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On Fell bundles over inverse semigroups
and their left regular representations

Erik Bédos and Magnus D. Norling

Abstract. We prove a version of Wordingham’s theorem for left regu-
lar representations in the setting of Fell bundles over inverse semigroups
and use this result to discuss the various associated cross sectional C∗-
algebras.
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1. Introduction

Following an unpublished work of Sieben, the concept of a Fell bundle over
a discrete group was generalized by Exel in [11], where the notion of a Fell
bundle A = {As}s∈S over an inverse semigroup S was introduced and the
associated full cross sectional C∗-algebra C∗(A) was defined as the universal
C∗-algebra for C∗-algebraic representations of A. This construction may
be used to present other classes of C∗-algebras in a unified manner. For
example, Buss and Exel show in [4] that to each partial action β of an
inverse semigroup S on a C∗-algebra A, one may associate a Fell bundle Aβ
over S such that C∗(Aβ) is naturally isomorphic to the full crossed product
of A by β. (In fact, Buss and Exel even consider twisted partial actions.)
In another direction, the same authors establish in [5] that any Fell bundle
B over an étale groupoid G gives rise to a Fell bundle A over S, where S
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is any inverse semigroup consisting of bisections (or slices) of G (as defined
by Renault in [18]), and show that, under some mild assumptions, the full
cross sectional C∗-algebra of B is isomorphic to C∗(A).

Exel also defines in [11] the reduced cross sectional C∗-algebra C∗r (A)
associated to a Fell bundle A over an inverse semigroup S. One drawback
of his construction is that it is somewhat involved (we summarize it in
section 3.4). Another approach has recently been proposed in [7] when A is
saturated and S is unital, relying on the result from [8] that A may then be
identified with an action of S by Hilbert bimodules on the unit fibre A of
A, thus making it possible to define C∗r (A) as the reduced crossed product
of A by this action of S. We believe that it would be helpful to find a more
direct construction of C∗r (A), at least in some cases. For example, such a
construction would make it easier to initiate a study of amenability for Fell
bundles over inverse semigroups, having in mind that, as for Fell bundles
over groups [12, 9], a natural definition of amenability for A is to require
that the canonical ∗-homomorphism from C∗(A) onto C∗r (A) is injective.

Given a Fell bundle A over an inverse semigroup S, our main goal in the
present paper is to introduce a certain C∗-algebra C∗r,alt(A) which may also
be considered as a kind of reduced cross sectional C∗-algebra for A, and to
compare it with Exel’s C∗r (A). Inspired by the approach used by Khoshkam
and Skandalis [14] in the case of an action of an inverse semigroup on a C∗-
algebra, our first step (see Section 3) is to associate to A a full cross sectional
C∗-algebra C∗KS(A) which is universal for so-called pre-representations of A
in C∗-algebras, or, equivalently, for C∗-algebraic representations of the con-
volution ∗-algebra Cc(A) canonically attached to A. Exel’s C∗(A) is then
easily obtained as a quotient of C∗KS(A). Our next step (see Section 4) is to
show that Cc(A) has a natural injective left regular C∗-algebraic represen-
tation ΦΛ. The injectivity of ΦΛ may be seen as an analog of Wordingham’s
theorem for `1(S) (cf. [17]), and our proof is related to his original proof,
although some extra arguments are necessary. Letting Cr,KS(A) denote the
C∗-algebra generated by the range of ΦΛ, C∗r,alt(A) is then defined as the

quotient of Cr,KS(A) by a certain canonical ideal. From the naturality of our
construction, it readily follows that there is a canonical ∗-homomorphism
ΨΛalt from C∗(A) onto C∗r,alt(A).

In the case where S consists only of idempotents (hence is a semilattice)
and E is Fell bundle over S, we check in Section 5 that C∗KS(E) = C∗r,KS(E)

and C∗(E) = C∗r,alt(E) ' C∗r (E). Next, given a Fell bundle A over an inverse

semigroup S such that S is E∗-unitary (cf. Section 2) and such that A0 = {0}
if S har a 0 element, we let E denote the Fell bundle obtained by restricting
A to the semilattice E of idempotents in S and show (in Section 6) that
there exists a faithful conditional expectation from C∗r,KS(A) onto C∗r,KS(E).

In the final section, keeping the same assumptions, we describe C∗r (A) as
a quotient of Cr,KS(A) and show that there exists a surjective canonical ∗-
homomorphism Ψ′ from C∗r,alt(A) onto C∗r (A). We also characterize when Ψ′
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is a ∗-isomorphism and end by showing that this happens frequently when
S is strongly E∗-unitary.

2. Preliminaries

We recall that a semigroup is a set equipped with an associative binary
operation, while a monoid is a semigroup with an identity. A commutative
idempotent semigroup is called a semilattice. We also recall that an inverse
semigroup is a semigroup S where for each s ∈ S there is a unique s∗ ∈ S
satisfying

ss∗s = s and s∗ss∗ = s∗.

The map s 7→ s∗ is then an involution on S. Every inverse semigroup S
contains a canonical semilattice, namely

E(S) = {e ∈ S : e2 = e}

satisfying E(S) = {e ∈ S : e2 = e = e∗} = {s∗s : s ∈ S} = {tt∗ : t ∈ S}.
Throughout this article, S will be a fixed inverse semigroup and E = E(S)
will denote its semilattice of idempotents. We refer to [16] and [17] for the
basics of the theory of inverse semigroups. We recall below a few facts that
we will need later.

There is a natural partial order relation ≤ on S given by s ≤ t if and only
if s = et for some e ∈ E, if and only if s = tf for some f ∈ E, where e may
be chosen to be ss∗, and f to be s∗s. For e, f ∈ E, we have e ≤ f if and
only if e = ef .

Many inverse semigroups have a zero, that is, an element 0 satisfying
0s = s0 = 0 for all s ∈ S. Such an element is necessarily unique and lies in
E. If S has a zero, we set S× = S \ {0} and E× = E \ {0}. Otherwise, we
set S× = S and E× = E.

We will say that S is E∗-unitary if the set {s ∈ S : e ≤ s} is contained in
E for every e ∈ E×. If this holds for every e ∈ E, then S is called E-unitary.
These two concepts clearly coincide if S does not have a zero. For inverse
semigroups having a zero, E-unitarity is a too strong requirement, only
satisfied by semilattices. We note that E∗-unitarity is usually only defined
for inverse semigroups having a zero, in which case it is sometimes called
0-E-unitarity (and is defined as above). Our use of terminology will allow
us to unify some statements. The class of E∗-unitary inverse semigroups has
by far been the one who has received most attention from C∗-algebraists,
most probably because they are easier to handle.

We will also need to refer to a stronger form of E∗-unitarity. We recall
that a map σ from S into a group with identity 1 is called a grading if
σ(st) = σ(s)σ(t) whenever s, t ∈ S and st ∈ S×, and that σ is said to be
idempotent pure if σ−1({1}) = E. Then S is said to be strongly E∗-unitary
[3] if there exists an idempotent pure grading from S into some group. It is
known that S is E∗-unitary whenever it is strongly E∗-unitary.
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A semigroup homomorphism from S into another inverse semigroup is
necessarily ∗-preserving, so this provides the natural notion of homomor-
phism between inverse semigroups. If X is a set, then I(X) will denote
the symmetric inverse semigroup on X, consisting of all partial bijections
on X (with composition defined on the largest possible domain). An action
of S on X is then a homomorphism of S into I(X). The essence of the
Wagner–Preston theorem is that there always exists an injective action of S
on some set.

When A is a C∗-algebra, we will let PAut(A) denote the inverse subsemi-
group of I(A) consisting of all partial ∗-automorphisms ofA; so φ ∈ PAut(A)
if and only if φ is a ∗-isomorphism between two ideals of A. Here, and in
the sequel, ideals in C∗-algebras are always assumed to be two-sided and
closed, unless otherwise specified. An action of S on a C∗-algebra A is an
homomorphism α from S into PAut(A). Khoshkam and Skandalis show in
[14] how to associate to such an action a full (resp. reduced) C∗-crossed
product, which we will denote by A oKS

α S (resp. A oKS
α,r S). In fact, their

construction goes through for a more general kind of action of S on A, and
the interested reader should consult [14] for more details, including a discus-
sion of the relationship between their full crossed product and the crossed
product construction previously introduced by Sieben in [19].

Following [6], one may define partial actions of S on sets and on C∗-
algebras. As mentioned in the introduction, Buss and Exel actually con-
sider twisted partial actions of S in [6], but we will restrict ourselves to the
untwisted case to avoid many technicalities. Partial actions were first in-
troduced in the case where S is a group, and the reader may consult [12]
for a nice introduction to this subject, including many references to the lit-
erature. We recall a few relevant definitions and facts from [6]. A partial
homomorphism of S in a semigroup H is a map π : S 7→ H such that:

(i) π(s)π(t)π(t∗) = π(st)π(t∗),
(ii) π(s∗)π(s)π(t) = π(s∗)π(st),
(iii) π(s)π(s∗)π(s) = π(s),

hold for all s, t ∈ S. Note that if H is an inverse semigroup, then (iii) implies

(iv) π(s∗) = π(s)∗

for all s ∈ S; hence, in this case, π is a partial homomorphism if and only
if (i), (ii) and (iv) hold. Moreover, still assuming that H is an inverse
semigroup, this is equivalent to requiring that the three conditions:

(a) π(s∗) = π(s)∗,
(b) π(s)π(t) ≤ π(st),
(c) π(s) ≤ π(t) whenever s ≤ t,

hold for s, t ∈ S, cf. [6, Proposition 3.1].
A partial action of S on a set X (resp. on a C∗-algebra A) is then defined

as a partial homomorphism β from S into I(X) (resp. into PAut(A)). As
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in [6], we will also require that a partial action β of S on a C∗-algebra A
satisfies that the union ∪s∈SJs = ∪s∈S im(βs) spans a dense subspace of A.

