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On the degree-wise coherence of
FIG-modules

Eric Ramos

Abstract. In this work we study a kind of coherence condition on FIG-
modules, which generalizes the usual notion of finite generation. We
prove that a module is coherent, in the appropriate sense, if and only
if its generators, as well as its torsion, appears in only finitely many
degrees. Using this technical result, we prove that the category of co-
herent FIG-modules is abelian, independent of any assumptions on the
group G, or the coefficient ring k. Following this, we consider applica-
tions towards the local cohomology theory of FIG-modules, introduced
in Li–Ramos, 2016.
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1. Introduction

Let FI be the category whose objects are the sets [n] := {1, . . . , n}, and
whose morphisms are injections. An FI-module over a commutative ring k
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is a functor from the category FI to the category of k-modules. FI-modules
were first introduced by Church, Ellenberg, and Farb as a way to study
stability phenomena common throughout mathematics [CEF]. Following
this work, representations of various other categories were studied by a large
collection of authors. See [W], [SS], [SS2], [PS], for examples of this work.
In this paper, we will be concerned with modules over a category which
naturally generalizes FI, FIG.

Let G be a group. Then the category FIG is that whose objects are the
sets [n], and whose morphisms (f, g) : [n] → [m] are pairs of an injection
f with a map of sets g : [n] → G. If (f, g) and (f ′, g′) are two composable
morphisms in FIG, then we define

(f, g) ◦ (f ′, g′) := (f ◦ f ′, h), h(x) = g′(x) · g(f ′(x))

If G = 1 is the trivial group, then it is easily seen that FIG is equivalent
to the category FI. If, instead, we assume that G = Z/2Z, then FIG is
equivalent to the category FIBC first introduced by Wilson in [W]. An FIG-
module over a commutative ring k is defined in the same way as it was for
FI-modules. FIG-modules were first introduced by Sam and Snowden in
[SS2].

For much of this paper, we will be concerned with the category FIG -Mod
of FIG-modules. It is immediate that FIG -Mod is an abelian category
with the usual abelian operations being computed on points. Because of
its close connections with the category k -Mod, one may define many prop-
erties of FIG-modules which are analogous to properties of k-modules. One
such property, which is most important to us, is finite generation. We
say that an FIG-module V is finitely generated if there exists a finite set
{vi} ⊆ tn≥0V ([n]), which no proper submodule contains. Perhaps the most
significant fact about finitely generated FIG-modules is that they are often
times Noetherian.

Theorem 1.1 (Corollary 1.2.2 [SS2]). Let G be a polycyclic-by-finite group,
and let k be a Noetherian ring. Then submodules of finitely generated FIG-
modules are themselves finitely generated.

Note that another way of thinking of the above theorem is that the cate-
gory FIG -mod of finitely generated FIG-modules is abelian under sufficient
restrictions on k and G. The hypotheses of the above theorem are currently
the most general known. It is conjectured that G being polycyclic-by-finite
is also necessary for the Noetherian property to hold [SS2]. One of the main
goals of this paper is to argue that many theoretical constructions in the
theory of FIG-modules can actually be done independent of the Noetherian
property. Instead, we argue that degree-wise coherence is often sufficient.

We say that an FIG-module is degree-wise coherent if there is a set (not
necessarily finite) {vi} ⊆ tn≥0V ([n]) such that:
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(1) No proper submodule contains {vi}, and there is some N � 0 such
that {vi} ⊆ tNn=0V ([n]). In this case we say that V is generated in
finite degree.

(2) The module of relations between the elements {vi} is itself generated
in finite degree (see Definition 2.4).

Modules with these properties are also called presented in finite degrees by
some works in the literature (see, for instance, [L3]) One can think about the
above definition in the following way. Instead of requiring that our module
have finitely many generators, we only require that it admits a generating
set whose elements appear in at most finitely many degrees. In addition,
we also require that these generators have relations which are bounded in
a similar sense. The significance of this condition traces its origins to the
paper [CE], although they do not use the same terminology. Following this
work, degree-wise coherent modules were studied more deeply by the author
in [R]. The first goal of this paper will be to understand the connection
between being degree-wise coherent, and having finite torsion.

We say an element v ∈ V ([n]) is torsion if there is a morphism (f, g) :
[n] → [m] in FIG, such that V (f, g)(v) = 0. The torsion degree of an
FIG-module is the quantity,

td(V ) := sup{n | Vn contains a torsion element}.

It was first observed by Church and Ellenberg that degree-wise coherent
FI-modules will necessarily have finite torsion degree [CE, Theorem D]. It
was then later shown by the author that the same statement was true for
FIG-modules [R, Theorem 3.19]. More recently, Li has conjectured that the
converse of this statement was true as well [L3]. In this paper, we will prove
this conjecture in the affirmative.

Theorem A. Let G be a group, and let k be a commutative ring. If V
is an FIG-module which is generated in finite degree, then V is degree-wise
coherent if and only if td(V ) <∞.

As a first application of the above technical theorem, we will be able to
show that degree-wise coherent modules form an abelian category.

Theorem B. Let G be a group, and k a commutative ring. Then the cate-
gory FIG -Modcoh of degree-wise coherent modules is abelian.

This theorem was recently proven independently by Li in his note [L3,
Proposition 3.4]. One immediately sees that the above theorem is indepen-
dent of the ring k, as well as the group G. As stated previously, working in
the category FIG -Modcoh often has benefits which the category FIG -mod
does not permit. Perhaps the most explicit of these benefits is the existence
of infinite shifts, which we discuss below. Of course, one should note that
there are also benefits which are exclusive to finitely generated modules.
The most obvious of these is the ability to do explicit computations.
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Much of the remainder of the paper is dedicated to showing how well
known theorems about finitely generated FIG-modules will continue to hold
in the category FIG -Modcoh. In particular, we focus on generalizing the
local cohomology theory of FIG-modules, introduced by Li and the author
in [LR].

