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A Schubert basis in equivariant elliptic
cohomology

Cristian Lenart and Kirill Zainoulline

Abstract. We address the problem of defining Schubert classes inde-
pendently of a reduced word in equivariant elliptic cohomology, based
on the Kazhdan–Lusztig basis of a corresponding Hecke algebra. We
study some basic properties of these classes, and make two important
conjectures about them: a positivity conjecture, and the agreement with
the topologically defined Schubert classes in the smooth case. We prove
some special cases of these conjectures.
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1. Introduction

Modern Schubert calculus has been mostly concerned with the equivariant
singular cohomology and K-theory (as well as their quantum deformations)
of generalized flag manifolds G/B, where G is a connected complex semisim-
ple Lie group and B a Borel subgroup; Kac–Moody flag manifolds have also
been studied, but we will restrict ourselves here to the finite case. The basic
results in Schubert calculus for other oriented cohomology theories have only
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been obtained recently in [CPZ13, CZZ16, CZZ13, CZZ15, HHH05, HorK11,
KirK13]. After this main theory has been developed, the next step is to give
explicit formulas, thus generalizing well-known results in singular cohomol-
ogy and K-theory, which are usually based on combinatorial structures.

A first contribution in this direction is our paper [LenZ14]. This focuses on
an oriented cohomology corresponding to a singular cubic curve (in Weier-
strass form), more precisely, to a singular elliptic formal group law (called
hyperbolic), which we view as the first interesting case after K-theory in
terms of complexity. (The correspondence between generalized cohomol-
ogy theories and formal group laws is explained below.) The main result
was concerned with extending the combinatorial formulas for localizations
of Schubert classes in (torus equivariant) cohomology and K-theory, which
are due to Billey [Bil99] and Graham–Willems [Gra02, Wil04], respectively.

The main difficulty beyond K-theory is the fact that the topologically
defined cohomology classes corresponding to a Schubert variety depend on
its chosen Bott–Samelson desingularization; this is why they are called Bott–
Samelson classes. Thus, these classes depend on a reduced word for the given
Weyl group element, which is not the case in ordinary cohomology and K-
theory, where we have naturally defined Schubert classes. In this paper we
consider the problem of defining Schubert classes independently of a reduced
word. We focus on the singular elliptic (hyperbolic) case only and we base
our construction on the Kazhdan–Lusztig basis of a corresponding Hecke
algebra, so we use the term Kazhdan–Lusztig (KL) Schubert classes.

We chose to work in the equivariant setting, because of a positivity conjec-
ture in this case, namely [LenZ14, Conjecture 6.4], whereas such a property
does not hold in the nonequivariant case. We conjecture the same positiv-
ity property for our KL-Schubert classes. Moreover, in the equivariant case
we can use the GKM model for the corresponding cohomology of the flag
variety, and we have an easy formula for the topologically defined Schubert
classes in the smooth case. We conjecture that our KL-Schubert classes co-
incide with the latter in the smooth case. We prove some special cases of
these conjectures.

2. Background

We briefly recall the main results in Schubert calculus for generalized
cohomology theories.

2.1. Complex oriented cohomology theories. A (one dimensional,
commutative) formal group law over a commutative ring R is a formal power
series F (x, y) =

∑
i,j aijx

iyj in R[[x, y]] satisfying (see [LevM07, p.4])

(1) F (x, y) = F (y, x), F (x, 0) = x, F (x, F (y, z)) = F (F (x, y), z).

The formal inverse is the power series ι(x) inR[[x]] defined by F (x, ι(x)) = 0.
Let E∗(·) be a complex oriented cohomology theory with base ring R =

E∗(pt). By [Qui71], this is equipped with a formal group law F (x, y) over
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R, which expresses the corresponding first Chern class, denoted c(·), of a
tensor product of two line bundles L1 and L2 on a space X in terms of c(L1)
and c(L2):

(2) c(L1 ⊗ L2) = F (c(L1), c(L2)).

The reciprocal of Quillen’s statement is false: there are formal group laws
which do not come from complex oriented cohomology theories. However, if
one translates and extends the axiomatics of oriented theories into the alge-
braic context, which was done by Levine and Morel in [LevM07], then to any
formal group law one can associate (by tensoring with algebraic cobordism
over the Lazard ring) the respective algebraic oriented cohomology theory.
In this paper we will work in the more general algebraic setting, so E∗(·)
stands for the respective algebraic oriented cohomology.

We refer to the (finite type) generalized flag variety G/B, and we let
T be the corresponding maximal torus. We use freely the corresponding
root system terminology. As usual, we denote the set of roots by Φ, the
subsets of positive and negative roots by Φ+ and Φ−, the simple roots and
corresponding simple reflections by αi and si (for i = 1, . . . , n, where n is
the rank of the root system), the lattice of integral weights by Λ, the Weyl
group by W , its longest element by w◦, and its strong Bruhat order by ≤.
For each w ∈W , we have the corresponding Schubert variety

X(w) := BwB/B.

Given an arbitrary weight λ, let Lλ be the corresponding line bundle over
G/B, that is,

Lλ := G×B C−λ,
where B acts on G by right multiplication, and the B-action on C−λ = C
corresponds to the character determined by −λ.

We now consider the respective T -equivariant cohomology E∗T (·) of spaces
with a T -action, see, e.g., [HHH05]. Its base ring E∗T (pt) can be identified
(after completion) with the formal group algebra

(3) S := R[[yλ]]λ∈Λ/(y0, yλ+ν − F (yλ, yν))

of [CPZ13, Def. 2.4]; in other words, yλ is identified with the corresponding
first Chern class of Lλ, cf. (2). The Weyl group acts on S by w(yλ) := ywλ.

The universal formal group corresponds to complex cobordism. In this
paper we focus on cohomology, denoted SE∗(·), whose corresponding for-
mal group law is that of a singular cubic curve in Weierstrass form. More
precisely, such a curve is given by y2 + µ1xy = x3 + µ2x

2 [Sil09, Ch.III,
App.A]. (Observe that such a curve is always rational and has either a cusp
or a node singularity.) The respective formal group law, called hyperbolic,
is (see [Sil09, Ch.IV], [BuB10, Ex. 63] and [BuB11, Cor. 2.8]

(4) Fh(x, y) =
x+ y − µ1xy

1 + µ2xy
, defined over R = Z[µ1, µ2].
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We let u := a12 = −µ2.
The hyperbolic formal group law is, in fact, a very natural one from a

topological perspective. Via the one-to-one correspondence between genera
and formal group laws it corresponds to a famous 2-parameter Hirzebruch
genus Tx,y (see [Kri74], where x − y = µ1 and xy = µ2). Observe that
the genus Ty = T1,y appears in Hirzebruch’s celebrated book [Hir95] by the
name “virtual generalized Todd genus”.