3. Fell bundles over inverse semigroups

In [11], Exel defines a Fell bundle over S as a quadruple

A =
(
{As}s∈S , {µs,t}s,t∈S , {∗s}s∈S , {jt,s}s,t∈S,s≤t

)
where for s, t ∈ S we have that:

(i) As is a complex Banach space.
(ii) µs,t : As �At → Ast is a linear map.

(iii) ∗s : As → As∗ is a conjugate linear isometric map.
(iv) jt,s : As ↪→ At is a linear isometric map whenever s ≤ t.

It is moreover required that for every r, s, t ∈ S, and every a ∈ Ar, b ∈ As,
and c ∈ At, we have:

(v) µrs,t(µr,s(a⊗ b)⊗ c) = µr,st(a⊗ µs,t(b⊗ c)).
(vi) ∗rs(µr,s(a⊗ b)) = µs∗,r∗(∗s(b)⊗ ∗r(a)).
(vii) ∗s∗(∗s(a)) = a.
(viii) ‖µr,s(a⊗ b)‖ ≤ ‖a‖ ‖b‖.
(ix) ‖µr∗,r(∗r(a)⊗ a)‖ = ‖a‖2.
(x) µr∗,r(∗r(a)⊗ a) ≥ 0 in Ar∗r.
(xi) If r ≤ s ≤ t, then jt,r = jt,s ◦ js,r.
(xii) If r ≤ r′ and s ≤ s′, then jr′s′,rs ◦ µr,s = µr′,s′ ◦ (jr′,r ⊗ js′,s) and

js′,s ◦ ∗s = ∗s′ ◦ js′,s.
As shown by Exel, axioms (i)–(ix) imply that Ae is a C∗-algebra whenever
e ∈ E, with cd = µe,e(c ⊗ d) and c∗ = ∗e(c) for c, d ∈ Ae. Hence, the
requirement in axiom (x) is meaningful. Exel also shows that the following
properties hold:

(xiii) js,s is the identity map idAs for every s ∈ S.
(xiv) If e, f ∈ E and e ≤ f , then jf,e(Ae) is an ideal in Af .

When no confusion is possible, we will use the simplified notation

a · b := µs,t(a⊗ b) and a∗ := ∗s(a)

whenever a ∈ As and b ∈ At, and just write A = ({As}s∈S , {jt,s}s,t∈S, s≤t),
or even only A = {As}s∈S in some cases. If s ∈ S and e := s∗s ∈ E, then
one easily verifies that As becomes a right Hilbert Ae-module with respect
to the right action given by (as, ae) 7→ as · ae ∈ Ass∗s = As for as ∈ As
and ae ∈ Ae, and the Ae-valued inner product given by 〈as, bs〉 = a∗s · bs for
as, bs ∈ As. For later use, we also note the following fact:

(1) If e, f ∈ E, e ≤ f, and c, d ∈ Ae, then jf,e(c) · d = cd.

Indeed, using properties (xii) and (xiii), we get

jf,e(c) · d = jf,e(c) · je,e(d) = jfe,ee(c · d) = je,e(c · d) = c · d = cd.
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We also recall that a Fell bundle A is called saturated when the span of
{as · bt : as ∈ As, bt ∈ At} is dense in Ast for all s, t ∈ S.

3.1. An important class of examples of Fell bundles over inverse semi-
groups arises from (twisted) partial actions of inverse semigroups on C∗-
algebras (cf. [6, Section 8]). For the ease of the reader, we sketch this
construction in the untwisted case.

Let β : S → PAut(A) be a partial action of S on a C∗-algebra A. For each
s ∈ S, set Js∗ = dom(βs) and Js = im(βs), so βs is a ∗-isomorphism from
Js∗ onto Js and β−1

s = βs∗ . One may then show (cf. [6, Proposition 3.4,
Proposition 3.8 and Proposition 6.3]) that the family {Js} satisfy certain
compatibility properties, such as βs(Js∗ ∩ Jt) = Js ∩ Jst , Js ⊂ Jss∗ (and
Js = Jss∗ if β is an action), Js ⊂ Jt whenever s ≤ t, and βe = idJe when
e ∈ E.

Now, for each s ∈ S, we set As = {(a, s) : a ∈ Js} and organize As as a
Banach space by identifying a ∈ Js with (a, s) ∈ As. Note that if s, t ∈ S,
a ∈ Js and b ∈ Jt, then

β−1
s (a) b ∈ Js∗ ∩ Jt.

Thus,

βs

(
β−1
s (a)b

)
∈ Js ∩ Jst and a∗ ∈ Js, so β−1

s (a∗) ∈ Js∗ ;

hence one may define µs,t
(
(a, s)⊗(b, t)

)
=: (a, s) ·(b, t) and ∗s(a, s) =: (a, s)∗

by

(a, s) · (b, t) =
(
βs
(
β−1
s (a)b

)
, st
)
∈ Ast,

(a, s)∗ =
(
β−1
s (a∗), s∗) ∈ As∗ .

Moreover, if s ≤ t, then βs ≤ βt, so Js = im(βs) ⊂ im(βt) = Jt, and one
may then define jt,s : As → At by

jt,s(a, s) = (a, t), for all a ∈ Js.
It may then be checked that A = ({As}s∈S , {jt,s}s,t∈S, s≤t) becomes a Fell
bundle over S with respect to these operations (cf. [4] for the case of a global
(twisted) action).

3.2. Still following [11], a pre-representation of a Fell bundle

A = ({As}s∈S , {jt,s}s,t∈S, s≤t)
in a complex ∗-algebra B is a family Π = {πs}s∈S , where for each s ∈ S,

πs : As → B

is a linear map such that for all s, t ∈ S, all a ∈ As, and all b ∈ At, one has:

(a) πst(a · b) = πs(a)πt(b),
(b) πs∗(a

∗) = πs(a)∗.

If, in addition, Π satisfies

(c) πt ◦ jt,s = πs whenever s ≤ t,
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then Π is called a representation of A in B.
We recall that if Π is a pre-representation of A in a C∗-algebra B, then

for each s ∈ S and a ∈ As, we have ‖πs(a)‖ ≤ ‖a‖. Indeed, as πe : Ae 7→ B
is then a ∗-homomorphism between C∗-algebras for every e ∈ E, we get

‖πs(a)‖2 = ‖πs(a)∗πs(a)‖ = ‖πs∗(a∗)πs(a)‖
= ‖πs∗s(a∗ · a)‖ ≤ ‖a∗ · a‖ = ‖a‖2.

Consider now the direct sum of vector spaces

Cc(A) =
⊕
s∈S

As.

We will often write an element g ∈ Cc(A) as a formal sum g =
∑

s∈S asδs
where as ∈ As for s ∈ S and all but finitely many as are equal to 0. Then
Cc(A) can be given the structure of a complex ∗-algebra by extending linearly
the operations

(asδs)(btδt) = (as · bt)δst,
(asδs)

∗ = a∗sδs∗ .

Alternatively, if one prefers to write Cc(A) as

Cc(A) =

{
g ∈

∏
s∈S

As : g(s) = 0 for all but finitely many s

}
,

one may define the product and the involution on Cc(A) by

(f ∗ g)(r) =
∑

s, t∈S, st= r

f(s) · g(t) and f∗(r) = f(r∗)∗

for f, g ∈ Cc(A) and r ∈ S.
For each s ∈ S, let π0

s : As → Cc(A) be defined by

π0
s(as) = asδs

for each as ∈ As. Then Π0 :=
{
π0
s

}
s∈S is a pre-representation of A in Cc(A),

which satisfies the following universal property (cf. [11, Proposition 3.7]):
To each pre-representation Π = {πs}s∈S of A in a ∗-algebra B one may

associate a ∗-homomorphism ΦΠ : Cc(A)→ B given by

ΦΠ

(∑
s∈S

asδs

)
=
∑
s∈S

πs(as),

which satisfies ΦΠ ◦ π0
s = πs for all s ∈ S. Moreover, the map Π 7→ ΦΠ gives

a bijection between pre-representations of A in B and ∗-homomophisms
from Cc(A) into B.
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Consider g =
∑

s∈S asδs ∈ Cc(A). If B is a C∗-algebra and Π is a pre-
representation of A in B, then we have

‖ΦΠ(g)‖ =

∥∥∥∥∥∑
s∈S

πs(as)

∥∥∥∥∥ ≤∑
s∈S
‖πs(as)‖ ≤

∑
s∈S
‖as‖.

Hence, if we define

‖g‖u := sup
Φ

{
‖Φ(g)‖},

where the supremum is taken over all ∗-homomorphisms from Cc(A) into
any C∗-algebra, then

‖g‖u = sup
{
‖ΦΠ(g)‖ : Π is a pre-representation of A in some C∗-algebra

}
≤
∑
s∈S
‖as‖ < ∞.

Hence ‖ · ‖u gives a C∗-seminorm on Cc(A). As we will show in the next
section, there always exists an injective ∗-representation of Cc(A) in some
C∗-algebra (namely the one associated to the left regular representation of
Cc(A)). It follows that ‖ · ‖u is in fact a C∗-norm, and we may therefore
define the full KS-cross sectional C∗-algebra of A, denoted by C∗KS(A), as
the completion of Cc(A) w.r.t. ‖ · ‖u.

