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The liftable mapping class group of
balanced superelliptic covers
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ABSTRACT. The hyperelliptic mapping class group has been studied in
various contexts within topology and algebraic geometry. What makes
this study tractable is that there is a surjective map from the hyper-
elliptic mapping class group to a mapping class group of a punctured
sphere. A general superelliptic cover does not, in general, surject on to
a mapping class group of a punctured sphere, but on to a finite index
subgroup. We call this finite index subgroup the liftable mapping class
group. In order to initiate the generalization of results on the hyperellip-
tic mapping class group to the broader family of superelliptic mapping
class groups, we study an intermediate family called the balanced su-
perelliptic mapping class group. We compute the index of the liftable
mapping class group in the full mapping class group of the sphere and
show that the liftable mapping class group is independent of the de-
gree of the cover. We also build a presentation for the liftable mapping
class group, compute its abelianization, and show that the balanced
superelliptic mapping class group has finite abelianization. Although
our calculations focus on the subfamily of balanced superelliptic map-
ping class groups, our techniques can be extended to any superelliptic
mapping class group, even those not within the balanced family.
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1. Introduction

Let ¥4 be a surface of genus g, and let ¢ be a finite order homeomorphism
of 34 such that ¥,/(¢) is homeomorphic to the sphere ¥y. The quotient map
is a branched covering map p : ¥, — Yo with the deck group D generated
by ¢. The points on X, which are fixed by a nontrivial power of ¢ map to
the branch points B < Y.

The mapping class group of ¥ relative to B, denoted Mod (X, BB), consists
of homotopy classes of orientation preserving homeomorphisms of ¥ where
both homotopies and homeomorphisms preserve . On the other hand,
homeomorphisms of ¥, need not preserve the points fixed by (.

Let D be the image of the deck group D in Mod(%,). Let SMod,(%,)
be the subgroup of Mod(3,) consisting of isotopy classes of fiber preserv-
ing homeomorphisms. Then SMod,(X,) is equal to the normalizer of D in
Mod(3,) [BH73, Theorem 4].

Due to work of Birman and Hilden [BH72, BH73], it is known that
SMod(%,)/D is isomorphic to a finite index subgroup of Mod(Xg, B) pro-
vided g > 1. We will call the finite index subgroup of Mod(3, B) the
liftable mapping class group, denoted LMod, (X0, B). The liftable mapping
class group is exactly comprised of isotopy classes of homeomorphisms of ¥
that lift to homeomorphisms of ¥,.

The hyperelliptic involution. The isomorphism
SMod(%,)/D = LMod,(%o, B)

has been successfully expoited, most notably in the case where ( is a hyperel-
liptic involution e.g., A’Campo [A’C79], Arnol’d [Arn68], Brendle-Margalit—
Putman [BrMP15|, Gries [Gri04], Hain [Hai06], Magnus—Peluso [MP69],
Morifuji [Mor03], Stukow [Stu04a]. Here SMod,(X,) is called the hyper-
elliptic mapping class group. When g = 2, the hyperelliptic mapping class
group is equal to Mod(Xs). Birman and Hilden used this fact to find the first
presentation for Mod(Xs). Bigelow and Budney proved that SMod,(%,) is
linear [BiB01] when ( is a hyperelliptic involution.

One of the reasons the covering space induced by a hyperelliptic involution
has been fertile ground for research is that in this case the liftable mapping
class group LMod, (2o, B) equals Mod (X, B). In general LMod,(Xo, B) is
only finite index in Mod (X, B). Although the finite index implies that
LMod, (3o, B) enjoys many properties of Mod(Xy,8) such as finite pre-
sentability and linearity, it must be better understood in order to use the
relationship LMod,, (2o, B) = SMod(Eg)/ﬁ for explicit calculations.

Cyclic branched covers of a sphere. Every finite cyclic branched cover-
ing space of a sphere can be modeled by a superelliptic curve, a plane curve
with equation of the form y* = f(x) for some f(x) € C[z], k € N. Indeed,
choose distinct points ai,...,a; € C. Then a cyclic branched cover of the
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sphere can be modeled by an irreducible plane curve C defined by

k di | dt

y'= (@ —a)™ (2 — )

where 1 < d; < k—1 for all i. Let C be the normalization of the plane curve
C. Projection onto the z-axis gives a k-sheeted cyclic branched covering
C' — P! branched at the roots of f(x) and possibly at infinity.