Let us also mention some important special cases. In the trivial case µ1 =
µ2 = 0, Fh(x, y) = Fa(x, y) is the additive group law, which corresponds to
ordinary singular cohomology (or Chow group) H∗(·). If µ2 = 0, and µ1 = 1,
resp. µ1 is not invertible, then Fh(x, y) = Fm(x, y) is the corresponding
version of the multiplicative formal group law, associated to K-theory, and
connective K-theory, respectively.

2.2. Schubert and Bott–Samelson classes. Given a Weyl group ele-
ment w, consider a reduced word Iw = (i1, . . . , il) for it, so w = si1 . . . sil .
There is a Bott–Samelson resolution of the corresponding Schubert variety
X(w), which we denote by γIw : ΓIw → X(w) ↪→ G/B. This determines a
so-called Bott–Samelson class in E∗T (G/B) via the corresponding pushfor-
ward map, namely (γIw)!(1). Here we let

(5) ζIw := (γI−1
w

)!(1),

where I−1
w := (il, . . . , i1) is a reduced word for w−1; we use Iw−1 , rather

than Iw, for technical reasons. Note that ζ∅ is the class of a point (where ∅
denotes the reduced word for the identity).

By [BrE90, Thm. 3.7] the Bott–Samelson classes are independent of the
corresponding reduced words only for cohomology and K-theories (we can
say that connective K-theory is the “last” case when this happens). In
these cases, the Bott–Samelson classes are the Schubert classes, and they
form bases of H∗T (G/B) and KT (G/B) over the corresponding formal group
algebra S, as w ranges over W . (More precisely, the Schubert classes are the
Poincaré duals to the fundamental classes of Schubert varieties in homology,
whereas in K-theory they are the classes of structure sheaves of Schubert
varieties.) More generally, an important result in generalized cohomology
Schubert calculus says that, by fixing a reduced word Iw for each w, the
corresponding Bott–Samelson classes {ζIw : w ∈ W} form an S-basis of
E∗T (G/B).

We obtain a diagram of oriented theories, respective formal group laws
and specialization maps, shown in Figure 1.

There is a well-known model for E∗T (G/B) known as the Borel model,
which we now describe. We start by considering the invariant ring

SW := {f ∈ S : wf = f for all w ∈W}.



A SCHUBERT BASIS IN EQUIVARIANT ELLIPTIC COHOMOLOGY 715

Algebraic cobordism
universal f.g.l.

��
Elliptic cohomology

f.g.l. of a non-singular
elliptic curve

��
SE∗(−)

hyperbolic f.g.l.

Fh(x, y) = x+y−µ1xy
1+µ2xy

independent of reduced decompositions��

singular cohomology

H∗(−)
additive f.g.l.

Fa(x, y) = x+ y

connective k-theory

k∗(−)
multiplicative f.g.l.

F (x, y) = x+ y − µ1xy

oo //
Grothendieck’s K0

K∗(−)
multiplicative periodic f.g.l.

Fm(x, y) = x+ y − xy

Figure 1. Oriented theories, respective formal group laws
and specialization maps.

We then consider the coinvariant ring

S ⊗SW S :=
S ⊗R S

〈f ⊗ 1− 1⊗ f : f ∈ SW 〉
.

Here the product on S⊗SW S is given by (f1⊗g1)(f2⊗g2) := f1f2⊗g1g2. To
more easily keep track of the left and right tensor factors, we set xλ := 1⊗yλ
and yλ := yλ ⊗ 1. We use this convention whenever we work with a tensor
product of two copies of S; by contrast, when there is a single copy of S in
sight, we let xλ = yλ.

We are now ready to state a second important result in generalized co-
homology Schubert calculus, namely that S ⊗SW S is a rational model for
E∗T (G/B), as an S-module; here the action of yλ ∈ S is on the left tensor
factor, as the above notation suggests. Observe that, in general, E∗T (G/B)
and S ⊗SW S are not isomorphic integrally (see [CZZ16, Thm. 11.4]).

2.3. The formal Demazure algebra. Following [HofMSZ14, §6], [CZZ16,
§5] and [CZZ13, §3], consider the localization Q of S along all xα, for α ∈ Φ
(note the change of notation, from yλ to xλ, cf. the above convention), and
define the twisted group algebra QW to be the smash product Q#R[W ], see
[HofMSZ14, Def. 6.1]. More precisely, as an R-module, QW is Q⊗R R[W ],
while the multiplication is given by

(6) qδw · q′δw′ = q(wq′)δww′ , q, q′ ∈ Q, w,w′ ∈W.
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For simplicity, we denote δi := δsi , x±i := x±αi , and x±i±j := x±αi±αj ,
for i, j ∈ {1, . . . , n}; similarly for the y variables. Following [HofMSZ14,
Def. 6.2] and [CZZ13, §3], for each i = 1, . . . , n, we define in QW

Xi :=
1

xi
δi −

1

xi
=

1

xi
(δi − 1),(7)

Yi := Xi + κi =
1

x−i
+

1

xi
δi = (1 + δi)

1

x−i
,

where κi := 1
x−i

+ 1
xi

. We call Xi and Yi the Demazure and the push-pull

element, respectively. The R-algebra DF generated by multiplication with
elements of S and the elements {Xi}, or {Yi}, is called the formal affine
Demazure algebra. Observe that its dual D?F serves as an integral model for
E∗T (G/B).

The algebras QW and DF act on S ⊗R Q by

(8) h(f ⊗ g) = f ⊗ hg and δw(f ⊗ g) := f ⊗ wg,

where f ∈ S, g, h ∈ Q, and w ∈ W . In fact, the Demazure and push-pull
elements act on S ⊗R S and on the Borel model S ⊗SW S; we will focus on
the latter action.

Remark 2.1. It is clear from definitions that Yi is S〈si〉-linear. Moreover,
if δi(f) = f , i.e., f is si-invariant, then Yi f = κif . It is easy to show (see,
e.g., (37) below) that, for the hyperbolic formal group law, we have κi = µ1.

Relations in the algebra DF were given in [HofMSZ14, Thm. 6.14] and
[HofMSZ14, Prop. 8.10]. In particular, in the case of the hyperbolic formal
group law, we have the relations below:

(a) For all i, we have (cf. Remark 2.1)

(9) Y 2
i = µ1Yi.

(b) If 〈αi, α∨j 〉 = 0, so that mij = 2, where mij be the order of sisj in
W , then

(10) YiYj = YjYi.

