosov on at most one component of S − Cf .

• There exists a nontrivial element g ∈ SI(Sg), g 6= fk, such that
given any maximal abelian subgroup of SI(Sg) 〈f, x1, x2, . . . , xg−2〉,
where Z(CSI(xi)) = Z for each i, the group 〈fg, x1, x2, . . . , xg−2〉 is
also a maximal abelian subgroup of SI(Sg).

Theorem 3.4. Let S be a closed, oriented surface of genus g ≥ 3. For
nontrivial f ∈ SI(Sg), then f is a power of a Dehn twist about a symmetric
separating curve if and only if:

(1) Z(CSI(f)) ∼= Z.
(2) f is not a PCPA.
(3) CSI(f) � Z.
(4) maxSI(f) ∼= g − 1.

A straightforward consequence of Theorem 3.4 is the following key corol-
lary.

Corollary 3.5. Let φ ∈ Aut(SI(Sg)) and f = T kγ where γ is a symmetric

separating curve and k 6= 0. Then φ(f) = T lα for some symmetric symmetric
separating curve α and nonzero l.

The proofs of Theorem 3.4 and Corollary 3.5 can be found in Section 7.
It is perhaps surprising that Condition (2) in Theorem 3.4 is necessary.
We will show the necessity of this condition by the following example. Let
f = TaT

−1
b , where a and b are as shown.
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Figure 6. Curves a, b, c, d and e.

Condition (1): Z(CSI(f)) ∼= Z. We know f ∈ Z(CSI(f)). We claim
only powers of f are in Z(CSI(f)). First note that the canonical reduction
system for f , Cf , is the following collection of curves:

Cf = {c, d, e}.
Because f is a pure mapping class, we know the restriction of f to any
component of S−Cf is either the identity or a pseudo-Anosov element. We
will let Q1 be the component of S − Cf that contains the curves a and b
and Q2 be the other component. Let h ∈ Z(CSI(f)), so h ∈ CSI(f). Hence
by Lemma 3.2 hQ commutes with fQ for every component Q of S − Cf .
Because no two independent pseudo-Anosov elements commute and h is
a pure mapping class, we know hQ1 is either the identity or a power of f .
Moreover hQ2 must be the identity, otherwise hQ2 would be a pseudo-Anosov
element and we know there exist other mapping classes in CSI(f) which are
independent pseudo-Anosov elements when restricted to Q2. Hence the only
type of mapping class h can be, besides a power of f , is a multitwist about
curves in Cf , but no such multitwist is in SI(Sg).

Condition (2): f is a PCPA. Let g = Tb, then g satisfies the conditions
needed to be PCPA.

Condition (3): CSI(f) � Z. This follows because there exists a symmetric
separating curve disjoint from a and b.

Condition (4): maxSI(f) ∼= g − 1. Such a group is generated by f and
Dehn twists about the curves pictured in Figure 7.

Figure 7. A collection of disjoint symmetric separating
curves that with f form a basis for a maximal rank abelian
subgroup of SI(Sg).

4. Basic topology

In this section we will see in what ways φ∗ ∈ Aut(Cssep(Sg)) is able to
detect the topological properties of curves on Sg. This section has the same



682 LEAH R. CHILDERS

results as those shown by Brendle–Margalit in [7] with the added condition
that all curves are symmetric. We show their proofs can be realized sym-
metrically except for that of the genus result which differs quite significantly.
The following are two facts which will be necessary to show the key lemmas.

Fact 4.1 (See Chapter 3 of [13]). Let f and h be Dehn twists about separating
curves. Then the commutator [f j , hk] = 1 if and only if the intersection
number between the corresponding curves is zero.

Fact 4.2. For any surface Sg with genus g ≥ 3 and no boundary, a maximal

collection of disjoint symmetric genus 1 separating curves contains b2g+2
3 c

curves.

The following lemma is a direct consequence of Fact 4.1 and the fact that
the simplicial map φ∗ is injective.

Lemma 4.3 (Disjointness). If a and b are symmetric separating curves in
S, then i(a, b) 6= 0 if and only if i(φ∗(a), φ∗(b)) 6= 0.

We define a side of a separating curve, z, to be one of the components of
S − z.

Lemma 4.4 (Sides). If a and b are symmetric separating curves on the same
side of a symmetric separating curve, z, then φ∗(a) and φ∗(b) are symmetric
separating curves on the same side of φ∗(z).

Proof. Symmetric separating curves a and b are on the same side of z if
and only if there exists a symmetric separating curve c such that i(a, c) 6= 0,
i(b, c) 6= 0, and i(z, c) = 0. Thus by Lemma 4.3 we can conclude that φ∗(a)
and φ∗(b) are symmetric separating curves on the same side of φ∗(z). �

Proposition 4.5 (Genus). Suppose Sg is a surface with genus g ≥ 3 and
no boundary. If z is a genus m symmetric separating curve, then φ∗(z) is a
genus m symmetric separating curve. Moreover, if a is on a genus m side
of z, then φ∗(a) is on a genus m side of φ∗(z).

