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The 1-eigenspace for matrices in GL2(Z`)

Davide Lombardo and Antonella Perucca

Abstract. Fix some prime number ` and consider an open subgroup G
either of GL2(Z`) or of the normalizer of a Cartan subgroup of GL2(Z`).
The elements of G act on (Z/`nZ)2 for every n > 1 and also on the direct
limit, and we call 1-eigenspace the group of fixed points. We partition
G by considering the possible group structures for the 1-eigenspace and
show how to evaluate with a finite procedure the Haar measure of all
sets in the partition. The results apply to all elliptic curves defined over
a number field, where we consider the image of the `-adic representation
and the Galois action on the torsion points of order a power of `.
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1. Introduction

Fix a prime number `, and let G be an open subgroup of either GL2(Z`)
or the normalizer of a (possibly ramified) Cartan subgroup of GL2(Z`). This
general framework can be applied to elliptic curves defined over a number
field, where G is the image of the `-adic representation. We identify an
element of G with an automorphism of the direct limit in n of (Z/`nZ)2:
for elliptic curves this means considering the Galois action on the group of
torsion points whose order is a power of `.
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We equip G with its Haar measure, normalized so as to assign volume one
to G, and we compute the measure of subsets of G of arithmetic interest.
For M ∈ G, we call 1-eigenspace of M the subgroup of fixed points of M
for its action on the direct limit lim−→n

(Z/`nZ)2. This leads to partitioning G
into subsets according to the group structure of the 1-eigenspace. More spe-
cifically, the matrices whose 1-eigenspace is an infinite group form a subset
of G that has Haar measure zero, so we only investigate the possible finite
group structures. For all integers a, b > 0 we consider the set

Ma,b := {M ∈ G : ker(M − I) ' Z/`aZ× Z/`a+bZ}
and its Haar measure in G, which is well-defined for each pair (a, b) and
that we call µa,b. The aim of this paper is to show that the whole countable
family µa,b can be effectively computed:

Theorem 1. Fix a prime number ` and an open subgroup G either of
GL2(Z`) or of the normalizer of one of its (possibly ramified) Cartan sub-
groups. It is possible to compute the whole family {µa,b} for (a, b) ∈ N2

with a finite procedure. More precisely, we can partition N2 in finitely many
subsets S (as in Definition 42 and explicitly computable) such that the fol-
lowing holds: there is some (explicitly computable) rational number cS > 0
such that for every (a, b) ∈ S we have

µa,b = cS · `−(dim(G)a+b)

where the dimension of G is either 4 or 2, according to whether G is open
in GL2(Z`) or in the normalizer of a Cartan subgroup. The sets S and the
constants cS may depend on ` and G.

Some explicit results are as follows:

Theorem 2. For GL2(Z`), we have:

µa,b =



`3 − 2`2 − `+ 3

(`− 1)2 · (`+ 1)
if a = 0, b = 0

`2 − `− 1

`(`− 1)
· `−b if a = 0, b > 0

`−4a if a > 0, b = 0

(`+ 1) · `−4a−b−1 if a > 0, b > 0.

Theorem 3. For a Cartan subgroup of GL2(Z`) which is either split or
nonsplit (see Definition 6) we respectively have:

µa,b =



(`− 2)2

(`− 1)2
if a = 0, b = 0

2(`− 2)

`− 1
· `−b if a = 0, b > 0

`−2a if a > 0, b = 0

2 · `−2a−b if a > 0, b > 0

µa,b =


`2 − 2

`2 − 1
if a = 0, b = 0

`−2a if a > 0, b = 0

0 if b > 0.
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Theorem 4. For the normalizer of a split or nonsplit Cartan subgroup C
of GL2(Z`) we have

µa,b =
1

2
· µCa,b +

1

2
· µ∗a,b

where µCa,b is the Haar measure in C of Ma,b ∩ C (which can be read off

Theorem 3) and where we set

µ∗a,b =


`− 2

`− 1
if a = 0, b = 0

`−b if a = 0, b > 0

0 if a > 0 .

The Haar measure µa,b can computed as the limit in n of the ratio
#Ma,b(n)/#G(n), where for a subset X of GL2(Z`) the symbol X(n) de-
notes the image of X in GL2(Z/`nZ). For fixed a and b, the quantity
#Ma,b(n)/#G(n) stabilizes for n sufficiently large by the higher-dimensional
version of Hensel’s Lemma. However, since we cannot fix a single value of n
which is good for every pair (a, b), we need technical results about counting
the number of lifts of any given matrix in GL2(Z/`nZ) to GL2(Z/`n+1Z).

The structure of the paper is as follows. In Section 2 we define Cartan
subgroups of GL2(Z`) in full generality and prove a classification result which
might be of independent interest. In Section 3 we prove general results
about the group structure of the 1-eigenspace and set the notation for the
subsequent sections. These contain further results, in particular Theorem 28
(about the reductions of Ma,b) and the two technical results Theorems 27
and 31. Finally, the last section is devoted to the proof of Theorems 1 to
4. In [LP16] we apply the results of this paper to solve a problem about
elliptic curves:

Remark 5. Let E be an elliptic curve defined over a number field K. If ` is
a prime number and E[`∞] is the group of K-points on E of order a power
of `, we have general results and a computational strategy for:

• classifying the elements in the image of the `-adic representation
according to the group structure of the fixed points in E[`∞];
• computing the density of reductions such that the `-part of the group

of local points has some prescribed group structure, for the whole
family of possible group structures.

2. Cartan subgroups of GL2(Z`)

2.1. General definition of Cartan subgroups. Classical references are
[Bor91, Chapter 4] and [Ser72, Section 2]. Let ` be a prime number and F
be a reduced Q`-algebra of degree 2 with ring of integers OF . Concretely,
F is either a quadratic extension of Q`, or the ring Q2

` (in the latter case we
define the `-adic valuation as the minimum of those of the two coordinates
and by OF we mean the valuation ring Z2

` ). Let furthermore R be a Z`-order
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in F , by which we mean a subring of F (containing 1) which is a finitely
generated Z`-module and satisfies Q`R = F (i.e., R spans F over Q`).

The Cartan subgroup C of GL2(Z`) associated with R is the group of
units of R: the embedding R× ↪→ GL2(Z`) is given by fixing a Z`-basis of R
and considering the left multiplication action of R×. The Cartan subgroup
is only well-defined up to conjugation in GL2(Z`) because of the choice of
the basis. Writing CR := ResR/Z`

(Gm), where Res is the Weil restriction of
scalars, we have C = CR(Z`), provided that the Weil restriction is computed
using the same Z`-basis for R.

Equivalently, a Cartan subgroup of GL2(Z`) can be described as follows:
there exists a maximal torus T of GL2,Z`

, flat over Z`, such that C = T (Z`).

Definition 6. We shall say that the Cartan subgroup of GL2(Z`) associated
with R is:

• maximal, if ` does not divide the index of R in OF ;
• split, if it is maximal and furthermore ` is split in F ;
• nonsplit, if it is maximal and furthermore ` is inert in F ;
• ramified, if it is neither split nor nonsplit.

Notice in particular that unramified means the same as either split or
nonsplit. Thus a Cartan subgroup is either split, nonsplit or ramified: a
Cartan subgroup can be ramified because

(1) it is not maximal (` divides [OF : R]), or
(2) ` ramifies in F .

Note that we always understand ‘maximal’ in the sense of the above defini-
tion (in particular, even if a Cartan subgroup is not maximal, it is still the
group of Z`-points of a maximal subtorus of GL2). A proper subgroup of a
Cartan subgroup of GL2(Z`) is not a Cartan subgroup in our terminology.

Remark 7. A strict inclusion of quadratic rings R ↪→ S over Z` does not
induce an inclusion of Cartan subgroups according to our definition. This
is because the multiplication action of R× on R (resp. of S× on S) is repre-
sented with respect to a Z`-basis of R (resp. S), and the base-change matrix
relating a basis of R with a basis of S is not `-integral. More concretely,
write S = Z`[ω] and R = Z`[`kω] for some k > 0. Suppose for simplicity
that ` 6= 2 and ω2 = d ∈ Z`, and consider the bases {1, ω} and {1, `kω} of
S,R respectively. An element a+ b`kω (where a, b ∈ Z`) corresponds to(

a b`kd
b`k a

)
∈ CS(Z`) and

(
a b`2kd
b a

)
∈ CR(Z`).

One can check that for b 6= 0 there is no Z`-integral change of basis relating
these two matrices, and a similar conclusion holds for any choice of Z`-bases
of R,S.

For a maximal Cartan subgroup we have R = OF and for a split Cartan
subgroup we have R ∼= Z2

` and hence C ∼= (Z×` )2.



THE 1-EIGENSPACE FOR MATRICES IN GL2(Z`) 901

2.2. A classification for quadratic rings. It is apparent from the pre-
vious discussion that classifying the Cartan subgroups of GL2(Z`) up to
conjugacy is equivalent to classifying the quadratic rings over Z` (i.e., the
orders in integral quadratic Q`-algebras) up to a Z`-linear ring isomorphism.
A Cartan subgroup is maximal if and only if the corresponding quadratic
ring R is the maximal order; a maximal Cartan subgroup is unramified if
and only if the corresponding Q`-algebra is étale, i.e., it is either Q2

` (in the
split case) or the unique unramified quadratic extension of Q` (in the non-
split case). We have an étale Q`-algebra if and only if the `-adic valuation
on R, normalized so that v`(`) = 1, takes integer values.