(c) If 〈αi, α∨j 〉 = 〈αj , α∨i 〉 = −1, so that mij = 3 (i.e., in type A2), we
have

(11) YiYjYi − YjYiYj = u(Yi − Yj) = µ2(Yj − Yi).

(d) If mij = 4 (i.e., in type B2), we have

(12) YiYjYiYj − YjYiYjYi = 2u(YiYj − YjYi).

(e) If mij = 6 (i.e., in type G2), we have

YiYjYiYjYiYj − YjYiYjYiYjYi = 4u(YiYjYiYj − YjYiYjYi)(13)

− 3u2(YiYj − YjYi).
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The relations in (c), (d), (e) are called twisted braid relations; they were
derived in [Lec16, Example 4.12] from the general relations in [HofMSZ14,
Prop. 6.8], cf. also Example 3.3. In the case of ordinary cohomology and
K-theory, the twisted braid relations are the usual braid relations (since
µ2 = 0).

Given a reduced word Iw = (i1, . . . , il) for w ∈W , define

XIw := Xi1 . . . Xil and YIw := Yi1 . . . Yil .

By [CZZ13, Cor. 3.4], if we fix a reduced word Iw for each w ∈ W , then
{XIw : w ∈ W} and {YIw : w ∈ W} are bases of the free left Q-module
QW . Note that, in cohomology and K-theory, XIw and YIw do not depend
on the choice of the reduced word Iw, so we can simply write Xw and Yw. In
fact, we will use the latter notation whenever we are in a similar situation.

A fundamental result in generalized cohomology Schubert calculus states
that the Bott–Samelson classes ζIw , for Iw = (i1, . . . , il), can be calculated
recursively as follows (via the usual action of DF on the Borel model of
E∗T (G/B) in (8)):

(14) ζIw = Yil . . . Yi1 ζ∅.

2.4. The GKM model of equivariant cohomology. In the GKM mod-
el, see, e.g., [GKM98, HHH05, CZZ15], we embed E∗T (G/B) into

⊕
w∈W S,

with pointwise multiplication. This comes from the embedding

(15) i∗ : E∗T (G/B)→
⊕
w∈W

E∗T (pt) '
⊕
w∈W

S,

where

(16) i∗ :=
⊕
w∈W

i∗w, and iw : pt→ G/B, with pt 7→ w−1.

There is a characterization of the image of this embedding. We denote the
elements of

⊕
w∈W S by (fw)w∈W ; alternatively, we view them as functions

f : W → S.
Using the Borel model for E∗T (G/B), we can realize the GKM map i∗ in

(15) as an embedding of S ⊗SW S into
⊕

w∈W S. This map can be made
explicit as

(17) f ⊗ g 7→ (f · (wg))w∈W .

Via this map, the action (8) of the algebras QW and DF is translated as
follows in the GKM model:

(18) xλ · 1 = (ywλ)w∈W , δv (fw)w∈W = (fwv)w∈W .

As now the action of the push-pull operators Yi is made explicit, we can
use (14) to compute recursively the Bott–Samelson classes ζIw in the GKM
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model, once we know the class ζ∅. This is given by (cf. [LenZ14])

(19) (ζ∅)w =


∏
α∈Φ+ y−α if w = id

0 if w 6= id.

In fact, the following more general result holds:

(20) (ζIv)w =


∏
α∈Φ+∩wΦ+ y−α if v = w

0 if w 6≤ v.

We now calculate the hyperbolic Bott–Samelson classes in the rank 2 cases
A2 and C2; note that the root system B2 is the same as C2, so it suffices to
consider the latter.

Example 2.2. We start with type A2. We use the notation [ij] := y−αij ,
for the root αij := εi− εj . We use the following representation of the (right
weak Bruhat order on the) symmetric group S3.

id

$$zz
s1

��

s2

��
s1s2

$$

s2s1

zz
s1s2s1

Based on (19), (17), (18), and (35) below (with α = α12 and β = α23, so
α+β = α13), we calculate the values of ζ∅, ζ1, ζ1,2, and ζ1,2,1 on the elements
of S3 in Figure 2.

Similarly, we calculate ζ2,1,2.

1 + u[12][13]

((zz
1

��

1 + u[12][13]

��
1

%%

1

vv1

Example 2.3. We consider type C2 with the simple roots α0 := 2ε1 and
α1 := ε2 − ε1. We use the notation [ij] := y−(εj−εi), for i 6= j in {±1, ±2},
where ı := −i and εı := −εi; in particular, [ıi] := y−2εi for i ∈ {1, 2} and
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[12][13][23]

  ~~
0

��

0

��

Y1−→

0

""

0

||
0

[13][23]

��||
[13][23]

��

0

��

Y2−→

0

$$

0

��
0

(21)

[13]

����
[23]

��

[13]

��

Y1−→

[23]

��

0

��
0

1 + u[13][23]

""xx
1 + u[13][23]

��

1

��
1

''

1

{{
1

Figure 2. The values of ζ∅, ζ1, ζ1,2, and ζ1,2,1 on the ele-
ments of S3

[12] := y−(ε1+ε2). We use the following representation of the (right weak
Bruhat order on the) hyperoctahedral group B2.

id

&&xx
s0

��

s1

��
s0s1

��

s1s0

��
s0s1s0

&&

s1s0s1

xx
s0s1s0s1



720 C. LENART AND K. ZAINOULLINE

Based on (19), (17), (18), and (35) below, we calculate the values of ζ∅, ζ0,
ζ0,1, ζ0,1,0, and ζ0,1,0,1 on the elements of the group B2.

[12][12][11][22]

!!}}
0

��

0

��
0

��

0

��

Y0−→

0

""

0

||
0

[12][12][22]

��zz
[12][12][22]

��

0

��
0

��

0

��

Y1−→

0

%%

0

~~
0

(22)

[12][22]

����
[12][22]

��

[12][22]

��
[12][22]

��

0

��

Y0−→

0

��

0

��
0

[22] + u[1, 2][12][22]

##vv
[22] + u[1, 2][12][22]

��

[12]

��
[1, 2]

��

[12]

��
[1, 2]

((

0

zz
0

1 + 2u[12][22]

((vv
1 + 2u[12][22]

��

1 + 2u[12][22]

��
Y1−→ 1 + 2u[12][22]

��

1

��
1

((

1

vv1
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More explicitly, to calculate (ζ0,1,0)id = (ζ0,1,0)s0 , we use (35) with α = 2ε1

and β = ε2−ε1, so α+β = ε1+ε2. Then, to calculate (ζ0,1,0,1)id = (ζ0,1,0,1)s1 ,
we use (35) with α = ε2 − ε1 and β = ε1 + ε2, so α+ β = 2ε2; similarly for
(ζ0,1,0,1)s0 = (ζ0,1,0,1)s0s1 , but with α and β switched.