Removing the branch points B < P! and their preimages in 5’, we obtain
a cyclic (unbranched) covering space of P'\B. By the Galois correspondence
for covering spaces, this covering is determined by the kernel of a surjective
homomorphism ¢ : w1 (P\B,z) — Z/kZ for some point x € P'\B. Let v;
be a loop based at x that runs counterclockwise around the branch point
a;. Then ¢(v;) = d; mod k. Note that the irreducibility of C implies the
surjectivity of ¢.

The family of balanced superelliptic covers. In this paper we study a
specific family of superelliptic curves, where
(1) y" = (z—a)(@—a2)" " (2 = agng1) (@ — azng)" T
There is no branching at infinity. As k and n vary, we call the family of
normalized curves balanced superelliptic curves.

Topologically, the balanced superelliptic curves describe a covering space
as follows. Fix integers g,k > 2 such that k£ — 1 divides g. Let

Dgk g — 20

be a cyclic branched covering map of degree k branched at 2n + 2 points,
where n = g/(k — 1). In this case, we will denote LMod, (X, B) by

LMOdg’k(Zo, B)

We will refer to the surface ¥, and the covering map pg together as a
balanced superelliptic cover. When k = 2 we recover the case where the deck
group is generated by a hyperelliptic involution. The example where g = 4
and k = 3 is shown in Figure 1.

Goals. The goals of this paper are to intiate the study of LMod, (3, B)
and SMod,(3,) in general, and to remove the restriction that LMod, (%, B)
is equal to Mod(X, B) in programs such as Brendle-Margalit—Putman’s
[BrMP15] and McMullen’s [McM13]. In the case where ¥, — X is a degree
k balanced superelliptic cover, we call SMod,(2,) the balanced superelliptic
mapping class group and denote it SModg 1 (3g).

We focus on the family of balanced superelliptic covers for a number of
reasons. First, when k& > 2 it is no longer the case that LMod, (2o, B) is
equal to Mod(Xy, B). Therefore the balanced superelliptic covers provide a
family of counterexamples to Lemma 5.1 of [BH73|, which is in error (see
[BHar| and [GhW17] for a correction). Second, the covers can be embedded
in R3 so that the deck group is generated by a rotation about the z-axis. This
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F1GURE 1. The 3-fold cyclic branched covering space of 34
and 24 - 20.

picture should provide insight into the study of the balanced superelliptic
mapping class group.

McMullen [McM13], Venkataramana [Venl4], Chen [Chel5], and others
have studied a family of cyclic branched covering spaces of the sphere

DXy — Yo
that also generalize the cover induced by a hyperelliptic involution. Their

family arises from curves of the form

yF = (r—a1)(z —ag) - (x—ap).

Note that there may be branching at infinity. In their family, every homeo-

morphism of ¥ that fixes the point at infinity lifts to a homeomorphism of
Yg. When k = 2 we recover the cover induced by a hyperelliptic involution.

General cyclic covers. Although our focus is on the balanced superelliptic
covers, the results in this paper could be generalized to any cyclic branched
cover over the sphere. Indeed, let p : ¥, — ¥ be a cyclic branched cover
with branch points B < So. Let ¥ : LMod, (S0, B) — GLjz_1(Z) be the
homomorphism given by the action of LMod, (X, B) on H1(3¢\B;Z). Then
\TI(LModP(Eo, B)) is isomorphic to a subgroup of the symmetric group S
While calculating this subgroup of S|z is feasible in practice for a single cover
or family of covers, we do not see a way to state an explicit general form. If
one were able to find a presentation for W(LMod, (3o, B)) in general, then
the results of this paper could be generalized to all cyclic branched covers
using the techniques developed within.