Theorem 8 (Classification of quadratic rings). If R is a quadratic ring
over Z` then there exist a Z`-basis (1, ω) of R and parameters (c, d) in Z`
satisfying ω2 = cω + d and such that one of the following holds: c = 0 (and
hence d 6= 0); ` = 2, c = 1, and d is either zero or odd.

Proof. Let (1, ω0) be a Z`-basis of R and write ω2
0 = c0ω0 + d0 for some

c0, d0 ∈ Z`. If ` is odd or c0 is even, we set ω = ω0−c0/2 and have parameters
(0, d0 + c20/4). If ` = 2 and c0 is odd, we set ω = ω0 − (c0 − 1)/2 and
d1 = d0 +(c20 − 1)/4. If d1 is odd, we are done because we have ω2 = ω+d1.
If d1 is even, the quadratic equation ω2 = ω+d1 has solutions in Q2 because
its discriminant 1− 4d1 ≡ 1 (mod 8) is a square. Thus R is an order in Q2

2

and hence it is of the form Z2(1, 1)⊕ Z2(0, β) for some β ∈ Z2. If β is odd,
we have R = Z2

2 so we set ω = (0, 1) and have parameters (1, 0). If β is
even, we set ω = (−β/2, β/2) and have parameters (0, β2/4). �

2.3. Parameters for a Cartan subgroup. We call the parameters (c, d)
as in Theorem 8 parameters for the Cartan subgroup of GL2(Z`) correspond-
ing to R: they are in general not uniquely determined.

Remark 9. Since Z is dense in Z` we may assume that the parameters (c, d)
are integers. Indeed, one can prove that the isomorphism class of the ring
Z`[x]/(x2−cx−d) is a locally constant function of (c, d) ∈ Z2

` (this property
is closely related to Krasner’s Lemma [The17, Tag 0BU9]). We also give a
direct argument. Consider first a Cartan subgroup C with parameters (0, d).
If u is an `-adic unit, (0, u2d) are also parameters for C. Thus C depends
on d only through its class in (Z` \ {0})/Z×2` (quotient as multiplicative

monoids): this is isomorphic to N × Z×` /Z
×2
` , where the first factor is the

valuation and the second factor is finite (indeed Z×` /Z
×2
`
∼= F×` /F

×2
` if `

is odd, and Z×2 /Z
×2
2
∼= (Z/8Z)×). With powers of ` we can realize every

integral valuation (recall that d is an element of Z`), and the integers coprime
to ` represent all elements of Z×` /Z

×2
` , thus there is an integer representative.

Now suppose ` = 2 and consider a Cartan subgroup with parameters (1, d)
where d is odd: in Proposition 11 we show that the quadratic ring is Z2[ζ6]
and hence we can take as parameters (1,−1).
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Proposition 10 (Classification of Cartan subgroups for ` odd). Suppose
that ` is odd, and consider a Cartan subgroup of GL2(Z`) with parameters
(0, d). It is maximal if and only if v`(d) 6 1. It is unramified if and only if
` - d: it is then split if d is a square in Z×` , and nonsplit otherwise.

Proof. If v`(d) = 1 then v`(ω) = 1/2 and hence F is a ramified extension
of Q`. If v`(d) > 2 then C is not maximal because (ω/`)2 = d/`2 ∈ Z` and
hence ω/` is in Z`. If v`(d) 6 1 then R is a maximal order. Indeed, let R′

be an order in F containing R and choose a Z`-basis (1, ω1) of R′ satisfying
ω2
1 = d1 ∈ Z`: writing ω = aω1 + b for some a, b ∈ Z`, we have

d = ω2 = (a2d1 + b2) · 1 + (2ab) · ω1

which implies b = 0, thus v`(d) = 2v`(a) + v`(d1) and hence v`(a) = 0 and
R′ = R.

Now suppose v`(d) = 0. If d is not a square, then F = Q`(
√
d) is an

unramified extension of Q` while if d is a square the map

a+ bω 7→ (a+ b
√
d, a− b

√
d)

identifies R and Z2
` . �

Proposition 11 (Classification of Cartan subgroups for ` = 2). Suppose
that ` = 2, and consider a Cartan subgroup of GL2(Z`) with parameters
(c, d). It is unramified if and only if c = 1: it is then split for d = 0 and
nonsplit for d odd. It is maximal and ramified if and only if c = 0 and either
v2(d) = 1 or v2(d) = 0 and d ≡ 3 (mod 4).

Proof. We keep the notation of the previous proof. If c = 1 and d = 0
then a + bω 7→ (a, a + b) is an isomorphism between R and Z2

2, so that C
is split. If c = 1 and d is odd then up to isomorphism we may suppose
ω2 = ω + d. This equation is separable over Z/2Z, so R is contained in the
unique unramified quadratic extension of Q2, which is Q2(ζ6). Since 2 is
inert, we will have shown that C is nonsplit once we prove R = Z2[ζ6]. To
show ζ6 ∈ R, we write ω = a + bζ6 (with a, b ∈ Z2) and prove that b is a
unit: the equation ω2 = ω + d gives

(a2 − b2) + ζ6(b
2 + 2ab) = (a+ d) + ζ6b,

so a+ d has the same parity as a2 − b2 and we deduce that b is odd.
Conversely, if C is unramified then no Z2-basis (1, ω) of R satisfies ω2 ∈ Z2

and we must have c = 1. Since t2 = t + d has no solutions in Z2
2 for d odd

while it has solutions in Q2 if d = 0, we deduce that d = 0 (resp. d is odd)
for a split (resp. nonsplit) Cartan subgroup. If c = 1 we have seen that C
is maximal, so suppose c = 0 and hence ω2 = d ∈ Z2. Analogously to the
previous remark we have v2(d) 6 1 if C is maximal. By Remark 9 we only
need to consider those d in (Z2 \{0})/Z×22

∼= (N×Z×2 )/Z×22 with valuation 0
or 1, namely d = 1, 3, 5, 7 and d = 2, 6, 10, 14. We may conclude because it
is known whether Z2[

√
d] has index 1 or 2 in the ring of integers of Q2(

√
d),

where for d = 1 we set
√
d = (1,−1) ∈ Z2

2. �
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2.4. A concrete description of Cartan subgroups. Let (c, d) be para-
meters as in Theorem 8; we can then give a precise description for CR :=
ResR/Z`

(Gm) ⊂ GL2,Z`
as follows. For every Z`-algebra A, the A-points of

CR are the subgroup of GL2,Z`
(A) given by:

CR(A) =

{(
x dy
y x+ yc

)
: x, y ∈ A, det

(
x dy
y x+ yc

)
∈ A×

}
.

In particular the Cartan subgroup C = CR(Z`) is the set

(2.1) C =

{(
x dy
y x+ yc

)
: x, y ∈ Z`, v`(x(x+ yc)− dy2) = 0

}
.

Remark 12 (Diagonal model for a split Cartan subgroup). For the para-
meters (c, d) of a split Cartan subgroup C we have shown: if ` is odd, we
have c = 0 and d is a square in Z×` ; if ` = 2, we have (c, d) = (1, 0). We de-
duce the existence of an isomorphism between C and the group of diagonal
matrices in GL2(Z`):

(2.2)

{(
X 0
0 Y

)
: X,Y ∈ Z×`

}
.

We can define such an isomorphism for ` odd and for ` = 2 respectively as:
(2.3)

ϕ` :

(
x dy
y x

)
7→
(
x− y

√
d 0

0 x+ y
√
d

)
ϕ2 :

(
x 0
y x+ y

)
7→
(
x 0
0 x+ y

)
.

We have det(ϕ`(M)− I) = det(M − I) and for any n > 1 we have

ϕ`(M)− I ≡ 0 (mod `n) ⇐⇒ M − I ≡ 0 (mod `n).

Notation. For a subset X of GL2(Z`) we denote by X(n) the image of X
in GL2(Z/`nZ).

Lemma 13. If C is a Cartan subgroup of GL2(Z`) we have

#C(1) =


(`− 1)2 if C is split

(`− 1) · (`+ 1) if C is nonsplit

(`− 1) · ` if C is ramified

and for any n > 1 we have #C(n) = #C(1) · `2n−2.

Proof. The assertion for n = 1 is a straightforward computation, while for
n > 1 it follows from the (higher-dimensional version of) Hensel’s Lemma
[Nek, Proposition 7.8] because the Zariski closure of C in GL2,Z`

is smooth
of relative dimension 2. �
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2.5. Normalizers of Cartan subgroups.

Lemma 14. A Cartan subgroup of GL2(Z`) has index 2 in its normalizer.
If C is as in (2.1), its normalizer N in GL2(Z`) is the disjoint union of C
and

C ′ :=

(
1 c
0 −1

)
· C.

We have instead C ′ :=

(
0 1
1 0

)
· C for a split Cartan subgroup as in (2.2).

Proof. An easy verification shows C ′ ⊂ N . If A ∈ N , there exist x, y ∈ Z`
such that we have

A

(
0 d
1 c

)
A−1 =

(
x yd
y x+ yc

)
.

If c = 0, by comparing traces we find x = 0 and hence by comparing
determinants we have (x, y) = (0,±1). If ` = 2 and c = 1, by comparing
traces we find y = 1 − 2x and hence by comparing determinants we have
−x2 + x = 0, so (x, y) is either (0, 1) or (1,−1). We compute

A

(
0 d
1 c

)
=

(
x yd
y x+ yc

)
A

for any explicit value of (x, y) as above, finding in each case A ∈ C ∪ C ′.
The last assertion about a split Cartan subgroup is well-known and easy to
prove. �

Remark 15. If one considers a Cartan subgroup of GL2(Z`) as the Z`-
valued points of a maximal torus of GL2, the previous lemma also follows
from the fact that any maximal torus in GL2 has index 2 in its normalizer
(the Weyl group of GL2 is Z/2Z).