On another hand, ζ1, ζ1,0, and ζ1,0,1 are computed as follows:

[12][11][22]

$$��
0

��

[12][11][22]

��
ζ∅

Y1−→ 0

��

0

��

Y0−→

0

  

0

xx
0

[12][22]

  ~~
[12][22]

��

[12][11]

��
0

��

[12][11]

��
0

""

0

||
0

(23)

2[12]− [12]2 + u[12]2([11] + [22])

++vv
[22]

��

2[12]− [12]2 + u[12]2([11] + [22])

��
Y1−→ [22]

��

[11]

��
0

))

[11]

ss0

More explicitly, to calculate (ζ1,0,1)id = (ζ1,0,1)s1 , we use (36) with α = ε2−ε1

and β = 2ε1, so 2α+ β = 2ε2.
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A more involved computation, based on the expression for ζ1,0,1 in (23),
leads to the following expression for ζ1,0,1,0:

1 + 2u[12][22]

((vv
1 + 2u[12][22]

��

1 + 2u[12][11]

��
1

��

1 + 2u[12][11]

��
1

))

1

uu1

Note that we need to apply four times the formula for yα+β in (37) only to
calculate (ζ1,0,1,0)id = (ζ1,0,1,0)s0 .

Example 2.4. We now consider type A3 and, for simplicity, we set µ1 = 0
in (4), i.e., we consider the Lorentz formal group law. We show (ζIw◦ )id for
some reduced words for w◦ = 4321:

(ζ1,2,3,1,2,1)id = (ζ1,2,1,3,2,1)id = 1 + 2u[14][24] + u2[13][14][23][24],

(ζ1,2,3,2,1,2)id = (ζ2,1,2,3,2,1)id = 1 + u[13][14] + u[14][24] + u2[13][14][24][34].

3. Main result

An important open problem in Schubert calculus beyond K-theory is
defining Schubert classes which are independent of a reduced word for the
indexing Weyl group element. The standard topological approach works if
the Schubert variety X(w) is smooth, and the corresponding class [X(w)]
has a simple formula; namely, by [BilL00, Theorem 7.2.1], in the GKM
model of E∗T (G/B) (discussed in Section 2.4), we have:

(24) [X(w)]v =

∏
β∈Φ+

y−β∏
β∈Φ+

sβv≤w

y−β
,

for v ≤ w in the Weyl group W , and otherwise [X(w)]v = 0, cf. (20).
We propose an approach in elliptic cohomology based on the Kazhdan–

Lusztig basis of the corresponding Hecke algebra, and provide support for
it.
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Let us explain the motivation. In cohomology and K-theory, by applying
the operator Yw◦ to the class of a point gives the fundamental class of the flag
manifold (i.e., the identity element). However, this does not happen beyond
K-theory, see Examples 2.2 and 2.4. Our goal is to modify YIw in such a
way that: (1) the new operator corresponding to w does not depend on a
reduced word for w; (2) when applied to the class of a point, the operator
corresponding to w◦ gives 1.

We start our construction by recalling the formal Demazure algebra DF
from Section 2.3. By [HofMSZ14, Thm. 5.4], in type A, if F is the hyper-
bolic formal group law, the algebra DF is generated by the elements Yi and
multiplications by z ∈ S subject to the relations (9), (10), (11), and the
following one:

(25) Yiz = si(z)Yi + µ1z − Yi(z).

Following [HofMSZ14, Def. 5.3], let DF denote the R-subalgebra of DF gen-
erated by the elements Yi only. In [HofMSZ14, Prop. 6.1] it was shown
that for the additive formal group law F = Fa (respectively, the multiplica-
tive one F = Fm), the algebra DF is isomorphic to the nil-Hecke algebra
(respectively the 0-Hecke algebra) of Kostant–Kumar [KosK86, KosK90].

We will now recall the Hecke algebra H of the Weyl group W , and we
refer to [Hu90] for more information. Instead of the usual generators Ti, we

use those in [Cas16, Section 1], namely τi := tTi, where t = q−1/2. So H is
the Z[t±1]-algebra generated by τi subject to

(26) (τi + t)(τi − t−1) = 0 ⇐⇒ τ2
i = (t−1 − t)τi + 1,

and the usual braid relations.
From now on we work in the setup of the hyperbolic formal group law

(4) with µ1 = 1 and µ2 = −(t + t−1)−2 = −u, so we let the base ring R
be Z[t±1, (t + t−1)−1]. This case correspond to a generic singular curve in
Weierstrass from. Observe that it does not correspond to a complex oriented
theory [BuK91, §4]; however, since we work in the algebraic setup, we will
still use the notation SE∗T (G/B).

In [CZZ13, Prop. 8.2] (in type A) and in [Lec16] (in arbitrary type), it is
shown that H⊗Z[t±1] R is isomorphic to the corresponding algebra DF via

(27) τi 7→ (t+ t−1)Yi − t.

We identify the two algebras, and note that the involution on H (sending
t 7→ t−1 and τi 7→ τ−1

i ) corresponds to the involution on DF obtained by
extending the involution t 7→ t−1 on the coefficient ring. Indeed, each push-
pull element Yi = 1

t+t−1 (τi + t) is invariant under this involution; see below.

Consider the Kazhdan–Lusztig basis {γw : w ∈W} of H, given by

(28) γw = τw +
∑
v<w

t πv,w(t) τv,
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where πv,w(t) are the Kazhdan–Lusztig polynomials (in terms of the clas-

sical notation, we have Pv,w(t) = t−(`(w)−`(v)−1)πv,w(t)). Recall that one
of its defining properties is its invariance under the above involution. We
implicitly use the well-known result of Kazhdan–Lusztig (see, e.g., [BilL00,
Section 6.1]) that the Schubert variety X(w) is rationally smooth (which is
implied by being smooth) if and only if Pv,w(t) = 1 for all v ≤ w.

We will also use the iterative construction of the Kazhdan–Lusztig basis,
see, e.g., [Hu90][Section 7.11]:

(29) γw = γsiγv −
∑
z≺v
siz<z

µ(z, v) γz,

where v = siw < w. Here z ≺ v means that z < v in Bruhat order
and the largest allowable degree (`(v)− `(z)− 1)/2 of the Kazhdan–Lusztig
polynomial Pz,v(q) is attained; furthermore, µ(z, v) is the coefficient of this
leading term. In particular, `(w)− `(z) is even.

For w ∈ W , denote by Γw the element of DF which corresponds to γw
via the above isomorphism between H⊗Z[t±1] R and DF . In particular,

γsi = τi + t,

which explains why Yi = 1
t+t−1 Γsi is invariant under the involution. Observe

that Γw is independent of reduced word of w.

