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∞-categorical monadicity and descent

Yuri J. F. Sulyma

Abstract. Riehl and Verity have introduced an “∞-cosmic” frame-
work in which they redevelop the category theory of ∞-categories using
2-categorical arguments. In this paper, we begin with a self-contained
review of the parts of their theory needed to discuss adjunctions and
monadicity. This is applied in order to extend to the ∞-categorical con-
text the classical criterion for fully faithfulness of the comparison functor
induced by an adjunction. We discuss the relation with previous work in
the literature—which primarily uses model-categorical techniques—and
indicate applications to descent theory.
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1. Introduction

Descent theory plays an important role in algebraic geometry, as well
as in the plethora of fields which draw upon its technology. Motivated
by the problem of assembling local data into global data, it is profitably
reinterpreted in terms of co/monads. For example, if E =

⋃
Ui−→B is a

cover of a topological space B, and F −→B is a presheaf on B, then E×BF
consists of the values of F on the open cover {Ui}, E ×B E ×B F consists
of the values of F on intersections {Ui ∩ Uj}, and so on. The condition for
F to be a sheaf is evidently equivalent to demanding an equivalence

F
∼ // (E ×B F

//
// E ×B E ×B F

//
//
// · · · )

of F with its simplicial resolution given by the comonad E×B (−). We refer
to [H, §2] for a review of this formalism (and some examples) in the classical
setting.

Example 1.1 ([GAGA]). Let X be a complex algebraic variety. We can
consider X in the analytic topology Xan with the sheaf H of holomorphic
functions, or in the Zariski topology1 XZar with the sheaf O of regular
functions. It is not too difficult to show that the forgetful function

(1) (Xan,H)−→(XZar,O)

is a faithfully flat map of locally ringed spaces, which is a good notion of
“cover”.

The map (1) induces a functor

Coh(O)−→Coh(H)

between categories of coherent sheaves of modules. The main theorem of
[GAGA] is that this is an equivalence of categories when X is projective. We
can interpret this as saying that coherent sheaves descend along the cover
(1) when X is projective. This is false for general X, even for X affine.

Descent theory can be formulated using only elementary category theory,
and so it is easy to ask descent questions. The preceding example shows
that answering descent questions can involve deep mathematics. It is thus
desirable to have very general theorems on when descent holds, which in
particular applications may be further simplified to explicit, easily-checkable
criteria. The general formalism involves a “comparison functor” k, and the
two basic theorems of general monadic descent theory concern when this
functor is fully faithful or an equivalence of categories (we say that descent
is satisfied in the first case and effective descent in the second).

So far, all this is classical. The rise of derived algebraic geometry and de-
rived stacks has contributed to growing consumer demand for higher descent

1Here we mean the classical Zariski topology, with no schemy generic points.
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theory. Following the classical case, this should be formulated in terms of∞-
monads. We indicate the challenges in doing so, then explain our approach
to surmounting them.

Mathematical theories frequently admit both an extrinsic (“choosing co-
ordinates”) as well an intrinsic (“coordinate-free”) approach. Typically, the
extrinsic approach is useful for carrying out calculations but awkward for de-
veloping general theory, while the reverse is true of the intrinsic approach. In
abstract homotopy theory/higher category theory2, the “extrinsic” approach
is to “model” an ∞-category via an ordinary category equipped with addi-
tional data specifying the homotopical structure (ideally a simplicial model
category). One can then work with the familiar strict morphisms, co/limits,
. . . , as long as one makes homotopical corrections along the way (co/fibrant
replacements, deriving functors, . . . ). In contrast, the “intrinsic” approach
is to work in a environment where everything is “fully derived”; as we shall
see, an ∞-cosmos is an extremely robust such environment.

The strategy of working strictly and making homotopical adjustments
along the way is extremely effective for a great deal of ∞-categorical work
(as evidenced by the ubiquity of model categories in the literature). It be-
comes problematic when working with ∞-monads: the equations defining a
point-set monad will rarely continue to hold after we make homotopical cor-
rections, thus destroying the strictness which is the point of model categories
in the first place. This is compounded when we take iterated composites of
a monad. Obviously, this presents a problem for higher descent theory. In
particular, while papers such as [H] and [AC] have had some success in treat-
ing ∞-monads and higher descent model-categorically, they must demand
fairly stringent hypotheses on the model categories and/or monads involved
in order to do so. Although Blumberg–Riehl were able to remove these hy-
potheses in [BlR], using the theory of algebraic model categories, control
over the ∞-category of algebras remained elusive. In view of the preceding
discussion, it is natural to move to a fully derived environment in order to
treat the foundations of higher descent.

At present, the most comprehensive such environment is that of quasicat-
egories, developed by Joyal and Lurie. Lurie has indeed proven a Barr–Beck
theorem in this context [HA, 4.7.4.5]. Subsequently, Riehl and Verity gave
a new proof [RV2, 7.2.7], working in the more general context of ∞-cosmoi.
However, the Barr–Beck theorem only addresses the question of when the
monadic comparison functor is an equivalence. As mentioned above, it is
also important to know when it is merely fully faithful. The purpose of this
paper is to establish this criterion in the ∞-categorical setting. We shall
deploy the Riehl–Verity framework in order to prove:

Theorem. Let X
f
//

⊥ A
u
oo be a homotopy coherent adjunction between ∞-

categories, inducing a homotopy coherent monad t = uf on X and homotopy

coherent comonad g = fu on A. Then the comparison functor A
k−→Xt to

2Opinion is divided on whether or not these terms are synonymous.
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the ∞-category of homotopy coherent t-algebras is fully faithful if and only
if every object of A is g-cocomplete, i.e., weakly equivalent to the geometric
realization of the simplicial resolution given by g.

We now extol the virtues of the Riehl–Verity framework. Classically, it
has proven fruitful to develop category theory by working in a nice (behaving
like Cat) 2-category. Thus one trades explicit constructions for 2-universal
properties. The advantage of this method is that it applies simultaneously to
develop the theory of more general categorical structures, such as enriched,
internal, or parametrized categories. This approach is often referred to as
formal category theory, e.g., in [Gr]; one could succinctly describe the Riehl–
Verity project as formal ∞-category theory, and an ∞-cosmos as an (∞, 2)-
category behaving like that of (∞, 1)-categories (or even (∞, n)-categories).

One thus expects to characterize ∞-categorical constructions via (∞, 2)-
(modelled as simplicially enriched) universal properties. But remarkably,
the majority of the theory takes place in the homotopy 2-category, and so
these universal properties are close or identical to those we’d find in the
classical case. Sufficiently slick classical proofs3 can thus be transported
nearly word-for-word into the ∞-categorical context. Indeed, once we get
the definitions out of the way, the reader will note we make scarce explicit
reference in §3 to the definitions of ∞-cosmoi.

We now turn to the outline of the paper.
In §2 we review the definitional framework and results of Riehl–Verity

that we need; this section is expository and discursive, and only sketches of
proofs are to be found therein. Readers familiar with their work may skip
to §3, which begins with a notational review for the convenience of those
who do so. Our results are contained in §3; we explain how to interpret
Theorem 3.14 in an ∞-cosmic environment, and prove it. We then indicate
some applications to descent problems, including descent spectral sequences.

Finally, we state our position on the most controversial question in the
whole of∞-cosmology: how to spell the plural of∞-cosmos. The reader will
already have observed that we adhere to the convention of the pioneering
∞-cosmologists. We have nothing further to say on the matter, except to
affirm that, when we go out for a ramble on a cold day, we do indeed carry
supplies of hot coffee with us in thermoi [J].