Lemma 16. If C is as in (2.1) and N is its normalizer then we have

N \ C =

{(
z −dw + cz
w −z

)
: z, w ∈ Z`, v`(−z2 + dw2 − czw) = 0

}
.(2.4)

Consider M ∈ N \ C. If ` is odd, we have M 6≡ I (mod `); if ` = 2, we
have M 6≡ I (mod 4), and if C is unramified we also have M 6≡ I (mod 2).

Proof. The first assertion follows from the previous lemma and (2.1). Since
M has trace zero, we have M 6≡ I (mod `) for ` odd and M 6≡ I (mod 4)
for ` = 2. If ` = 2 and C is unramified we know c = 1 thus M ≡ I (mod 2)
is impossible. �

Remark 17. By comparing (2.1) and (2.4), we see that the sets C(n) and
(N \C)(n) are disjoint for n > 2 (if ` is odd or C is unramified, for n > 1).
By Lemma 14 we then have #N(n) = 2 ·#C(n).
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2.6. The tangent space of a Cartan subgroup. Let G be an open
subgroup of either GL2(Z`) or of the normalizer of a Cartan subgroup of
GL2(Z`). Then G is an `-adic manifold, and there is a well-defined no-
tion of a tangent space TIG at the identity. This is a Q`-vector subspace
of Mat2(Q`), of dimension equal to the dimension of G as a manifold (in
particular, if G = GL2(Z`) we have TIG = Mat2(Q`)). For our lifting ques-
tions, however, we are more interested in the ‘mod-`’ tangent space, which
can be defined either as the reduction modulo ` of the intersection of TIG
with Mat2(Z`), or as the tangent space to the modulo-` fiber of the Zariski
closure of G in GL2,Z`

. More concretely, the next two definitions describe
the tangent space explicitly:

Definition 18. If C is as in (2.1), its tangent space is

T :=

{(
x dy
y x+ cy

)
: x, y ∈ Z/`Z

}
where (c, d) are here the reductions modulo ` of the parameters of C. Write
T× = C(1) for the subset of T consisting of the invertible matrices.

We clearly have #T = `2 and by Lemma 13 we also know #T×. So we
get:

(2.5)

Type of C #T #T× #T−#T× − 1
split `2 (`− 1)2 2(`− 1)

nonsplit `2 `2 − 1 0
ramified `2 `(`− 1) `− 1

We define the tangent space of an open subgroup of the normalizer of
C as the tangent space of C. We also define the tangent space of an open
subgroup of GL2(Z`) as follows:

Definition 19. Let G be an open subgroup of GL2(Z`). The tangent space
of G is T := Mat2(Z/`Z) and we write T× = GL2(Z/`Z).

For GL2(Z`) we have

#T = `4, #T× = `(`− 1)2(`+ 1) and #T−#T×− 1 = (`+ 1)(`2− 1).

3. The group structure of the 1-eigenspace

3.1. The level. Let G′ be either GL2(Z`) or the normalizer of a Cartan
subgroup of GL2(Z`). Let G be an open subgroup of G′ of finite index
[G′ : G]. Call G′(n) and G(n) the reductions of G′ and G modulo `n, that
is their respective images in GL2(Z/`nZ).

If n is the smallest positive integer such that we have

[G′(n) : G(n)] = [G′ : G],
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we define the level n0 of G as

n0 =

{
max{n, 2} if ` = 2 and G′ is the normalizer of a ramified Cartan

n otherwise.

Remark 20. It is easy to check that all our statements involving the notion
of level remain true if n0 is replaced by any larger integer.

All matrices in G′ that are congruent to the identity modulo `n0 belong
to G. In other words, G is the inverse image of G(n0) for the reduction map
G′ → G′(n0). Consequently we have

(3.1) [G′(n) : G(n)] = [G′ : G] for every n > n0.

The dimension of G′ is 4 if G′ = GL2(Z`) and is 2 otherwise, and we have

(3.2) [G(n+ 1) : G(n)] = [G′(n+ 1) : G′(n)] = `dimG′
for every n > n0.

Remark 21. LetG be an open subgroup of either GL2(Z`) or the normalizer
of a Cartan subgroup of GL2(Z`). Let n0 be the level of G. For any n > n0
the map M 7→ `−n(M−I) identifies the tangent space of G with the kernel of
G(n+1)→ G(n). This is immediate for GL2(Z`), and for Cartan subgroups
it follows from (2.1). The assertion also holds for normalizers of Cartan
subgroups because by Lemma 16 all matrices reducing to the identity in
G(n) are contained in the Cartan subgroup.

3.2. The 1-eigenspace. We identify an element of GL2(Z`) with an auto-
morphism of the direct limit in n of (Z/`nZ)2. For all integers a, b > 0, if
X ⊆ GL2(Z`) we define

(3.3) Ma,b(X) := {M ∈ X : ker(M − I) ' Z/`aZ× Z/`a+bZ}

and callMa,b(X;n) the reduction ofMa,b(X) modulo `n. To ease notation,
we write Ma,b :=Ma,b(G) and Ma,b(n) :=Ma,b(G;n).

We consider the normalized Haar measure on G and call µa,b the measure
of the set Ma,b. Since Ma,b(n) is a subset of G(n), we may consider its
measure

µa,b(n) := #Ma,b(n)/#G(n).

The setsMa,b are pairwise disjoint, but the same is not necessarily true for
the setsMa,b(n). The sequence µa,b(n) is constant for n > a+ b: this shows
that µa,b is well-defined and that we have µa,b = µa,b(n) for every n > a+ b.

Remark 22. We clearly have Ma,b = G ∩Ma,b(G
′). Moreover, we have

Ma,b = ∅ ⇔ G(n0) ∩Ma,b(G
′;n0) = ∅.

Indeed we know Ma,b(n0) ⊆ G(n0) ∩Ma,b(G
′;n0) so if the latter is empty

so is Ma,b. Conversely, matrices in Ma,b(G
′) whose reduction modulo `n0

lies in G(n0) are in Ma,b because G is the inverse image in G′ of G(n0).
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3.3. Additional notation. We write det` for the `-adic valuation of the
determinant. If M is in Mat2(Z/`nZ), then det(M) is well-defined modulo `n

so we can write det`(M) > n if the determinant is zero modulo `n. Notice
that the matrices in Mat2(Z`) that are zero modulo `a for some a > 0
and with a given reduction modulo `n for some n > a have a determinant
which is well-defined modulo `a+n. More generally, if p is a polynomial with
integer coefficients and z1, z2 are in Z/`nZ then we write v`(p(z1, z2)) for the
minimum of v`(p(Z1, Z2)) over all lifts Z1, Z2 of z1, z2 to Z`. For example,
if z ≡ `t (mod `n) with t < n then we have v`(z

2) = 2t because all lifts Z
of z satisfy v`(Z

2) = 2t.

3.4. Conditions related to the group structure of the 1-eigenspace.

Lemma 23. The set Ma,b consists of the matrices M ∈ G that satisfy

M − I ≡ 0 (mod `a),(3.4)

M − I 6≡ 0 (mod `a+1),

det`(M − I) = 2a+ b.

For every n > a + b the set Ma,b is the preimage of Ma,b(n) in G, and
Ma,b(n) consists of the matrices M ∈ G(n) satisfying (3.4).

Proof. Necessity of (3.4) follows because for A ∈ Mat2(Z`) the order of the
kernel of A (considered as acting on the direct limit lim−→n

(Z/`nZ)2) equals

`det` A, that is, there are `det` A points x in lim−→n
(Z/`nZ)2 such that Ax = 0.

Now suppose that M ∈ G satisfies (3.4), and write M = I + `aA for some
A ∈ Mat2(Z`) which is nonzero modulo `. We have det`(A) = b. Since A is
nonzero modulo `, the kernel of A is cyclic. Thus ker(A) ' Z/`bZ and hence
ker(M − I) ' Z/`aZ×Z/`a+bZ. If n > a+ b, (3.4) holds for the matrices in
Ma,b(n) and their preimages in G. �

By Remark 12 and Lemma 23, the maps in (2.3) preserve Ma,b and
Ma,b(n), thus for a split Cartan subgroup we can indifferently use the general
model (2.1) or the diagonal model (2.2).

3.5. Existence of the Haar measure. A fundamental tool in dealing
with Haar measures on profinite groups is the following simple lemma:

Lemma 24. [FJ08, Lemma 18.1.1] Let G1 be a profinite group equipped with
its normalized Haar measure, and let G2 be an open normal subgroup of G1.
Call π the natural projection G1 → G1/G2. For any subset S of the finite
group G1/G2, the set π−1(S) is measurable in G1, and its Haar measure is
#S/#(G1/G2).