If V is an FIG-module, then the 0-th local cohomology functor is defined
by

H0
m(V ) := the maximal torsion submodule of V .

H0
m is a left exact functor, and we denote its derived functors by H i

m. Sec-
tion 4.2 is largely dedicated to arguing that the theorems of [LR] will con-

tinue to hold in FIG -Modcoh. One of the main results of [LR], is that
whenever V is finitely generated there is a complex C•V which computes
H i

m (see Definition 2.19). One problem with this complex, is that it’s not

functoral in V . Allowing ourselves to work in the category FIG -Modcoh, we
can fix this issue using the infinite shift.

Let ι : FIG → FIG be the functor defined by the assignments,

ι([n]) = [n+ 1], ι((f, g) : [n]→ [m]) = (f+, g+)

where

f+(x) =

{
f(x) if x < n+ 1

m+ 1 otherwise,

g+(x) =

{
g(x) if x < n+ 1

1 otherwise.

The shift functor Σ is defined to be

Σ(V ) := V ◦ ι.
We write Σb to denote the b-th iterate of Σ. In Section 2.3, it is show that
there is a commutative diagram for all b ≥ 1,

V −−−−→ Σb+1∥∥∥ x
V −−−−→ Σb

The infinite shift Σ∞ is the directed limit of the right column of this diagram.
That is,

Σ∞V := lim
→

ΣbV.

The collection of maps V → Σb in the above diagram induce a morphism
V → Σ∞V . The infinite derivative is defined to be the cokernel of this map

D∞V := coker(V → Σ∞V ).

One should observe that is rarely ever the case that the infinite derivative
or the infinite shift are finitely generated. We will see, however, that if V is
degree-wise coherent, then the same is true of both Σ∞V and D∞V . It is



ON THE DEGREE-WISE COHERENCE OF FIG-MODULES 877

shown in Section 4.1 that the infinite derivative functor is right exact. We

use H
Db
∞

i to denote the i-th left derived functor of the b-th iterate of D∞.
The main result of the final section of the paper is the following.

Theorem C. Let V be a degree-wise coherent FIG-module of dimension
d <∞ (see Definition 4.13). Then there are isomorphisms for all i ≥ 1,

HDd+1
∞

i (V ) ∼= Hd+1−i
m (V ).

One can think of the above theorem as a kind of local duality for FIG-
modules, in so far as it describes the equivalence of local cohomology with
the derived functors of some right exact functor. We have already discussed
the fact that the functor D∞ does not exist within the category of finitely
generated modules, and therefore the above represents a means of uniformly
describing local cohomology modules in a way which is inaccessible by simply
working with finitely generated modules.
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2. Preliminaries

2.1. Elementary definitions. Let G be a group, and let k be a commu-
tative ring.

Definition 2.1. The category FIG is that whose objects are the finite sets
[n] := {1, . . . , n}, and whose morphisms are pairs (f, g) : [n] → [m], where
f : [n] → [m] is an injection of sets and g : [n] → G is a map of sets. For
two composable morphisms (f, g), (h, g′), we define

(f, g) ◦ (h, g′) := (f ◦ h, g′′)
where g′′(x) = g′(x) · g(h(x)). For each nonnegative integer n, we denote
the group of endomorphisms EndFIG([n]) = Sn oG by Gn.

An FIG-module over k is a covariant functor V : FIG → k -Mod. We use
Vn to denote the k-module V ([n]). For any FIG-morphism (f, g) : [n]→ [m]
we write (f, g)* for the map V (f, g). We call these maps the induced maps
of V , and in the case where n < m we say that (f, g)* is a transition map
of V .
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Given any FIG-module V , its degree is the quantity,

deg(V ) := sup{n | Vn 6= 0} ∈ N ∪ {±∞}
where we use the convention that the supremum of the empty set is −∞.

We note that the category of FIG-modules and natural transformations
FI -Mod is abelian. Indeed, one computes kernels and cokernels in a point-
wise fashion. One nice feature of FIG-modules is that many properties
of k-modules have natural analogs. Perhaps the most significant of these
properties is finite generation.

Definition 2.2. Let V be an FIG-module. We say that V is finitely gener-
ated if there is a finite collection S ⊆ tn≥0Vn which no proper submodule of
V contains. We denote the category of finitely generated FIG-modules by
FIG -mod.

Finitely generated FIG-modules were first studied by Sam and Snowden
in [SS2]. Prior to this, the case wherein G = 1 was studied by Church,
Ellenberg, Farb, and Nagpal in [CEF], and [CEFN]. This case was also
featured prominently in the work of Sam and Snowden [SS3]. We note that
Church, Ellenberg, Farb, and Nagpal refer to these modules as FI-modules.
The case wherein G = Z/2Z was studied by Wilson in [W]. Wilson refers
to these modules as FIBC-modules.

Theorem 2.3 (Corollary 1.2.2 [SS2]). Assume that G is a polycyclic-by-
finite group, and that k is a Noetherian ring. Then the category FIG -mod
is abelian. That is, submodules of finitely generated modules are finitely
generated.

One should observe the two hypotheses of the above theorem. In this pa-
per we will not be studying finitely generated FIG-modules, instead focusing
on degree-wise coherent modules (see Definition 2.4). Working with these
more general modules will allow us to prove many theorems without needing
to restrict the ring k or the group G. One goal of this paper is to argue that
degree-wise coherence is a more natural condition than finite generation in
many contexts.