Proof. Suppose z is a genus m symmetric separating curve, then by Propo-
sition 2.3 any maximal collection of disjoint symmetric separating curves in
S which contain z is of the form:

{a1, . . . , am−1, z, b1, . . . , b(g−m)−1}
where the a′is are disjoint symmetric separating curves on one side of z and
the b′is are disjoint symmetric separating curves on the other. By disjoint-
ness, Proposition 2.3, and the fact that φ∗ ∈ Aut(Cssep(Sg)) we have that
the set

{φ∗(a1), . . . , φ∗(am−1), φ∗(z), φ∗(b1), . . . , φ∗(b(g−m)−1)}
is a maximal collections of mutually disjoint symmetric separating curves on
S. By Lemma 4.4 and Proposition 2.3, either φ∗(z) is a genus 1 symmetric
separating curve and φ∗(ai) and φ∗(bi) are on the same side of φ∗(z), or
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φ∗(z) is a genus m curve with φ∗(ai) on one side of φ∗(z) and φ∗(bi) on the
other.

When m = 1 both cases are the same. Hence φ∗ maps genus 1 symmetric
separating curves to genus 1 symmetric separating curves. Now we will show
if m ≥ 2, then φ∗(z) cannot be a genus 1 curve, which will prove that φ∗(z)
is a genus m symmetric separating curve as desired.

Here is where this proof differs extensively from [7] because in a maximal
collection of disjoint symmetric separating curves there is not a fixed number
of genus 1 curves. For example here are two maximal collections (viewed in
S0,0,2g+2 with a different number of genus 1 curves).

Figure 8. A maximal collection of disjoint symmetric sep-
arating curves with four genus 1 curves.

Figure 9. A maximal collection of disjoint symmetric sep-
arating curves with two genus 1 curves.

Choose a maximal collection of disjoint genus 1 symmetric separating
curves on each side of z. Note that there will be b2m+1

3 c such curves on the

“inside” of z and b2(g−m)+1
3 c on the “outside” of z.

If b2m+1
3 c+ b2(g−m)+1

3 c = b2g+2
3 c then by Fact 4.2 the union of the max-

imal collections of genus 1 symmetric separating curves on each side of z
is actually a maximal disjoint collection of genus 1 symmetric separating
curves for S, which maps to a maximal collection of disjoint genus 1 curves.
Hence φ∗(z) cannot be a genus 1 curve.

If b2m+1
3 c + b2(g−m)+1

3 c 6= b2g+2
3 c then we will choose a second maximal

collection of disjoint symmetric genus 1 separating curves and sometimes
one additional genus 1 curve on each side of z which will force φ∗(z) to be
a genus m curve.

Since m ≥ 2 there are at least 5 marked points contained on both sides of
z̄. Without loss of generality suppose the inside of z̄ has at least 5 marked
points; that is, 2m+1 ≥ 5. First we will consider the case where 2m+1 > 5.

If 2m + 1 ≡ 2 mod 3, then let {c1, . . . , ck} for some k ∈ Z+, be one
collection of maximal genus 1 curves on the inside of z. Then choose a
second disjoint maximal collection of symmetric genus 1 curves {d1, . . . , dk}
so that i(cj , di) = 0 if and only if j 6= 1 and j = i + 1, and one additional
genus 1 symmetric separating curve e can be chosen so that:
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• i(e, cj) = 0 if and only if j 6= 1.
• i(e, di) = 0 if and only if i 6= k.
• i(e, z) = 0.

Now we will consider the image of these curves under φ∗. That is,

{φ∗(ci), φ∗(dj), φ∗(e), φ∗(z) | 1 ≤ i, j ≤ k}.

First note that no φ∗(ci) and φ∗(dj) can contain the same three marked

points, otherwise φ∗(ci) ∪ φ∗(dj) would separate S0,0,2g+2 which would not
allow for disjointness among the curves to be preserved by φ∗. The collection
{φ∗(ci), φ∗(dj), φ∗(e) | 1 ≤ i, j ≤ k} must “contain” the same number of
marked points as {ci, dj , e | 1 ≤ i, j ≤ k} because reducing the number
of marked points would force two of the curves to contain the same three
marked points.

Note if 2m + 1 ≡ 1 mod 3 then the above argument works except there
is no need for the curve e. The case 2m + 1 ≡ 0 mod 3 was shown when
b2m+1

3 c+ b2(g−m)+1
3 c = b2g+2

3 c.
Similarly, if the outside of z̄ contains more than 5 marked points, that

is 2(g −m) + 1 > 5, then the same argument holds showing the image of
the two maximal disjoint collection of genus 1 curves must contain the same
number of marked points. This means the genus of z must be m else φ∗(z)

would be a genus 1 symmetric separating curve, forcing φ∗(z) to contain 3
additional marked points. Because φ∗ preserves disjointness, this does not
leave enough room for the maximal collections on each of side of z.