1.1. Results. Let p : ¥, — ¥ be the k-fold superelliptic covering space
branched at 2n + 2 points. For k > 2 we compute the index

(2n + 2)!
2((n+1)1)?
in Scholium 3.7. In fact, for a fixed number of branch points, the liftable

mapping class group is independent of the degree of the cover. That is, for
any integers g1, g2 and ki, ko > 2 such that k; — 1 divides g; and

g91/(k1 — 1) = ga/(k2 — 1)
for i = 1, 2, Ll\/IOC]_gl’k1 (Eo,B) = Ll\/IOdg%k2 (Eo, B)

[Mod (%o, B) : LMod, x(20, B)] =
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The main technical result in the paper is an explicit presentation for
LMod, 1 (X0, B) in Theorem 5.7. This allows us to prove our main theorems.

Theorem 1.1. Let k > 3. Then

{Z/2Z x Z)2Z x Z)(n(n — 1)2)Z if n is odd

Hy(LMod 1 (X0, B); Z
1(LMody (X0, B); Z) 7,/27 x 7./(2n(n — 1)>)Z if n is even.

12

Theorem 1.2. The abelianization of the balanced superelliptic mapping
class group Hi(SMody 1(X4);Z) is a finite noncyclic abelian group. In par-
ticular, the first Betti number of SModyg 1,(34) is 0.

Kevin Kordek pointed out that since the first Betti number of SMod, 1 (24)
is 0, there is an isomorphism between Hi(SMod, x(Xy);Z) and the torsion

subgroup of the orbifold Picard group of the orbifold Ty(D)/ SMod, x(2g)

N

[Kor16]. Here T,(D) is the sublocus of Teichmiiller space consisting of the
points fixed by the deck group D.

1.2. Applications and future work. In the family of covers where
p: Dy

is a 3-fold, simple branched cover of the disk, Birman and Wajnryb found a
presentation for LMod, (X, B) [BW85]. However, a 3-fold simple cover does
not induce an isomorphism between LMod, (3, B) and SModp(i) [BET9,
Winl5]. In contrast, the balanced superelliptic covers we study do induce the
Birman-Hilden isomorphism. Therefore the presentation of LMod, (2o, B)
can be used to find a presentation for SMod, ,(%g).

In particular, the generators of LMod, (X0, B) give us the generators of
SMod, x(X4), which is an infinite index subgroup of Mod(3,).

Corollary 1.3. Let ¥, be a surface of genus g = 2. Let pyp : Xy — Yo
be a balanced superelliptic cover of degree k = 3 with set of branch points
B. Choose lifts of each of the generators of LMod, (30, B). The subgroup
SMod, x(2g4, B) is generated by these lifts and a generator of the deck group

Ofngc-

Generation by torsion elements. Stukow proved that the hyperellip-
tic mapping class group SMod, 2(X,) is generated by two torsion elements
[Stu04b]. We ask if there is an analogue for general SMod, (%,).

Question. Can SMod, ;(X,) be generated by a small number of torsion
elements?

Monodromy representation. Let ¥, be a genus g surface and the map
¥, — Yo be a cyclic branched cover. Let D be the deck group of the
covering space and D the image of D in Mod(¥4). The mapping class
group Mod(3,) acts on Hi(X,,Z) and the action preserves the interesection
form on H;(¥X4,Z). Thus the action induces a surjective representation
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p : Mod(X,;) — Sp(2¢,Z). Let G be a group. Let Cg(H) denote the
centralizer of a subgroup H in G. McMullen asks when p(Choq(s,) (D)) is
finite index in Cgp,(247) (p(D)) [McM13]. While McMullen looks at a different
family of covering spaces than we do, our work could be used to extend his
program to the family of balanced superelliptic curves.

Question. What is the image p(SModg (24, B)) in Sp(2g,Z)?

Since SMod, 1(Xg) is the normalizer of D in Mod(%,), we have an ana-
logue of McMullen’s question [McM13]:

Question. Let p : ¥, — Yo be any cyclic branched cover of the sphere.
When is p(SMod,(%,)) finite index in the normalizer of p(D)?