Definition 2.4. Let r ≥ 0 be an integer. The principal projective FIG-
module generated in degree r, M(r), is defined on points by

M(r)n := k[HomFIG([r], [n])],

where k[HomFIG([r], [n])] is the free k-module with basis labeled by the set
HomFIG([r], [n]). The induced maps of this module act by composition on
the basis vectors. More generally, if W is a kGr-module, then we define the
induced FIG-module relative to W M(W ) by the assignments

M(W )n := k[HomFIG([r], [n])]⊗kGr W.

The induced maps of this module act by composition in the first component.
In this case, we say that M(W ) is generated in degree r. Direct sums of
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modules of either of these two types will generally be referred to as free
modules. The generating degree of a free module is the supremum of the
generating degrees of its induced summands.

We say that a module V is ]-filtered if it admits a finite filtration

0 = V (−1) ⊆ V (0) ⊆ . . . ⊆ V (n) = V.

such that V (i)/V (i−1) is a free module for each i. In this case, the largest

value among the generating degrees of the cofactors V (i)/V (i−1) is called the
generating degree of V .

A presentation for a module V is an exact sequence of the form,

0→ K → F → V → 0,

where F is either a free-module, or a ]-filtered module. If F is ]-filtered
with generating degree n, then we say that V is generated in degree ≤ n. If,
in addition, K is generated in finite degree, then we say that V is degree-
wise coherent. We denote the category of degree-wise coherent modules by
FIG -Modcoh.

Note that free modules are not always projective, although projective
modules are always free. Indeed, it can be shown that for a kGr-module W ,
M(W ) is projective as an FIG-module if and only if W is projective as a
kGr-module. Proofs of these facts can be found in [R].

2.2. The homology functors and regularity.

Definition 2.5. Let V be an FIG-module. Then the 0-th homology functor
is defined on points by

H0(V )n := Vn/V<n,

where V<n is the submodule of Vn spanned by the images of all transition
maps into Vn. We write Hi to denote the i-th derived functor of H0.

The i-th homological degree of a module V is the quantity

hdi(V ) := deg(Hi(V )) ∈ N ∪ {±∞}.

the 0-th homological degree hd0(V ) will be referred to as the generating
degree of the module, and is denoted by gd(V ). The regularity of a module
V is

reg(V ) := inf{N | hdi(V )− i ≤ N ∀i ≥ 1} ∈ N ∪ {±∞}.

Remark 2.6. Note that in the above definition, regularity is computed
using strictly positive homological degrees. This is slightly different from
how regularity is defined in classical commutative algebra. When we discuss
local cohomology later in this paper, it will be explained why the above
definition was chosen.

It is an easy check to show that the definition of gd(V ) given above
agrees with the notion of generating degree given in Definition 2.4. It is also
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important that one notes the connection between the module of relations of
V , and the first homological degree hd1(V ). Given a presentation,

0→ K → F → V → 0

we may apply the homology functor and Theorem 2.8 to find,

hd1(V ) ≤ gd(K) ≤ max{gd(V ), hd1(V )}.

In particular, V is degree-wise coherent if and only if both gd(V ) and hd1(V )
are finite.

If V is acyclic with respect to the homology functors, then we define its
regularity to be −∞.

The regularity of FI-modules was first studied by Sam and Snowden in
[SS3, Corollary 6.3.5], in the case where k is a field of characteristic 0. Fol-
lowing this, Church and Ellenberg provided explicit bounds on the regularity
of FI-modules over any commutative ring k [CE, Theorem A]. The author
then adapted the techniques of Church and Ellenberg to work for general
FIG-modules [R, Theorem D].

Theorem 2.7 ([CE],[R]). Let V be an FIG-module. Then,

reg(V ) ≤ hd1(V ) + min{hd1(V ), gd(V )} − 1.

In particular, if V is degree-wise coherent, then V has finite regularity.

One notable takeaway from the work of Church and Ellenberg is that
their bound is only dependent on the generating degree and first homological
degree of the module. In particular, their work entirely takes place in the
category FI -Modcoh. This philosophy was also heavily featured in [R]. One
goal of the present work is to develop an understanding of the category
FIG -Modcoh.

Following this work, regularity was studied Gan, Li, and the author in
[G], [L], [L2], and [LR]. The paper [LR] studied the connection between
regularity and a local cohomology theory for FIG-modules, in the case where
G is a finite group. We will later rediscover this connection in the more
general context of the current work.

To conclude this section, we state the theorem which classifies the homol-
ogy acyclic modules.

Theorem 2.8 (Theorem 1.3 [LY], Theorem A [R]). Let V be a degree-wise
coherent module. Then the following are equivalent:

(1) V is acyclic with respect to the homology functors.
(2) H1(V ) = 0.
(3) Hi(V ) = 0 for some i ≥ 1.
(4) V is ]-filtered.
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2.3. The shift and derivative functors. We begin by recalling the shift
functors introduced in Section 1.

Definition 2.9. Let ι : FIG → FIG be the functor which is defined on
objects by ι([n]) = [n+ 1], while for each morphism (f, g) : [n]→ [m] we set
ι(f, g) = (f+, g+)) where

f+(x) :=

{
f(x) if x ≤ n
m+ 1 otherwise,

g+(x) :=

{
g(x) if x ≤ n
1 otherwise.

The shift functor is defined as the composition

ΣV := V ◦ ι.

We write Σa for the a-th iterate of V .
For each positive integer a, there is a natural map of FIG-modules

τa : V → ΣaV

defined on each point by the transition map (fna ,1)*, where fna : [n]→ [n+a]
is the natural inclusion while 1 is the trivial map into G. The length a
derivative functor is the cokernel of this map

DaV := coker(τa).

We write Db
a for the b-th iterate of Da. In the case where a = 1, we will

write D := D1.