Now if one side of z̄ contains exactly 5 marked points, that is 2m+ 1 = 5,
then the above argument gives the desired result by choosing one genus 1
symmetric separating curve on the side of z̄ with 5 marked points, call this
curve f . If φ∗(z) is a genus 1 curve, then by disjointness φ∗(z) and φ∗(f)
must contain 6 marked points. We use the previous methods to obtain a
maximal collection of curves on the other side of z̄ whose images contain at
least the same number of marked points, but this cannot happen; we would
need additional marked points. �

5. Symmetric curves

We show in this section how to extend φ∗ ∈ Aut(Cssep(Sg)) to a map on
all symmetric curves thus showing φ∗ induces φ∗∗ ∈ Aut(Csym(S0,0,2g+2)).
In order to do this, we use the idea of “sharing pairs,” previously defined by
Brendle–Margalit in [7], with the added condition that all curves are sym-
metric. Many of the proofs in [7] hold with the added symmetric condition,
we will use a more recent result of Putman [23] to prove well-definedness.

Sharing pairs. A nonseparating symmetric curve β is uniquely determined
by a pair of distinct genus 1 symmetric separating curves, which bound
subsurfaces that intersect in an annulus, with the condition that β lies on
both of the corresponding genus 1 subsurfaces.



AUTOMORPHISM GROUP OF THE HYPERELLIPTIC TORELLI GROUP 685

Let a and b be genus 1 symmetric separating curves bounding genus 1
subsurfaces Sa and Sb of S respectively. We say a and b share a symmetric
nonseparating curve β if Sa ∩ Sb is an annulus containing β as its core and
S − (Sa ∩ Sb) is connected. We say that a and b form a sharing pair for β.
See Figure 10 for an example of a sharing pair.

Figure 10. A sharing pair in the surface S.

For much of this paper it will be useful to consider the projection of
sharing pairs in S0,0,2g+2. Figure 11 shows the projection of Figure 10.

Figure 11. The projection of a sharing pair in S0,0,2g+2.

Hence we see a sharing pair viewed in S0,0,2g+2 is simply two 3-curves
which “share” two marked points, or equivalently an arc.

The map φ∗∗ is defined on symmetric nonseparating curves as follows.
If P(β) = {a, b} is a sharing pair for a symmetric nonseparating curve β,
then φ∗∗(β) is the curve shared by φ∗(P(β)), that is, the curve shared by
{φ∗(a), φ∗(b)}. In order to show that this extension of φ∗ is well-defined on
symmetric nonseparating curves, we need to show that φ∗(P(β)) is a sharing
pair and that φ∗∗(β) is independent of the choice of P(β).

There is a useful characterization of sharing pairs introduced by Brendle–
Margalit that we will show can also be realized symmetrically.

Lemma 5.1 (Brendle–Margalit, Lemma 4.1, [7]). Let a and b be genus 1
separating curves in S. Then a and b are a sharing pair if and only if there
exist separating curves w, x, y, and z in S with the following properties:

• z is a genus 2 curve bounding a genus 2 subsurface Sz.
• a and b are in Sz so that i(a, b) 6= 0.
• x and y are disjoint.
• w intersects z, but not a and not b.
• x intersects a and z, but not b.
• y intersects b and z, but not a.

We show this configuration of curves can be realized symmetrically in
Figure 12.

The following lemma is a special case of Proposition 4.2 in [7]. The proof
is included here for completeness.
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Figure 12. The projection of symmetric curves character-
izing a sharing pair in S0,0,2g+2.

Lemma 5.2. If two genus one symmetric curves a and b in S form a sharing
pair, then so do φ∗(a) and φ∗(b).

Proof. Since a and b share a curve, there are characterizing curves w, x, y,
and z as in Lemma 5.1. Each property of this collection of curves (disjoint-
ness, sides, genus) is preserved by φ∗, by Lemmas 4.3, 4.4, and 4.5, thus
Lemma 5.1 implies φ∗(a) and φ∗(b) share a curve. �

We now have a function from Aut(Cssep(Sg)) to the set of functions on
symmetric curves. In order to show that this function is well-defined with
respect to the choice of sharing pairs, we will use Lemma 2.4.

Let α be a symmetric nonseparating curve in Sg. Collapse the arc ᾱ in
S0,0,2g+2 to a point p. Let Σα denote the resulting surface S0,0,2g+1. Sharing
pairs of α descend bijectively to arcs between marked points (or 2-curves)
intersecting only at p in Σα. Let Xα be a sharing pair graph where the
vertices are pairs of arcs (a, b) in Σα that lift in Sg to a sharing pair of α.
Two vertices (a.b) and (c, d) share an edge if precisely two of the four arcs
a, b, c, and d are equal, and the three distinct arcs pairwise intersect at p.
So the lifts of any two of the three arcs share α in Sg. In order to show φ∗∗

is well defined we only need to show that Xα is connected.