Lemma 25. For all integers a, b > 0 the set Ma,b is measurable in G and
we have µa,b = µa,b(n) whenever n > a + b. In particular we have µa,b = 0
if and only if Ma,b = ∅. The set

⋃
a,b∈NMa,b is measurable in G, and its

complement has measure zero.
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Proof. For the first assertion apply Lemma 24 to G, ker(G → G(n)) and
Ma,b(n), noticing thatMa,b is the preimage ofMa,b(n) in G by Lemma 23.
The set M :=

⋃
a,b∈NMa,b is measurable because it is a countable union

of measurable sets. We now prove µ(G \ M) = 0. Fix n0 as in (3.1)
and for n > n0 call πn : G → G(n) the reduction modulo `n. We have
G \M ⊆ π−1n (πn (G \M)), so by Lemma 24 it suffices to show that

(3.5) µ(πn (G \M)) =
#πn (G \M)

#G(n)

tends to 0 as n tends to infinity. By (3.2) we know that #G(n) is a constant

times `n dimG′
. Let G′∞ be the closed `-adic analytic subvariety of G′ defined

by det(M − I) = 0. We have G \ M ⊆ G′∞ because for any M ∈ G with
det(M − I) 6= 0 there exists n such that

M 6≡ I (mod `n) and det
`

(M − I) 6 n,

whence M ∈M. Thus the numerator in (3.5) is at most #πn(G′∞), which by

[Oes82, Theorem 4] is at most a constant times `ndim(G′
∞) = `n(dimG′−1). �

3.6. The complement of a Cartan subgroup in its normalizer. Fix
a Cartan subgroup C of GL2(Z`) and denote by N its normalizer. If G is
an open subgroup of N , set

M∗a,b := (N \ C) ∩Ma,b.

We denote byM∗a,b(n) the reduction ofM∗a,b modulo `n, that is its image

in G(n).
If G is not contained in C, the sets G∩C and G∩ (N \C) are measurable

and have measure 1/2 in G because of Lemma 24 applied to the canonical
projection G→ G/(G ∩ C) ∼= Z/2Z. In particular we have

µ(Ma,b) = µ (Ma,b ∩ C) + µ
(
M∗a,b

)
.

Since µN (Ma,b ∩ C) = 1/2·µC (Ma,b ∩ C), to determine µa,b we are reduced
to computing µ(M∗a,b) and studying G ∩ C, which is open in the Cartan
subgroup C.

Proposition 26. We have M∗a,b = ∅ for a > 1 (if ` is odd or C is unrami-

fied, for a > 0).

Proof. This is a consequence of Lemma 16. �

4. First results on the cardinality of Ma,b(n)

Theorem 27. Let G′ be either GL2(Z`) or the normalizer of an unramified
Cartan subgroup of GL2(Z`). Let G be an open subgroup of G′ of level
n0. Call Ha,b(n) the set of matrices M in G(n) satisfying the following
conditions:

(1) If a > 0, M ≡ I (mod `a); if n > a, M 6≡ I (mod `a+1).
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(2) If a < n 6 a+ b, det`(M − I) > a+ n.
If n > a+ b, det`(M − I) = 2a+ b.

For every integer n > 1 define

f(n) =



1 if n < a

#T× if n = a, b = 0

#T−#T× − 1 if n = a, b > 0

#T · `−1 if a < n < a+ b

#T · (1− `−1) if n = a+ b, b > 0

#T if n > a+ b.

Then the following hold:

(i) For every n > n0 we have #Ha,b(n+ 1) = f(n) ·#Ha,b(n). For each
M ∈ Ha,b(n) the number of matrices M ′ ∈ Ha,b(n + 1) such that
M ′ ≡M (mod `n) equals f(n).

(ii) IfMa,b 6= ∅ and n > n0, or if n > a+b, we haveMa,b(n) = Ha,b(n).
(iii) For a > n0 we have Ma,b = ∅ if and only if

b > 0 and #T−#T× − 1 = 0.

Proof. We first prove (i). Since n > n0, all lifts to G′(n+ 1) of matrices in
Ha,b(n) are in G(n + 1). If n > a + b then clearly every lift to G(n + 1) of
a matrix in Ha,b(n) belongs to Ha,b(n + 1). If n < a, the sets Ha,b(n) and
Ha,b(n+ 1) contain only the identity and we are done.

Suppose n = a: the only matrix in Ha,b(a) is the identity, so we apply
Remark 21. For b = 0 we count the matrices of the form I + `aT with
T ∈ T and det`(T ) = 0. For b > 0 we count those M ∈ Ha,b(a + 1) that
are congruent to the identity modulo `a but not modulo `a+1 and such that
det`(M−I) > 2a+1: this means M = I+`aT , where T ∈ T with det` T 6= 0,
and excluding T = 0.

Now consider the case a < n < a+b. Let M ∈ Ha,b(n) and fix some lift L
to G(n+1). The lifts of M are those matrices of the form M ′ = L+`nT with
T ∈ T, unless G′ is the normalizer of a Cartan subgroup C and M /∈ C(n),
for which by Lemma 16 we have a = 0 and T ∈ T1, where

(4.1) T1 :=

{(
z −dw + cz
w −z

)
: z, w ∈ Z/`Z

}
.

Write L − I = `aN for some N ∈ Mat2(Z/`n+1−aZ). Since b > n − a, we
have det(N) = `n−az for some z ∈ Z/`Z. Setting (N mod `) = (nij) and
T = (tij), we get the following congruence modulo `n+1−a:

det(M ′ − I) ≡ `2a · det(N + `n−aT )

≡ `n+a (z + n11t22 + n22t11 − n21t12 − n12t21) .

So the condition for M ′ to be in Ha,b(n+ 1) is

(4.2) z + n22t11 + n11t22 − n21t12 − n12t21 = 0.
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We conclude by checking that this equation defines an affine subspace of
codimension 1 in T (resp. in T1, if M 6∈ C(n)). The equation is non-
trivial because at least one of the nij is nonzero, and this remark suffices
for GL2(Z`). If G′ is the normalizer of a Cartan subgroup, we also have to
check that (4.2) is independent from the equations defining T (resp. T1),
which are {

t22 = t11 + ct21

t12 = dt21,
resp.

{
t22 = −t11
t12 = −dt21 + ct11.

For the elements of T, noticing that (N mod `) depends only on (M mod
`a+1) and it is in T \ {0}, we can rewrite (4.2) as

z + (2n11 + cn21)t11 + (n11c− 2dn21)t21 = 0

and we can easily check by Proposition 11 that 2n11 + cn21 or n11c− 2dn21
is nonzero.

For the elements of T1, we again conclude by Proposition 11 because a = 0
and we have (N + I mod `) ∈ T1 \ {0}, thus (4.2) becomes

(4.3) z − (2(n11 + 1) + cn21)t11 + (2dn21 − c(n11 + 1))t21 = 0.

If n = a + b and b > 0, we can reason as in the previous case. Now the
condition for M ′ to be in Ha,b(a+ b+ 1) is that (4.2) is not satisfied: we
conclude because that equation has `−1 ·#T solutions.

We now prove (ii). The assertion for n > a + b is the content of Lem-
ma 23, so in particular we knowMa,b(a+b+1) = Ha,b(a+b+1) and we may
suppose n 6 a+ b. We clearly haveMa,b(n) ⊆ Ha,b(n) and are left to prove
the other inclusion. The assumptionMa,b 6= ∅ implies that for all x > 1 the
sets Ma,b(x) and Ha,b(x) are nonempty and hence by (i) we know f(x) 6= 0
for all x > n0. Thus for any M ∈ Ha,b(n) there is some M ′ ∈ Ha,b(a+ b+ 1)
satisfying M ′ ≡M (mod `n), and we deduce M ∈Ma,b(n).

Finally, we prove (iii). The condition f(a) = 0 is equivalent to b > 0
and #T − #T× − 1 = 0. By (i), if f(a) = 0 then Ha,b(a + 1) is empty
and hence also Ma,b(a+ 1) and Ma,b are empty. If f(a) 6= 0 then we have
f(x) 6= 0 for all x > 1. Since Ha,b(a) contains the identity, we deduce that
Ha,b(a+ b+ 1) =Ma,b(a+ b+ 1) is nonempty, and hence Ma,b 6= ∅. �

5. The number of lifts for the reductions of matrices

5.1. Main result. We study the lifts of a given matrix M ∈ Ma,b(n) to
Ma,b(n+ 1), namely the matrices inMa,b(n+ 1) which are congruent to M
modulo `n.

Theorem 28. Let G be an open subgroup of either GL2(Z`) or the nor-
malizer N of a Cartan subgroup C of GL2(Z`). Let n0 be the level of G.
For n > n0 the number of lifts of a matrix M ∈ Ma,b(n) to Ma,b(n + 1)
is independent of M in the first case, while in the second case it depends at
most on whether M belongs to either C(n) or (N \ C)(n).
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Proof of Theorem 28. If G is open in GL2(Z`) or if C is unramified, the
number of lifts of M to G(n+ 1) is independent of M by Theorem 27(i). If
C is ramified the assertion follows from Theorems 30 and 31. �

Example 29. The number of lifts may indeed depend on the coset of N/C.
Suppose that ` is odd and consider the Cartan subgroup C of GL2(Z`) with
parameters (0, `). If G is the normalizer of C then the matrices(

1 `
1 1

)
and

(
1 −`
1 −1

)
are in M0,1 and their reductions modulo ` have respectively `2 and `2 − `
lifts to M0,1(2). Indeed, their lifts to G(2) are of the form

L =

(
1 + `u `
1 + `v 1 + `u

)
and L′ =

(
1 + `u −`
1 + `v −1− `u

)
respectively, where u, v ∈ Z/`Z: we have det`(L−I) = 1 for every u, v while
det`(L

′ − I) = 1 holds if and only if 2u− 1 6≡ 0 (mod `).