The derivative functors were introduced by Church and Ellenberg in [CE],
and have since seen use in [R] and [LY]. Later, we will consider the direct
limit of all derivative functors, which we call the infinite derivative (see
Definition 4.1). We record some useful properties of the derivative and
shift functors below. Proofs of most of these facts can be found in [R,
Proposition 3.3] and [CE, Proposition 3.5]. The only thing that does not
appear in these sources is the claim that if gd(DV ) < ∞, then the same
must be true about gd(V ). This fact follows from the natural surjection

DaV → ΣaH0(V )

Proposition 2.10. Fix an integer a ≥ 1. The length a derivative functor
and the shift functor enjoy the following properties:

(1) If V is an FIG-module which is degree-wise coherent, then the same
is true of DaV and ΣV .

(2) If gd(V ) ≤ d, then gd(ΣV ) ≤ d and gd(DaV ) < d. Moreover, if
gd(DaV ) <∞, then gd(V ) <∞.

(3) Da is right exact, and Σa is exact.
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(4) For any kGr-module W , both ΣM(W ) and DaM(W ) are free mod-
ules. In fact,

(2.1) ΣM(W ) ∼= M(W )⊕M(ResGr
Gr−1

W ), DM(W ) ∼= M(ResGr
Gr−1

W ).

In particular, Σ and Da preserve ]-filtered modules.

Remark 2.11. Note that if G is a finite group, then Σ and Da both preserve
finitely generated FIG-modules. This is no longer the case if G is infinite. It
is always the case that these functors preserve the property of being degree-
wise coherent.

Part (3) of Proposition 2.10 implies that the functors Da have left derived

functors. We will follow the notation of [CE] and [R] and write H
Db

a
i for the

i-th derived functor of Db
a. One of the main insights of [CE] was that the

properties of the modules HDb

i (V ) are critical in bounding the regularity of

V . Later, the author [R] showed that the functors HDb

1 could be used to
define a theory of depth for FIG-modules. Proofs for the following facts can
be found in [CE] and [R].

Proposition 2.12. Fix integers a, b, i ≥ 1. The functors H
Db

a
i enjoy the

following properties:

(1) If V is degree-wise coherent, then deg(H
Db

a
i ) <∞.

(2) For any module V , there is an exact sequence

0→ HDa
1 (V )→ V

τa→ ΣaV → DaV → 0.

(3) If i > b, then H
Db

a
i = 0.

Remark 2.13. The cited sources prove these facts in the case where a = 1.
The proofs are identical for arbitrary a.

Note that the exact sequence in Proposition 2.12(2) is strongly related to
torsion. This will be explored in the next section.

Definition 2.14. Let V be a degree-wise coherent module. Then we define
its depth to be the quantity,

depth(V ) := inf{b | HDb+1

1 (V ) 6= 0} ∈ N ∪ {∞}.

Remark 2.15. In [LR] an alternative notion of depth is provided, which is
defined in terms of the vanishing of particular Ext groups. It is shown in
that paper that both notions agree with one another. Due to the emphasis
on the derivative functors in this paper, we will use the above definition.

Perhaps the most significant property of the shift functor is the following
structural theorem. Note that this theorem was proven by Nagpal [N, The-
orem A] in the case where G is a finite group, k is a Noetherian ring, and V
is finitely generated. It was then generalized by the author [R] to the level
of generality presented here.
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Theorem 2.16. Let V be an FIG-module which is degree-wise coherent.
Then for b� 0, ΣbV is ]-filtered.

Definition 2.17. We denote the smallest b for which ΣbV is ]-filtered by
N(V ).

It is natural for one to ask whether it is possible bound N(V ). Indeed,
this was accomplished by the author in [R, Theorem C].

Theorem 2.18. Let V be an FIG-module which is degree-wise coherent. If

V is not ]-filtered, then HDb

1 (V ) = 0 for b� 0, and

N(V ) = max
b
{deg(HDb

1 (V ))}.

One of the many consequences of Theorem 2.16 is the construction of
the following complex, which we will see play a major part in the local
cohomology of FIG-modules.

Definition 2.19. Let V be an FIG-module which is degree-wise coherent.
Setting b−1 := N(V ), there is an exact sequence

V
τb−1→ F 0 := ΣbV → Db−1V → 0.

By Proposition 2.10, the module Db−1V is degree-wise coherent and is gener-
ated in strictly smaller degree than V . We may therefore repeat this process
finitely many times to obtain the complex

C•V : 0→ V → F 0 → . . .→ Fn → 0.

The complex C•V was introduced by Nagpal in [N, Theorem A]. It was
subsequently studied by Li in [L2], and by Li and the author in [LR]. Note
that the assignment V 7→ C•V is not functoral. Later, we will construct
a uniform version of the complex C•V which is functoral in V (see Defini-
tion 4.5).

3. Degree-wise coherence

3.1. Connections with torsion.

Definition 3.1. Let V be an FIG-module. An element v ∈ Vn is torsion if
it is in the kernel of some transition map out of Vn. We say that a module
V is torsion if its every element is torsion.

Note that every FIG-module fits into an exact sequence of the form

0→ VT → V → VF → 0

where VT is a torsion module, and VF is torsion free.
The torsion degree of an FIG-module is the quantity

td(V ) := deg(VT ).
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The exact sequence of Proposition 2.12 implies that td(V ) = deg(HD
1 (V )).

Proposition 2.12 also tells us that deg(HD
1 (V )) is finite. We therefore obtain

the following corollary.

Lemma 3.2. Let V be a degree-wise coherent module. Then td(V ) < ∞.
In particular, a degree-wise coherent module V is torsion if and only if
deg(V ) <∞.

We will see later that a converse of this statement is true as well. That
is, if V is generated in finite degree, and td(V ) <∞, then V is degree-wise
coherent. To prove this fact, we will need the following proposition. It is, in
some sense, a rephrasing of [CE, Theorem D]. Church and Ellenberg proved
this for FI-modules, and it was generalized to FIG-modules by the author
in [R, Theorem 3.19].