1.1. Acknowledgments. The author thanks his advisor, Andrew Blum-
berg, for suggesting this project and for his guidance and patience through-
out. The inspiring question was asked by David Nadler. We are grateful
to Emily Riehl for several helpful conversations and clarifications. Some of
these conversations took place at the Workshop on Homotopy Type The-
ory and Univalent Foundations of Mathematics; we thank the organizers

3The task of converting a down-to-earth classical proof into a sophisticated (2-
categorical) one—suitable for interpretation in an ∞-cosmos—is not necessarily a trivial
one.



∞-CATEGORICAL MONADICITY AND DESCENT 753

for putting the workshop together and for providing travel support. We
are grateful to an anonymous referee for several suggestions for expositional
improvement, and for pointing out some errors in a previous draft. Finally,
the typesetting of this paper has benefitted from Dominic Verity’s TEXnical
virtuosity.

2. Background

Here we review the necessary parts of the prior work of Riehl and Verity.
Full details are available in [RV1], [RV2], and [RV4]; we recommend [RV0]
for a rapid overview. In §2.1 we introduce the fundamental notions of an
∞-cosmos and its homotopy 2-category; this is the setting in which the rest
of our work takes place. In §2.2 we define homotopy coherent/commutative
adjunctions and monads, and recall the descriptions of the categories Adj
and Mnd which corepresent these. Comma ∞-categories, which are key to
the “model independence” of Riehl–Verity’s results, are reviewed in §2.3.
Limits and colimits inside ∞-categories are discussed in §2.4. In §2.5, we
review the enriched-categorical notion of weighted limits and discuss their
use in the ∞-cosmic context, which is simplicially enriched. Finally, §2.6
shows how to construct the various ∞-categories and functors relevant to
discussions of monadicity and descent.

2.1. ∞-cosmoi. Informally speaking, an ∞-cosmos is a presentation of
an (∞, 2)-category which is sufficiently well-behaved for us do “formal ∞-
category theory” (à la [Gr]) inside it. (The name is meant to evoke Street,
not Bénabou, cosmoi.) The definition is reminiscent of the properties en-
joyed by fibrant objects in any model category enriched (cf. [HTT, §A.3.2])
over the Joyal model structure on sSet, and indeed these are examples [RV4,
2.2.1]. The reference for this section is [RV4, §2].

Definition 2.1 (∞-cosmos). Let E be a simplicially enriched category,
equipped with two distinguished classes of 1-cells: the equivalences, denoted
∼−→, and the isofibrations, denoted�. For psychological reasons, we refer to

the objects of E as∞-categories and its arrows as functors. A functor which
is both an equivalence and an isofibration will be called an acyclic fibration
and denoted ∼−�. We assume that equivalences satisfy the 2-of-6 property,
that isofibrations are closed under composition, and that all isomorphisms
are acyclic fibrations.

We shall say that E is an ∞-cosmos if it satisfies the following axioms:

(1) (Completeness). As a simplicially enriched category, E possesses a
terminal object 1, cotensors EJ of objects E by all simplicial sets J ,
and pullbacks of isofibrations along any functor.

(2) (Fibrancy). All of the maps E� 1 are isofibrations.
(3) (Pullback stability). Isofibrations and acyclic fibrations are stable

under pullback along any functor.
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(4) (SM7). If E
p
�B is an isofibration in E and I

i
� J is an inclusion

of simplicial sets then the Leibniz cotensor i t̂ p : EJ → EI ×BI BJ

is an isofibration, and further an acyclic fibration whenever p is an
acyclic fibration in E or i is an acyclic cofibration in sSetJoyal.

(5) (Cofibrancy). All objects enjoy the left lifting property with respect
to all acyclic fibrations in E .

We will also require an ∞-cosmos to have limits of transfinite towers
of isofibrations, and for isofibrations to be stable by retracts. We write
map(A,B) ∈ sSet for the mapping space between two objects A, B of E .

Remark 2.2. The axioms can be made stronger or weaker, depending on
what one wants to prove. More fundamental is the style of arguing about∞-
categories: one can imagine working with quasicategories throughout, and
the axioms record those properties of quasicategories we use (which turn
out to be satisfied much more generally). For example, in [RV4] the axioms
only require cotensors by simplicial sets with finitely many nondegenerate
simplices; and the ability to take limits of transfinite towers of isofibrations
is absent altogether. Our “infinitary” assumptions are necessary for the
constructions in §2.6 and §3.2.

Remark 2.3. Our assumption that all objects are cofibrant has the cru-
cial consequence that the mapping spaces map(A,B) are actually quasicat-
egories, and that map(A,−) takes isofibrations (resp. acyclic fibrations) in
E to isofibrations (resp. acyclic fibrations) of quasicategories [RV4, 2.1.8].
We refer to [RV1, §2.2] for a review of quasicategories. One can get by by
merely assuming that every object of E has a cofibrant replacement (as in
[RV4], for example); in this case one should speak of weak equivalences of E
rather than equivalences. We have chosen to assume all objects cofibrant in
order to simplify the exposition.

Definition 2.4. If A is an∞-category in an∞-cosmos E , the the underlying
quasicategory of A is mapE(1, A). We define objects and maps in abstract
∞-categories in terms of their underlying quasicategories.

Example 2.5. In [RV4, §2.2], Riehl and Verity present several ways to
easily produce examples of ∞-cosmoi. Chief among these examples are:

• Cat, the ∞-cosmos of ordinary categories. Equivalences are equiv-
alences of categories, and isofibrations are functors with the right
lifting property with respect to {•} ↪→ {• ∼= ?}.
• qCat, the ∞-cosmos of quasicategories. Equivalences and isofibra-

tions are as usual.
• The ∞-cosmos of θn-spaces, a model of (∞, n)-categories.
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Simplicial categories do not form an ∞-cosmos: although there is a Quillen
adjunction

sSetJoyal

C //
⊥ sSetCat,
N
oo

the Bergner model structure is not cartesian closed, and so [RV4, 2.2.3] is
inapplicable.

Example 2.6 ([RV4, 2.1.11]). If A is an ∞-category in an ∞-cosmos E , we
let E/A denote the full simplicial subcategory of the usual simplicial slice
category spanned by the isofibrations B�A. This is again an ∞-cosmos,
called the slice ∞-cosmos over A. Thus the ∞-cosmic framework captures
parametrized ∞-category theory.

With the ∞-cosmic framework in hand, Riehl and Verity are able to red-
erive a great deal of the theory of ∞-categories. Their proofs are “formal”
in nature—in contrast to the combinatorial arguments of [HTT]—and thus
permit arguments very close to the classical case. Moreover, as the above
examples indicate, their work is not limited to developing the category the-
ory of (∞, 1)-categories: it simultaneously applies to develop the category
theory of (∞, n)-categories and recapture that of ordinary categories.

However, the import of their work is not merely that∞-cosmoi provide a
robust environment in which to develop the category theory of∞-categories.
They also show (somewhat unexpectedly) that a much simpler structure
suffices for much of this development.

Definition 2.7. The homotopy 2-category of an ∞-cosmos E is the (strict)
2-category Ho(E) with the same underlying category as E , but with hom-
categories hom(E,F ) given by

hom(E,F ) := h(map(E,F ))

for E, F ∈ E . Here h sends a quasicategory (or simplicial set) to its homo-
topy category.