Example 3.1. Let w be a product of distinct simple reflections

w = si1 . . . sin .

It is well-known that

γw = γsi1 . . . γsin , so (t+ t−1)−`(w)Γw = Yw ;

here the notation Yw indicates that the corresponding product of operators
Yi is also independent of a reduced word for w.

The next examples show the very close relationship between the twisted
braid relation in the hyperbolic case and the Kazhdan–Lusztig basis, in the
sense that the former expresses the invariance of (t + t−1)−`(w◦)Γw◦ for w◦
in the rank 2 Weyl groups (with respect to the two reduced words for w◦).

Example 3.2. Consider type A2. As we have seen in the previous example:

Γsi = (t+ t−1)Yi, Γsisj = (t+ t−1)2YiYj .

It is also well-known that

(30) γw◦ = γsisjsi = γsiγsjγsi − γsi = γsjγsiγsj − γsj .
Therefore, we have

Γsisjsi = (t+ t−1)3(YiYjYi − uYi) = (t+ t−1)3(YjYiYj − uYj).

Thus, the independence of (t + t−1)−3Γw◦ from a reduced word for w◦ =
s1s2s1 = s2s1s2 is given by the twisted braid relation (11).
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Example 3.3. Let us now turn to types B2 and G2, and calculate the
corresponding element γw◦ based on the recursive formula (29). We illustrate
this computation in type G2, which is more involved. We observe, in each
case, that the equality of the two obtained expressions for (t+ t−1)−`(w◦)Γw◦
is precisely the corresponding twisted braid relation, namely (12) and (13).

In type B2 we have

(31) γw◦ = γsisjsisj = γsiγsjγsiγsj − 2γsiγsj ,

which implies

(t+ t−1)−4Γsisjsisj = YiYjYiYj − 2uYiYj = YjYiYjYi − 2uYjYi.

In type G2 we have

γw◦ = γsisjsisjsisj = γsiγsjγsiγsjγsiγsj − 4γsiγsjγsiγsj + 3γsiγsj .

Indeed, we combine the analogues of (30) and (31), as well as the recursive
formulas

γw◦ = γsiγsjsisjsisj − µ(sisjsisj , sjsisjsisj)γsisjsisj

− µ(sisj , sjsisjsisj)γsisj ,

γsjsisjsisj = γsjγsisjsisj − µ(sjsisj , sisjsisj)γsjsisj − µ(sj , sisjsisj)γsj ;

in both relations, the value of the first µ-coefficient is 1 and of the second
one is 0, due to the well-known fact that the (nonzero) Kazhdan–Lusztig
polynomials for dihedral groups are all equal to 1. Like in Example 3.2, we
conclude that

(t+ t−1)−6Γsisjsisjsisj = YiYjYiYjYiYj − 4uYiYjYiYj + 3u2YiYj

= YjYiYjYiYjYi − 4uYjYiYjYi + 3u2YjYi.

We generalize the above examples, by giving some information about the
expansion of Γw in a Y -basis of DF . A priori, by combining (28) and (27),
this expansion contains powers of t in addition to powers of t + t−1, but it
turns out that a more precise description can be given.

Proposition 3.4. Let Iw be a reduced word for w. The element

(t+ t−1)−`(w) Γw

of DF has an expansion of the form

YIw +
∑
v<w

`(w)−`(v)∈2Z

cv u
(`(w)−`(v))/2 YIv ,

for some integer coefficients cv, and some reduced subwords Iv of Iw.

Proof. Iterating (29), we express any γw in terms of sums of products of
γsi . Note that we can arrange things such that all these products correspond
to reduced subwords of Iw, and also that the parity of the number of factors
in them is the same. The result follows by substituting Γsi = (t + t−1)Yi,

and by dividing through by (t+ t−1)`(w). �



726 C. LENART AND K. ZAINOULLINE

Proposition 3.4 suggests the following definition for our Schubert classes,
which we call Kazhdan–Lusztig (KL-) Schubert classes.

Definition 3.5. Consider the element Sw in SE∗T (G/B) given by

(t+ t−1)−`(w) Γw−1(ζ∅)

under the action of DF on the GKM model of SE∗T (G/B).

Consider the limit t → 0, which implies u = 1
t+t−1 → 0; so the formal

group law becomes the multiplicative one, for K-theory. We obtain the
following corollary of Proposition 3.4.

Corollary 3.6. In the limit t → 0, the KL-Schubert class Sw becomes the
Bott–Samelson class ζw in K-theory (which is known to be independent of a
reduced word for w, and to coincide with the corresponding Schubert class,
defined topologically).

The following corollary provides additional motivation for the KL-Schu-
bert classes.

Corollary 3.7. The classes {Sw : w ∈W} form a basis of SE∗T (G/B).

Proof. Fix a reduced word Iv for each v in W . By using the twisted braid
relation, we can convert the expansion of Γw in Proposition 3.4 into one in
the basis {YIv} of DF . It follows that the transition matrix from the KL-
Schubert classes Sw to the basis of Bott–Samelson classes {ζIv : v ∈W} is
triangular with 1’s on the diagonal. �

Let us now calculate the KL-Schubert classes in ranks 1 and 2, with the
exception of type G2.

Example 3.8. For type A1 it is immediate that Ss1 = Y1 ζ∅ = 1. For

the rank 2 cases, we use the formulas for (t + t−1)−`(w)Γw in Examples 3.2
and 3.3. In types A2 and C2, the elements Ssi and Ssisj coincide with
the corresponding Bott–Samelson classes, given by (21), (22), and (23).
Furthermore, in both cases we also have Sw◦ = 1, based on (21) and (22).
This fact is stated for all types An−1 and Cn in Theorem 3.14 (2).

Also note that, in type C2, the KL-Schubert class Ss0s1s0 is obtained by
setting u = 0 in the Bott–Samelson class ζ0,1,0, expressed in (22). The simple
expressions for the above KL-Schubert classes are not surprising because in
all these cases the corresponding Schubert varieties are nonsingular; see
Remark 3.13 and [BilL00]. The only singular Schubert variety in type C2 is
X(s1s0s1), with maximal singular locusX(s1); correspondingly, we calculate
based on (23):

(Ss1s0s1)id = (Ss1s0s1)s1(32)

= 2[12]− [12]2 + u[12]([12][11] + [12][22]− [11][22]).

The other values of Ss1s0s1 are the same as those of the Bott–Samelson class
ζ1,0,1, expressed in (23).
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In [LenZ14][Conjecture 6.4] we conjectured a positivity property for the
(hyperbolic) Bott–Samelson classes. Here we conjecture the same property
for the KL-Schubert classes.