Proposition 3.3. Let V ⊆ M be torsion-free FIG-modules which are gen-
erated in finite degree. Then td(M/V ) <∞.

Proof. We have an exact sequence,

0→ V →M →M/V → 0.

Applying the functor D, we obtain an exact sequence

HD
1 (M)→ HD

1 (M/V )→ DV → DM.

By assumption M is torsion-free, and therefore HD
1 (M) = 0. This implies

that HD
1 (M/V ) ∼= ker(DV → DM). Unpacking definitions, [CE, Theorem

D] and [R, Theorem 3.19] imply that this kernel is only nonzero in finitely
many degrees. �

We are now able to prove the main theorem of this section.

Theorem 3.4. Let V be an FIG-module which is generated in finite degree.
Then V is degree-wise coherent if and only if td(V ) <∞.

Proof. We have already seen the forward direction. Conversely, assume
that gd(V ) <∞ and td(V ) <∞. Then we have an exact sequence

0→ VT → V → VF → 0

where VT is torsion, and VF is torsion free. Applying the homology functor,
it follows that

deg(H1(V )) ≤ max{deg(H1(VT )),deg(H1(VF ))}
It is easily seen that deg(H1(VT )) < ∞, and therefore it suffices to show
that deg(H1(VF )) is finite. In particular, we may assume without loss of
generality that V is torsion free.

Assuming that V is torsion free, we have an exact sequence

0→ V → ΣV → DV → 0

where ΣV is also torsion free. Proposition 3.3 now implies td(DV ) < ∞.
We also know, however, that gd(DV ) < gd(V ) < ∞ by Proposition 2.10.
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Applying induction on the generating degree, we may assume that DV is
degree-wise coherent.

Let

0→ K → F → V → 0

be a presentation for V . Then because V is torsion free, we obtain an exact
sequence

0→ DK → DF → DV → 0.

By the previous paragraph we can conclude that gd(DK) <∞, and there-
fore the same is true about gd(K) by Proposition 2.10. �

Remark 3.5. The author’s interest in proving the above theorem was heav-
ily influenced by recent work of Li [L3]. In that work, Li argues the forward
direction of the theorem, and leaves the converse as a conjecture. The au-
thor would like to thank Professor Li for pointing him in the direction of
this problem.

Remark 3.6. It is important that one develops an intuition for why one
would suspect Theorem 3.4 is true. In the work of Li and the author [LR,
Theorem F], it is shown that the regularity of a finitely generated FIG-
module, where G is finite and k is Noetherian, can be bound in terms of the
torsion degrees of its local cohomology modules (see Definition 4.6). Li has
shown that the higher local cohomology modules can be bounded entirely in
terms of the generating degree [L2]. Putting it all together, it follows that
the regularity of a finitely generated FIG-module is bounded by a constant
depending only on its torsion degree and its generating degree. Theorem 3.4
implies that these bounds on regularity will continue to hold even if we do
not know a priori that the module is finitely presented.

3.2. The category FIG -Modcoh. In this section we consider the cate-
gory of degree-wise coherent modules, and examine some of its technical
properties. The main result of this section will be to show that FIG -Modcoh

is abelian. We once again note that the category of finitely generated
FIG-modules is only known to be abelian when k is Noetherian, and G is
polycyclic-by-finite. This would seem to indicate that the property of being
degree-wise coherent is often times better suited for homologically flavored
questions about FIG-modules.

One recurring theme throughout the proofs in this section is Theorem 3.4.
This theorem tells us that the property of being degree-wise coherent can be
partially checked on the maximal torsion submodule. This will allow us to
prove nonobvious facts about submodules of degree-wise coherent submod-
ules. One example of this is the following.

Proposition 3.7. Let V be a degree-wise coherent FIG-module, and let
V ′ ⊆ V be a submodule which is generated in finite degree. Then V ′ is also
degree-wise coherent.
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Proof. Because V ′ is a submodule of V , we must have td(V ′) ≤ td(V ).
Theorem 3.4 now implies the proposition. �

Note that the above proposition justifies the terminology of coherence.
Recall that a module M over a commutative ring R is said to be coher-
ent if it is finitely presented, and every finitely generated submodule of M
is also finitely presented. It is well known that a module over a coherent
ring is finitely presented if and only if it is coherent. When k is a field of
characteristic 0, Sam and Snowden’s language of twisted commutative alge-
bras implies that the category of FI-modules is equivalent to the category
of GL∞-equivariant modules over a polynomial ring in infinitely many vari-
ables [SS3]. A polynomial ring in infinitely many variables over a field is
coherent, and therefore Proposition 3.7 can be heuristically thought of as a
consequence of this.

Proposition 3.8. Let,

0→ V ′ → V → V ′′ → 0

be an exact sequence of FIG-modules. Then any two of V ′, V, or V ′′ are
degree-wise coherent only if the third is as well.

Proof. The above exact sequence induces the exact sequence,

H2(V
′′)→ H1(V

′)→ H1(V )→ H1(V
′′)→ H0(V

′)→ H0(V )→ H0(V
′′)→ 0.

This implies the collection of bounds,

hd1(V ) ≤ max{hd1(V
′),hd1(V

′′)}, gd(V ) ≤ max{gd(V ′), gd(V ′′)}
hd1(V

′) ≤ max{hd2(V
′′),hd1(V )}, gd(V ′) ≤ max{hd1(V

′′), gd(V )}
hd1(V

′′) ≤ max{gd(V ′), hd1(V )}, gd(V ′′) ≤ gd(V ).