We will use the same notation to denote the norm on C∗KS(A) and will
identify Cc(A) with its canonical copy in C∗KS(A). We may therefore regard
Π0 as a pre-representation of A in C∗KS(A), which is universal in the sense
that given any pre-representation Π of A in a C∗-algebra B, then there exists
a unique ∗-homomorphism from C∗KS(A) into B, which we also denote by
ΦΠ, satisfying ΦΠ ◦ π0

s = πs for all s ∈ S.
If for exampleAα denotes the Fell bundle associated to an action α of S on

a C∗-algebra A, then it is straightforward to verify that C∗KS

(
Aα
)

coincides

with the full KS-crossed product A oKS
α S constructed in [14]. Thus, if β

is a partial action of S on a C∗-algebra A, it is natural to define the full
KS-crossed product by A oKS

β S := C∗KS

(
Aβ
)
, where Aβ denotes the Fell

bundle over S associated to β in 3.1.

3.3. In [11], Exel defines the full cross sectional C∗-algebra C∗(A) of a
Fell bundle A =

(
{As}s∈S , {jt,s}s,t∈S, s≤t

)
. This algebra may be described

as a quotient of C∗KS(A). To explain this, we first have to review Exel’s
construction. Let NA denote the subspace of Cc(A) spanned by the set{

asδs − jt,s(as)δt : s, t ∈ S, s ≤ t, as ∈ As
}
.

Exel shows in [11, Proposition 3.9] that NA is a two-sided selfadjoint ideal of
Cc(A). It follows that Cc(A)/NA becomes a complex ∗-algebra in the obvious
way. Moreover, [11, Proposition 3.10] says that if Π is a pre-representation of
A in a ∗-algebra B, then Π is a representation of A if and only if ΦΠ vanishes
on NA, in which case we will denote the associated ∗-homomorphism from
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Cc(A)/NA into B by Φ̃Π. The map Π 7→ Φ̃Π gives then a bijection between
representations of A in B and ∗-homomorphisms from Cc(A)/NA into B.

Now, for any g =
∑

s∈S asδs ∈ Cc(A) and any representation Π of A in a
C∗-algebra, we have

‖Φ̃Π(g +NA)‖ = ‖ΦΠ(g)‖ ≤ ‖g‖u.

It follows that if we define

‖g +NA‖∗ := sup
Ψ

{
‖Ψ
(
g +NA

)
‖}

where the supremum is taken over all ∗-homomorphisms Ψ from Cc(A)/NA
into a C∗-algebra, we get

‖g +NA‖∗
= sup

{
‖ΦΠ(g)‖ : Π is a representation of A in some C∗-algebra

}
≤ ‖g‖u,

so ‖ · ‖∗ gives a C∗-seminorm on Cc(A)/NA. The full (Exel) cross sectional
C∗-algebra C∗(A) is then defined as the Hausdorff completion of Cc(A)/NA
w.r.t. to this seminorm.

Letting

QA : Cc(A)→ Cc(A)/NA
denote the quotient map and

RA : Cc(A)/NA → C∗(A)

denote the canonical map, we get that ιA := RA ◦ QA is a contractive
∗-homomorphism from Cc(A) into C∗(A) having dense range. Thus, ιA
extends to a ∗-homomorphism qA from C∗KS(A) onto C∗(A) such that

(2) C∗(A) ' C∗KS(A) /Ker qA.

Now, for each s ∈ S, define πAs : As → C∗(A) by

πAs = qA ◦ π0
s (= ιA ◦ π0

s).

Then one checks (cf. [11, Proposition 3.12] and the proof of [11, Proposition
3.13]) that

ΠA :=
{
πAs
}
s∈S

is a representation of A in C∗(A) satisfying the following universal property:
given any representation Π = {πs}s∈S of A in a C∗-algebra B, there exists
a unique ∗-homomorphism ΨΠ : C∗(A) → B such that ΨΠ ◦ πAs = πs
for all s ∈ S. It follows immediately that ΦΠ = ΨΠ ◦ qA for every such
representation Π.

The ideal Ker qA has a natural description in terms of NA. Indeed, letting

MA denote the ideal of C∗KS(A) given by MA := NA
‖·‖u

, we have

Ker qA =MA.
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To prove this, we first note that since qA(NA) = ιA(NA) = {0}, we have

MA ⊂ Ker qA.

Next, let s ∈ S and define ωs : As → C∗KS(A)/MA by

ωs(as) := π0
s(as) +MA

for every as ∈ As. AsMA contains NA, one easily verifies that Ω = {ωs}s∈S
is a representation of A in C∗KS(A)/MA. The associated ∗-homomorphism
ΦΩ from C∗KS(A) into C∗KS(A)/MA is then nothing but the quotient map.
Since ΦΩ = ΨΩ ◦ qA, it follows that

Ker qA ⊂ Ker ΦΩ =MA.

Thus we get Ker qA =MA, as desired. It follows that

(3) C∗(A) ' C∗KS(A) /MA.

3.4. In [11], Exel also constructs the reduced cross sectional C∗-algebra
C∗r (A) of a Fell bundle A = ({As}s∈S , {jt,s}s,t∈S, s≤t). His construction,
which is somewhat involved, may be summarized as follows.

Consider first e ∈ E and s ∈ S such that e ≤ s. Then js,e gives an
isometric embedding of Ae into As, so one may view Ae as a subspace of
As. Let ϕe be a continuous linear functional on Ae. Exel shows in [11,
Proposition 6.1] that ϕe extends to a continuous linear functional ϕ̃se on As
satisfying ‖ϕ̃se‖ = ‖ϕe‖ and

ϕ̃se(x) = lim
i
ϕe(xui) = lim

i
ϕe(uix) = lim

i
ϕe(uixui)

for every approximate unit {ui}i for Ae and every x ∈ As.
Next, let e ∈ E and let ϕe be a state on Ae. Define ϕ̃e on Cc(A) by

ϕ̃e

(∑
s∈S

asδs

)
=

∑
s∈S, s≥e

ϕ̃se(as).

Then, as shown in [11, Proposition 6.9], ϕ̃e is a state on Cc(A) when Cc(A) is
considered as a normed ∗-algebra with respect to the norm ‖g‖1 =

∑
s∈S ‖as‖

for g =
∑

s asδs ∈ Cc(A).
Now, let E = {Ae}e∈E denote the restriction of A to the semilattice E,

let ΠE = {πEe }e∈E denote the universal representation of E in C∗(E), and
fix a pure state ϕ on C∗(E). For each e ∈ E, one has that πEe (Ae) is an
ideal of C∗(E), and ϕe := ϕ ◦ πEe is a state on Ae as long as ϕe 6= 0, that
is, whenever ϕ does not vanish on πEe (Ae). Moreover, [11, Proposition 7.4]
says that there exists a positive linear functional ϕ̃ on Cc(A) such that:

(i) For every s ∈ S and as ∈ As, one has that

ϕ̃(asδs) =

{
ϕ̃se(as) if there exists e ∈ E such that ϕe 6= 0 and e ≤ s,

0 otherwise.
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(ii) For every e ∈ E and every ae ∈ Ae one has that

ϕ̃(aeδe) = ϕe(ae) = ϕ(πEe (ae)).

(iii) ‖ϕ̃‖ ≤ ‖ϕ‖.
(iv) ϕ̃ vanishes on the ideal NA.

For later use we note that if S is E∗-unitary, then (i) and (ii) together just
say that

(4) ϕ̃(asδs) =

{
ϕ(πEs (as)) if s ∈ E,

0 otherwise.

Let Hϕ̃ be the Hilbert space completion of Cc(A) with respect to the pre-
inner-product given by

〈g, h〉ϕ̃ = ϕ̃(h∗g) for g, h ∈ Cc(A),

and let h 7→ ĥ denote the canonical map Cc(A) → Hϕ̃. The GNS represen-
tation of ϕ̃, which is defined in the usual way by

Υϕ̃(g)ĥ = ĝh for g, h ∈ Cc(A),

gives a ∗-representation of Cc(A) on Hϕ̃.
Exel’s reduced cross sectional C∗-algebra C∗r (A) is then defined as the

Hausdorff completion of Cc(A) with respect to the C∗-seminorm given by

‖g‖′r = sup
ϕ
‖Υϕ̃(g)‖

where the supremum is taken over the set P(C∗(E)) consisting of all pure
states of C∗(E). Note that the kernel of Υϕ̃ is given by

KerΥϕ̃ = {g ∈ Cc(A) : ϕ̃(h∗gh′) = 0 for all h, h′ ∈ Cc(A)}.

So if KA := {g ∈ Cc(A) : ‖g‖′r = 0}, then

KA =
⋂

ϕ∈P(C∗(E))

KerΥϕ̃,

and C∗r (A) is the completion of Cc(A)/KA with respect to the norm

‖g +KA‖′′r := ‖g‖′r.

Letting ιred
A : Cc(A) → C∗r (A) denote the canonical ∗-homomorphism, one

gets the left regular representation Πred = {πred
s }s∈S of A in C∗r (A) by

setting

πred
s = ιred

A ◦ π0
s

for each s ∈ S. The associated ∗-homomorphism ΨΠred : C∗(A)→ C∗r (A) is
then surjective (cf. [11, Proposition 8.6]).
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4. The left regular representation of C∗
KS(A)

Let A be a Fell bundle over S. In this section we will describe how
one may define the left regular representation ΦΛ of Cc(A) in a certain C∗-
algebra B naturally associated with A, and show that ΦΛ is injective. We
will first construct the left regular pre-representation Λ of A in B. The
associated ∗-homomorphim ΦΛ from C∗KS(A) into B will then give the left
regular representation of C∗KS(A).

4.1. We begin by recalling some notation and a few facts that will be useful
in our construction.

For each u ∈ S, we set

D(u) = {s ∈ S : ss∗ ≤ u∗u},
so D(u∗) = {v ∈ S : vv∗ ≤ uu∗}, and for each e ∈ E, we set

Se = {s ∈ S : s∗s = e}.
The Wagner–Preston theorem (and its proof), see for example [17, Propo-
sition 2.1.3], says that for each u ∈ S, the map γu : D(u) → D(u∗) given
by γu(s) = us is a bijection, with inverse given by γu∗ : D(u∗) → D(u).
Moreover, it says that the map γ : u 7→ γu is an injective homomorphism
from S into I(S). A part of the last statement is that for u1, u2, s ∈ S, we
have

(5) s ∈ D(u1u2) if and only if s ∈ D(u2) and u2s ∈ D(u1).