The generators for SMod, 1,(24) in Corollary 1.3 may be useful in answer-
ing this question for balanced superelliptic covers, and as noted above, it is
possible to extend our techniques to other superelliptic covers.

Outline of paper. In Section 2, we review the necessary combinatorial
group theory and lifting properties for constructing our presentation. In
Section 3, we explicitly construct the family of balanced superelliptic covers,
and we prove that LModg 1 (3o, B) is an extension of a subgroup Wa,12 of
the symmetric group Sa,12 by the pure mapping class group PMod (X, B).
In Section 4 we find presentations for PMod (3, B) and Wa, 12 in the group
extension. We build the presentation for LMod, x (X0, B) in Section 5. Fi-
nally, we prove Theorems 1.1 and 1.2 in Section 6.

Acknowlegements. The authors would like to thank Joan Birman, Tara
Brendle, Neil Fullarton, Mike Hilden, Lalit Jain, Dan Margalit, David McK-
innon, Kevin Kordek and Doug Park for their comments and suggestions.
The authors would also like to thank the referee for suggestions for clarifi-
cation.

2. Preliminary definitions and lemmas

In this section, we survey the combinatorial group theory and algebraic
topology results used later in the paper. We first find a presentation of a
group when given a short exact sequence of groups in Section 2.1. We then
use homological arguments to characterize the mapping classes that lift.

2.1. Group Presentations and Short Exact Sequences. To obtain the
presentation in Section 5, we use two well-known results concerning short
exact sequences and group presentations.

Lemma 2.1. Let

1 - K565 H—1
be a short exact sequence of groups. Let (S | R) be a presentation for G
where each symbol s € S denotes a generator gs € G. Let K be normally
generated by {kg} < K and for each B, let wg be a word in the symbols S
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denoting a(kg). Then H admits the presentation (S | Ru{wg}) where s € S
denotes (gs).

A proof of Lemma 2.1 can be found in [MKS04, Section 2.1].
For Lemma 2.2, let

1—-K-%5%5G-5S H—1

be a short exact sequence of groups. Let K =~ (Sk | Rx). Let t € Sk.
Assign the generator k; € K to t. Similarly, let H =~ (Sy | Rg). Let s € Sg.
Assign the generator hs € H to s.

For each generator hs of H, choose an element g; € G such that w(gs) = hs.
Then let s € Sy, and let § denote gs. Let Sy = {5 : s € Sy}. For each
ki € K, let { € S denote a(k;) € G. Let Si = {f:t € Sk}.

Each word in Ry can be written in the form s7' - -- s with s; € Sy and
i € {£1}. Let r € Ry be s{* - - - s&». Denote the word §1 - - - 5, in Sy by
7. Then 7 is a word in Sp denoting some g € G. The element g is such that
m(g) = idy. Since the sequence is exact, this means that g € a(K). Let w,

be a word in Sk denoting g and define the set of words
Ry := {fw; ' :re Ry}.

Since «a(K) is normal in G, for every k; € K and g5 € G, the element
gsa(ky)gs! € a(K). Let vsy be a word in Sk that denotes gsa(k:)g;!.
Define the set of words

R2 = {§£§_1’U_tl : EE §K,§ € §H}

S

Finally, let EK := {7 : r € Ri} where 7 is the word in §K obtained by
replacing every symbol ¢ by ¢ in the same way as in the definition of R;.

Lemma 2.2. Let

1—K-*%G-5H-—1
be a short exact sequence of groups. Then G admits the presentation
GE<§KU§H‘R1UR2UEK>.
where §K, §H,R1,R2, and }NRK are defined as above.

A proof is left to the reader.

2.2. Lifting mapping classes. Our goal is to characterize which mapping
classes in Mod(Xo, B) belong to LMody 1(X0, B). Because all homotopies of
Yo lift to homotopies of 3, it is sufficient to determine which homeomor-
phisms of Yy lift to homeomorphisms of ¥,. In 2.2.1 we characterize curves
in g that lift to closed curves in ;. In 2.2.2 we characterize homeomor-
phisms of 3¢ that lift to homeomorphisms of ¥,.