Remark 2.8. When we drop the assumption that all objects in E are cofi-
brant, the 2-category just defined is notated h∗E , and the correct definition
of Ho(E) is the full subcategory of h∗E spanned by the (images of) cofibrant
objects of E .

Recall that a 1-cell A
f−→B in a 2-category C is an equivalence if there

is a 1-cell B
g−→A and isomorphic 2-cells 1A

∼
=⇒ gf and fg

∼
=⇒ 1B. The

following proposition is one of the first indications that Ho(E) remembers
enough information about E to develop the category theory of its objects.

Proposition 2.9 ([RV4, 3.1.8]). A functor A−→B is an equivalence in the
∞-cosmos E if and only if it is an equivalence in the homotopy 2-category
Ho(E).
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For this reason, we will sometimes write A = B to mean that there exists
an equivalence A ∼−→ B in E (or, if there is an obvious map A−→B in play,
that this particular map is an equivalence).

2.2. Homotopy coherent adjunctions. The reference for this section
is [RV2, §3].

Definition 2.10. Let C be a 2-category. An adjunction in C consists of

• a pair of objects X, A of C;
• maps X

f−→A and A
u−→X;

• two-cells 1X
η

=⇒uf and fu
ε

=⇒ 1A;
• satisfying the triangle identities εf · fη = 1f and uε · ηu = 1u.

We call f the left adjoint, u the right adjoint, η the unit, and ε the counit

of the adjunction. We indicate an adjunction by writing f a u, X
f
//

⊥ A
u
oo

or f : X
//

⊥ A :uoo .

Definition 2.11. Let C be a 2-category. A monad in C consists of an object
X ∈ C and a monoid t in the monoidal category hom(X,X).

When C = Cat, these specialize to the usual notions. Since these notions
are equationally defined, they are corepresentable, i.e., there is a 2-category
Adj (resp. Mnd) such that adjunctions (resp. monads) in C are the same
thing as 2-functors Adj → C (resp. Mnd → C). The explicit description
of Adj is due to Schanuel and Street [SS], of Mnd to Lawvere [L]. Before
giving the definition, we set some notation.

Definition 2.12. As usual, ∆+ and ∆ will denote the category of finite
linearly ordered sets and the full subcategory of nonempty sets. We shall
use the notation ∆∞ (respectively ∆−∞) to denote the subcategory of ∆
consisting of those maps which preserve top (respectively bottom) elements.

Definition 2.13. The free adjunction is the small 2-category Adj with two
objects + and −, with hom-categories given by

Adj(+,+) = ∆+ Adj(−,−) = ∆op
+

Adj(−,+) = ∆∞ ∼= ∆op
−∞ Adj(+,−) = ∆−∞ ∼= ∆op

∞

as summarized in the following picture:

+

∆−∞∼=∆op
∞

((
∆+ 77 −

∆∞∼=∆op
−∞

hh ∆op
+

ww

We write +
f
−→− (resp. − u−→+) for the map corresponding to [0] ∈ ∆−∞

(resp. to [0] ∈ ∆∞).
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Definition 2.14. The free monad is the small 2-category Mnd which is the
full subcategory of Adj on the object +. We write t for the endomorphism
corresponding to [0] ∈ ∆+.

Definition 2.15. Any 2-category gives rise to a simplicially enriched (in
fact, quasicategorically enriched) category by identifying the hom-categories
with their nerves (this uses the fact that the nerve preserves products). This
process is the right adjoint N∗ in a 2-adjunction

(simplicial categories)
h∗ //
⊥ (2-categories)
N∗
oo

arising from the Quillen adjunction sSetJoyal

h //
⊥ Cat
N
oo ; we have already

made use of h∗ in defining the homotopy 2-category Ho(E) of an ∞-cosmos
E .

Applying this to the 2-categories Adj and Mnd, we obtain simplicially
enriched categories which we continue to notate Adj and Mnd. Since N is
fully faithful, this conflation is anodyne.

Remark 2.16. The calculus of string diagrams for 2-categories extends nat-
urally to describe the n-arrows of simplicial categories which arise in this
way. Riehl and Verity show in [RV2] that when specialized to Adj, this
graphical calculus admits a variation—the calculus of “strictly undulating
squiggles”—enabling a simple combinatorial description of the n-arrows of
Adj which behaves well with respect to both vertical and horizontal compo-
sition. Strikingly, they use this to show that Adj is cofibrant in the Bergner
model structure on simplicial categories [Be], and to work with explicit cel-
lular presentations of Adj.

Notation 2.17. The symbol − is often used as a placeholder symbol in
category theory. To avoid confusion with the object − of Adj, we will use
� instead. Thus Adj(�,+) is a functor Adjop → sSet, but Adj(−,+) is
an object of sSet.

Definition 2.18. Let E be an∞-cosmos with homotopy 2-category Ho(E).

• A homotopy coherent adjunction, or ∞-adjunction, in E is a simpli-
cial functor Adj→ E .
• A homotopy commutative adjunction, or 1-adjunction, in E is a 2-

functor Adj→ Ho(E).
• A homotopy coherent monad, or ∞-monad, in E is a simplicial func-

tor Mnd→ E .
• A homotopy commutative monad, or 1-monad, in E is a 2-functor

Adj→ Ho(E).

Warning 2.19. When an ∞-category X is presented by a 1-category (e.g.,
a simplicial model category) X , 1-monads on X as defined above must not
be confused with “point-set” monads on X . The former are monads on
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Ho(X ); the latter sometimes induce ∞-monads on X, but we shall make no
pre-derived use of them. It does not appear to be possible to give a simple
definition of ∞-monads on X purely in terms of X unless X is very special,
e.g., a simplicial model category in which everything is bifibrant.

Parallel 2.20. Let X
F //
⊥ A
U
oo be a simplicial Quillen adjunction between

simplicial model categories X and A. X and A model (∞, 1)-categories
X and A. For example, to obtain quasicategorical models, we would take
homotopy coherent nerves of the subcategories of bifibrant objects:

X := N(Xcf) and A := N(Acf).

By [RV1, 6.2.1], there is an induced∞-adjunction X
f
//

⊥ A
u
oo . These functors

are obtained by correcting F and U to land in bifibrant objects. For example,
if every object of X is cofibrant and every object of A is fibrant, then no
correction is needed.

Work of Dugger, Rezk, Schwede, and Shipley shows that a Quillen ad-
junction between left proper combinatorial model categories is functorially
equivalent to a simplicial Quillen adjunction as above; see [BlR, §A] for
discussion of this. Thus we again get an induced ∞-adjunction between
∞-categories.

Even more generally, Mazel-Gee [MG] has shown that an arbitrary Quillen
adjunction between model categories induces an ∞-adjunction between ∞-
categories. In this case X is modelled by the homotopy coherent nerve of
a Bergner-fibrant replacement of the Dwyer–Kan hammock localization of
X . However, at this level of generality we cannot necessarily obtain the
Blumberg–Riehl resolutions (cf. Parallel 3.1) which are crucial for maintain-
ing control in X over the constructions we do with X.

Parallel 2.21. Let X be an (∞, 1)-category modelled by a simplicial model
category X , and let T be a simplicial monad on X . Under reasonable condi-
tions, the category X T of T-algebras is a simplicial model category in such a

way that the monadic adjunction FT : X //
⊥ X T :UT
oo is simplicial Quillen

[H, §C]. We thus obtain an ∞-adjunction out of X, and hence an ∞-monad
t on X.