Consider u ∈ S and assume s ∈ Se ∩D(u) for some e ∈ E. Then we have

(us)∗us = s∗u∗us = s∗u∗u ss∗s = s∗ss∗s = s∗s = e

so us ∈ Se∩D(u∗). Hence, if v ∈ Se∩D(u∗), then u∗v ∈ Se∩D(u). It follows
that the map s 7→ us gives a bijection from Se ∩D(u) onto Se ∩D(u∗), with
inverse given by v 7→ u∗v for v ∈ Se ∩D(u∗).

4.2. Let now A = {As}s∈S be a Fell bundle over S. Given e ∈ E, set

Xe =

{
ξ ∈

∏
s∈Se

As :
∑
s∈Se

ξ(s)∗ · ξ(s) is norm convergent in Ae

}
.

Note that the sum
∑

s∈Se
ξ(s)∗ · ξ(s) makes sense since

ξ(s)∗ · ξ(s) ∈ As∗s = Ae

for each s ∈ Se. Proceeding in the same way as for the direct sum of a family
of right Hilbert C∗-modules over the same C∗-algebra [15], it is not difficult
to check that Xe is a subspace of the product vector space

∏
s∈Se

As, which
becomes a right Hilbert Ae-module with respect to the operations

(ξ · a)(s) = ξ(s) · a ∈ Ase = As,

〈ξ, η〉e =
∑
s∈Se

ξ(s)∗ · η(s) ∈ Ae,
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for ξ, η ∈ Xe, a ∈ Ae and s ∈ Se.
Consider e ∈ E and u ∈ S. For au ∈ Au, we let

λe,u(au) : Xe → Xe

be the linear operator defined by(
λe,u(au)ξ

)
(v) =

{
au · ξ(u∗v) if v ∈ D(u∗),

0 otherwise.

for ξ ∈ Xe and v ∈ Se. To see that λe,u(au) is well defined, let ξ ∈ Xe. If
v ∈ Se ∩D(u∗), then u∗v ∈ Se, and ξ(u∗v) ∈ Au∗v, so we get

au · ξ(u∗v) ∈ Au ·Au∗v ⊂ Auu∗v = Auu∗vv∗v = Avv∗v = Av.

Thus we see that λe,u(au)ξ lies in
∏
v∈Se

Av. Moreover, if v ∈ Se ∩ D(u∗),
then one readily verifies that the map b 7→ au · b is an adjointable linear map
from Au∗v into Av (with adjoint map c 7→ a∗u ·c); thus, using [15, Proposition
1.2], we get(

au · ξ(u∗v)
)∗ · (au · ξ(u∗v)

)
≤ ‖au‖2 ξ(u∗v)∗ · ξ(u∗v).

Now, since ξ ∈ Xe, the sum∑
v∈Se ∩D(u∗)

ξ(u∗v)∗ · ξ(u∗v)

is norm-convergent in Ae, and it follows that∑
v∈Se

(
λe,u(au)ξ

)
(v)∗ ·

(
λe,u(au)ξ

)
(v) =

∑
v∈Se ∩D(u∗)

(
au ·ξ(u∗v)

)∗ ·(au ·ξ(u∗v)
)

is also norm-convergent in Ae. Thus, λe,u(au)ξ ∈ Xe, as desired.
Next, we show that λe,u(au) ∈ L(Xe). For ξ, η ∈ Xe, we have

〈λe,u(au)ξ, η〉e =
∑
v∈Se

(λe,u(au)ξ)(v)∗ · η(v)

=
∑

v∈Se∩D(u∗)

(au · ξ(u∗v))∗ · η(v)

=
∑

v∈Se∩D(u∗)

ξ(u∗v)∗ · a∗u · η(v)

=
∑

s∈Se∩D(u)

ξ(s)∗ · a∗u · η(us)

=
∑
s∈Se

ξ(s)∗ · (λe,u∗(a∗u)η)(s)

= 〈ξ, λe,u∗(a∗u)η〉e,

where we have used that the map v 7→ u∗v is a bijection from Se ∩ D(u∗)
onto Se ∩D(u). This shows that λe,u(au) is an adjointable operator on Xe,
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with adjoint given by

(6) λe,u(au)∗ = λe,u∗(a
∗
u).

Thus we get a map λe,u : Au → L(Xe) for each e ∈ E and each u ∈ S.
For each e ∈ E we set

Λe := {λe,u}u∈S .
To show that Λe is a pre-representation of A in L(Xe), in view of (6), we
only have to show that for u, u′ ∈ S, a ∈ Au and a′ ∈ Au′ , we have

(7) λe,uu′(a · a′) = λe,u(a)λe,u′(a
′).

To prove this, consider ξ ∈ Xe and v ∈ Se. Then

(
λe,uu′(a · a′)ξ

)
(v) =

{
a · a′ · ξ((uu′)∗v) if v ∈ D

(
(uu′)∗

)
,

0 otherwise,

=

{
a · a′ · ξ(u′∗u∗v) if v ∈ D

(
u′∗u∗

)
,

0 otherwise,

while (
λe,u(a)λe,u′(a

′)ξ
)
(v)

=

{
a · (λe,u′(a′)ξ)(u∗v) if v ∈ D(u∗),

0 otherwise

=

{
a · a′ · ξ(u′∗u∗v) if v ∈ D(u∗) and u∗v ∈ D(u′∗),

0 otherwise.

Now, using (5) with u1 = u′∗ and u2 = u∗ gives that v ∈ D
(
u′∗u∗

)
if and

only if v ∈ D(u∗) and u∗v ∈ D(u′∗), so we see that(
λe,uu′(a · a′)ξ

)
(v) =

(
λe,u(a)λe,u′(a

′)ξ
)
(v).

It follows that (7) holds, as desired.
We can now form the product pre-representation Λ =

∏
e∈E Λe of A in

the product C∗-algebra B :=
∏
e∈E L(Xe). It is natural to call Λ the left

regular pre-representation of A in B. It is given by Λ = {λu}u∈S , where
λu : Au → B is defined by

λu(au) =
(
λe,u(au)

)
e∈E

for u ∈ S and au ∈ S. The associated ∗-homomorphism ΦΛ : Cc(A) → B
(resp. C∗KS(A)→ B), which satisfies

ΦΛ

(∑
u∈S

auδu

)
=

(∑
u∈S

λe,u(au)

)
e∈E

,
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will be called the left regular representation of Cc(A) (resp. C∗KS(A)) in B.
Note that ΦΛ =

∏
e∈E ΦΛe , since(∏

e∈E
ΦΛe

)(∑
u∈S

auδu

)
=

(
ΦΛe

(∑
u∈S

auδu

))
e∈E

=

(∑
u∈S

λe,u(au)

)
e∈E

.

4.3. Our aim is to show that ΦΛ is injective on Cc(A) (cf. Theorem 4.3).
The following lemma will be crucial.

Lemma 4.1. Assume that g =
∑

u∈S auδu ∈ Cc(A) satisfies ΦΛ(g) = 0 and
let e, f ∈ E with e ≤ f .

Then, for each t ∈ S and each b ∈ Ae, we have∑
u∈S, f≤u∗u, ue=t

au · b = 0.

Note that here (and elsewhere), we use the convention that a sum over
an empty index set is equal to 0.

Proof. For each s ∈ S and a ∈ As, we will let a� εs denote the element of
Xs∗s given for each t ∈ Ss∗s by

(a� εs)(t) =

{
a if t = s,

0 if t 6= s.

For every v ∈ E, we set gv =
∑

u∈Sv
auδu. Then gv ∈ Cc(A), gv = 0 for all

but finitely many v in E, and

g =
∑
v∈E

gv.

Moreover,

(8) 0 = ΦΛ(g) =
∑
v∈E

ΦΛ(gv) =

(∑
v∈E

∑
u∈Sv

λp,u(au)

)
p∈E

.

Now, consider v ∈ E, u ∈ Sv, a ∈ Au and a′ ∈ Af .
Note first that a′ � εf ∈ Xf∗f = Xf . Moreover, if f ≤ v, then

(uf)∗uf = fu∗uf = fvf = f,

so uf ∈ Sf and (a · a′)� εuf ∈ X(uf)∗uf = Xf . We claim that

(9) λf,u(a)(a′ � εf ) =

{
(a · a′)� εuf if f ≤ v,

0 otherwise.

To prove this claim, let t ∈ Sf . Then we have t ∈ D(u∗), that is, tt∗ ≤ uu∗,
if and only if f = t∗t ≤ u∗u = v. As(

λf,u(a)(a′ � εf )
)
(t) =

{
a · (a′ � εf )(u∗t) if t ∈ D(u∗)

0 otherwise,
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we see that λf,u(a)(a′ � εf ) = 0 when f 6≤ v.
If f ≤ v, thus t ∈ Sf ∩D(u∗), then we have u∗t ∈ Sf ∩D(u), with u∗t = f

if and only uf = t (cf. 4.1), so we get(
λf,u(a)(a′ � εf )

)
(t) = a · (a′ � εf )(u∗t)

=

{
a · a′ if t = uf

0 otherwise
=
(
(a · a′)� εuf

)
(t).

We have thus shown that λf,u(a)(a′ � εf ) = (a · a′) � εuf whenever f ≤ v,
and this finishes the proof of (9).

Let now b ∈ Ae. By the Cohen–Hewitt factorization theorem [13, Theo-
rem 32.22] we can write b as a product b = cd where c, d ∈ Ae. As e ≤ f ,
we get from (1) that

(10) jf,e(c) · d = cd = b.