If V ′ and V ′′ are degree-wise coherent, then the first pair of bounds im-
mediately implies the same about V . If we instead assume that V ′′ and V ′

are degree-wise coherent, then Theorem 2.7 implies that hd2(V
′′) <∞. The

second pair of bounds now imply that V ′ is degree-wise coherent. Finally, if
V ′ and V are degree-wise coherent then the third pair of bounds imply that
V ′′ must be as well. �

This is all we need to prove the main theorem of this section.

Theorem 3.9. The category FIG -Modcoh is abelian.

Proof. The only thing that needs to be checked is that FIG -Modcoh permits
images, kernels and cokernels. That is, if φ : V → V ′ is a morphism of
degree-wise coherent modules, then we must show that ker(φ), im(φ) and
coker(φ) are all degree-wise coherent. We have a pair of exact sequences

0→ ker(φ)→ V → im(φ)→ 0,

0→ im(φ)→ V ′ → coker(φ)→ 0.
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The module im(φ) is generated in finite degree because it is a quotient of V ,
and td(im(φ)) < ∞ because it is a submodule of V ′. Theorem 3.4 implies
that im(φ) is degree-wise coherent, whence ker(φ) and coker(φ) are as well
by Proposition 3.8. �

Remark 3.10. Li has also independently proven this theorem in his work
[L3, Proposition 3.4]. His methods do not use Theorem 3.4.

4. Applications

In this half of the paper, we consider applications of the machinery de-
veloped in previous sections. To start, we will define the infinite shift and
derivative functors. Using these functors, we will describe a local coho-
mology theory for degree-wise coherent FIG-modules. Finally, we finish by
proving a kind of local duality theorem for FIG-modules.

4.1. The infinite shift and derivative functors.

Definition 4.1. Let V be an FIG-module. For each positive integer a, the
transition map (fn+a,1)*, induced by the pair of the standard inclusion
fn+a : [n + a] → [n + a + 1] and the trivial map into G, gives a map
ΣaV → Σa+1V . The infinite shift of V is the direct limit

Σ∞V := lim
→

ΣaV.

The maps (fn+a,1)* also induce maps DaV → Da+1V . The infinite deriv-
ative of the module V is the direct limit

D∞V := lim
→
DaV.

One should immediately note that if V is finitely generated, then nei-
ther Σ∞V , nor D∞V are necessarily finitely generated. These functors do
preserve degree-wise coherence, as we shall now prove.

Another way one may define the infinite shift is as follows. An FIG-
module V can be thought of as a sequence of modules, Vn, with compatible
maps between them Vn → Vn+1. One may therefore define a module V∞,
which is the direct limit of these modules. The module V∞ carries the
natural structure of a G∞ representation, where G∞ is the direct limit of
the Gn. The infinite shift Σ∞V is the FIG-module for which Σ∞Vn ∼= V∞,
as modules for all n, and for which the action of Gn is the restriction of the
G∞ action to Gn.

Proposition 4.2. The infinite shift and derivative functors enjoy the fol-
lowing properties:

(1) Σ∞ is exact, and D∞ is right exact.
(2) For all FIG-modules V , there is an exact sequence

V → Σ∞V → D∞V → 0.

V is torsion-free if and only if the map V → Σ∞V is injective.
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(3) For any kGn-module W , Σ∞M(W ) ∼= M(W )⊕Q where Q is some
free-module generated in degree < r, while D∞M(W ) ∼= Q. In
particular, both the infinite shift and derivative functors preserve
]-filtered objects.

(4) If gd(V ) ≤ d is finite, then gd(Σ∞V ) ≤ d and gd(D∞V ) < d.
(5) If V is degree-wise coherent, then Σ∞V is ]-filtered, and D∞V is

degree-wise coherent.

Proof. Statement (1) follows from Proposition 2.10, as well as the exactness
of filtered colimits.

Write ω for the poset category of the natural numbers. We define the
functors Fi : ω → FIG -Mod, i = 1, 2, 3 as follows:

F1(a) = V, F2(a) = ΣaV, F3(a) = DaV.

Note that F1 maps all morphisms of ω to the identity, while F2 and F3

map the morphisms of ω to the previously discussed maps ΣaV → Σa+1V
and DaV → Da+1V . Then all relevant definitions imply there is an exact
sequence

F1 → F2 → F3 → 0.

Applying the exact direct limit functor to this exact sequence implies the
first half of (2). If V is torsion free, then the map F1 → F2 is exact by
definition of torsion, and this will be preserved after taking direct limits.
Conversely, assume that V has torsion. In particular, there is an element
v ∈ Vn for some n, such that v is in the kernel of some transition map
Vn → Vm. In this case, every transition map to Vr, with r ≥ m, will also
contain v in its kernel. In particular, v will be an element in the kernel of
the maps V → ΣaV for all a > 0. This implies that the element v is in the
kernel of the map V → Σ∞V .

The fact that Σ∞M(W ) takes the prescribed form follows immediately
from Proposition 2.10 and (2.1). The statement about the infinite derivative
follows from (2).

Statement (4) follows from (1) and (3).
Statement (5) follows from (4), as well as Theorem 2.16. �

While the infinite shift and derivative functors may be harder to compute
than their finite counter-parts, they allow us to more uniformly state certain
theorems. For instance, we will see that infinite shifts can be used to fix
the issue of functoriality of the complex C•V . We will also see that the
infinite derivative functor can be used to prove a kind of local duality for
FIG-modules.

The above proposition implies that the functors Σ∞ and D∞ can be con-
sidered as endofunctors of the abelian category FIG -Modcoh. This proposi-
tion also tells us that D∞ admits left derived functors in this category.
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Definition 4.3. For each b ≥ 1, we will write H
Db
∞

i : FIG -Modcoh →
FIG -Modcoh to denote the i-th derived functor of Db

∞. By convention, D0
∞

is the identity functor.