Conjecture 3.9. The evaluation (Sv)w, for any w ≤ v, can be expressed
as a (possibly infinite) sum of monomials in y−α, where α are positive roots,
such that the coefficient of each monomial is of the form

(−1)k−(N−`(v)) c u(m−k)/2,

where c is a positive integer, m is the degree of the monomial, N − `(v) ≤
k ≤ m, m− k is even, and N is the number of positive roots.

Remark 3.10. The above positivity property is a generalization of the one
in K-theory which is made explicit in Graham’s formula [Gra02] for the
localization of Schubert classes at torus fixed points, cf. also [LenZ14].

Example 3.11. Let us check the positivity property for (Ss1s0s1)id =
(Ss1s0s1)s1 calculated in (32). Based on the formula for yα+β in (37) with
α = [12] and β = [11], so that α + β = [12], we re-express the mentioned
evaluation in a “positive” form. In fact, it suffices to focus on the following
subexpression:

u[12]([12][11] + [12][22]− [11][22])

= u[12]([12][11] + ([12] + [11]− [12][11] + u[12][11][12])[22]− [11][22])

= u[12]2[11] + u[12][12][22]− u[12][12][11][22] + u2[12][12]2[11][22].

Furthermore, a natural property that the Schubert classes should have,
which we conjecture for our classes Sw, is the following.

Conjecture 3.12. If the Schubert variety X(w) is smooth, then the class
[X(w)] given by (24) coincides with Sw.

Remark 3.13. Examples 3.11 and 3.8 show that Conjectures 3.9 and 3.12
are true in ranks 1 and 2, with the exception of type G2.

We tested Conjecture 3.12 on the computer. Moreover, we proved the
special cases below; here Wn denotes the Weyl group of a root system of
type An−1 or Cn, and we use the standard embedding of Wn−1 into Wn.

Theorem 3.14. Conjecture 3.12 is true in the following cases (which all
correspond to nonsingular Schubert varieties):

(1) in all types for w which is a product of distinct simple reflections;
(2) in the classical types An−1 and Cn, for w−1, where w is a highest

coset representative for Wn/Wn−1 (in particular, for w = w◦, the
longest element, we have Sw◦ = 1).

Remarks 3.15. Cases (1), which are concerned with w of “small” length, do
not involve the formal group law in the recursive calculation of the related
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Bott–Samelson classes ζIw (see the proof below); this fails as soon as the
reduced words for w have repeated simple reflections.

Cases (2), which are concerned with w of “large” length, are highly non-
trivial because, for instance, the various Bott–Samelson classes ζIw have
more and more involved expressions as `(w) increases, see Example 2.4.
However, the Kazhdan–Lusztig operator Γw combines several classes ζIv for
v ≤ w such that the final result is simple, cf. Proposition 3.4.

4. Proofs

We now prove Theorem 3.14 in several steps. The following lemma will
be useful.

Lemma 4.1.

(1) If
∏
α y−α =

∏
β y−β in the cohomology or K-theory algebra S, for

two subsets of the positive roots, then the two subsets are the same.
(2) Assume that the Schubert variety X(w) is nonsingular. If the eval-

uation of Sw at every element of W is a product
∏
α y−α over some

subset of the positive roots, then Sw = [X(w)].

Proof. It is well-known that the cohomology algebra S can be identified
with the completion of the symmetric algebra SymZ(Λ) via y−λ = λ; in fact,
SymQ(Λ) ' Q[x1, . . . , xn], where xi = αi. The claim now follows from the
fact that the latter is a unique factorization domain and no positive multiple
of a root is another root (except for the trivial case). In the K-theory case,
we reduce to the cohomology case by using the fact that the cohomology
algebra S is the associated graded algebra to the K-theory one. The second
part follows immediately from Corollary 3.6 and the first part. �

Proof of Theorem 3.14(1). The corresponding Schubert varieties X(w)
are nonsingular by a criterion of Fan [Fan98]. By Example 3.1, a class Sw

is computed in this case by Yw, so it coincides with ζw. It is easy to see
that this recursive computation only involves the division of a product of
elements y−α by one of the factors (in particular, the formal group law is not
involved in the computation, see the application of the first two operators
Yi in (21)). Thus, all values (ζw)v are products of elements y−α. The proof
is concluded by applying Lemma 4.1. �

We now turn to Theorem 3.14(2) for w = w◦ in type An−1. In other
words, we show that

(33) (t+ t−1)−N Γw◦(ζ∅) = 1,

where N = `(w◦) = |Φ+|, that is, the Schubert class Sw◦ is the fundamental
class of the flag variety. The proof is based on several lemmas.

We use freely the notation introduced in the previous sections, as well as
the related background, in particular the GKM model and the formulas (18)
for the action of the dual Demazure algebra in this model. Consider the root
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system of type An−1, with roots αij := εi − εj , and the symmetric group
on {1, . . . , n} as Weyl group, denoted Wn. We use the one-line notation for
permutations, i.e., w = i1 . . . in means that w(k) = ik. Let [ij] := y−αij
in the formal group algebra S = Sn. For any positive integer k, define the
functions ρnk : Wn → Sn:

(34) ρnk(w) :=

[i1n] . . . [ik−1n] if w−1(n) ≥ k

0 otherwise,

where w = i1 . . . ik−1 . . .. Clearly ρnk is identically 0 if k > n, and (34) is
understood to define ρn1 as identically 1. For simplicity, we write ρk instead
of ρnk for any k in Lemmas 4.3 and 4.4, as n is fixed.

Lemma 4.2. In the localization Q of the formal group algebra S, we have
yα+β

yα
+

yβ
y−α

= 1 + uyβyα+β,(35)

y2α+β

yα
+

yβ
y−α

= 2− yα+β + uyα+β(yβ + y2α+β).(36)

Proof. From the definition (4) of the hyperbolic formal group law, it follows
that

(37) yα+β = yα + yβ − yαyβ + uyαyβyα+β, y−α = ι(yα) =
yα

yα − 1
.

By using these facts, we easily derive

yα+β

yα
+

yβ
y−α

=
yα+β + (yαyβ − yβ)

yα

=
yα + uyαyβyα+β

yα
= 1 + uyβyα+β.

Similarly, by using the first relation in (37) twice, we calculate

y2α+β

yα
+

yβ
y−α

=
y2α+β + (yαyβ − yβ)

yα

=
(yα + yα+β − yαyα+β + uyαyα+βy2α+β) + (yαyβ − yβ)

yα

=
2yα + uyαyβyα+β − yαyα+β + uyαyα+βy2α+β

yα
= 2− yα+β + uyα+β(yβ + y2α+β). �

Lemma 4.3. We have

(38) Yk ρk+1 − uρk+2 = ρk, Yk ρk+2 = ρk+2.