For each v ∈ E we get from (9) that∑
u∈Sv

λf,u(au)(jf,e(c)� εf ) =

{∑
u∈Sv

(au · jf,e(c))� εuf if f ≤ v,
0 otherwise.

Using (8) it then follows that

0 =
∑
v∈E

∑
u∈Sv

λf,u(au)(jf,e(c)� εf ) =
∑

{v∈E:f≤v}

∑
u∈Sv

(au · jf,e(c))� εuf .

By looking at individual coefficients we can then conclude that in Cc(A),

(11) 0 =
∑

{v∈E:f≤v}

∑
u∈Sv

(au · jf,e(c)) δuf

Since e ≤ f we get from (11) and (10) that

0 =

 ∑
{v∈E:f≤v}

∑
u∈Sv

(au · jf,e(c)) δuf

(dδe) =
∑

{v∈E:f≤v}

∑
u∈Sv

(au · b) δue.

We see that given t ∈ S, the t-coefficient of the sum on the right hand side
of the above equation is ∑

u∈S, f≤u∗u,ue=t
au · b,

which must then be equal to 0. �

We will need another lemma. Let F be a semilattice and A be a Banach
space. As usual, we will denote the dual space of A, consisting of all con-
tinuous linear functionals on A, by A∗. We let Cc(F,A) denote the vector
space of all finitely supported functions from F to A. We will describe an
element of Cc(F,A) as a formal sum

∑
f∈F afδf where each af ∈ A and
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af = 0 for all but finitely many f in F . Given ψ ∈ A∗ and e ∈ F , we define
θψ,e : Cc(F,A)→ C to be the linear functional given by

θψ,e

(∑
f∈F

afδf

)
=

∑
f∈F, f≥e

ψ(af ).

Lemma 4.2. Let A be a Banach space and F be a semilattice. Then the
set {θψ,e : e ∈ F,ψ ∈ A∗} separates the elements of Cc(F,A).

Proof. Suppose
∑

f∈F afδf 6= 0. Since af = 0 for all but finitely many f

in F , we can choose e ∈ F such that ae 6= 0 and af = 0 for all f ∈ F \ {e}
satisfying f ≥ e. We may then pick ψ ∈ A∗ such that ψ(ae) 6= 0, and this
gives

θψ,e

∑
f∈F

afδf

 =
∑

f∈F, f≥e
ψ(af ) = ψ(ae) 6= 0. �

The following theorem is a generalization of Wordingham’s theorem [17,
Theorem 2.1.1], and our proof follows the pattern of Wordingham’s original
proof.

Theorem 4.3. Let A = {As}s∈S be a Fell bundle over an inverse semigroup
S. Then the left regular representation of Cc(A) is injective.

Proof. Let g ∈ Cc(A) and express g as a sum g =
∑

u∈S auδu, where
supp(g) = {u ∈ S : au 6= 0} is finite. Assume ΦΛ(g) = 0. We want to
show that at = 0 for each t ∈ S. Since g =

∑
e∈E

∑
u∈Se

auδu it is sufficient
to show that for any e ∈ E, at = 0 when t ∈ Se.

Fix e ∈ E and consider t ∈ S. Let F be the subsemilattice of E given by

F = {v ∈ E : e ≤ v}.

Also, let f ∈ F and b ∈ Ae. For each v ∈ F set

βtv =
∑

u∈S, v=u∗u, ue=t

au · b ∈ At,

βt =
∑
v∈F

βtv δv ∈ Cc(F,At).

Note that βt has finite support since βtv = 0 if v /∈ {u∗u : u ∈ supp(g)}, and
supp(g) is finite. Now, for each ψ ∈ (At)

∗, we get from Lemma 4.1 that

θψ,f
(
βt
)

=
∑

v∈F, f≤v
ψ
(
βtv
)

= ψ

 ∑
u∈S, f≤u∗u, ue=t

au · b

 = 0.
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Then βt = 0 by Lemma 4.2, so βtv = 0 for each v ∈ F . In particular, since
e ∈ F , we get

(12)
∑

u∈Se, ue=t

au · b = βte = 0.

Assume now that t ∈ Se. If u ∈ Se satisfies that ue = t, then we have
ut∗t = t and u∗u = t∗t, which together imply that u = t. So (12) gives
that at · b = 0. Choosing b = a∗t · at ∈ At∗t = Ae, we get at · a∗t · at = 0,
so (a∗t · at)2 = a∗t · at · a∗t · at = 0, hence a∗t · at = 0, and axiom (x) in the
definition of a Fell bundle gives that at = 0, as desired. �

4.4. We define the reduced KS-cross sectional C∗-algebra C∗r,KS(A) of A
as the completion of Cc(A) with respect to the norm ‖ · ‖r given by

‖g‖r := ‖ΦΛ(g)‖
for g ∈ Cc(A). Alternatively, we may consider C∗r,KS(A) to be given as the

norm-closure of ΦΛ(Cc(A)) in B, or, equivalently, as ΦΛ(C∗KS(A)).
Recall that NA denotes the two-sided selfadjoint ideal of Cc(A) spanned

by the set
{asδs − jt,s(as)δt : s, t ∈ S, s ≤ t, as ∈ As}.

We define IA to be the closure of NA inside C∗r,KS(A). In other words, we
set

IA = ΦΛ(NA).

It is easy to check that IA is an ideal of C∗r,KS(A). Hence we may form the
quotient C∗-algebra

C∗r,alt(A) := C∗r,KS(A)/IA,
which provides an alternative version of the reduced cross sectional C∗-
algebra of A. We will let qrA : C∗r,KS(A) → C∗r,alt(A) denote the quotient

map. It is not clear whether C∗r,alt(A) is isomorphic to Exel’s reduced C∗-

algebra C∗r (A) (cf. 3.4). We will show in Section 7 that this is true whenever
S is strongly E∗-unitary and A0 = {0} if S has a zero. For u ∈ S let
λalt
u : Au → C∗r,alt(A) be defined by

λalt
u (au) = λu(au) + IA

for all au ∈ Au. It is then almost immediate that Λalt := {λalt
u }u∈S is a

representation of A in C∗r,alt(A). Using the universal property of C∗(A) we

get a surjective ∗-homomorphism ΨΛalt from C∗(A) onto C∗r,alt(A) satisfying

ΨΛalt

(
πAu (au)

)
= λalt

u (au) = λu(au) + IA
for all u ∈ S and au ∈ Au. Similarly, we get a surjective ∗-homomorphism
ΦΛalt from C∗KS(A) onto C∗r,alt(A), which satisfies

ΦΛalt = qrA ◦ ΦΛ = ΨΛalt ◦ qA.
The following commutative diagram sums up the relationship between

the various algebras and some of the ∗-homomorphisms defined so far.
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Cc(A) C∗KS(A) C∗r,KS(A)

Cc(A)/NA C∗(A) C∗r,alt(A)

C∗r (A)

QA qA qr
A

ΦΛ

Φ
Λ alt

ΨΛalt

ΨΠred

ιA

RA

ι redA

5. Fell bundles over semilattices

In this section we look at the case where S = E is a semilattice, and
consider a Fell bundle E = {Ae}e∈E . Since Ee = {f ∈ E : f∗f = e} = {e}
for each e ∈ E, the Hilbert Ae-module Xe that occurs in the definition
of the pre-representation Λe =

(
λe,f

)
f∈E of E in L(Xe) is nothing but Ae

itself (with its standard structure). Thus C∗r,KS(E) can be viewed as a C∗-

subalgebra of
∏
e∈E L(Ae), and for e, f ∈ E and af ∈ Af , λe,f (af ) : Ae → Ae

is given by

(13) λe,f (af )b =

{
af · b if e ≤ f,
0 otherwise,

for all b ∈ Ae.

As before, let ΦΛe : Cc(E) → L(Ae) be the corresponding ∗-homomorphism
given by

ΦΛe

(∑
f∈E

afδf

)
=
∑
f∈E

λe,f (af ).

Let (ai) be an approximate unit for Ae, let f ∈ E be such that f ≥ e, and
let af ∈ Af . Then for all b ∈ Ae we have

lim
i

(ai · af ) · b = lim
i
ai · (af · b) = af · b,

and limi af · (ai · b) = af · b. Thus,

(14) λe,f (af ) = lim
i
ai · af = lim

i
af · ai

where the limits in equation (14) are taken in the strict topology of L(Ae).
We recall that a character (sometimes called a semicharacter) on E is a

nonzero homomorphism from E into the semilattice {0, 1}, see, e.g., [17].
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Lemma 5.1. Let π : C∗KS(E) → B(H) be a nonzero irreducible represen-
tation of C∗KS(E) on a Hilbert space H. For e ∈ E, let pe denote the or-
thogonal projection of H onto the norm-closure of π(Aeδe)H in H. Then
pe ∈ {0, IH}. Moreover, the map π̂ : E → {0, 1} defined by

π̂(e) =

{
1 if pe = IH ,

0 if pe = 0,

is a character on E.

Proof. Let (ai) be an approximate unit for Ae. It is straightforward to
check that π(aiδe) converges strongly to pe.

Let f ∈ E be such that f ≤ e and let a ∈ Af . Since je,f (ai ·a) = ai ·je,f (a),
and ai · je,f (a) converges to je,f (a) in norm, it follows, using that je,f is
isometric, that ai · a converges to a in norm. Hence, for any ξ ∈ H, we have

peπ(aδf )ξ = lim
i
π(aiδe)π(aδf )ξ = lim

i
π(ai · aδf )ξ = π(aδf )ξ.

It follows that pfH ⊂ peH, that is, pf ≤ pe.
Consider now e′ ∈ E. Then e′e ≤ e, so pe′eH ⊂ peH.
Hence for a ∈ Ae′ we get

π(aδe′)peH = π(aδe′)π(Aeδe)H

⊂ π(Ae′ ·Aeδe′e)H

⊂ π(Ae′eδe′e)H

= pe′eH ⊂ peH.