Proposition 4.4. The functors H
Db
∞

i enjoy the following properties:

(1) For all degree-wise coherent modules V , there is an exact sequence

0→ HD∞
1 (V )→ V → Σ∞V → D∞V → 0.

In particular, if V is torsion free, then HD∞
1 (V ) = 0.

(2) If V is ]-filtered, then H
Db
∞

i (V ) = 0 for all i, b ≥ 1.
(3) For all degree-wise coherent modules V , and all b, i ≥ 1,

deg(H
Db
∞

i (V )) <∞.

Proof. Let

0→ K → F → V → 0

be a presentation for V . Then we have a commutative diagram with exact
rows

Db
∞(K) −−−−→ Σ∞D

b
∞(K) −−−−→ Db+1

∞ (K) −−−−→ 0y y y
0 −−−−→ Db

∞(F ) −−−−→ Σ∞D
b
∞(F ) −−−−→ Db+1

∞ (F ) −−−−→ 0.

Note that the second row is exact on the left, as Db
∞(F ) is ]-filtered, and

therefore it is torsion free. Applying the snake lemma, we obtain a long
exact sequence
(4.1)

H
Db
∞

1 (V )→ Σ∞H
Db
∞

1 (V )→ HDb+1
∞

1 (V )→ Db
∞(V )→ Σ∞D

b
∞(V )→ Db+1

∞ (V )→ 0.

Now assume that b = 0. In this case the above becomes the claimed exact
sequence of (1).

We can prove (2) by induction on b. Note that Theorem 2.8 implies that
any presentation of a ]-filtered module will necessarily have a ]-filtered first
syzygy. It follows that it suffices to prove (2) for i = 1. Because ]-filtered
objects are torsion free, (1) implies the claim for b = 1. Otherwise, the exact
sequence (4.1) degenerates to

0→ HDb+1
∞

1 (V )→ Db
∞(V )→ Σ∞D

b
∞(V ).

Using the fact that the infinite derivative of a ]-filtered object is still ]-
filtered, as well as the fact that ]-filtered objects are torsion free, we obtain
our desired vanishing.

Straightforward homological dimension shifting arguments imply that it
suffices to prove (3) for i = 1. We proceed by induction on b. If b = 1,

then the first statement along with Theorem 3.4 imply that HD∞
1 (V ) has

finite degree. Assume that the statement is true for some integer b ≥ 1, and
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consider the sequence (4.1). By induction we know that H
Db
∞

1 (V ) has finite

degree, and therefore Σ∞H
Db
∞

1 (V ) = 0. The above sequence will simplify to

0→ HDb+1
∞

1 (V )→ Db
∞V → Σ∞D

b
∞V → Db+1

∞ V → 0.

Proposition 4.2 implies that Db
∞(V ) is degree-wise coherent, and therefore

it has finite torsion degree by Theorem 3.4. We conclude that HDb+1
∞

1 (V )
has finite degree, as desired. �

To finish this section, we define an improved version of the complex C•V .
This new complex will share almost all of C•V ’s most important properties,
while having the advantage of being functoral in V .

Definition 4.5. Let V be a degree-wise coherent FIG-module. Then The-
orem 2.16 and Proposition 4.2 imply that Σ∞V is ]-filtered, and that there
is an exact sequence

V → Σ∞V = F 0 → D∞V → 0

where D∞V is also degree-wise coherent with strictly smaller generating
degree. Repeating this process, we obtain a complex

C•∞V : 0→ V → F 0 → F 1 → . . .→ Fn → 0.

Note that by construction,

H i(C•∞V ) ∼= ker(Di+1
∞ V → Σ∞D

i+1
∞ V ) ∼= HD∞

1 (Di+1
∞ V )

where D0
∞ is the identity functor by convention. In particular, the cohomol-

ogy modules of C•∞ all have finite degree.

4.2. Local cohomology. In this section, we record results about the local
cohomology of the modules in FI -Modcoh. These facts were proven about
finitely generated modules in [LR], and the proofs from that paper will work
in this context as well, thanks to Theorems 3.9 and 2.16. The fact that these
two results imply that the work of [LR] will hold for degree-wise coherent
modules was also noted by Li in [L3].

Definition 4.6. Recall that every FIG-module V fits into an exact sequence

0→ VT → V → VF → 0

where VT is torsion, and VF is torsion free. The 0-th local cohomology functor
is defined by

H0
m(V ) := VT .

The category FIG -Mod is Grothendieck, and therefore we can define the
right derived functors of H0

m. The i-th derived functor of H0
m is denoted by

H i
m, and is known as the i-th local cohomology functor.
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One of the main results of the paper [LR, Theorem E], is that, when
working over a Noetherian ring, H i

m(V ) is finitely generated whenever V
is. In this work we will show that H i

m(V ) is degree-wise coherent whenever
V is. To do so, we first record the following alternative definition of local
cohomology.

Definition 4.7. For each integer r ≥ 0, and each integer n ≥ 1, we define
the module M(r)/mnM(r) to be the quotient of M(r) by the submodule
generated by M(r)r+n. Then we define the functor Hom(kFIG/m

n, •) :
FIG -Mod→ FIG -Mod by

Hom(kFIG/m
n, V )r := HomFIG -Mod(M(r)/mnM(r), V ).

Note that a map M(r)/mnM(r)→ V is determined by a choice of element
Vr, which is in the kernel of all transition maps into Vr+n. Given such a
map φ : M(r)/mnM(r)→ V , and a morphism (f, g) : [r]→ [m] in FIG, we
define (f, g)*φ to be the map M(m)/mnM(m)→ V which sends the identity
in degree m to (f, g)*(φ(idr)). This defines an FIG-module structure on
Hom(kFIG/m

n, V ). We use Exti(kFIG/m
n, •) to denote the i-th derived

functor of Hom(kFIG/m
n, •).