5.2. Ramified Cartan subgroups.

Theorem 30. Let G be open in a ramified Cartan subgroup of GL2(Z`).
Let n0 be the level of G. For all a, b > 0 and for all n > n0 the number of
lifts of a matrix M ∈Ma,b(n) to Ma,b(n+ 1) is independent of M .

Proof. For n 6 a the set Ma,b(n) consists at most of the identity matrix,
so suppose n > a. Let (0, d) be the parameters for the Cartan subgroup
(for convenience, we do not use a different notation for d and its reductions
modulo powers of `). The matrices in Ma,b(n) are of the form

(5.1) M = I + `a
(
x dy
y x

)
where x, y ∈ Z/`n−aZ are not both divisible by ` and have lifts X,Y ∈ Z`
satisfying v`(X

2 − dY 2) = b.
If all matrices in Ma,b(n) satisfy x ≡ 0 (mod `n−a) then they all have

the same number of lifts to Ma,b(n + 1). Since y is a unit, for any M1,M2

in Ma,b(n) there is an obvious bijection between the lifts of M1 − I and of
M2 − I given by rescaling by a suitable unit.

If some M0 ∈ Ma,b(n) satisfies x0 6≡ 0 (mod `n−a) and either v`(x
2
0) 6=

v`(d) or v`(x
2
0) = v`(d) = v`(x

2
0 − dy20) then every matrix in Ma,b(n) has `2

lifts to Ma,b(n+ 1).
It suffices to show that for M ∈Ma,b(n) all lifts X,Y of x, y to Z` satisfy

v`(X
2 − dY 2) = b because this implies that all lifts of M to G belong to

Ma,b.
If v`(x

2
0) < v`(d) then for any X0, Y0 lifting x0, y0 we have v`(X

2
0−dY 2

0 ) =
v`(X

2
0 ) = v`(x

2
0), so this number is independent of the lift and it is equal

to b. In particular, we have b < v`(d) and b < 2(n − a). For M ∈ Ma,b(n)
there exist lifts X,Y ∈ Z` of x, y that satisfy v`(X

2 − dY 2) = b. We deduce
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v`(X
2) = b and hence v`(x

2) 6 b: since v`(x
2) < v`(d) and x 6≡ 0 (mod `n−a)

we can reason as for M0 and we conclude.
If v`(x

2
0) > v`(d) then y0 must be a unit, so we have v`(d) = v`(x

2
0− dy20),

and the same holds for all lifts X0, Y0. In particular, we have

b = v`(d) < 2(n− a).

If v`(x
2
0) = v`(d) = v`(x

2
0 − dy20), we write x0 = `ku0 and d = `2kδ,

where u0, δ are units and k < n − a. Then u20 − δy20 is a unit and hence
v`(U

2
0−δY 2

0 ) = 0 for all lifts U0, Y0 of u0, y0. We deduce v`(X
2
0−dY 2

0 ) = v`(d)
for all lifts X0, Y0 of x0, y0 and again we have b = v`(d) < 2(n− a).

So suppose b = v`(d) < 2(n − a). For M ∈ Ma,b(n) there are lifts
X,Y of x, y satisfying v`(X

2 − dY 2) = b and hence v`(X
2) > v`(d) and

v`(x
2 − dy2) 6 v`(d). If x 6≡ 0 (mod `n−a) then either v`(x

2) 6= v`(d) or
we have v`(x

2) = v`(d) and v`(x
2 − dy2) = v`(d), so we can reason as for

M0. If x ≡ 0 (mod `n−a) then v`(x
2) > v`(d) and y is a unit: we deduce

v`(X
2 − dY 2) = b for all lifts X,Y .

If some M0 ∈ Ma,b(n) satisfies x0 6≡ 0 (mod `n−a), v`(x
2
0) = v`(d) and

v`(x
2
0 − dy20) > v`(d), then no M ∈ Ma,b(n) has x ≡ 0 (mod `n−a). From

v`(x
2
0−dy20) > v`(d) we deduce b > v`(d). Supposing that such an M exists,

let X,Y be lifts of x, y to Z` such that v`(X
2 − dY 2) = b. Since y must be

a unit, v`(X
2− dY 2) > v`(d) implies v`(X

2) = v`(dY
2) = v`(d). We deduce

v`(x0) = v`(X) > v`(x), which contradicts v`(x0) < n− a 6 v`(x).
Finally, if all M ∈ Ma,b(n) satisfy x 6≡ 0 (mod `n−a), v`(x

2) = v`(d)
and v`(x

2 − dy2) > v`(d) then the number of lifts of M to Ma,b(n + 1)
only depends on G, d, n, a, b. The hypotheses imply v`(x

2) = v`(dy
2) and

hence y is a unit, otherwise neither x nor y would be units. We can write
d = `2kδ, x = `ku and X = `kU where δ, u, U are units. We are counting
the reductions modulo `n−a+1 of the pairs (X,Y ) ∈ Z2

` that satisfy:

(5.2)


U ≡ u (mod `n−a−k)

Y ≡ y (mod `n−a)

v`(U
2 − δY 2) = b− 2k.

Consider the case where ` is odd. If b−2k 6 n−a−k, the third condition
of (5.2) is a consequence of the first two because it only depends on U, Y
through u, y (since by assumption it holds for some lifts, it then holds for all
lifts). So M has `2 lifts toMa,b(n+1). Now suppose that b−2k > n−a−k.

We know that δ is a square in Z×` because ` | u2 − δy2 and ` - y. Since `

is odd, we may assume without loss of generality that u−
√
δy ≡ 0 (mod `)

and u+
√
δy 6≡ 0 (mod `). We may then rewrite the third condition of (5.2)

as

(5.3) U −
√
δ Y ≡ 0 (mod `b−2k), U −

√
δ Y 6≡ 0 (mod `b−2k+1).

If we choose (Y mod `n−a+1) arbitrarily among the lifts of y, (5.3) uniquely
determines the value of (U mod `n−a−k+1), so M has ` lifts toMa,b(n+ 1).
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Now consider the case ` = 2. If b− 2k 6 n− a− k+ 1 there are 4 lifts for
M toMa,b(n+1) because again the third condition of (5.2) is a consequence

of the first two: notice that (u mod 2n−a−k) determines (u2 mod 2n−a−k+1),
and likewise for y. Suppose instead that b − 2k > n − a − k + 1. If δ
is a square in Z×2 we can proceed as for ` odd, where we may suppose

v2(U −
√
δY ) = b − 2k − 1 and v2(U +

√
δY ) = 1 because U −

√
δY and

U +
√
δY are even and not both divisible by 4. Thus M has 2 lifts to

Ma,b(n + 1). Finally, suppose that δ is not a square in Z×2 , i.e., δ 6≡ 1
(mod 8). For all X,Y ∈ Z2 lifting x, y we know that Y is odd, and we have

v2(X
2 − dY 2) = 2k + v2(U

2 − δY 2) = 2k +

{
1, if δ ≡ 3 (mod 4)

2, if δ ≡ 5 (mod 8).

Since v2(X
2 − dY 2) is independent of X,Y , the matrix M has 4 lifts to

Ma,b(n+ 1). �

5.3. Normalizers of ramified Cartan subgroups. Recall from Propo-
sition 26 that M∗a,b = ∅ if ` is odd and a > 0, or if ` = 2 and a > 1.

Theorem 31. Let G be open in the normalizer of a ramified Cartan sub-
group C of GL2(Z`). Let n0 be the level of G. Assume a = 0 if ` is odd, and
a ∈ {0, 1} if ` = 2. Let n > 1.

If ` is odd, define Na,b(n) as the subset of G(n) \C(n) consisting of those
matrices M that satisfy the following conditions:

• det`(M − I) > n, if n 6 b; det`(M − I) = b, if n > b.

If ` = 2, define Na,b(n) as the subset of G(n) \ C(n) consisting of those
matrices M that satisfy the following conditions:

• M ≡ I (mod 2a), M 6≡ I (mod 2a+1);
• det2(M−I) > n+1, if n < 2a+b; det2(M−I) = 2a+b, if n > 2a+b.

Define for ` odd and ` = 2 respectively:

f(n) =


` if n < b

`(`− 1) if n = b

`2 if n > b,

f(n) =

{
2 if n < 2a+ b

4 if n > 2a+ b.

(i) For every n > n0 we have #Na,b(n + 1) = f(n) · #Na,b(n). More
precisely, for every matrix in Na,b(n) the number of lifts to Na,b(n+1)
is f(n).

(ii) If n > n0 or if n > a+ b we have M∗a,b(n) = Na,b(n).

Proof. We first prove (i). The parameters for C are (0, d), where ` | d if `
is odd, and by Lemma 16 any matrix in G \ C is of the form

(5.4) M =

(
x dy
−y −x

)
.

The case ` odd (n > n0 and a = 0). If b < n, every lift of a matrix
in N0,b(n) to G(n + 1) is in N0,b(n + 1). If b > n > 0 we proceed as for
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Theorem 27, noticing two facts: by Proposition 26 no matrix in G \ C is
congruent to the identity modulo `; the coefficient of t11 in (4.3) is nonzero
because det`(M − I) > 0 gives x2 ≡ 1 (mod `), and we have n11 + 1 ≡ x
(mod `).