This implies that peH is a closed invariant subspace for π(C∗KS(E)), hence
that pe ∈ {0, IH} since π is irreducible. Moreover, for any e, e′ ∈ E, pe′pe =
pepe′ is then a projection, and, as seen above, we have pe′e ≤ pe, and similarly
pe′e = pee′ ≤ pe′ , so pe′e ≤ pe′pe. On the other hand, for a ∈ Ae′ , we know
that π(aδe′)peH ⊂ pe′eH. Hence, using an approximate unit for Ae′ , one
easily deduces that pe′pe ≤ pe′e. Thus we get pe′e = pe′pe. Since π is nonzero,
it clearly follows that π̂ is a character on E. �

Given a character ψ on E, we set Fψ = {e ∈ E : ψ(e) = 1}. Then Fψ is
an example of a filter in E (and every filter on E can be obtained this way),
cf. [17]. We recall that a filter in E is a nonempty subsemilattice F of E
such that if f ∈ E and f ≥ e for some e ∈ F , then f ∈ F .

Proposition 5.2. We have C∗r,KS(E) = C∗KS(E).

Proof. It suffices to check that every irreducible representation of C∗KS(E)
is dominated in norm by the left regular representation ΦΛ. More precisely,
it suffices to show that given a Hilbert space H and a nonzero irreducible
representation π : C∗KS(E)→ B(H), we have

‖π(g)‖ ≤ ‖ΦΛ(g)‖
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for all g ∈ Cc(E). Let π̂ be the character on E described in Lemma 5.1, and
let F = Fπ̂ be the corresponding filter in E. Note that if pe is defined as in
Lemma 5.1, then pe = IH when e ∈ F , while pe = 0 when e ∈ E \ F . Hence
for all e ∈ E \ F and all ae ∈ Ae we have π(aeδe) = 0. Indeed, letting (ai)
be an approximate unit for Ae, we then have

π(aeδe)ξ = lim
i
π(aea

iδe)ξ = lim
i
π(aeδe)π(aiδe)ξ = π(aeδe)peξ = 0

for all ξ ∈ H. Consider now g =
∑

u∈E auδu ∈ Cc(E). Using the observation
we just made, we get

π(g) =
∑

f∈K∩F
π(afδf ),

where K := {u ∈ E : au 6= 0} is finite. Since F is a semilattice and K ∩ F
is a finite subset of F , there exists some e ∈ F such that e ≤ f for all
f ∈ K ∩F . Let (ai) be an approximate unit for Ae. Since the restriction πe
of π to Aeδe ' Ae is a nondegenerate representation of Aeδe on H, it may
be extended to a representation πe : L(Ae) → B(H) (see for instance [1,
Theorem II.7.3.9]). Moreover, if (biδe) is a net in Aeδe converging strictly to
some x ∈ L(Ae), then πe(b

iδe) converges strongly to πe(x) in B(H). Thus
for any ξ ∈ H, using equations (13) and (14), we get

π(g)ξ = peπ(g)ξ = lim
i
π(aiδe)

∑
f∈K∩F

π(afδf )ξ

= lim
i

∑
f∈K∩F

π
(

(ai · af )δe

)
ξ

=
∑

f∈K∩F
πe(λe,f (af ))ξ

= πe(ΦΛe(g))ξ.

It follows that π(g) = πe(ΦΛe(g)), so ‖π(g)‖ ≤ ‖ΦΛe(g)‖ ≤ ‖ΦΛ(g)‖. �

Proposition 5.2 implies that ME = IE , hence that C∗(E) = C∗r,alt(E).

Since it follows from [11, Corollary 8.10] that C∗r (E) ' C∗(E), we get:

Corollary 5.3. C∗r,alt(E) = C∗(E) ' C∗r (E).

6. Conditional expectations onto the diagonal

Let A = {As}s∈S be a Fell bundle over S and let E = {Ae}e∈E denote the
Fell bundle obtained by restricting A to the semilattice E of idempotents in
S. Recall that C∗r,KS(A) can be viewed as a C∗-subalgebra of

∏
e∈E L(Xe)

and that C∗r,KS(E) can be viewed as a C∗-subalgebra of
∏
e∈E L(Ae). When

it is necessary to distinguish them, we will denote by ΦAΛ the left regular rep-
resentation of Cc(A) and by ΦEΛ the left regular representation of Cc(E). Sim-
ilarly, we will write {λAe,s} and {λEe,f} for the respective pre-representations.
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Let e ∈ E and s ∈ Se (so that s∗s = e). Recalling that As is a (right)
Ae-module, we define an Ae-module map γs : As → Xe by γs(a) = a � εs,
i.e.,

γs(a)(t) =

{
a if s = t

0 otherwise.

One readily checks that γs is adjointable with adjoint given by γ∗s (ξ) = ξ(s)
for every ξ ∈ Xe. Then γ∗sγs is clearly the identity map on As, so γs is
isometric. Moreover, we have γsγ

∗
sξ = ξ(s) � εs for every ξ ∈ Xe, and it

follows that
∑

s∈Se
γsγ
∗
sξ = ξ for every ξ ∈ Xe, where the sum converges in

the norm topology on Xe.

Lemma 6.1. Let e ∈ E, s, t ∈ Se, u ∈ S and a ∈ Au. Then the map
γ∗sλe,u(a)γt : At → As is given by(

γ∗sλe,u(a)γt
)
(b) =

{
a · b if u ≥ st∗,
0 otherwise

for all b ∈ At.

Proof. For b ∈ At we have

γ∗sλe,u(a)γt(b) =
(
λe,u(a)γt(b)

)
(s)

=

{
a · γt(b)(u∗s) if s ∈ D(u∗),

0 otherwise

=

{
a · b if u∗s = t and ss∗ ≤ uu∗,

0 otherwise.

Suppose first that u ≥ st∗. Then uu∗ ≥ (st∗)(st∗)∗ = ss∗ since t∗t = s∗s.
Moreover, u∗ ≥ ts∗, so ts∗ = u∗(ts∗)∗(ts∗) = u∗ss∗, hence u∗s = ts∗s =
tt∗t = t. Conversely, if ss∗ ≤ uu∗ and u∗s = t, then

u∗(ts∗)∗(ts∗) = u∗st∗ts∗ = u∗uu∗ss∗ss∗ = u∗ss∗ = ts∗,

so u∗ ≥ ts∗, hence u ≥ st∗. �

Lemma 6.2. Let t ∈ S and b ∈ At. Then there exist c ∈ Att∗ and d ∈ At
such that b = c · d.

Proof. Let (ui) be an approximate unit for Att∗ . Since ||ui|| ≤ 1 for all i,
we get

||ui · b− b||2 = ||(ui · b− b)(ui · b− b)∗||
= ||ui · b · b∗ − b · b∗ + (ui · b · b∗ − b · b∗) · ui||
≤ 2||ui · b · b∗ − b · b∗||.

So ui · b converges to b. Regarding At as a left Att∗ -module in the obvious
way, we may then apply the Cohen–Hewitt factorization theorem [13, The-
orem 32.22] to b and deduce that b = c · d for some c ∈ Att∗ and d ∈ At. �
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Lemma 6.3. Let t ∈ S and b ∈ At. Let b = c · d be any factorization of b
with c ∈ Att∗ and d ∈ At. Let (Te)e∈E ∈ C∗r,KS(A), and let s ∈ S be such
that s∗s = t∗t. Then

(γ∗sTt∗tγt)(b) = (γ∗st∗Ttt∗γtt∗)(c) · d.

Proof. Note first that the expression on the right-hand side is well-defined
since (st∗)∗(st∗) = ts∗st∗ = tt∗ as s∗s = t∗t. By linearity and continuity, it
suffices to prove that for any u ∈ S and a ∈ Au, we have

(γ∗sλt∗t,u(a)γt)(b) = (γ∗st∗λtt∗,u(a)γtt∗)(c) · d.
This follows immediately by applying Lemma 6.1 to both sides, and using
that st∗(tt∗)∗ = st∗. �

Lemma 6.4. For any e, f ∈ E, and af ∈ Af we have

γ∗eλ
A
e,f (af )γe = λEe,f (af ).

Moreover, if S is E∗-unitary and A0 = {0} (if S has a 0-element), then for
any e ∈ E, u ∈ S and au ∈ Au, we have

(15) γ∗eλ
A
e,u(au)γe =

{
λEe,u(au) if u ∈ E,

0 otherwise.

Proof. We prove the second statement. The proof of the first statement
follows from a small adjustment to the argument and is left to the reader.
Assume that S is E∗-unitary and A0 = {0} (if S has a 0-element). Let
b ∈ Ae. Lemma 6.1 gives that

(16)
(
γ∗eλ

A
e,u(au)γe

)
(b) =

{
au · b if e ≤ u,

0 otherwise.

Since S is E∗-unitary, e ≤ u implies that u is idempotent or e = 0. If e 6= 0,
the right hand side of (16) is equal to{

au · b if e ≤ u and u ∈ E,
0 otherwise,

=

{
λEe,u(au)b if u ∈ E,

0 otherwise,

so we see that (15) holds in this case. If e = 0 (so S has a 0-element), then
both sides of (15) are equal to 0 since A0 = {0} by assumption. �

Lemma 6.5. There is an embedding of C∗r,KS(E) into C∗r,KS(A) extending

the inclusion Cc(E) ⊂ Cc(A).