Theorems 4.3.9, 4.3.11, 4.4.11, and 4.4.18 of [RV2] show that every 1-
adjunction Adj→ Ho(E) lifts to an ∞-adjunction Adj→ E , and moreover
that such lifts are unique in a suitable homotopical sense. The proof pro-
ceeds by explicit analysis of the combinatorics of such lifting problems, made
possible by the squiggle calculus mentioned above. In contrast, it is not pos-
sible in general to lift 1-monads to ∞-monads.

2.3. Comma ∞-categories.

Definition 2.22. Let B
f−→A

g←−C be a pair of functors in the ∞-cosmos
E . The comma ∞-category (f ↓ g) is defined to be the pullback in the
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diagram below:

(f ↓ g)y
����

// A∆1

〈cod, dom〉
����

C ×B
g×f
// A×A

In the case of an identity functor, we write (f ↓A) instead of (f ↓ idA).

Remark 2.23. (f ↓ g) should be thought of as having objects triples 〈b ∈
B, c ∈ C, fb

φ−→ gc ∈ A〉. The reason for writing C × B and 〈cod, dom〉
instead of the seemingly more natural B × C and 〈dom, cod〉 in the above
diagram is that (f ↓ g) is a “(left C, right B)-bimodule”. By this we mean
that (f ↓ g) carries a covariant action by C and a contravariant action by B,
and these commute. This perspective is extremely useful, and is the subject
of [RV5]. Some of the proofs in §3.3 use the 1-categorical (but simplicially
enriched) version of this “calculus of modules”, for which a good reference
is [R, §§4.1 and 4.3].

Remark 2.24. Comma ∞-categories are important for (at least) two rea-
sons. First, general 2-category theory would have us define many notions
representably, carrying around “generalized objects” Z → A (since we can’t
“look inside” our ∞-categories). Comma categories frequently (although
perhaps not always) allow us to dispense with this artifice and work more
directly with the∞-category A, thus keeping our intuition close to the clas-
sical case. Secondly, as we shall see, all the basic notions of category theory
can be expressed in terms of commas. Once it is shown that functors of
∞-cosmoi preserve commas [RV5, 2.3.10], it follows that∞-category theory
developed in the ∞-cosmic framework is “model independent”. See [RV0,
§§3.6 and 4.5] for further discussion.

Example 2.25 ([RV1, 4.4.2 and 4.4.3]). Let X
f−→A and A

u−→X be a pair
of functors between∞-categories. Then f a u if and only if (f ↓A) = (X ↓u)
in the slice ∞-cosmos E/(A×X):

(f ↓A)

    

∼ // (X ↓ u)

}}}}

A×X
Example 2.26. If a and b are objects of an ∞-category A, the comma
∞-category (a ↓ b) is a model of the mapping space between a and b inside
E .

Notation 2.27. If a and b are objects of an ∞-category A, we write
A(a, b) := map(1, (a ↓ b)) for the underlying quasicategory of (a ↓ b); by

[RV0, §3.2], this is a Kan complex. If a map a
f−→ b is given, we write

A(a, b)f to denote A(a, b) equipped with the basepoint f .
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Lemma 2.28. If J ∈ sSet, then (f ↓ g)J = (fJ ↓ gJ).

2.4. Limits and colimits in ∞-categories. The reference for this sec-
tion is [RV1, §5].

Definition 2.29. An absolute left lifting diagram in a 2-category consists
of the data

(2) ⇑λ

C

ψ

��

A
φ
//

`
??

B

inducing unique factorizations of 2-cells:

Z
q
//

p

��
⇑ζ

C

ψ

��

A
φ
// B

=

Z
q
//

p

��

∃!⇑

⇑λ

C

ψ

��

A
φ
//

`

>>

B.

The pasting operation can be broken down as

hom(Z,C)(`p, q)
paste with λ

//

whisker with ψ ((

hom(Z,B)(φp, ψq)

hom(Z,B)(ψ`p, ψq)

precompose vertically with λ

66

and the definition is demanding that “paste with λ” be a bijection for all

spans A
p←−Z q−→C.

It will be useful to characterize absolute lifting diagrams in terms of
comma categories rather than a test object Z. In fact, (2) is an absolute
left lifting diagram if and only if the map (` ↓C)→ (φ ↓ ψ) induced by λ is
an equivalence [RV1, 5.1.3].

Definition 2.30. Let J ∈ sSet. We say that an ∞-category E admits

colimits of a family of diagrams D
d−→EJ of shape J if there is an absolute

left lifting diagram

⇑λ

E

c
��

D

lim
−→

>>

d
// EJ

in Ho(E); here c is the constant map. In this case we call λ a colimiting
cone.

The definition asks for the existence of a functor D−→E and a 2-cell λ
satisfying certain universal properties. In our work in §3.2, the functor and
2-cell will always exist: the question will be whether they define an absolute
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left lifting diagram. As mentioned above, this is the case if and only if the
map (lim

−→
↓ E)→ (d ↓ c) induced by λ is an equivalence.

Remark 2.31. When the ∞-cosmos E is cartesian closed, one can give a
completely analogous definition of colimits for shapes J ∈ E . If E is not
cartesian closed, a different approach must be used; see [RV5]. We shall
only require diagram shapes given by simplicial sets.

2.5. Weighted limits. The last section discussed limits in ∞-categories;
we will also require limits of ∞-categories. In §2.6 this will be employed to
tame the zoo of∞-categories unleashed by an adjunction, by characterizing
them by universal properties. The first half of this section is our telling of
a standard story; the reference for the second half is [RV2, §5.2].

Being in the context of simplicially enriched categories imposes enriched
category theory on us. Limits are one area where very different behavior
arises in the enriched world than for ordinary categories: ordinary limits
still make sense in the enriched case, but are woefully inadequate. The
enriched context demands we consider weighted limits, a notion we suggest
some intuition for before giving the precise definition.

Let V be a Bénabou cosmos: a bicomplete closed symmetric monoidal
category (“a category suitable for enriching over”). We shall only need

V = sSet, but the theory is perfectly general. Let A T−→C be a V-functor
between V-categories A and C, with A small. Remember that the limit lim

←−
T

of T is defined by requiring it to represent cones over T ; that is, we have a
natural correspondence between

Z
φ−→ lim
←−

T and

Z
φa

}}

φa′

""

Ta
// · · ·oo // Ta

′.
oo

In the enriched context, we can demand richer structure

Wa
φa−→C(Z, Ta) ∈ V

than just specifying a single map φa, and we define {W,T}A, the limit of T
weighted by W , by demanding a natural correspondence between

Z
φ−→{W,T}A and

Z

φa(Wa)

}}

φa′ (Wa′)

""

Ta
// · · ·oo // Ta

′.
oo

More precisely, let A W−→V be a V-functor, which we call the weight. The
weighted limit {W,T}A is defined by the universal property

(3) C(Z, {W,T}A) = VA(W, C(Z, T (�))).
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Important cases include

{(constant at object V ∈ V), T}A =
(

lim
←−

T
)V

= lim
←−

T (�)V ,

a cotensor of the ordinary limit, and {A(a,−), T}A = T (a) (the latter, as
usual, is more or less the Yoneda lemma). Importantly,

{�, T}A : (VA)op → C

is a right adjoint, and so takes colimits of weights to limits of weighted limits.
Combined with the two cases just mentioned, this gives the end formula

{W,T}A =

∫
a∈A

TaWa

which in particular shows that having all weighted limits is equivalent to
having all V-enriched ends and all cotensors over V. Since V-enriched ends
can be expressed in terms of cotensors over V and ordinary limits, we see
that having all weighted limits is equivalent to having all ordinary limits
and all cotensors over V.