The case ` = 2 (n > n0 and a ∈ {0, 1}). Remark that (M mod 2n)
determines det(M − I) modulo 2n+1. In particular, Na,b(n) is well-defined.
Fix M ∈ Na,b(n), and let L be a lift of M to G(n + 1). Since n > 2, we
know L ≡ I (mod 2a) and L 6≡ I (mod 2a+1). If n > 2a + b, by the above
remark all 4 lifts of M to G(n + 1) are in Na,b(n + 1). If n < 2a + b, we
have det2(M − I) > n + 1 and hence det2(L − I) > n + 1: writing any lift
of M in the form L′ = L + 2nT with T as in (4.1), we are left to verify
det2(L

′ − I) > n + 2 for n + 1 < 2a + b and det2(L
′ − I) = n + 1 for

n+ 1 = 2a+ b. We thus study the inequality det2 ((L− I) + 2nT ) > n+ 2
and an explicit verification (by Lemma 16 and because 2n+2 | 22n) shows
that there are precisely two lifts in Na,b(n+ 1) as claimed.

We can prove (i)⇒(ii) as in Theorem 27: we clearly have f(n) 6= 0 for all
n > 1, and we have Na,b(2a+ b+ 1) =M∗a,b(2a+ b+ 1) because the defining
conditions hold for a matrix if and only if they hold for its lifts to G. �

6. Measures related to the 1-eigenspace

6.1. The case of GL2(Z`) and unramified Cartan subgroups.

Proposition 32. Suppose that G is open either in GL2(Z`) or in the nor-
malizer of an unramified Cartan subgroup of GL2(Z`). Suppose Ma,b 6= ∅.
We have Ma,b(n0) = {I} if n0 6 a; moreover Ma,b(n0) = Ma,n0−a(n0) if
a < n0 6 a+ b, and in particular we have:

µa,b(n0) =

{
#G(n0)

−1 if n0 6 a

µa,n0−a(n0) if a < n0 6 a+ b.

Proof. For n0 6 a the set Ma,b(n0) contains at most the identity and it is
nonempty by the assumption on Ma,b. Now suppose a < n0 6 a + b. We
claim that Ma,n0−a 6= ∅: the statement then follows from Theorem 27(ii)
because by definition Ha,b(n0) = Ha,n0−a(n0).

We prove the claim by making use of Theorem 27. The assumption
Ma,b 6= ∅ implies that the set Ma,b(n0) = Ha,b(n0) = Ha,n0−a(n0) is
nonempty. Since n0 > a we have f(n0) 6= 0 and hence Ha,n0−a(n0 + 1) is
nonempty. This set equalsMa,n0−a(n0+1) because n0+1 > a+(n0−a). �

Proposition 33. Let G′ be either GL2(Z`), an unramified Cartan subgroup
of GL2(Z`), or the normalizer of an unramified Cartan subgroup of GL2(Z`).
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If G is open in G′, we have:

µa,b = µa,b(n0)·



#T−(a+1−n0) ·#T× n0 6 a, b = 0

#T−(a+1−n0)(#T−#T× − 1)
(`− 1)

`b
n0 6 a, b > 0

`−(a+b+1−n0)(`− 1) a < n0 6 a+ b

1 n0 > a+ b.

We also have

µa,b = [G′ : G] ·#T−a · ε ·

1 if n0 6 a, b = 0
#T−#T× − 1

#T×
· `−b(`− 1) if n0 6 a, b > 0

where ε = 1
2 if G′ is the normalizer of a Cartan subgroup and ε = 1 other-

wise.

Proof. To prove the first assertion we may suppose Ma,b 6= ∅, because
otherwise µa,b = µa,b(n0) = 0. The formula for n0 > a+ b has been proven
in Lemma 25. We have

#Ma,b(a+ b+ 1) = #Ma,b(n0)
a+b∏
j=n0

#Ma,b(j + 1)

#Ma,b(j)

and by definition of n0 we know #G(a+ b+ 1) = #G(n0) ·#Ta+b+1−n0 . We
then obtain

µa,b = µa,b(n0) ·
a+b∏
j=n0

#T−1 ·
#Ma,b(j + 1)

#Ma,b(j)

and the formulas for n0 6 a + b can easily be deduced from Theorem 27.
We now turn to the second assertion. By Theorem 27(iii), b = 0 implies
Ma,b 6= ∅ while b > 0 andMa,b = ∅ imply #T−#T×− 1 = 0. In the latter
case the formula for µa,b clearly holds, so we can assume Ma,b 6= ∅ and
hence µa,b(n0) = #G(n0)

−1 by Proposition 32. By Remark 17 and Lem-
ma 13 (respectively, by Definition 19) we know that #G′(1) = ε−1 · #T×
and #G′(n0) = #G′(1) ·#Tn0−1. We conclude because we have

#G(n0)
−1 = [G′ : G] · (#G′(n0))−1 = [G′ : G] · ε · (#T×)−1 ·#T1−n0 . �

Example 34. Let G be the inverse image in GL2(Z2) of

G(2) =

〈(
3 3
0 1

)
,

(
1 1
3 0

)〉
⊂ GL2(Z/4Z).

Since G has index 8 and level 2 in GL2(Z2), by Proposition 32 we get
µa,b(2) = 1/12 if a > 2 and µa,b(2) = µa,2−a(2) if a = 0, 1 and a+ b > 2. A
direct computation gives µ0,0(2) = 1/3, µ1,0(2) = 1/12, µ0,2(2) = 1/2 and
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µ0,1(2) = µ1,1(2) = 0. So by Proposition 33 we have:

µa,b =



0 if a ∈ {0, 1}, b = 1

1/3 if a = b = 0

1/12 if a = 1, b = 0

2−b if a = 0, b > 2

8 · 2−4a if a > 2, b = 0

12 · 2−4a−b if a > 2, b > 0.

Lemma 35. Suppose that G is open in a Cartan subgroup of GL2(Z`). Let

n0 be the level of G. For all a > n0 we have µa,b = `−2(a−n0)µn0,b.

Proof. We prove that for all a > n0 we have µ(Ma+1,b) = `−2µ(Ma,b). We
claim that the map

φ :Ma,b(a+ b+ 2)→Ma+1,b(a+ b+ 2)

M 7→ I + `(M − I)

is well-defined, surjective and `2-to-1, so we have:

µ(Ma+1,b) =
#Ma+1,b(a+ b+ 2)

#G(a+ b+ 2)
=
`−2#Ma,b(a+ b+ 2)

#G(a+ b+ 2)
= `−2µ(Ma,b).

We are left to prove the claim. Since a > n0, all matrices in the Cartan
subgroup that are congruent to the identity modulo `a are in G thus we
may suppose that G is the Cartan subgroup. A matrix M ∈ G(a + b + 2)
is in the domain of φ if and only if the conditions in (3.4) hold, and these
imply that φ(M) is in Ma+1,b(a+ b+ 2) by (2.1) and because we have:

φ(M) ≡ I (mod `a+1),

φ(M) 6≡ I (mod `a+2),

det`(φ(M)− I) = 2(a+ 1) + b.

If N is in the codomain of φ then I + `−1(N − I) is well-defined modulo
`a+b+1: by Lemma 23 this matrix belongs to Ma,b(a + b + 1) and if M is
any lift of it to Ma,b(a + b + 2) we have φ(M) = N . This proves that φ
is surjective (we may suppose that domain and codomain are nonempty,
otherwise they must both be empty and the statement holds trivially). The
set of preimages of N consists of the matrices in Ma,b(a+ b+ 2) congruent

to M modulo `a+b+1, thus there are `2 such preimages by Theorem 27(i)–
(ii). �

Remark 36. For every a, b > 0 we have Ma,b(GL2(Z`)) 6= ∅ because this
set contains(

2 1
1 1

)
for a = b = 0 , and

(
1 `a+b

`a 1

)
otherwise.
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If C is a split Cartan subgroup of GL2(Z`), we haveMa,b(C) 6= ∅ for every
a, b > 0, with the exception of ` = 2 and a = 0: considering the diagonal

model, if ` 6= 2 or if a > 1 the set Ma,b(C) contains

(
1 + `a 0

0 1 + `a+b

)
;

however, for ` = 2 every diagonal invertible matrix is congruent to the
identity modulo 2.

If C is a nonsplit Cartan subgroup of GL2(Z`), we have Ma,b(C) = ∅ for
every b > 0. Indeed, if M ∈Ma,b(C) then for ` odd (resp. ` = 2) we have

`−a(M − I) =

(
z dw
w z

)
resp. 2−a(M − I) =

(
z dw
w z + w

)
for some z, w ∈ Z`, and by Propositions 10 and 11 these matrices are invert-
ible unless z and w are zero modulo `.

6.2. Ramified Cartan subgroups.

Lemma 37. Suppose that G is open in a Cartan subgroup C of GL2(Z`)
with parameters (0, d). Write d = m`v with ` - m.

(i) If v is odd, we have µa,b = 0 for every b > v.

(ii) If v is even and m is not a square in Z×` , we have µa,b = 0 for every
b > v + 2 (if ` is odd we have µa,b = 0 for b > v).

(iii) If v is even and m is a square in Z×` , consider the Cartan subgroup C ′

of GL2(Z`) with parameters (0, 1). There exists a closed subgroup G1

of C ′ such that the following holds: there is an explicit isomorphism
between G and G1; the level of G1 does not exceed the level of G by
more than v/2; for all b > v the sets Ma,b(G) and Ma+v/2,b−v(G1)
have the same Haar measure in G and G1 respectively.

Proof. Fix n > a+ b+ 1. By (2.1) we can write any matrix in Ma,b(n) as

M = I + `a
(
x dy
y x

)

where x, y ∈ Z/`n−aZ satisfy v`(x
2 − dy2) = b and we have v`(x) = 0 or

v`(y) = 0.
Proof of (i): We have v`(x

2) 6= v`(dy
2) and hence v`(x

2−dy2) 6 v, which
implies that Ma,b(n) is empty for b > v.