Proof. From the definition of ρk+2, we can see that ρk+2(w) = ρk+2(wsk),
which means that ρk+2 is sk-invariant. Thus, the second formula in (38)
follows by Remark 2.1.
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To derive the first formula, we start by considering w with w−1(n) = k+1,
so w = i1 . . . ikn . . .. Since ρk+1(wsk) = 0, we have

(Yk ρk+1)(w) =
[i1n] . . . [ikn]

[ikn]
= [i1n] . . . [ik−1n] = (Yk ρk+1)(wsk).

So we have

(39) (Yk ρk+1)(w) = ρk(w) = ρk(w) + uρk+2(w), for w−1(n) ≤ k + 1.

On the other hand, if w−1(n) ≥ k + 2, i.e., w = i1 . . . ikik+1 . . . with all
shown entries different from n, we calculate as follows, based on (35):

(Yk ρk+1)(w) =
[i1n] . . . [ikn]

[ikik+1]
+

[i1n] . . . [ik−1n][ik+1n]

[ik+1ik]
(40)

= [i1n] . . . [ik−1n]

(
[ikn]

[ikik+1]
+

[ik+1n]

[ik+1ik]

)
= [i1n] . . . [ik−1n](1 + u[ikn][ik+1n])

= ρk(w) + uρk+2(w).

The first formula in (38) follows by combining (39) and (40). �

Lemma 4.4. We have

τk . . . τn−1 ρn = (t+ t−1)n−kρk − t(t+ t−1)n−k−1ρk+1.

Proof. We proceed by decreasing induction on k, with base case k = n, and
we use freely the formula for the action of τi coming from (27). Assuming
the statement for k + 1, we need to calculate

(41) τk(τk+1 . . . τn−1 ρn) = (t+t−1)n−k−1τk(ρk+1)−t(t+t−1)n−k−2τk(ρk+2).

By Lemma 4.3, we first have

tτk(ρk+2) = t
(
(t+ t−1)Yk ρk+2 − tρk+2

)
= ρk+2.

Based on this, and by using Lemma 4.3 again, we can rewrite the right-hand
side of (41) as follows:(

(t+ t−1)n−k Yk ρk+1 − t(t+ t−1)n−k−1ρk+1

)
− (t+ t−1)n−k−2ρk+2

= (t+ t−1)n−k (Yk ρk+1 − uρk+2)− t(t+ t−1)n−k−1ρk+1

= (t+ t−1)n−kρk − t(t+ t−1)n−k−1ρk+1.

This concludes the induction proof. �

Proof of Theorem 3.14(2) for w = w◦ in type An−1. We proceed by
induction on n. The statement for n = 2 and n = 3 is Example 3.8. Assum-
ing that it holds for n− 1, for n ≥ 4, we will prove it for n. We identify the
Weyl group Wn−1 with its image (under the standard embedding) in Wn,
as a parabolic subgroup, and let Wn−1 be the set of lowest coset represen-
tatives in Wn/Wn−1. Let wn◦ and wn−1

◦ be the longest elements of Wn and
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Wn−1, respectively, and N := `(wn◦ ) =
(
n
2

)
. Let ζn∅ and ζn−1

∅ be the respec-
tive classes for the flag varieties corresponding to SLn and SLn−1. Using
also the standard embedding of the formal group algebra Sn−1 into Sn, we
extend the function ρn−1

k : Wn−1 → Sn−1 defined in (34) to a function from
Wn to Sn, by defining it to be identically 0 outside Wn−1.

As the Kazhdan–Lusztig polynomials Pv,wn◦ (t) are 1 for all v in Wn, we
have

(42) γwn◦ =
∑
w∈Wn

tN−`(w)τw.

Since every element of Wn can be factored uniquely as w = uv with u ∈
Wn−1, v ∈Wn−1, and `(w) = `(u) + `(v), we can rewrite the above expres-
sion as

γwn◦ =
∑

u∈Wn−1

tn−1−`(u)τu
∑

v∈Wn−1

t(N−n+1)−`(v)τv(43)

=
∑

u∈Wn−1

tn−1−`(u)τuγwn−1
◦

.

Thus, we need to calculate

(t+ t−1)−NΓwn◦ (ζn∅ )(44)

=
n∑
k=1

tk−1(t+ t−1)−(n−1) τk . . . τn−1

(
(t+ t−1)−(N−n+1) Γwn−1

◦
(ζn∅ )

)
.

By Remark 2.1 and (19), for any i1, . . . , ip between 1 and n− 2, we have

Yi1 . . . Yip ζ
n
∅ = [1, n] . . . [n− 1, n]Yi1 . . . Yip ζ

n−1
∅ .

Therefore, by induction and (34), we have

(t+ t−1)−(N−n+1) Γwn−1
◦

(ζn∅ )

= [1, n] . . . [n− 1, n]
(

(t+ t−1)−(N−n+1) Γwn−1
◦

(ζn−1
∅ )

)
= [1, n] . . . [n− 1, n] ρn−1

1 = ρnn.

Based on the above formula and Lemma 4.4, we can rewrite (44) as follows:

(t+ t−1)−NΓwn◦ (ζn∅ ) =

n∑
k=1

tk−1(t+ t−1)−n+1 τk . . . τn−1 ρ
n
n

=

n∑
k=1

(
tk−1(t+ t−1)−(k−1)ρnk − tk(t+ t−1)−kρnk+1

)
= ρn1 .

But ρn1 is identically 1, as needed. �
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Proof of Theorem 3.14 (2) in type An−1. Recalling Example 3.8, we see
that we can assume n ≥ 4. Fix m between 2 and n. Let wm be the (unique)
highest representative of a coset in Wn/Wn−1 with wm(n) = m; its length
is `(wm) = N −m+ 1. It is easy to check that the Schubert variety X(w−1

m )
is nonsingular by the well-known Lakshmibai–Sandhya pattern-avoidance
criterion [LS90]: the permutation w−1

m avoids the patterns 3412 and 4231.
We claim that w = uv ≤ wm (the factorization being the one in the

above proof) if and only if k := w(n) = u(n) ≥ m. This can be seen
using the well-known criterion for comparison in Bruhat order (see, e.g.,
[BilL00][Section 3.2]): i1 . . . in ≤ j1 . . . jn if and only if

{i1 . . . ip} ↑≤ {j1 . . . jp} ↑ for any p = 1, . . . , n− 1,

where the notation means that we arrange the elements of the two sets in
increasing order, and we compare the two p-tuples entry by entry. Indeed,
on the one hand it is not hard to see that, if k ≥ m, then w ≤ wk ≤ wm.
On the other hand, if k < m, then we cannot have w ≤ wm (just apply the
above criterion with p = n− 1).