In general, an∞-cosmos will not have all weighted limits. However, there
is a conceptually elegant description of the weighted limits which do exist. If
A is a small simplicial category, say that a natural transformation in sSetA

is a projective cofibration if it has the left lifting property with respect to
level acyclic fibrations. The projective cofibrations are evidently the closure
of the set

{∂∆n ×A(a,�)�∆n ×A(a,�) | n ≥ 0, a ∈ A}

of projective cells in the Galois correspondence defined by left/right lifting
properties. In particular, a natural transformation is a projective cofibration
if and only if it is a retract of a transfinite composite of pushouts of projective
cells.

Proposition 2.32 ([RV2, 5.2.4]). An ∞-cosmos has all limits weighted by
projective cofibrant weights.

Indeed, {�, T}E turns all the types of colimits used to build projective
cofibrations from projective cells into types of limits which are guaranteed
to exist by the ∞-cosmos axioms (we added some axioms for precisely this
purpose). We are thus reduced to showing that limits weighted by projec-
tive cells exist and are isofibrations; but this follows immediately from the
completeness and SM7 axioms for an ∞-cosmos.

Warning 2.33. If L is an object of E is defined by a weighted limit, and
thus satisfying a sSet-enriched universal property, it is generally not true
that the image of L in Ho(E) will have the analogous Cat-enriched universal
property. However, it may satisfy a weaker uniqueness condition guarantee-
ing its uniqueness up to isomorphism, although not up to automorphisms.
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Let L ∈ E , and let W
φ

=⇒C(L, T (�)) be a weighted cone. We say that φ
displays L as a weak 2-limit of T weighted by W if the induced functors

C(Z,L)−→VA(W, C(Z, T (�))),

rather than being equalities as in (3), are smothering : surjective on objects,
full, and conservative. For example, comma categories are weak 2-limits in
this sense [RV1, 3.3.18], a fact which we will use in the proof of Lemma 3.19.

Since the above properties can be given by right lifting properties, it fol-
lows that fibres of a smothering functor, while not necessarily contractible,
are at least (nonempty) connected groupoids (i.e., classifying spaces of dis-
crete groups). For further details, see [RV1, §3.3].

2.6. Monadic adjunction. Suppose given a homotopy coherent monad t
on an∞-category X. In this section we construct the∞-category Xt of ho-

motopy coherent t-algebras, as well as the monadic adjunction X
f t
//

⊥ Xt

ut
oo .

When t arises from a homotopy coherent adjunction X
f
//

⊥ A
u
oo , we construct

the comparison functor A
k−→Xt which will be the subject of §3. The ref-

erence for this section is [RV2, §§6 and 7].
Denote the corepresentable functors by Adj± = Adj(±,�). Denote the

left Kan extension a restriction adjunction arising from the inclusion of
Mnd into Adj by

sSetMnd
lan //
⊥ sSetAdj

res
oo .

Definition 2.34. Let t be a homotopy coherent monad on X, given by a

simplicial functor Mnd
H−→E . The ∞-category Xt of homotopy coherent

t-algebras (or ∞-t-algebras) is defined by the weighted limit

Xt := {resAdj−, H}Mnd.

This is legitimate by Proposition 2.32 and [RV2, 6.1.8]. Since

Mnd ↪→ Adj

is fully faithful, we have {resAdj+, H}Mnd = H(+) = X. The monadic

adjunction f t : X
//

⊥ Xt :utoo is defined to be coclassified by

{resAdj�, H}Mnd : Adj→ E .

Parallel 2.35. Our homotopy coherent t-algebras correspond to the strictly
T-complete objects of [H, 4.14]. See also [H, 4.20].

Now suppose that t comes from a homotopy coherent adjunction X
f
//

⊥ A
u
oo
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in E , coclassified by a simplicial functor Adj
T−→E . An inspection of uni-

versal properties shows that

{lan resAdj−, T}Adj = {resAdj−, resT}Mnd = Xt,

so we may take all weighted limits over Adj.

Definition 2.36. The comparison functor A
k−→Xt is defined by requiring

the diagram of ∞-categories on the right to be induced by the diagram of
weights on the left.

lan resAdj−
//

⊥
��

counit
��

Adj+
oo

Adj−
Adjf

//
⊥ Adj+

Adju
oo

 

X ⊥
f
//
A

u
oo

k
��

X ⊥
f t
//
Xt

ut
oo

That is, k is induced by the counit of the lan a res adjunction, valued
at Adj−. [RV2, 7.1.5] shows that lan resAdj− is the subfunctor of Adj−

consisting of maps which factor through + (and the counit is the inclusion);
in particular, lan resAdj−(+) = ∆∞ and lan resAdj−(−) = ∆op.

3. Comparison and cocompletion

In this section we prove the main theorem. Background on fully faithful
functors appears in §3.1. In §3.2 we state and prove our main result, char-
acterizing when the comparison functor induced by a monad is fully faithful
in terms of a “cocomplete” criterion. Applications to descent, including
descent spectral sequences, are discussed in §3.3.

We begin by establishing the notation to be used throughout this section,
and reviewing that which was introduced in §2. Recall that the “walking
adjunction” is denoted by Adj, the “walking monad” by Mnd; we write

sSetMnd
lan //
⊥ sSetAdj

res
oo

for the resulting left Kan extension a restriction adjunction. Corepresentable
functors are written Adj± := Adj(±,�).

Fix once and for all an ∞-cosmos E and homotopy coherent adjunction

Adj
T−→E . We write X

f
//

⊥ A
u
oo for the image of +

f
//

⊥ −
u
oo in E . Let t = uf

(resp. g = fu) be the (co)monad induced on X (resp. A). The monadic

adjunction is denoted X
f t
//

⊥ Xt

ut
oo , the comparison functor A

k−→Xt, and

the descent comonad gt = f tut. All this is summarized in the following
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picture.

X

t

++
f
//

⊥ A

g

rr

u
oo

k
��

X
f t
//

⊥ Xt

gt

jj

ut
oo

Recall that this diagram is obtained by applying {�, T}Adj to the following
diagram of weights:

lan resAdj−
//

⊥
��

counit
��

Adj+
oo

Adj−
Adjf

//
⊥ Adj+

Adju
oo

Parallel 3.1. The algebraic model category approach of [BlR] provides per-
haps the closest link between model-categorical input and∞-categorical out-

put. Let X
F //
⊥ A
U
oo be a simplicial Quillen adjunction between cofibrantly

generated4 simplicial model categories, inducing an∞-adjunction X
f
//

⊥ A
u
oo

between the (∞, 1)-categories X = N(Xcf) and A = N(Acf). By [BlR, 6.1],
there is a simplicially enriched fibrant replacement monad R = (R, r, µ) on
A and a simplicially enriched cofibrant replacement comonad Q = (Q, q, ν)
on X ; thus f = N(RF |Xcf