Proof of (ii): For b > v we have v`(x
2) > v and we can write b =

v+v`(x
2
1−my2), where x = `v/2x1. We must have x21 ≡ my2 (mod `), which

is impossible for ` odd because m is not a square modulo `. If ` = 2 and
b > v + 2 we should similarly have x21 ≡ my2 (mod 8), which is impossible
because m is not a square modulo 8.
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Proof of (iii): Since d is a square in Z`, we may fix a square root
√
d of

it. Define G1 to be the image of

φ : G→ C ′

I + `a
(
x dy
y x

)
7→ I + `a

(
x y

√
d

y
√
d x

)
.

Embedding G in GL2(Q`), the map φ can be identified with the conjugation

by

(
1 0

0
√
d

)
, thus φ is a continuous group isomorphism between G and G′,

and for every M ∈ G we have

detφ(M) = det(M) and det(φ(M)− I) = det(M − I).

Let n0 denote the level of G. The level of G1 is at most n0 + v/2 because

any matrix in C ′ which is congruent to the identity modulo `n0+v/2 is the
image via φ of a matrix in C that is congruent to the identity modulo `n0 :

I + `n0

(
`v/2z yd

y `v/2z

)
φ−→ I + `n0+v/2

(
z y

√
m

y
√
m z

)
.

If b > v, we have v`(x
2) > v and a straightforward verification shows

that φ induces a bijection from Ma,b(G) to Ma+v/2,b−v(G1), and we con-
clude because a continuous isomorphism of profinite groups preserves the
normalized Haar measure, see [FJ08, Proposition 18.2.2]. �

Lemma 38. If G is open in the Cartan subgroup of GL2(Z2) with parameters
(0, 1) the sets Ma,1 and Ma,2 are empty. Moreover, there exists an open
subgroup G1 of the subgroup of diagonal matrices in GL2(Z2) such that the
following holds: there is an explicit isomorphism between G and G1; the
level of G1 does not exceed the level of G by more than 1; for all b > 2 the
sets Ma,b(G) and Ma+1,b−2(G1) have the same Haar measure in G and G1

respectively.

Proof. We can write any matrix in Ma,b(G) as

(6.1) M = I + 2a
(
x y
y x

)
where at least one between x and y is a 2-adic unit. Working modulo 8, we
see that b = v2(x

2 − y2) cannot be 1 or 2.
We sketch the rest of the proof, which mimics Lemma 37(iii). We define

a map φ from G to GL2(Z2), denoting G1 its image:

(6.2) φ(M) = I + 2a
(
x+ y 0

0 x− y

)
.

We clearly have det2(φ(M) − I) = det2(M − I). If b > 2, then x + y
and x − y must be even and not both divisible by 4, and it follows that
φ(M) ∈Ma+1,b−2(G1). �



THE 1-EIGENSPACE FOR MATRICES IN GL2(Z`) 919

Lemma 39. Let G be open in a Cartan subgroup C of GL2(Z`) with para-
meters (0, d), where d is a square in Z`. For any fixed value of a, the set
Ma,b(n0) does not depend on b provided that b > b0, where

b0 := max{1 + v`(4d), n0 − a+ v`(2d)}.

Proof. Let b > b0 > 0 and consider a matrix inMa,b: M = I+`a
(
x dy
y x

)
.

It suffices to show that for every b′ > b0 there is M ′ ∈Ma,b′ that is congruent
to M modulo `n0 . We have v`(x

2−dy2) > b > v`(d) and at least one among
x and y is a unit. One checks easily that y cannot be divisible by `, so we
have v`(x

2) = v`(d) and we can define y′′ = x/
√
d. Given two units in Z`,

either their sum or their difference has valuation v`(2), so up to replacing√
d by −

√
d we get v`(x−

√
dy) > b−v`(d)/2−v`(2) > n0−a+v`(d)/2 and

hence y′′ ≡ y (mod `n0−a). Defining B := b′ − v`(d)/2− v`(2) > n0 − a, the
matrix

M ′ = I + `a
(
x+ `B dy′′

y′′ x+ `B

)
is congruent to M modulo `n0 and we have det(M ′ − I) = `2a(2x`B + `2B).
Since B > v`(d)/2 + v`(2) = v`(x) + v`(2) we have det`(M

′ − I) = 2a + b′

and hence M ′ ∈Ma,b′ . �

6.3. Normalizers of Cartan subgroups. Recall the notation from Sec-
tion 3.6.

Theorem 40. Let G be open in the normalizer of a Cartan subgroup of
GL2(Z`). Let n0 be the level of G.

(i) If ` is odd or C is unramified, we have:

µ(M∗a,b) =


0 if a > 0

µ(M∗0,b(n0)) if a = 0, b < n0

µ(M∗0,n0
(n0)) · (`− 1) · `n0−b−1 if a = 0, b > n0.

(ii) If ` = 2 and C is ramified, we have:

µ(M∗a,b) =


0 if a > 1

µ(M∗a,b(n0)) if a 6 1 and 2a+ b 6 n0
µ(M∗a,n0+1(n0)) · 2n0−2a−b if a 6 1 and 2a+ b > n0.

Proof. For (i), by Proposition 26 we have µ(M∗a,b) = 0 for a > 0. For

b < n0 we clearly have µ(M∗0,b) = µ(M∗0,b(n0)). If b > n0, Theorem 31(ii)
implies

M∗0,b(n0) = {M ∈ (G \ C)(n0) : det`(M − I) > n0} =M∗0,n0
(n0)

so in particular we have µ(M∗0,b(n0)) = µ(M∗0,n0
(n0)). We conclude by

Theorem 27 and 31 respectively, by the same argument used to prove Pro-
position 33.
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(ii) follows analogously from Proposition 26 and Theorem 31. Indeed, if
2a+ b > n0 then M∗a,b(n0) is independent of b by Theorem 31(ii). �

Corollary 41. Let G be open in the normalizer N of a Cartan subgroup
C of GL2(Z`). For a ∈ {0, 1} there exist (effectively computable) rational
numbers c1(a), c2(a), c3(a) such that

µ(Ma,b) = c1(a)`−b,

µ(Ma,b ∩ (N \ C)) = c2(a)`−b,

µ(Ma,b ∩ C) = c3(a)`−b,

hold for all sufficiently large b (and the bound is effective). The rational
constants ci(a) may depend on ` and G, as well as on a.

Proof. The assertion forMa,b follows from the other two, and the assertion
for Ma,b ∩ (N \C) holds by Theorem 40. Now consider Ma,b ∩C. Because
of Lemmas 37 and 38, we only need to consider the case when C is a split
Cartan subgroup. We apply Proposition 32 (in view of Remark 36) to deduce
that µa,b(n0) is constant for b > n0 and then apply Proposition 33. �

7. The results of the introduction

7.1. Proof of Theorem 1.

Definition 42. We call a subset of N2 admissible if it is the product of two
subsets of N, each of which is either finite or consists of all integers greater
than some given one. The family of finite unions of admissible sets is closed
w.r.t. intersection, union and complement.

We describe a general computational strategy to determine µa,b for all
a, b > 0. Depending on the input data (i.e., a finite amount of information
about the group G), we can choose which of the previous results must be
applied, and we can compute the finitely many rational parameters that
appear in the statements. After a case distinction, we have formulas for
all measures µa,b that depend only on a, b, and finitely many known con-
stants. As it can be seen from the explicit description below, the cases give
a partition of N2 into finitely many admissible subsets and on each of them
the formula for µa,b is as requested. We first need to express the relevant
properties of G in terms of finitely many parameters:

(1) The group G is open in G′, which is either GL2(Z`), a Cartan sub-
group, or the normalizer of a Cartan subgroup. We describe a Cartan
subgroup with the integer parameters (c, d) of Section 2.3, which also
determine whether this is split, nonsplit or ramified. The cardinality
of the tangent space T and of its subset T× is known, see Section
2.6.

(2) We fix an integer n0 > 1 such that G is the inverse image in G′

of G(n0) for the reduction modulo `n0 . If ` = 2 and G′ is (the
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normalizer of) a ramified Cartan subgroup, we take n0 > 2 (n0 is
not necessarily the level of G, see Remark 20).

(3) We need to know the finite group G(n0) explicitly. From this we
extract various data, including the order ofG(n0), the index [G′(n0) :
G(n0)] = [G′ : G], and the following information: for each of the
finitely many pairs (a, b) such that a < n0 and b 6 n0 − a, we
need to know the counting measure µa,b(n0) and whether the set
G(n0)∩Ma,b(G

′;n0) is empty or not. For (normalizers of) ramified
Cartan subgroups we may also need finitely many other quantities
which can all be read off G(n0), see the description below.

We make repeated use of the following remark: suppose that for (a, b) in
some admissible set S = A×B with A finite we have µa,b = c(a)`−b, where
c(a) is a rational number depending on a. Then S is the finite union of the
sets Sa = {a}×B, and by choosing the constant c′(a) appropriately we have

µa,b = c′(a)`−adim(G)−b for all (a, b) ∈ Sa.
If G′ = GL2(Z`): We can compute the values µa,b for all pairs (a, b) such

that Ma,b 6= ∅ by Propositions 32 and 33. Up to refining the partition,

we can ensure that µa,b is a constant multiple of `−4a−b on every set of the
partition.