Based on the above facts, we can express γwm as in (43), but now we only
sum over τk . . . τn−1 in Wn−1 with k ≥ m (indeed, the fact that X(w−1

m )
is nonsingular implies that all the Kazhdan–Lusztig polynomials Pwm,w(t)
with w ≤ wm are 1, due to the well-known symmetry of these polynomials
under inversion of their indices). Like in the above proof, and based on the
previous result, we then calculate

Sw−1
m

= (t+ t−1)−(N−m+1)Γwm(ζn∅ )

=
n∑

k=m

tk−m(t+ t−1)−(n−m) τk . . . τn−1 ρ
n
n

=
n∑

k=m

(
tk−m(t+ t−1)−(k−m)ρnk − tk−m+1(t+ t−1)−(k−m+1)ρnk+1

)
= ρnm.

The proof is now concluded by applying Lemma 4.1. �

Proof of Theorem 3.14 (2) for w = w◦ in type Cn. We extend the no-
tation in Example 2.3 for type C2. For start, the simple roots are α0 := 2ε1

and αi := εi+1 − εi. We let [ij] := y−(εj−εi), for i 6= j in {±1, . . . , ±n},
where ı := −i and εı := −εi; in particular, [ıi] := y−2εi and [ıj] := y−(εi+εj).

Also note that [ı] = [ij].
It will be useful to represent an element (signed permutation) of the hy-

peroctahedral group Wn of type Cn as a bijection w from

I := {n− 1 < . . . < 1 < 0 < 1 < . . . < n}

to {±1, . . . , ±n} with the property i−1 = ıj for j = 1, . . . , n, where ik :=

w(k) for k ∈ I. The action of the simple reflection sj , for j = 0, . . . , n − 1,
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consists in swapping the positions j, j + 1 (and , + 1). This formalism has
the advantage that it makes the definition (7) of the push-pull operator Y0

completely similar to Yj for j = 1, . . . , n − 1, while we can also define Y
similarly and we have Y = Yj ; indeed, it suffices to note that [i0i1] = [i1i1],
and that [ijij+1] = [ii+1] for j = 1, . . . , n − 1. By defining τ via (27), we
also have τ = τj .

We can define the functions ρnk : Wn → Sn precisely like in (34), ex-
cept that k is now any integer (usually between n− 1 and n + 1) and
w = in−1 . . . i1i0i1 . . . in. Clearly ρnk is identically 0 is k > n, and ρn

n−1
is

understood to be identically 1, as usual. Observe that Lemmas 4.3 and 4.4
still hold, where now k ∈ {0,±1, . . . ,±(n − 1)}. Note that, hidden in this
formalism, are some peculiar applications of formula (35) in Lemma 4.2;
for instance, the respective triple of roots (α, β, α + β) can be one of the
following, which contain a root 2εi:

(2εi, εn − εi, εi + εn), or (εi − εn, 2εn, εi + εn),(45)

or (εn − εi, εi + εn, 2εn) etc.

The proof, as well as the notation, are completely analogous to the ones
above for type An−1. Thus, we proceed by induction on n, with the base
case having been treated in Example 3.8. We now have N := `(wn◦ ) = n2.
The 2n lowest coset representatives in Wn−1 are of the form (in the window
notation) i1 . . . in with 0 < i1 < . . . < in−1, while in can be positive or
negative. As (42) still holds, we have

γwn◦ =
∑

u∈Wn−1

t2n−1−`(u)τu
∑

v∈Wn−1

t(N−2n+1)−`(v)τv

=
∑

u∈Wn−1

t2n−1−`(u)τuγwn−1
◦

.

Thus, we need to calculate

(t+ t−1)−NΓwn◦ (ζn∅ )

=

n∑
k=1

tn+k−1(t+ t−1)−(2n−1) τk . . . τn−1

(
(t+ t−1)−(N−2n+1) Γwn−1

◦
(ζn∅ )

)
+

n∑
k=1

tn−k(t+ t−1)−(2n−1) τk−1 . . . τ1τ0τ1 . . . τn−1

·
(

(t+ t−1)−(N−2n+1) Γwn−1
◦

(ζn∅ )
)

=

n∑
k=−n+1

tn+k−1(t+ t−1)−(2n−1) τk . . . τn−1

(
(t+ t−1)−(N−2n+1) Γwn−1

◦
(ζn∅ )

)
.

Like in type An−1, the bracket is calculated by induction as follows:

[nn][n− 1, n] . . . [1n][1n] . . . [n− 1, n]ρn−1
n−2

= ρnn.
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The proof is concluded in the same way as in type An−1, based on the new
version of Lemma 4.4. �

Proof of Theorem 3.14 (2) in type Cn. Recalling Example 3.8, we see
that we can assume n ≥ 3. Fix m between n− 1 and n. Let wm be the
(unique) highest representative of a coset in Wn/Wn−1 with wm(n) = m; its
length is

`(wm) =

N − (m+ n− 1) if m > 0

N − (m+ n) if m < 0.

It is easy to check that the Schubert variety X(w−1
m ) is smooth by the

pattern-avoidance criteria in [BilL00, Theorems 8.3.16 and 8.3.17], see also
the corresponding table in [BilL00, Chapter 13].

We then check that w ≤ wm if and only if w(n) ≥ m. This can be seen
in the same way as in type A, except that now we use Proctor’s criterion
for comparison in Bruhat order of signed permutations (see, e.g., [BilL00,
Section 8.3]): i1 . . . in ≤ j1 . . . jn if and only if {ip, . . . in} ↑≥ {jp . . . jn} ↑ for
any p = 1, . . . , n, where the notation is the same as above, in type A.

We conclude the proof by applying the same procedure as above to cal-
culate Sw−1

m
; in fact, the obtained expression looks formally the same as the

corresponding one above. �

Remark 4.5. The proof method we used above in types An−1 and Cn does
not work for type Bn. Indeed, when replacing the roots 2εi with εi, formula
(35) in Lemma 4.2 does not apply because the corresponding triples (45)
are not of the form (α, β, α + β). Our method does not apply to type Dn

either, for the following reason. Note first that we can adjust the notation
used in type Cn; for instance, we let α0 := ε1 +ε2, and we exclude the factor
[nn] in the definition (34) of the functions ρnk . However, the calculation of
Y0 ρ

n
1 cannot be handled directly by formula (35) in Lemma 4.2 because it

involves expressions of the form

yα+βyα+γ

yα
+
yβyγ
y−α

.

Instead, we can cancel the denominators by applying (35) twice, but this
produces a more complicated expression, with five terms instead of two.
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