) and u = N(QU |Acf
). Let T = QURF and

G = RFQU , which model the ∞-monad t = uf = N(T |Xcf
) on X and the

∞-comonad g = fu = N(G|Acf
) on A. By [BlR, 6.3], there are point-set

level simplicially enriched resolutions

Q ζ // TQ ζ //

// T
2Qoo

ζ //

//

//
· · ·oo

oo

R GRξoo // G2Rξoo

oo

//

// · · ·
oo

oo
ξoo

RFQ // GRFQoo //

//
G2RFQ

oo

oo

//

//

//
· · ·

oo

oo

oo

QUR // TQURoo

//

// T 2QURoo

oo

//

//

//
· · ·

oo

oo

oo

4Consult Aside 3.4 and the remarks after Theorem 3.3 of [BlR] for precisely what we
mean by this term here.
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presenting

1 η // t
η //

// t
2oo

η //
//

//
· · ·oo

oo

1 gεoo // g2εoo
oo

//

// · · ·
oo

oo
εoo

f // gfoo //

//
g2f

oo

oo

//

//

//
· · ·

oo

oo

oo

u // tu
//

//oo t2uoo

oo

//

//

//
· · ·

oo

oo

oo

at the level of∞-categories. Here the unit η and counit ε of the∞-adjunction
f a u are modelled on the point-set level, in terms of the unit η̊ and counit
ε̊ of the point-set adjunction F a U , by

ζ : Q
ν // Q2 Qη̊

// QUFQ
QUr
// QURFQ

and

ξ : RFQUR
RFq
// RFUR

Rε̊ // R2 µ
// R.

We will summon these assumptions and notations with the phrase, “suppose
given model-categorical input”.

3.1. Fully faithful functors. We recall the∞-cosmic definition of “fully
faithful”, and demonstrate some elementary facts about it.

Definition 3.2. A functor P
φ−→Q is fully faithful if the induced functor

(P ↓P )→ (φ ↓ φ) is an equivalence. If E
e−→P is a generalized object of P ,

we say that φ is fully faithful on maps out of e if (e ↓ P ) → (φe ↓ φ) is an
equivalence.

These are equivalent to asking that

P

φ

��

P
φ
// Q

or

P

φ

��

E

e
??

φe
// Q

be absolute left lifting diagrams. Explicitly, φ is fully faithful if and only

if it induces a bijection between 2-cells Z
p
//

⇓
q
//P and Z

φp
//

⇓
φq
//Q for every

parallel pair Z
p
//

q
//P in Ho(E) (i.e., φ is “representably fully faithful”).

Remark 3.3. When E = qCat it suffices to consider only ordinary objects
(E = 1) by [RV1, 6.1.8]. In particular, this is fine when given model-
categorical input. For more general E (such as a slice ∞-cosmos), however,
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φ could be fully faithful on maps out of e for all ordinary (or “global”)

objects 1
e−→P , but fail to be fully faithful.

Parallel 3.4. In the∞-cosmos of quasicategories, we recapture Lurie’s def-

inition [HTT, 1.2.10.1]. If P Φ−→Q is a simplicial functor between simplicial

categories P and Q, then the induced functor N(P)
N(Φ)−→ N(Q) between qua-

sicategories is fully faithful if and only if Φ is a DK-embedding (locally a
weak equivalence of simplicial sets).

Example 3.5. The comparison functor A
k−→Xt is fully faithful on maps

out of the comonad g, viewed as a generalized object A
g−→A. Indeed,

(g ↓A) = (fu↓A) = (u↓u) = (utk↓utk) = (f tutk↓k) = (kfu↓k) = (kg ↓k).
This is implicit in Theorem 3.14: everything has a resolution by objects out
of which k is fully faithful, so we can reduce to asking if this resolution is a
presentation.

The results in the remainder of this subsection are not needed in the
sequel, but may be of independent interest. (They appeared in earlier at-
tempts to prove Theorem 3.14.)

Lemma 3.6. If φ is fully faithful, then so is φJ for any J ∈ sSet.

Proof. Apply Lemma 2.28 and [HTT, 1.2.7.3]. �

Lemma 3.7. A fully faithful functor reflects colimits.

Proof. Consider a diagram of the form

(4)
⇑λ

P

c

��

φ
// Q

c
��

K

L

>>

D
// P J

φJ
// QJ

in which φ is fully faithful and J ∈ sSet. The statement means that the
triangle is an absolute left lifting diagram whenever the composite diagram
is. Consider the commutative diagram

(L ↓ P )
λ //

φ

��

(D ↓ c)

φJ

��

(φL ↓ φ)
φJλ

// (φJD ↓ cφ).

The vertical arrows are equivalences by assumption and Lemma 3.6. If the
composite diagram in (4) is an absolute left lifting diagram, then the bottom
horizontal arrow is an equivalence. In this case the top horizontal arrow must
be an equivalence, which is precisely the condition for the triangle of (4) to
be an absolute left lifting diagram. �
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3.2. Proof of main result. In this section we prove the main result. In
order to state it, we first require some more notation.

Consider the natural transformation

∆op // //

!
  

⇓
∆op

+

1
[−1]

>>

Multiplying with Adj− and applying the composition map

Adj− ×∆op
+ −→Adj−

yields a natural transformation

Adj− ×∆op
compose

//

project
//⇓ Adj−

which is evidently compatible with the counit lan resAdj−�Adj− (recall
that this is the inclusion of maps out of − which factor through +). We
thus get a commutative diagram of weights

(5)

Adj− Adj− ×∆op

project
oo

compose
oo

⇓

ww

lan resAdj−

include

OO

lan resAdj− ×∆op

project
oo

compose
oo

⇓

include

OO

where the dotted arrow commutes with the composition maps, not the pro-
jection maps. The existence of the dotted arrow is crucial for the proof of
the main theorem, and follows from the fact that every element of ∆op ⊂
Adj(−,−) factors through +. (In contrast, the composition map

Adj− ×∆op
+ −→Adj−

does not factor through lan resAdj−.)

Notation 3.8. We define the maps in the diagram to the right by requiring
it to come from applying {�, T}Adj to (5):

Adj− Adj− ×∆op

project
oo

compose
oo

⇓

ww

lan resAdj−

include

OO

lan resAdj− ×∆op

project
oo

compose
oo

⇓

include

OO

 

A
g•

//

c
//⇓α

k

��

A∆op

k∆op

��

Xt
gt• //

c
//⇓αt

˜̀

<<

(Xt)∆op
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where ˜̀ commutes with the resolution maps g• and gt•, not the constant
maps c.

Remark 3.9. Let’s unpack what all these maps mean by looking at the
familiar case E = Cat. The comparison functor k sends an object a ∈ A
to the object ua with its canonical t-algebra structure tua = ufua

uε−→ua.
The comonads g and gt give, for any a ∈ A or x ∈ Xt, augmented simplicial
objects

a gaεoo // g2a
εoo
oo

//

// · · ·
oo

oo
εoo

(6)

and

x gtxεtoo // (gt)2xεtoo
oo

//

// · · · ;
oo

oo
εtoo

(7)

the maps g• and gt• pick out the simplicial part of these, and then α and αt

come from the counit augmentation maps ε and εt. The simplicial part of
(6) almost factors through f : all the objects gna are in the image of f , and
so are all the maps between them except the top εs. This is what the map
˜̀ is for5. A t-algebra x with structure map tx

φ−→x has a resolution

(8) x
η
// tx

//

//
φ
oo t2xoo

oo

//

//

//
· · · ,

oo

oo

oo

and then ˜̀x is the simplicial object in A obtained by applying f to (8) and

throwing in the maps ftn−1x
ε←− gftn−1x = ftnx. We then indeed recover

the simplicial part of (6) by taking x = ka, or the simplicial part of (7) by
applying k levelwise.