Lemma 5.3. The graph Xα is connected.

Proof. To apply Lemma 2.4 let X = Xα, let G be the subgroup of Mod(Σα)
fixing p, and fix a base point v = (a, b). The group G acts transitively on the
set of all sharing pairs of p, so the first condition holds. Let c1, c2, . . . , c2g+1

be the curves shown in Figure 13.
Denote by H the set consisting of half-twists

H1, H2, . . . ,Hn about c1, c2, . . . , c2g+1

together with the Dehn twists Ta and Tb. By symmetry and disjointness,
it suffices to show that there is a path in Xα between (a, b) and its images
under H±1 and T±a . The half-twists H±1 sends (a, b) to the adjacent vertices
(b,H±1 (a)) since a, b,H±1 share an edge. For the Dehn twist Ta there is a
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Figure 13. The curves needed for the proof of Lemma 5.3.

path (a, Ta(b)) to (a,H2(b)) to (a, b), and for T−1
a there is a path (a, T−1

a (b))
to (a,H1(a)) to (a, b). Thus by Lemma 2.4 the graph Xα is connected. �

Now that we have extended φ ∈ Aut(SI(Sg)) to a function on all sym-
metric curves, we observe that φ∗∗ preserves disjointness between symmetric
curves making φ∗∗ ∈ Aut(Csym(Sg)).

Lemma 5.4. Suppose a and b are symmetric curves in S. Then

i(φ∗∗(a), φ∗∗(b)) = 0 if and only if i(a, b) = 0.

Proof. This proof is, in essence, a restriction of the result by Brendle–
Margalit in [7] (Section 4.3). Their argument fails for the superinjective
case they were trying to prove, but holds for automorphisms and is outlined
here. The argument breaks down into three cases:

(1) If a and b are both separating the result is Lemma 4.3.
(2) If a and b are both nonseparating, then the result follows from that

fact that a and b are disjoint if and only if there are disjoint sharing
pairs representing a and b.

(3) If a is separating, and b is nonseparating, then a and b are disjoint if
and only if either a is a part of a sharing pair for b or b has a sharing
pair whose curves are disjoint from a. �

An immediate consequence of Lemma 5.4 is that φ∗∗ is a simplicial map
on all symmetric curves.

6. Presymmetric curves

The goal of this section is to extend φ∗∗ ∈ Aut(Csep(Sg)) to a function
including presymmetric curves. We will use the following result of Ivanov to
show that φ∗∗ preserves certain topological properties of symmetric curves.

Lemma 6.1 (Ivanov, Lemma 8.2A, [18]). Suppose that the genus of S is
at least 2. Let α1 and α2 be isotopy classes of two nontrivial curves on S.
Then the geometric intersection number i(α1, α2) = 1 if and only if there
exist isotopy classes α3, α4, and α5 of nontrivial curves having the following
two properties:

(1) i(αi, αj) = 0 if and only if the i-th and j-th curves in Figure 14 are
disjoint.
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(2) If α4 is the isotopy class of a curve C4, then C4 divides S into
two parts, one of which is a torus with one hole containing some
representatives of the isotopy classes α1 and α2.

Figure 14. Curves characterizing geometric intersection 1.

Lemma 6.2. Suppose a and b are symmetric curves in S, then

i(φ∗∗(a), φ∗∗(b)) = 1 if and only if i(a, b) = 1.

Proof. This follows from Lemma 6.1 since this characterization can be re-
alized symmetrically (see Figure 15) and only depends on preserving dis-
jointness and genus 1 symmetric separating curves. �

Figure 15. A collection of curves characterizing intersection one.

We will extend φ∗∗ to presymmetric curves via a “symmetric spine.”

Symmetric spines. Let a be a presymmetric curve in S, so that ā is an
even curve with 2k marked points on one side of ā in S0,0,2g+2. A symmet-
ric spine is a collection of symmetric curves {c1, . . . , c2k−1} on Sg, so that
i(ci, cj) = 1 if j = i + 1 and 0 otherwise. Because {ci} is a collection of an
odd number of curves, the boundary of a regular neighborhood of ∪ci will
have two components. We say {ci} is a symmetric spine for a, if a is one of
the boundary components of a regular neighborhood of ∪ci.

Lemma 6.3. If {ci} is a symmetric spine, then {φ∗∗(ci)} is a symmetric
spine.