One important observation is that for each r ≥ 0 and n ≥ 1, there is a
map

M(r)/mn+1M(r)→M(r)/mnM(r).

This induces maps

HomFIG -Mod(M(r)/mnM(r), V )→ HomFIG -Mod(M(r)/mn+1M(r), V ),

which one may check are compatible with the induced maps of

Hom(kFIG/m
n, V ).

In particular, for any V we obtain a morphism of FIG-modules

Hom(kFIG/m
n, V )→ Hom(kFIG/m

n+1, V ).

This also gives us maps

Exti(kFIG/m
n, V )→ Exti(kFIG/m

n+1, V )

for each i ≥ 0. This justifies the following proposition.

Proposition 4.8. There is an isomorphism of functors

H0
m(•) ∼= lim

→
Hom(kFIG/m

n, V ),

inducing isomorphisms of derived functors

H i
m(•) ∼= lim

→
Ext(kFIG/m

n, V ).

Using this alternative description, one then goes on to prove the following
acyclicity results.
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Proposition 4.9. Let V be degree-wise coherent. If V is either a torsion
module, or a ]-filtered module, then

H i
m(V ) = 0

for all i ≥ 1.

Next, we recall the complex C•∞V . By construction this complex is com-
prised of ]-filtered modules in its positive degrees, and its cohomologies are
all degree-wise coherent torsion modules. The above proposition can there-
fore be used to prove the following.

Theorem 4.10. Let V be a degree-wise coherent module. Then there are
isomorphisms for all i ≥ 0,

H i
m(V ) ∼= H i−1(C•∞V ).

In particular, if V is degree-wise coherent, then the same is true of its local
cohomology modules.

This theorem has a long list of consequences, some of which we list now.

Corollary 4.11. Let V be a degree-wise coherent module. Then V is acyclic
with respect to local cohomology if and only if there is an exact sequence

0→ VT → V → VF → 0

where VT is a torsion module, and VF is ]-filtered.

Corollary 4.12. Let V be a degree-wise coherent module. Then H i
m(V ) = 0

for i� 0, while
depth(V ) = inf{i | H i

m(V ) 6= 0}.

Definition 4.13. Let V be a degree-wise coherent module which is not
]-filtered. Then Corollary 4.12 implies that there is a largest i for which
H i

m(V ) 6= 0. We define the dimension of the module V to be the quantity,

dimFIG(V ) := sup{i | H i
m(V ) 6= 0}.

If V is ]-filtered, then we set dimFIG(V ) =∞.

Corollary 4.14. Let V be a degree-wise coherent module. Then,

N(V ) = max
i
{deg(H i

m(V ))}+ 1,

whenever V is not ]-filtered.

Corollary 4.15. Let V be a degree-wise coherent module. Then,

reg(V ) ≤ max
i
{deg(H i

m(V )) + i}.

The reader might have noticed that Corollary 4.15 looks very similar to
a classic result from the local cohomology theory of the polynomial ring.
Indeed, the following was recently proven by Nagpal, Sam, and Snowden.
This resolves the primary conjecture of Li and the author from [LR].
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Theorem 4.16 (Theorem 1.1 [NSS]). Let V be a degree-wise coherent mod-
ule. Then

(4.2) reg(V ) = max
i
{deg(H i

m(V )) + i}.

Before the above was resolved by Nagpal, Sam and Snowden, it was shown
to be true for torsion modules by Gan, and Li in their paper [GL].

To finish this section, we more closely examine the relationship between
the infinite derivative and local cohomology.

Proposition 4.17. Let H
Db
∞

i : FIG -Modcoh → FIG -Modcoh denote the i-th

derived functor of Db
∞. Then for all i, b ≥ 1 there are natural isomorphisms

of functors

H
Db
∞

i
∼= HDb−1

∞
i−1

∼= . . . ∼= HDb−i+1
∞

1
∼= HD∞

1 ◦Db−i
∞ .

Proof. Consider the Grothendieck spectral sequence associated to the com-
position D∞◦Db−1

∞ . Note that Proposition 4.4 implies that HD∞
i (V ) = 0 for

all i > 1, and all degree-wise coherent modules V , and therefore this spec-
tral sequence only has two columns. The spectral sequence will therefore
degenerate to the collection of short exact sequences

0→ D∞H
Db−1
∞

i (V )→ H
Db
∞

i (V )→ HD∞
1 (HDb−1

∞
i−1 (V ))→ 0.

Proposition 4.4 tells us that HDb−1
∞

i (V ) has finite degree, and therefore the
left most term in these exact sequences is always zero. This same proposition

also implies that HD∞
1 (HDb−1

∞
i−1 (V )) ∼= HDb−1

∞
i−1 (V ) whenever i > 1. Naturality

of the isomorphisms H
Db
∞

i (V ) ∼= HDb−1
∞

i−1 (V ) follows from the naturality of the
Grothendieck spectral sequence. The result now follows by induction. �

Theorem 4.10 tells us that the local cohomology modules of a degree-wise
coherent module V can be computed as the torsion submodules of the infinite
derivatives of V . Proposition 4.17 directly relates these torsion modules
to the derived functors of these infinite derivatives. Putting everything
together, we have proven the following theorem. One may think of this
as a kind of “local duality,” as it relates the local cohomology functors to
the derived functors of some right exact functor.

Theorem 4.18. Let V be a degree-wise coherent module of dimension d.
Then there are isomorphisms for all i ≥ 1,

HDd+1
∞

i (V ) ∼= Hd+1−i
m (V ).

Proof. Theorem 4.10 and Proposition 4.17 imply

HDd+1
∞

i (V ) ∼= HD∞
1 (Dd+1−i

∞ V ) ∼= Hd−i(C•∞V ) ∼= Hd+1−i
m (V ). �
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