We are left to determine the pairs (a, b) such that Ma,b = ∅ (and hence
µa,b = 0) and show that they form an admissible subset of N2. By Remark 36
we know Ma,b(G

′) 6= ∅, and by Remark 22 we just need to know whether
G(n0) ∩Ma,b(G

′;n0) is empty. By Proposition 32 (applied to G′) there are
only finitely many distinct sets of the form Ma,b(G

′;n0) to consider and it
is a finite computation to determine those that intersect G(n0) trivially.

If G′ is a nonsplit Cartan subgroup: By Lemma 35 and Remark 36 we
reduce to the case a 6 n0 and b = 0. Thus by Proposition 33 we only need
to evaluate µa,0(n0) for a 6 n0. Since we only have finitely many values
of a to consider, up to refining the partition we find that µa,b is a constant

multiple of `−2a−b on every set of the partition.
If G′ is a split Cartan subgroup: By Lemma 35 we reduce to the case

a 6 n0, so fix one of those finitely many values for a. By Proposition 33 it
suffices to evaluate µa,b(n0) for all b > 0. IfMa,b 6= ∅, by Proposition 32 we
only need to consider the finitely many cases for which b 6 n0.

We are left to determine the pairs (a, b) such that Ma,b = ∅ (and hence
µa,b = 0) and show that they form an admissible subset of N2. By Remark 36
the set Ma,b(G

′) is empty (and hence Ma,b = ∅) if and only if ` = 2 and
a = 0. In the remaining cases we haveMa,b(G

′) 6= ∅ and a 6 n0, so we may
reason as for G′ = GL2(Z`). Up to refining the partition, we find that µa,b
is a constant multiple of `−2a−b on every set of the partition.

If G′ is a ramified Cartan subgroup: By Lemma 35 we reduce to the case
a 6 n0, so fix one of these finitely many values for a. By Propositions 10
and 11, the parameters for C are (0, d) and we can apply Lemma 37. If
we are in cases (i)–(ii) of this lemma, we only need to consider the finitely
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many values b 6 v`(d) + 2. The measure µa,b for a single pair (a, b) can be
computed explicitly as µa,b(a+b+1). Notice that the group G(a+b+1) and
hence its subsetMa,b(a+b+1) can be determined from the knowledge of G′

and G(n0). Now suppose that we are in case (iii) of Lemma 37. Recalling
that a 6 n0 is fixed, we may compute the finitely many measures µa,b where
b 6 v`(d). For b > v`(d) we reduce to a similar problem for an unramified
Cartan subgroup: if ` is odd, the Cartan subgroup with parameters (0, 1) is
unramified; if ` = 2 we further apply Lemma 38. Once more, this gives a
partition as requested.

The case when G′ is the normalizer of a Cartan subgroup: As shown in
Section 3.6, to reduce to the case when G′ is a Cartan subgroup it suffices
to compute the measures µ(M∗a,b) for all a, b > 0. We achieve this by

Theorem 40: it suffices to compute µ(M∗a,b(n0)) for finitely many pairs (a, b).
The measures in the Cartan subgroup and those related to its complement
in the normalizer add up to an expression of the desired form, because they
can both be written as `−2a−b times a constant.

7.2. The special case where G has index 1.

Proof of Theorem 2. Consider Definition 19 and Proposition 33. The
cases with a > 0 are clear because n0 = 1 6 a. If a = b = 0, we have
µ0,0 = µ0,0(1) = #M0,0(1)/#GL2(Z/`Z) so it suffices to prove

#M0,0(1) = `(`3 − 2`2 − `+ 3).

Equivalently, we have to show that there are

#GL2(Z/`Z)−#M0,0(1) = `3 − 2`

matrices in GL2(Z/`Z) that have 1 as an eigenvalue. This is done, e.g., in
the course of [JR10, Proof of Theorem 5.5] (see also [Gek03, Section 4]),
but for the convenience of the reader we sketch the computation. Matrices
admitting 1 as an eigenvalue are the identity and those that are conjugate
to one of the following:

J1 =

(
1 1
0 1

)
Jλ =

(
1 0
0 λ

)
λ 6= 0, 1.

Since the centralizer of J1 has size `(`− 1) while that of Jλ has size (`− 1)2,
we may conclude by computing the size of the conjugacy classes as the index
of the centralizer.

If a = 0 and b > 0, we have to evaluate (`− 1) · `−b · µ0,b(1) for b > 0. By
Proposition 32 and Remark 36 we have

µ0,b(1) = µ0,1(1) = #M0,1(1)/#GL2(Z/`Z),

so it suffices to prove

#M0,1(1) = (`2 − `− 1)(`+ 1).
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We may conclude by noticing thatM0,1(1) consists of the `3−2` matrices in
#GL2(Z/`Z) that have 1 as an eigenvalue, with the exception of the identity
matrix. �

Proof of Theorem 3. We can take n0 = 1 so the cases with a > 1 follow
immediately from Proposition 33 and (2.5). Now suppose a = 0. Consider
a split Cartan subgroup with the diagonal model. For b = 0, in order to
evaluate µ0,0(1) we count those diagonal matrices diag(x, y) such that xy
and (x − 1)(y − 1) are in (Z/`Z)×: this means x, y 6≡ 0, 1 (mod `), hence
there are (` − 2)2 choices, out of (` − 1)2 total elements. For b > 0 we
have µ0,b(1) = µ0,1(1) by Proposition 32 and Remark 36. There are 2(`− 2)
diagonal matrices in GL2(Z/`Z) such that exactly one of the two diagonal
entries is congruent to 1 modulo `, so we get by Proposition 33:

µ0,b = µ0,b(1)`−b(`− 1) =
2(`− 2)

(`− 1)2
(`− 1)`−b.

Now consider the nonsplit case. By Remark 36 we know Ma,b = ∅ for
b > 0. For b = 0 we need to evaluate µ0,0: by Lemma 25 and by the previous
case a > 1 we have

1 =
∑
a,b>0

µa,b =
∑
a>0

µa,0 = µ0,0 +
∑
a>1

`−2a. �

Proof of Theorem 4. Let C be the Cartan subgroup and let C ′ be as in
Lemma 14. Fixing some n > a+ b we get

µa,b = µa,b(n) =
#Ma,b(n)

#(C ∪ C ′)(n)

=
#(Ma,b(n) ∩ C(n)) + #(Ma,b(n) ∩ C ′(n))

2 ·#C(n)
.

By definition we have µCa,b = #(Ma,b(n) ∩ C(n))/#C(n), so it suffices to

show µ∗a,b = #(Ma,b(n) ∩ C ′(n))/#C(n). If a > 0 then no matrix in C ′(n)

is inMa,b(n) by Lemma 16. For a = 0 we are left to prove that for n = b+1
we have #M0,b(n) ∩ C ′(n) = µ∗0,b · #C(n). By Lemma 16 the elements of

C ′(b+ 1) are those matrices of the form

(7.1) M =

(
α −dβ + cα
β −α

)
α, β ∈ Z/`b+1Z

where c, d are here the reductions modulo `b+1 of the parameters of C. Thus
we need to count the pairs (α, β) ∈ (Z/`b+1Z)2 satisfying

(7.2) det`(M − I) = v`(1− α2 + dβ2 − cαβ) = b.

We also need det`(M) = v`(−α2 + dβ2 − cαβ) = 0, which for b > 0 follows
from (7.2).

The count for the split case will give (`−1)(`−2) for b = 0 and (`−1)2`b

for b > 0. The count for the nonsplit case will give (`+1)(`−2) for b = 0 and
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(`2−1)`b for b > 0. We then conclude by Lemma 13 because #C(b+1) equals
(` − 1)2`2b and (`2 − 1)`2b for the split and the nonsplit case respectively.
One can easily check that the affine curve D : 1−x2+y(dy−cx) = 0 (defined
over Z`) is smooth over Z/`Z. We have #D(Z/`Z) = `± 1, where the sign
is − (resp. +) if C is split (resp. nonsplit). Indeed, D can be identified
over Z/`Z with the open subscheme of {Z2 −X2 + Y (dY − cX) = 0} ∼= P1

given by Z 6= 0, and by Propositions 10 and 11 there are two (resp. zero)
Z/`Z-points with Z = 0 if C is split (resp. nonsplit).

The case b = 0. There are precisely `2 − (` ± 1) pairs (α, β) ∈ (Z/`Z)2

that do not correspond to points in D(Z/`Z). Since we only want invertible
matrices, we need to exclude those pairs such that −α2 + dβ2 − cαβ = 0.
By Propositions 10 and 11 this equation has 2` − 1 solutions if C is split
and has only the trivial solution α = β = 0 if C is nonsplit.

The case b > 0. As D is smooth over F`, by (the higher-dimensional
version of) Hensel’s Lemma [Nek, Proposition 7.8] we have

#D(Z/`bZ) = `b−1 ·#D(Z/`Z).

A pair (α, β) ∈ (Z/`b+1Z)2 as in (7.2) reduces to a point in D(Z/`bZ), so
it suffices to prove that there are precisely `2 − ` pairs (α, β) as in (7.2)
that lie over some fixed (α, β) ∈ D(Z/`bZ). There are `2 lifts of (α, β) to
(Z/`b+1Z)2 and we must avoid those in D(Z/`b+1Z), which are exactly `
again by Hensel’s Lemma. �
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tecorvo 5, 56127 Pisa, Italy
davide.lombardo@unipi.it

(Antonella Perucca) Universität Regensburg, Universitätsstraße 31, 93053 Re-
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