Proof. Follows directly from Lemma 5.4 and Lemma 6.2. �
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In order to extend φ∗∗ to a presymmetric curve a, we will choose a sym-
metric spine for a, and then we will set φ̂(a) equal to the boundary compo-

nent of a regular neighborhood of ∪φ∗∗(ci) in S0,0,2g+2.
Next we will need to show this extension of φ∗∗ does not depend on the

choice of symmetric spine of a. Let {ci} and {di} be two symmetric spines
for a presymmetric curve a in S. By Lemma 6.3 we know {φ∗∗(ci)} and
{φ∗∗(di)} are also symmetric spines. It suffices to show regular neighbor-

hoods of ∪φ∗∗(ci) and ∪φ∗∗(di) in S0,0,2g+2 are isotopic.
First consider {c̄i} and {d̄i} in S0,0,2g+2. Clearly the boundary of a regular

neighborhood of both ∪c̄i and ∪d̄i is ā. The proof reduces to two cases.

Case 1. Suppose ∪c̄i and ∪d̄i share the same marked points in S0,0,2g+2.

Lemma 6.4. There exist symmetric curves e and f so that ē ∪ f̄ separate
S0,0,2g+2 into two subsurfaces where ∪c̄i and ∪d̄i are contained in the same
subsurface, S′, of S0,0,2g+2, and S′ only contains marked points that intersect
∪c̄i.

Figure 16. And example of the construction used in Lemma 6.4.

Proof. Choose two marked points not used by ∪c̄i or ∪d̄i. Then connect the
marked points by two arcs, ē and f̄ , so that the subsurface S′ is as desired.
This construction can be done because {ci} and {di} are symmetric spines
for a, see Figure 16 for an example of this construction. �

Clearly φ̂(e) and φ̂(f) are defined because they are symmetric curves.

Moreover, φ̂(e) and φ̂(f) intersect at least twice, specifically at their end-
points because of Lemma 5.4 and 6.2.

By Lemma 5.4 it is clear that φ̂(e) and φ̂(f) separate S0,0,2g+2. In addi-

tion, ∪φ̂(ci) and ∪φ̂(di) are in the same subsurface of S0,0,2g+2−(φ̂(e)∪φ̂(f));
we will denote this subsurface of S0,0,2g+2 as S′′.

Lemma 6.5. The subsurface S′′contains only marked points used in {φ̂(ci)}.

Proof. Suppose S′′ contains a marked point, x, that is not used in {φ̂(ci)}.
Pick any marked point used in {φ̂(ci)}, we will call is y. Then there exists an

arc, k, from x to y contained in S′′, this means i(k, φ̂(e)) = i(k, φ̂(f)) = 0.
By Lemma 5.4, we can conclude i(k, ē) = i(k, f̄) = 0. But this cannot
happen by the choice of e and f . �
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Now we are ready to show that the boundary of regular neighborhoods

of ∪φ̂(ci) and ∪φ̂(di) are isotopic, thus showing the extension of φ∗∗ to all

presymmetric curves φ̂ is well-defined.

Proposition 6.6. Let {ci} and {di} be two symmetric spines for a presym-

metric curve a in S, then regular neighborhoods of ∪φ̂(ci) and ∪φ̂(di) have
an isotopic boundary component.

Proof. If we consider the subsurface obtained by cutting S0,0,2g+2 along

∪φ̂(ci), φ̂(e), and φ̂(f), we will have an annulus. Up to homotopy there is

only one curve on the annulus and it is isotopic to the boundary of ∪φ̂(ci).
Similarly if we consider the subsurface obtained by cutting S0,0,2g+2 along

∪φ̂(di), φ̂(e), and φ̂(f), we will have an another annulus, containing one

curve homotopic to the boundary of ∪φ̂(di). But because both of these
annuli also share one boundary component, namely the one obtaining from

φ̂(e) and φ̂(f), these two curves are isotopic. �

Case 2. Suppose ∪c̄i and ∪d̄i are disjoint, implying they do not share any
of the same marked points in S0,0,2g+2.

In this situation, ∪c̄i and ∪d̄i use all 2g+2 marked points. By Lemma 5.4

{φ̂(ci)} and {φ̂(di)} are disjoint, hence ∪φ̂(ci) and ∪φ̂(di) are disjoint. Thus,

if we cut S0,0,2g+2 along ∪φ̂(ci) and ∪φ̂(di) we will get an annulus, hence

the boundary components of regular neighborhoods of ∪φ̂(ci) and ∪φ̂(di)
are isotopic.

Lemma 6.7. Let a and b be presymmetric curves in S. Then the intersec-

tion number i(φ̂(a), φ̂(b)) = 0 if and only if i(ā, b̄) = 0.

Proof. The projections of the presymmetric curves a and b, ā and b̄, are dis-
joint if and only if they have disjoint symmetric spines. Hence by Lemma 5.4,
the result is shown. �

Thus φ∗∗ induces a map φ̂ ∈ Aut(C(S0,0,2g+2)). Hence we have shown
our main theorems.