Definition 3.10. Let g be a homotopy coherent comonad on an∞-category

A. A generalized object E
a−→A is g-cocomplete if αa is a colimiting cone.

It is equivalent to ask that

⇑αa

A

c
��

E

a

<<

g•a
// A∆op

be an absolute left lifting diagram, or that (a ↓A) = (g•a ↓ c).

Definition 3.11. If the colimit of g•a exists, we call it the g-cocompletion
of a and notate it a∨g . It is characterized by (g•a ↓ c) = (a∨g ↓ A). Thus a is
g-cocomplete if and only if a∨g exists and is equal to a.

Parallel 3.12. Our g-cocomplete objects correspond to the strongly K-
cocomplete objects of [H, 4.33].

5This is how we originally arrived at ˜̀. Another interpretation is given in the comments
preceding Lemma 3.19.
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Parallel 3.13. Suppose given model-categorical input. The derived G-
cocompletion a∨G of a ∈ A is defined as the geometric realization of a Reedy
cofibrant replacement of the simplicial object G•Ra given by the Blumberg–
Riehl homotopical resolution. This is evidently compatible with our defini-
tion. The coaugmentation a∨g → a is modelled by the zig-zag

a∨G
// Ra aoo

∼oo

at the point-set level.

We can now state the main theorem.

Theorem 3.14. The comparison functor k is fully faithful if and only if
g-cocompletion is the identity, in the sense that (g• ↓ c) = (A ↓ A). More

generally, k is fully faithful on maps out of a generalized object E
a−→A if

and only if a is g-cocomplete.

Corollary 3.15. Suppose we are given model-categorical input. Then the

comparison functor A
k−→Xt (in the world of ∞-categories) is fully faithful

on maps out of a ∈ A if and only if a is weakly equivalent to its derived
G-cocompletion a∨G (in the world of model categories).

Warning 3.16. One might colloquially pronounce (g• ↓ c) = (A ↓ A) as
“every object of A is g-cocomplete”. This is potentially misleading: another
natural interpretation of that phrase is that (g•a ↓ c) = (a ↓ A) for every

object 1
a−→A. When E is qCat (or biequivalent to it), these are equivalent

by [RV1, 6.1.8]; in particular, this interpretation is fine when given model-
categorical input. However, as in Remark 3.3, the pointwise statement is in
general strictly weaker.

When A has enough colimits, there is an easy proof of Theorem 3.14 not
requiring any new results. First, a definition:

Definition 3.17 ([RV2, 7.2.1]). Define the diagram of ∞-categories on the
right to be induced by the diagram of weights on the left.

Adj+ ×∆op //
(u◦�)×∆op

//

��

Adj+×(u◦�)
��

Adj− ×∆op

��

Adj+ ×∆∞ // Wsp
 

S(u)y
//

����

X∆∞

Xu◦�
����

A∆op

u∆op
// X∆op

We call S(u) the∞-category of u-split simplicial objects. We say that A ad-

mits colimits of u-split simplicial objects if there exists a functor S(u)
lim
−→−→A

and a 2-cell defining an absolute left lifting diagram

⇑

A

c

��

S(u)

lim
−→

;;

k
// A∆op

.
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Proposition 3.18. Theorem 3.14 holds if A admits colimits of u-split sim-
plicial objects.

Proof. By [RV2, 7.2.4], k admits a left adjoint Xt `−→A, given by

` := lim
−→
◦ ˜̀,

and the comonad `k so induced on A is nothing but g-cocompletion �∨g .
Thus g-cocompletion is the identity if and only if the counit of ` a k, which
is the coagumentation from the cocompletion, is an isomorphism. But the
counit of an adjunction is an isomorphism if and only if the right adjoint is
fully faithful [RV5, 5.2.9]. �

In general, we may not be able to define ` on objects of Xt not in the
image of k. However, the “nonrepresentable left adjoint” ˜̀ turns out to
suffice for the argument. In place of an adjunction ` a k, which would yield
(` ↓A) = (Xt ↓ k), we get

Lemma 3.19. We have (˜̀↓ c) = (Xt ↓ k).

Proof. Functors in each direction are given by

(˜̀↓ c) k∆op

// (gt• ↓ ck)

(˜̀↓ g•)

α

OO

(Xt ↓ k)
˜̀

oo

where the identification comes from (gt• ↓ c) = (Xt ↓Xt) [RV2, 6.3.17]. Since
αλ, k∆op

, and the identification all commute with the projections to Xt and
A, it follows from the 2-cell induction and 2-cell conservativity properties
of commas (cf. [RV1, 3.3.20]) that these define inverse equivalences between

(˜̀↓ c) and (Xt ↓ k). �

Proof of Theorem 3.14. By Lemma 3.19, we have

(k ↓ k) = (Xt ↓ k) ◦ (k ↓A) = (˜̀↓ c) ◦ (k ↓A) = (g• ↓ c)

which fits into a commutative diagram

(A ↓A)
α

��

k

��

(g• ↓ c)(k ↓ k)

or more generally

(a ↓A)
α

��

k

��

(g•a ↓ c).(ka ↓ k)

It follows that k is an equivalence if and only if α is so; but this is precisely
the statement of the theorem. �
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3.3. Applications to descent. We will apply the results from the pre-
vious section to the monadic formulation of descent.

The previous section discussed monads. As is usual in category theory,
we would like to obtain corresponding results for comonads “by duality”,
without having to repeat the arguments. The following construction achieves
this in the ∞-cosmic setting.

Definition 3.20. Let E be an ∞-cosmos. We define Eco to be the simpli-
cially enriched category with:

• the same objects as E ,
• mapping spaces given by mapEco(A,B) = mapE(A,B)op.

Let C be a 2-category. We define Cco to be the 2-category with:

• the same objects as C,
• mapping categories homCco(A,B) = homC(A,B)op.

Observe that Eco is again an ∞-cosmos, with Ho(Eco) = Ho(E)co.

We quickly summarize what this means for us. The “walking comonad”
Cmd is the full subcategory of Adj on the object −. We now add ± sub-
scripts to distinguish between our extension/restriction operations, writing
them as

sSetMnd
lan+
//

⊥ sSetAdj

res+
oo and sSetCmd

lan−
//

⊥ sSetAdj

res−
oo .

Given a homotopy coherent comonad A
g
//A coming from Cmd

H−→E we
have an∞-category Ag of homotopy coherent g-coalgebras, defined through
weights by

Ag = {res−Adj+, H}Cmd,

producing a comonadic adjunction ug : Ag
//

⊥ A :fgoo , with ugfg = g. If the

comonad is induced from an adjunction X
f
//

⊥ A
u
oo associated to Adj

T−→E ,

then Ag = {lan− res−Adj+, T}Adj, and we have a cocomparison functor

X
κ−→Ag fitting into a commutative diagram

X

t

++

κ

��

f
//

⊥ A

g

rr

u
oo

Ag

tg

44

ug
//

⊥ A.
fg
oo

Let X
t //X be a homotopy coherent monad in E coming from a functor

Mnd
H−→E . The monadic adjunction f t : X

//
⊥ Xt :utoo is classified by the
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simplicial functor {res+ Adj�, H}Mnd : Adj → E , and induces a comonad
gt = f tut on Xt.

Definition 3.21. The ∞-category Dt
X of descent data for the monad t is

the ∞-category of gt-coalgebras in Xt, Dt
X := (Xt)gt .