Proof. Let
∑

f∈E afδf ∈ Cc(E). We need to prove that

(17)

∥∥∥∥∥ΦEΛ

(∑
f∈E

afδf

)∥∥∥∥∥ =

∥∥∥∥∥ΦAΛ

(∑
f∈E

afδf

)∥∥∥∥∥.
Since C∗r,KS(E) = C∗KS(E), cf. Proposition 5.2, the expression on the left-hand

side of (17) is the same as the universal norm of
∑

f∈E afδf in C∗KS(E). As
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ΦAΛ restricts to a ∗-homomorphism of Cc(E), we see that the ≥ inequality in
(17) must hold. On the other hand, since γe is an isometry for each e ∈ E,
Lemma 6.4 implies that

sup
e∈E

∥∥∥∥∥∑
f∈E

λEe,f (af )

∥∥∥∥∥ ≤ sup
e∈E

∥∥∥∥∥∑
f∈E

λAe,f (af )

∥∥∥∥∥.
This shows that ≤ inequality in (17) holds. �

We will identify C∗r,KS(E) with its canonical image in C∗r,KS(A), and call

it the diagonal (C∗-subalgebra) of C∗r,KS(A). Define E : Cc(A)→ Cc(E) by

E

(∑
u∈S

auδu

)
=
∑
e∈E

aeδe

for all
∑

u∈S auδu ∈ Cc(A). Moreover, define a positive linear map EKS from
C∗r,KS(A) into

∏
e∈E L(Ae) by

EKS

(
(Te)e∈E

)
= (γ∗eTeγe)e∈E

for all (Te)e∈E ∈ C∗r,KS(A).

Proposition 6.6. The map EKS : C∗r,KS(A)→
∏
e∈E L(Ae) is faithful.

If S is E∗-unitary and A0 = {0} (if S has a 0-element), then EKS satisfies

(18) EKS

(
ΦAΛ (g)

)
= ΦEΛ

(
E(g)

)
for all g ∈ Cc(A). Moreover, in this case, EKS is a faithful conditional
expectation from C∗r,KS(A) onto C∗r,KS(E).

Proof. Let e ∈ E, Te ∈ L(Xe) and a ∈ Ae. For each s ∈ Se, we have

(γ∗sTeγe)(a) =
(
Teγe(a)

)
(s),

so we get 〈
(γ∗eT

∗
e Teγe)(a), a

〉
Ae

=
〈
Teγe(a), Teγe(a)

〉
Xe

=
∑
s∈Se

(
Teγe(a)

)
(s)∗

(
Teγe(a)

)
(s)

=
∑
s∈Se

(
γ∗sTeγe

)
(a)∗

(
γ∗sTeγe

)
(a).

So we see that if γ∗eT
∗
e Teγe = 0, then γ∗sTeγe = 0 for each s ∈ Se.

Consider T = (Te)e∈E ∈ C∗r,KS(A). If γ∗sTeγe = 0 for all e ∈ E and s ∈ Se,
then for any e ∈ E and s, t ∈ Se, we have in particular that γ∗st∗Ttt∗γtt∗ = 0,
so Lemma 6.2 and Lemma 6.3 imply that γ∗sTeγt = 0. Combining this with
our first observation, we get that if γ∗eT

∗
e Teγe = 0 for each e ∈ E, then

γ∗sTeγt = 0 for each e ∈ E and s, t ∈ Se.
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Assume now that EKS(T ∗T ) = 0. This means that γ∗eT
∗
e Teγe = 0 for all

e ∈ E. Hence, for e ∈ E and ξ ∈ Xe, we get

Teξ =
∑
s∈Se

γsγ
∗
sTeξ =

∑
s∈Se

∑
t∈Se

γsγ
∗
sTeγtγ

∗
t ξ = 0.

Thus Te = 0 for every e ∈ E, so T = 0. This proves that EKS is faithful.
Next, assume that S is E∗-unitary and A0 = {0} (if S has a 0-element).

To show that (18) holds amounts to show that for any e ∈ E, we have

γ∗e

(∑
u∈S

λe,u(au)

)
γe =

∑
f∈E

λe,f (af )

for all
∑

u∈S auδu ∈ Cc(A). This follows readily from Lemma 6.4. It is then
clear that the image of EKS is C∗r,KS(E). Note also that EKS is contractive

since γe is an isometry for each e ∈ E. Moreover, it is immediate from (18)
that EKS is a projection map. Hence, Tomiyama’s theorem (see for instance
[1, Theorem II.6.10.2]) gives that EKS is a conditional expectation. �

Remark 6.7. Suppose that S is strongly E∗-unitary and and A0 = {0} (if
S has a zero). Let σ be an idempotent pure grading from S× into a group
G. Then for each g ∈ G one can form the Banach space

Bg :=
⊕

s∈S, σ(s)=g

ΦΛ(Asδs) ⊂ C∗r,KS(A).

It is straightforward to check that B := {Bg}g∈G is a Fell bundle over G,
giving a G-grading for C∗r,KS(A) in the sense of [9, Definition 3.1]. More-

over, since σ is idempotent pure, we have {s ∈ S : σ(s) = 1G} = E, so
B1G = C∗r,KS(E). Since EKS is faithful by the previous proposition, it then

follows from [9, Proposition 3.7] that C∗r,KS(A) is naturally isomorphic to

the reduced cross sectional C∗-algebra C∗r (B) associated with B.

The following covariance property of EKS will be useful later.

Lemma 6.8. Suppose S is E∗-unitary and A0 = {0} (if S has a 0 element).
Then for all s ∈ S, b ∈ As and T ∈ C∗r,KS(A) we have

(19) EKS

(
λs(b)

∗Tλs(b)
)

= λs(b)
∗EKS(T )λs(b).

Proof. Let s ∈ S and b ∈ As. Consider
∑

t∈S atδt ∈ Cc(A). Then for any
t ∈ S we have that s∗ts = 0 if and only if ss∗tss∗ = 0. Moreover, s∗ts ∈ E if
and only if ss∗tss∗ ∈ E; thus, since S is E∗-unitary and t ≥ ss∗tss∗, we get
that s∗ts ∈ E if and only if t ∈ E or s∗ts = 0. Hence, using that A0 = {0}
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(if S has a 0 element), we get

E

(
(bδs)

∗

(∑
t∈S

atδt

)
(bδs)

)
= E

 ∑
t∈S, s∗ts 6=0

(b∗ · at · b)δs∗ts


=

∑
t∈S, s∗ts∈E×

(b∗ · at · b)δs∗ts

= (bδs)
∗E

(∑
t∈S

atδt

)
(bδs).

Using Equation (18), we then see that (19) holds whenever T = ΦAΛ (g)
for some g ∈ Cc(A). By linearity and continuity of EKS and density of
ΦAΛ (Cc(A)) in C∗r,KS(A), it then holds for all T ∈ C∗r,KS(A). �

7. Comparison with Exel’s reduced cross sectional
C∗-algebras

Throughout this section we consider a Fell bundle A = {As}s∈S over an
E∗-unitary inverse semigroup S and assume that A0 = {0} (if S has a 0
element). Our aim is to show that Exel’s C∗r (A) is a quotient of C∗r,alt(A)
and that these C∗-algebras are canonically isomorphic under certain assump-
tions.

As in the previous section, we let E = {Ae}e∈E denote the Fell bundle
obtained by restricting A to the semilattice E = E(S). From Proposi-
tion 6.6, we see that EKS

(
ΦAΛ (NA)

)
= ΦEΛ(NE), and it easily follows that

EKS(IA) = IE .
For any ideal K of C∗r,KS(A) satisfying EKS(K) = IE we can define a

surjective linear map EK : C∗r,KS(A)/K → C∗r,alt(E) by

EK(T +K) = EKS(T ) + IE .
It is straightforward to check that EK is contractive. Note also that for each
T ∈ ΦAΛ (Cc(E)) we have

‖T + IE‖ = ‖EK(T +K)‖ ≤ ‖T +K‖ ≤ ‖T + IE‖
where the last inequality uses that the map

g 7→ ΦAΛ (g) + K
is a representation of Cc(E) in C∗r,KS(A)/K and that C∗r,alt(E) = C∗(E). It

follows that ‖T + IE‖ = ‖T +K‖ for each T ∈ C∗r,KS(E), so we can identify

C∗r,alt(E) with the image of C∗r,KS(E) in the quotient C∗r,KS(A)/K. Using

Tomiyama’s theorem (see for instance [1, Theorem II.6.10.2]), we get that
EK is a conditional expectation; in particular it is completely positive.

Proposition 7.1. Define

JA = {T ∈ C∗r,KS(A) : EKS(T ∗T ) ∈ IE}.
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Then we have

(20) JA = {T ∈ C∗r,KS(A) : EKS(QTR) ∈ IE for all Q,R ∈ C∗r,KS(A)}.

Thus JA is an ideal of C∗r,KS(A), satisfying IA ⊂ JA and EKS(JA) = IE .

Moreover, the conditional expectation EJA from C∗r,KS(A)/JA onto C∗r,alt(E)
is faithful.

Proof. Let K be the ideal of C∗r,KS(A) defined by the right hand side of

equation (20). Then by using an approximate unit for C∗r,KS(A) one easily

deduce that EKS(K) = IE and K ⊂ JA.
Let T ∈ JA. Then we have

(21) ‖EK(T ∗T +K)‖ = ‖EKS(T ∗T ) + IE‖ = 0

since EKS(T ∗T ) ∈ IE . Consider now Q ∈ C∗r,KS(A). Then, by using the

Cauchy–Schwarz inequality (cf. [15]) and equation (21), we get

‖EKS

(
(QT )∗(QT )

)
+ IE‖2 = ‖EK

(
(QT )∗(QT ) +K

)
‖2

= ‖EK
(
(T +K)∗(Q∗QT +K)

)
‖2

≤ ‖EK(T ∗T +K)‖‖EK((Q∗QT )∗(Q∗QT ) +K)‖
= 0.

So EKS((QT )∗(QT )) ∈ IE , hence QT ∈ JA.
Next, consider R = λs(b) for s ∈ S and b ∈ As. Lemma 6.8 gives that

EKS(R∗T ∗TR) = R∗EKS(T ∗T )R.