7. Proof of Theorem 3.4

This section is dedicated to the proof of Theorem 3.4. We will begin with
several lemmas needed to prove this main result.

Lemma 7.1. Let a and c be two disjoint symmetric separating curves. Then
there exists a maximal abelian subgroup of SI(Sg) containing both Ta and
Tc as generators.

Proof. Let a and c be two disjoint symmetric separating curves. The projec-
tion of a in S0,0,2g+2 partitions the 2g+ 2 marked points into two collections
each containing an odd number of marked points, say 2p + 1 and 2q + 1.
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The curve c partitions one of these sets. Without loss of generality, we will
assume c partitions the collection of 2p + 1 marked points into two sets of
2r+ 1 and 2s marked points. Note that (2r+ 1) + (2s) + (2q+ 1) = 2g+ 2.

We can find r − 1 disjoint nontrivial odd curves on the 2r + 1 marked
points, s − 1 odd curves on the 2s marked points, and q − 1 odd curves
on the 2q + 1 marked points. Normally when there are an even number of
marked points 2t for example we would only have t− 2 disjoint odd curves
because we do not allow curves that partition the marked points into sets
of 1 and 2t − 1. In our situation though, partitions of 1 marked point are
allowed because the partitions of the entire set of marked points will include
more than 1 marked point.

So we have a total of (r − 1) + (s− 1) + (q − 1) + 2 = g − 1 disjoint odd
curves (which include a and c). Hence the Dehn twists about these curves
will generate a maximal abelian subgroup of SI(Sg) as desired. �

Proposition 7.2. Let a be a symmetric separating curve in Sg. Then T la,
where l 6= 0, is not a PCPA.

Proof. Suppose T la is a PCPA. Then we know there is a nontrivial ele-
ment g ∈ SI(S) such that g 6= (T la)

k which satisfies the conditions for a
PCPA. We know T lag is not supported on an annulus, hence there is a
symmetric separating curve, c, such that i(a, c) = 0 and [Tc, g] 6= 1. Then
by Lemma 7.1, there exists a maximal abelian subgroup containing T la and
Tc as generators. But clearly T lag and Tc do not commute, hence the original
statement must be true. �

Lemma 7.3. Let f ∈ SI(S) be pseudo-Anosov on at most one component of
S−Cf , call it Q. Given any maximal abelian subgroup 〈f, x1, x2, . . . , xg−2〉,
if Z(CSI(xi)) = Z for each i, then each xi is supported on S −Q.

Proof. Suppose xi is not supported on S−Q. Since [f, xi] = 1, Lemma 3.2
implies that fQ commutes with xiQ. Hence xiQ=fkQ for some k 6= 0. But

because Z(CSI(xi)) = Z, we can deduce that xi = fk. This contradicts the
maximality of 〈f, x1, x2, . . . , xg−2〉. Thus xi must be supported on S−Q. �

Lemma 7.4. If f satisfies Conditions (1), (2), (3), and (4) of Theorem 3.4,
then Z(CI(f)) = Z.

Proof. Suppose not, that is suppose Z(CI(f)) 6= Z. If Z(CI(f)) 6= Z then
we also know f is not a power of a Dehn twist by Proposition 3.3. This
implies f must be pseudo-Anosov on some subsurface Q of S where Q not
an annulus. Otherwise f would be a product of twists about curves in
Cf , which would imply that there is a symmetric separating curve in Cf
contradicting (1).

Moreover, we know that f is pseudo-Anosov on exactly one subsurface,
Q, else (1) would be contradicted. In addition, we know there must be a
symmetric separating curve c supported on Q. Hence by Lemma 7.3 we
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know f is a PCPA (let g = Tc), which is a contradiction. Hence we can
conclude Z(CI(f)) = Z. �

Using the previous lemmas we are now ready to prove the main theorem
which gives an algebraic characterization of Dehn twists about symmetric
separating curves.

Proof of Theorem 3.4. Suppose f = T kγ where γ is a symmetric separat-
ing curve and k 6= 0. Let Q1 and Q2 be the two components of S − γ and
let SI(Q1) and SI(Q2) denote the subgroups of SI(S) supported on Q1

and Q2 respectively, similarly I(Qi). The group SI(Qi) is the subgroup
of the group generated by twists about symmetric separating curves on Qi
containing elements which fix the boundary of Qi pointwise. Note that if
SI ′(Qi) is the corresponding group where the boundary need not be fixed
pointwise, we have the exact sequence:

1 −→ Z −→ SI(Qi) −→ SI ′(Qi) −→ 1

Since g ≥ 3 one of the Qi’s, say Q1, has genus at least 2. Further-
more SI(Q1) contains two independent pseudo-Anosov maps u1 and v1. See
Chapter 13 of [13] for additional details about constructing pseudo-Anosov
maps.