Keeping in the spirit of the previous section, we would like a description
of Dt

X as a weighted limit. (We shan’t need this, but the weight to use is
not immediately obvious, and may be of use to posterity.) Let W denote
the subfunctor of Mnd+ = res+ Adj+ consisting of endomorphisms which
factor through − in Adj; thus W(+) = ∆. We can express this definition
cleanly in terms of functor tensor products (which will be used in the proof)
by W = (Cmd ↓Mnd)⊗Cmd (+ ↓Cmd); we refer to [R, §§4.1 and 4.3] for
an introduction to functor co/tensor products.

Proposition 3.22. Dt
X = {W, H}Mnd.

Proof. Expanding the definitions,

Dt
X := (Xt)gt = {lan− res−Adj+, {res+ Adj�, H}Mnd}Adj.

Applying the tensor hom-adjunction, this becomes

Dt
X = {(res+ Adj�)⊗Adj (lan− res−Adj+), H}Mnd,

which is a description of Dt
X as a single weighted limit over Mnd. All

that remains is to identify the weight; for this, we apply the tensor product
formula for left Kan extension followed by the co-Yoneda lemma and get

Dt
X = {(res+ Adj�)⊗Adj (lan− res−Adj+), H}Mnd

= {(Adj ↓Mnd)⊗Adj (Cmd ↓Adj)⊗Cmd (+ ↓Cmd), H}Mnd

= {(Cmd ↓Mnd)⊗Cmd (+ ↓Cmd), H}Mnd

= {W, H}Mnd. �

Thus the diagram of weights on the left induces the diagram of ∞-
categories on the right.

res+ Adj+ ⊥ // res+ Adj−
oo

W

OO

OO

⊥ // res+ Adj−
oo

 

X

δ

��

⊥
f t
//
Xt

ut
oo

Dt
X ⊥

ugt
//
Xt

fgt
oo

Definition 3.23. The ∞-monad t satisfies descent if X
δ−→Dt

X is fully

faithful. More generally, if E
x−→X is a generalized object then t satisfies

descent for maps into x if δ is fully faithful on maps into x. It satisfies
effective descent if δ is an equivalence.

The dual of Theorem 3.14 immediately gives
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Proposition 3.24. A ∞-monad t on an ∞-category X satisfies descent if
and only if t-completion is the identity on X. More generally, t satisfies

descent for maps into E
x−→X if and only if x is t-complete.

Corollary 3.25. Suppose given model-categorical input. Then t = N(T |Xcf
)

satisfies descent (in the world of ∞-categories) if and only if every x ∈ X
is weakly equivalent to its derived T -completion x∧T (in the world of model
categories).

The remainder of this section is dual. Let g be an ∞-comonad on the ∞-

category A, coming from a functor Cmd
H−→E . The comonadic adjunction

ug : Ag
//

⊥ A :fgoo induces a homotopy coherent monad tg = fgug on Ag.

Definition 3.26. The ∞-category CAg of codescent data for the comonad g

is the ∞-category of tg-algebras in Ag, C
A
g := (Ag)

tg .

Let V denote the subfunctor of Cmd− = res−Adj− consisting of endo-
morphisms which factor through + in Adj; thus

V = (Mnd ↓Cmd)⊗Mnd (− ↓Mnd)

and V(−) = ∆op.

Proposition 3.27. CAg = {V, H}Cmd.

Thus the diagram of weights on the left induces the diagram of ∞-
categories on the right.

res−Adj+ ⊥ // res−Adj−
oo

res−Adj+ ⊥ // V

OO

OO

oo

 

Ag ⊥
ug
//
A

fg
oo

γ

��

Ag ⊥
f tg
//
CAg

utg
oo

Definition 3.28. The ∞-comonad g satisfies codescent if A
γ−→CAg is fully

faithful. More generally, if E
a−→A is a generalized object then g satisfies

codescent for maps out of a if γ is fully faithful on maps out of a. It satisfies
effective codescent if γ is an equivalence.

Proposition 3.29. A∞-comonad g on an∞-category A satisfies codescent
if and only if g-cocompletion is the identity on A. More generally, g satisfies

codescent for maps out of E
a−→A if and only if a is g-cocomplete.

Corollary 3.30. Suppose given model-categorical input. Then g = N(G|Acf
)

satisfies codescent (in the world of ∞-categories) if and only if every a ∈ A
is weakly equivalent to its derived G-cocompletion a∨G (in the world of model
categories).
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3.4. Spectral sequences. Descent spectral sequences fall out easily in
our setting. Our discussion follows [H, §5.3] and is a trivial application of
[BoK, §§X.6–7]. In particular, we refer to [BoK, §IX.5] for treatment of
convergence issues.

We quickly recall Bousfield-Kan spectral sequences. A fibrant cosimplicial
pointed space S• gives rise to a spectral sequence, which under favorable
conditions converges to π∗TotS•. For s ≥ r ≥ 0, the E2 term may be
described by

Er,s2 = πrπsS
•

where for s ≥ 2, the cohomotopy on the right hand side may be interpreted
as the cohomology of the cochain complex corresponding to the cosimpli-
cial abelian group πsS

• under the Dold-Kan correspondence. We caution
the reader that this spectral sequence is fringed in general. Given a map

x
φ−→ y in an∞-category X, we write X(x, y)φ for the Kan complex X(x, y)

equipped with the basepoint φ.
Let t be an ∞-monad on an ∞-category X with unit η, and assume

that X has all t-completions. Observe that a map x
φ−→ y gives rise to a

cosimplicial pointed space X(x, t•y)η•φ whose totalization is X(x, y∧t )φ.

Proposition 3.31. A map x
φ−→ y in X gives rise to a spectral sequence,

which for s ≥ r ≥ 0 satisfies

Er,s2 = πrπsX(x, t•y)η•φ = πrπsD
t
X(δx, δt•y)δ◦(η•φ),

and which under suitable conditions converges to π∗X(x, y∧t )φ.

Proof. Only the identification X(x, t•y)η•φ = Dt
X(δx, δt•y)δ◦(η•φ) requires

comment. This follows from Proposition 3.24 and the dual of Example 3.5.
�

Corollary 3.32. Suppose given model-categorical input. For cofibrant x

and fibrant y in X , a map x
φ−→ y gives rise to a spectral sequence, which

for s ≥ r ≥ 0 satisfies

Er,s2 = πrπs MapX (x, T •Qy)ζ•φ

and which under suitable conditions converges to π∗MapX (x, y∧T )φ.

Dually, let g be an ∞-comonad on an ∞-category A with counit ε, and

assume that A has all g-cocompletions. Observe that a map a
ψ−→ b gives rise

to a cosimplicial pointed space A(g•a, b)ψε• whose totalization is A(a∨g , b)ψ.

Proposition 3.33. A map a
ψ−→ b in A gives rise to a spectral sequence,

which for s ≥ r ≥ 0 satisfies

Er,s2 = πrπsA(g•a, b)ψε• = πrπsC
A
g (γg•a, γb)γ◦(ψε•)

and which under suitable conditions converges to π∗A(a∨g , b)ψ.
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Corollary 3.34. Suppose given model-categorical input. For cofibrant a

and fibrant b in A, a map a
ψ−→ b gives rise to a spectral sequence, which for

s ≥ r ≥ 0 satisfies

Er,s2 = πrπs MapA(G•Ra, b)ψξ•

and which under suitable conditions converges to π∗MapA(a∨G, b)ψ.
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