So EKS(R∗T ∗TR) ∈ IA since EKS(T ∗T ) ∈ IE ⊂ IA and IA is an ideal. As
the range of EKS is C∗r,KS(E) we also get that EKS(R∗T ∗TR) ∈ C∗r,KS(E),

so EKS(R∗T ∗TR) ∈ IE . By the Schwarz inequality (sometimes called the
Kadison inequality), see for instance [1, Proposition II.6.9.14], we have

EKS(TR)∗EKS(TR) ≤ EKS((TR)∗TR) = EKS(R∗T ∗TR) ∈ IE .
Hence EKS(TR)∗EKS(TR) ∈ IE since IE (being an ideal) is a hereditary
subalgebra of C∗r,KS(E), and it therefore follows that EKS(TR) ∈ IE (cf. [1,

Proposition II.5.1.1]). By linearity and continuity of EKS and density of
ΦAΛ (Cc(A)) in C∗r,KS(A), we get that EKS(TR) ∈ IE for all R ∈ C∗r,KS(A).

If now T ∈ JA and Q,R ∈ C∗r,KS(A), then we get that T ′ := QT ∈ JA,

and this implies that EKS(QTR) = EKS(T ′R) ∈ IE . This shows that JA ⊂
K, hence that JA = K.

Since we have shown that JA is an ideal of C∗r,KS(A) satisfying

EKS(JA) = IE ,
the canonical conditional expectation EJA from C∗r,KS(A)/JA onto C∗r,alt(E)
is well defined. Showing that EJA is faithful amounts to verifying that
T ∗T ∈ JA whenever EKS(T ∗T ) ∈ IE . This readily follows from the definition
of JA and the fact that JA is an ideal of C∗r,KS(A). �
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Proposition 7.2. Let qJA denote the quotient map from C∗r,KS(A) onto

C∗r,KS(A)/JA. Then there exists a canonical isomorphism

Ψ : C∗r,KS(A)/JA → C∗r (A)

satisfying Ψ ◦ qJA ◦ ΦAΛ = ιred
A .

Proof. The strategy for proving the proposition is to show that there ex-
ists a ∗-homomorphism Ψ : C∗r,KS(A)/JA → C∗r (A) and a linear map

Er : C∗r (A)→ C∗(E) making the following diagram commute:

C∗r (A) C∗r,KS(A)/JA

C∗(E) C∗r,alt(E)

Cc(A) C∗r,KS(A)

Cc(E) C∗r,KS(E)

ΦAΛ

ΦEΛ

qJ
A

E EKS EJA

=

ι E

ι redA

Er

Ψ

It will then follow that Ψ is an isomorphism by considering the outer square
in this diagram and using that EJA is faithful, as shown in the previous
proposition.

Let ϕ be a pure state on C∗(E). It is easy to deduce from equation (4)
that the functional ϕ̃ on Cc(A) defined in section 3.4 is given by

ϕ̃ = ϕ ◦ ιE ◦ E

where ιE denotes the canonical map from Cc(E) to C∗(E). Moreover, it is
straightforward to see that we have ιE ◦ E = EJA ◦ qJA ◦ ΦAΛ , so we get

ϕ̃ = ϕ ◦ EJA ◦ qJA ◦ ΦAΛ .

Let ϕ′ = ϕ ◦ EJA ◦ qJA . Then ϕ′ is a state on C∗r,KS(A). As before, let

(Υϕ̃, Hϕ̃) be the GNS representation associated to ϕ̃, with x 7→ x̂ denot-
ing the canonical map Cc(A) → Hϕ̃. Form also the GNS-representation

(πϕ′ , Hϕ′) associated to ϕ′, with T 7→ T̂ denoting the canonical map from
C∗r,KS(A) into Hϕ′ . For any x ∈ Cc(A), we obtain

‖x̂‖2 = ϕ̃(x∗x) = ϕ′
(
ΦAΛ (x∗x)

)
= ‖Φ̂AΛ (x)‖2.
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Since {x̂ : x ∈ Cc(A)} is dense in Hϕ̃, the assignment x̂ 7→ Φ̂AΛ (x) extends to
an isometry V : Hϕ̃ → Hϕ′ .

Consider now g ∈ Cc(A). For any x, y ∈ Cc(A) we get〈
V ∗πϕ′

(
ΦAΛ (g)

)
V x̂, ŷ

〉
=
〈
πϕ′
(
ΦAΛ (g)

)
Φ̂AΛ (x), Φ̂AΛ (y)

〉
= ϕ′

(
ΦAΛ (y∗gx)

)
= ϕ̃(y∗gx)

=
〈

Υϕ̃(g)x̂, ŷ
〉
.

So Υϕ̃(g) = V ∗πϕ′
(
ΦAΛ (g)

)
V , and it follows that ‖Υϕ̃(g)‖ ≤ ‖πϕ′

(
ΦAΛ (g)

)
‖

since V is an isometry. Moreover, as ϕ′ annihilates JA, the kernel of πϕ′

contains JA, so we get ‖πϕ′
(
ΦAΛ (g)

)
‖ ≤ ‖qJA(ΦAΛ (g))‖. Hence we conclude

that

‖Υϕ̃(g)‖ ≤ ‖qJA(ΦAΛ (g))‖.
Since this holds for all ϕ ∈ P(C∗(E)) we get ‖ιred

A (g)‖ ≤ ‖qJA(ΦAΛ (g))‖.
It follows that there exists a ∗-homomorphism Ψ : C∗r,KS(A)/JA → C∗r (A)

satisfying Ψ
(
qJA(ΦAΛ (g))

)
= ιred
A (g) for all g ∈ Cc(A), as desired.

Next, we will show that the map E′r : ιred
A (Cc(A)) → C∗(E) given by

E′r(ι
red
A (g)) = ιE(E(g)) is well defined, linear and contractive. By density,

it will then extend to a (contractive) linear map Er : C∗r (A) → C∗(E), as
desired.

To see that E′r is well defined, note that if g ∈ Cc(A) and ιred
A (g) = 0, then

0 = ϕ̃(x∗gy) = ϕ(ιE(E(x∗gy))) for all x, y ∈ Cc(A) and all ϕ ∈ P(C∗(E)).
Letting x and y range over Cc(E) so that E(x∗gy) = x∗E(g)y (which follows
from Proposition 6.6 since EKS is a conditional expectation), and using the
density of ιE(Cc(E)) in C∗(E) we get ιE(E(g)) = 0. It readily follows that E′r
is well defined, and its linearity is then obvious.

Further, consider g ∈ Cc(A). For x, y ∈ Cc(E) with ‖ιE(x)‖, ‖ιE(y)‖ ≤ 1,
we have

‖ιE(x∗E(g)y)‖ = ‖ιE(E(x∗gy))‖ = sup
ϕ∈P(C∗(E))

ϕ(ιE(E(x∗gy)))

≤ sup
ϕ∈P(C∗(E))

‖Υϕ̃(g)‖ = ‖ιred
A (g)‖.

For every ε > 0 it is not difficult to see that we can find x and y as above
such that

‖ιE(E(g))‖ ≤ ‖ιE(x∗E(g)y)‖+ ε,

so we get

‖E′r(ιred
A (g))‖ = ‖ιE(E(g))‖ ≤ ‖ιE(x∗E(g)y)‖+ ε ≤ ‖ιred

A (g)‖+ ε.

Thus we conclude that E′r is contractive.
The reader will have no problem to check that the maps Ψ and Er we

have constructed make the above diagram commutative, thus finishing the
proof. �
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From Proposition 7.2 and its proof we get the following result which may
be worthy of being stated separately. It is proved for saturated Fell bundles
over unital inverse semigroups in [7] using a different approach.

Proposition 7.3. There exists a faithful conditional expectation

Er : C∗r (A)→ C∗(E)

satisfying Er ◦ ιred
A = ιA ◦ E.

Since IA ⊂ JA, there is a natural surjective ∗-homomorphism pA from
C∗r,alt(A) = C∗r,KS(A)/IA onto C∗r,KS(A)/JA. Using Propositions 7.2 and

7.3, the relationship between the reduced C∗-algebra C∗r,alt(A) introduced

in the present article and Exel’s C∗r (A) can be described as follows:

Theorem 7.4. There exists a surjective canonical ∗-homomorphism

Ψ′ : C∗r,alt(A)→ C∗r (A)

satisfying Ψ′ ◦ΨΛalt = ΨΠred.
Moreover, the conditional expectation Ealt

r : C∗r,alt(A)→ C∗r,alt(E) = C∗(E)

given by Ealt
r = Er ◦Ψ′ is canonical in the sense that

Ealt
r

(
ΦAΛalt(g)

)
= ΦEΛalt(E(g))

for all g ∈ Cc(A), and the following conditions are equivalent:

• Ψ′ is an isomorphism.
• IA = JA.
• Ealt

r is faithful.

Proof. It suffices to set Ψ′ = Ψ ◦ pA and observe that Ealt
r = EJA ◦ pA. �

We don’t know whether C∗r,alt(A) is isomorphic to C∗r (A) in general. When
S is strongly E∗-unitary this happens quite often.

Corollary 7.5. Assume S is strongly E∗-unitary and let σ : S× → G be
an idempotent pure grading into a group G. Let B be the associated Fell
bundle over G defined in Remark 6.7. If G is exact [2], or if B satisfies
Exel’s approximation property [9], then C∗r,alt(A) is canonically isomorphic

to C∗r (A).

Proof. By using [10, Theorem 5.1] if G is exact, or [9, Proposition 4.10] if
B satisfies Exel’s approximation property, one deduces easily that IA = JA
after making appropriate identifications of these ideals in C∗r (B). Hence, the
result follows from Theorem 7.4. �
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