If the genus of Q2 = 1, then SI(Q2) = 1 and we have the following exact
sequence:

1 −→ 〈Tγ〉 −→ CSI(S)(Tγ) −→ SI(Q1) −→ 1

Hence we can deduce that

Z(CSI(S)(Tγ)) = Z(SI(Q1)) = Z

where Z is generated by Tγ . We use Lemma 3.2 and the fact that no non-
trivial mapping class commutes with two independent pseudo-Anosov maps,
in our case u1 and v1.

If the genus of Q2 ≥ 2, then SI(Q2) contains two independent pseudo-
Anosov maps u2 and v2. If h ∈ Z(CSI(S)(Tγ)), then hQi must commute with
both ui and vi for i = 1 or 2. Since ui and vi are independent, it is clear
that hQi = Id, i = 1 or 2. Thus Z(CSI(S)(Tγ)) can only contain powers of
Tγ , and hence is infinite cyclic.

Proposition 7.2 gives Condition (2). Moreover because there exists a
symmetric separating curve disjoint from γ, CSI(f) contains a Z2 subgroup
showing (3) is true. Lastly, Condition (4) follows from Proposition 2.3.

Suppose f ∈ SI satisfies Conditions (1), (2), (3) and (4). We know
f ∈ SI ⊂ I is pure (see [17]), so if f leaves a system C of mutually disjoint,
nonhomotopic essential curves invariant, then f leaves each component of
C invariant. Let Ef be the canonical reduction system for f . Let d denote
the maximal rank of an abelian subgroup in I(S) generated by Dehn twists
about separating curves or bounding pairs in Ef . We will look at cases
according to d and argue that d = 1.
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Suppose d ≥ 2. Then Ef must contain two distinct elements Tα and Tβ
where each of α and β is a separating curve or a bounding pair. Note that
any h ∈ CI(S)(f) leaves Ef invariant, ([3], Lemma 2.6: σ(Ef ) = Eσfσ−1)
hence Tα and Tβ commute with any such h. Thus

Z(CI(S)(f)) ⊇ 〈Tα, Tβ〉 ∼= Z2.

This contradicts Lemma 7.4, so we can assume d ≤ 1.
We can also assume Ef is nonempty otherwise f is a pseudo-Anosov

element contradicting Condition (3).
Next, as a step to proving that f is a power of a Dehn twist about a

symmetric separating curve, we show that none of the maps fQ, where Q is
a component of S − E, is a pseudo-Anosov homeomorphism. Because f is
pure, we know every such map, fQ, is either pseudo-Anosov or the identity.

Now we will consider what a component Q of S − E on which fQ is
pseudo-Anosov must look like. Since Q is a proper subsurface of S it is
homeomorphic to Σg,r for some g ≥ 0 and r ≥ 1.

Case 1. If g = 0 then for Q to admit any pseudo-Anosov element it must
be that r ≥ 4.

Case 2. If g = 1 and r = 1, then ∂Q is a genus 1 separating curve and
so fQ ∈ I(Q) = I(Σ1,1). But I(Σ1,1) is generated by the twist about its
boundary curve, hence does not contain a pseudo-Anosov element.

Case 3. Suppose g ≥ 2 and r = 1 or 2, or that g = 1 and r = 2. Since Q is
a component of S − E, it must be that ∂Q = α where

(1) α is a separating curve, or
(2) α is a bounding pair.

Otherwise ∂Q would consist of a separating curve and another curve (which
must be separating too for Q to be a component of S−E), but this contra-

dicts the fact that d ≤ 1. Now let f̂Q be the extension of fQ to the whole
surface where it is the identity on S −Q. Then we have

Z(CI(S)(f)) ⊇ 〈f̂Q, Tα〉 ∼= Z2

which contradicts Lemma 7.4.

Remaining cases. We are left with the cases g = 0 and r ≥ 4, or g ≥ 1
and r ≥ 3.

Claim. There exists a k ≥ 3 so that there is a union C = β1 ∪ · · · ∪ βk
of components of ∂Q so that C bounds in S but no subcollection of the βi’s
bound.

Proof. Since r ≥ 3, if ∂Q has no bounding pairs or separating curves, then
we can take C to be any minimal subset of components of ∂Q which separate
S.

Suppose ∂Q contains a bounding pair α. Now r 6= 3 and r 6= 4 for
otherwise ∂Q\α being homologous to α, would be separating (or a bounding
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pair) in S contradicting the fact that d ≤ 1. Hence we have r ≥ 5. Since
d = 1 in this case, a minimal subcollection of components of ∂Q which
bound and which has at least 3 elements exists.

Suppose ∂Q contains a separating curve α. Now r 6= 3 for otherwise
∂Q\α being homologous to α, would be a bounding pair in S contradicting
the fact that d ≤ 1. Hence we have r ≥ 4, so we can conclude there is a
minimal bounding subcollection with at least 3 elements. �

Now choose such a collection C = β1 ∪ · · · ∪ βk. Let γ be a separating
curve in S which lies in S\Q and which together with C bounds a genus 0
subsurface of S.

By Condition (4) we know maxSI(f) = g − 1, so there exists some free
abelian group A < SI(S) of rank g − 1 which contains f . In the following
arguments we will argue that certain situations cannot happen by contra-
dicting the maximality of A. Note that any h ∈ I(S) which leaves the
components of Q invariant must also leave γ invariant.

Let U1 be the component of Sγ which does not contain Q and let U2 =
Sγ\U1. Since every a ∈ A commutes with f , it leaves Ef , the canonical
reduction system of f , invariant. Hence a(Q) = Q and so a(∂Q) = ∂Q, and
so a(C) = C and a(γ) = γ. Let Ai with i = 1, 2 be the image of A under the
reduction homomorphism πUi : SI(Sγ) → SI(Ui). Since γ is a separating
curve, the natural inclusion Ui → S induces an injection

SI(Ui)→ Pγ := {p ∈ SI(S) : p(γ) = γ}
and we have a homomorphism

ψ : SI(U1)× SI(U2)→ Pγ

sending x1 and x2 to the mapping class with is xi on Ui. Note that this is
well-defined since elements of SI(Ui) fix ∂Ui pointwise.

If γ is a symmetric separating curve then let γi with i = 1, 2 be a curve
in Ui isotopic to γ. Then it is easy to see that the kernel of ψ is generated
by Tγ1T

−1
γ2 . Thus we have the following exact sequence:

1→ Z→ SI(UI)× SI(U2)→ Pγ → 1.

Restricting ψ to A and noting that by maximality Tγ ∈ A, we have the
following restriction:

1→ Z→ A1 ×A2 → A→ 1.

So we have the following:

rank(A) ≤ rank(A1) + rank(A2)− 1

≤ max(SI(U1)) + max(SI(U2))− 1

≤ g1 + g2 − 1.

Since r ≥ 3 we have that

g1 + g2 ≤ genus(S)− 2
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so

rank(A) ≤ (g1 + g2)− 1

≤ genus(S)− 3

which contradicts the fact that A is maximal.

If γ is not a symmetric separating curve then the kernel of ψ is empty.
Thus we have

SI(UI)× SI(U2) ∼= Pγ

Restricting ψ to A, we have the following:

A1 ×A2
∼= A.

Hence we have the following:

rank(A) = rank(A1) + rank(A2)

≤ max(SI(Ui)) + max(SI(U2))

≤ g1 + g2.

Since r ≥ 3 we have that

g1 + g2 ≤ genus(S)− 2

so

rank(A) ≤ (g1 + g2)

≤ genus(S)− 2

which contradicts the fact that A is maximal. Hence we have proven that f
acts by the identity on every component of S − E.

We now have that f must be a multitwist about curves in Ef . Since
f ∈ I(S), f must be a multitwist about a union of separating curves and
bounding pairs. Since d ≤ 1 there is only one such curve or pair. Note,
d 6= 0, otherwise f would not be in I. Since f ∈ SI(S), f must be a power
of a Dehn twist about a symmetric separating curve. �

Proof of Corollary 3.5. It is clear that if φ ∈ Aut(SI(S)). Then f sat-
isfies Conditions (1), (3) and (4) of Theorem 3.4 if and only if φ(f) does.
What remains to be shown is that f satisfies Condition (2) if and only if
φ(f) does.

Suppose f is a PCPA. Thus f is pseudo-Anosov on at most one compo-
nentQ of S−Cf . We know there exists a g ∈ SI(S) such that given any max-
imal abelian subgroup (f) = 〈f, x1, x2, . . . , xg−2〉, where Z(CSI(xi)) = Z for
each i, the group 〈fg, x1, x2, . . . , xg−2〉 is also a maximal abelian subgroup
of SI(Sg).

We will show φ(f) is a PCPA. We know φ(f) is pseudo-Anosov on at
most one component, Qφ, of S − Cφ(f), else Z(CSI(φ(f))) 6= Z. We claim
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φ(g) is the desired element of SI(S). Given any maximal abelian subgroup
〈φ(f), y1, y2, . . . , yg−2〉, where Z(CSI(yi)) = Z for each i, then

〈f, φ−1(y1), φ−1(y2), . . . , φ−1(yg−2)〉

is a maximal abelian subgroup for f where Z(CSI(φ
−1(yi))) = Z for each i.

Since f is a PCPA, we know 〈fg, φ−1(y1), φ−1(y2), . . . , φ−1(yg−2)〉 is also a
maximal abelian subgroup. Thus

〈φ(f)φ(g), y1, y2, . . . , yg−2〉

is a maximal abelian subgroup as desired. Thus φ(f) is a PCPA. �
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