140 TYRONE GHASWALA AND REBECCA R. WINARSKI

2.2.1. Lifting Curves. Throughout this section we will work in generality.
Let X be a path connected topological space.

Let p : X — X be an unbranched covering space. Let ¢ : S! — X be a
curve in X. Recall that ¢ lifts if there exists &: S' — X such that pe = c.

Let p: X — X be an abelian covering space with deck group D. Fix xg €
X. There is a one-to-one correspondence between regular covering spaces
of X and normal subgroups of 71 (X, zg). The covering space p : X > X
corresponds to the kernel of a surjective homomorphism ¢ : 71 (X, z9) — D.
Let @ : m1(X,x0) — Hi(X;Z) be the Hurewicz homomorphism. Since D is
abelian, there exists a homomorphism @ : H1(X;Z) — D such that ¢ = p®.

Conversely, given a homomorphism @ : Hi(X;Z) — D, we can define
a homomorphism ¢ : m (X, z9) — D by setting ¢ = p®. Since ker(yp) is
a normal subgroup of 71 (X, zg), it determines a regular cover. So, for a
regular abelian cover we will call the homomorphism @ : H1(X;Z) — D the
defining homomorphism of the cover. Note that this homomorphism is well
defined up to an automorphism of D.

Unwrapping these definitions we get the following lemma.

Lemma 2.3. Let p : X - X bea regular abelian cover with deck group
D, and let p : Hi(X;Z) — D be the defining homomorphism. A curve
c: S' — X lifts if and only if [c] € ker p < Hy(X;7Z).

2.2.2. Lifting homeomorphisms. Let X bea path connected topological
space. Let p: X — X be a finite-sheeted covering map.

A homeomorphism f : X — X lifts if there exists a homeomorphism
f:)?—»)z'suchthatpfzfp

Let f be a homeomorphism of X and let f, be the induced map on
H\(X,Z).

Lemma 2.4. Let p : X > Xbea regular abelian cover, with X,)N( path
connected. Let D be the deck group and let @ : Hi(X) — D be the defining
homomorphism. Then a homeomorphism f : X — X lifts if and only if the
induced map on homology f« satisfies f«(kerp) = ker .

A well-known corollary follows immediately:

Corollary 2.5. Let X bea path connected topological space. Let p : X->X
be an abelian cover. A homeomorphism f : X — X lifts if and only if for
all curves c that lift, f(c) also lifts.

Surfaces. Let ¥, be a closed surface and let B(m) < X, be a set of m
marked points in ¥y. Let 3¢ . = %,\B(m). If the number of punctures m is
either clear from context or irrelevent, we will write 2, to denote a surface
with punctures.

2.3. The group extension. Let PMod(Xg ,,) denote the pure mapping
class group of X7, . The pure mapping class group is the subgroup of
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Mod(%g,,,) that fixes each of the punctures. Let Sy be the symmetric
group on m elements. There is an exact sequence:

(2) 1 — PMod(%5,,) — Mod(5§,,) — Sm — 1.

Let p : ¥y — Yo be a finite branched covering space with set of m
branch points B(m). Our goal is to find a sequence analogous to (2) for
LMod, (2o, B(m)).

Action on homology. The first homology group Hi(Xg,,;Z) is isomorphic
to Z®"~1 and a basis can be chosen as follows. Number the punctures

1,...,m, and let z; be the homology class of curve on ¥, surrounding
the 7th puncture, oriented counterclockwise around the puncture. Then
{z1,...,2m-1} © H1(Xg,,) forms a basis.

Let Wy, : Mod(Xg ,,,) — GLp-1(Z) be the homomorphism given by the
action of Mod (g ,,,) on Hi(Xg ,,,;Z). Since each basis element is supported
on a neighborhood of a puncture, any element of the pure mapping class
group will act trivially on homology. Conversely, any homeomorphism which
induces a nontrivial permutation on the punctures will permute homology
classes of loops surrounding the punctures.

From this discussion we see that the kernel of V¥, is equal to the pure
mapping class group PMod (X ,,,), and the image of ¥y, is isomorphic to the
symmetric group Sy,. Indeed, if f is a homeomorphism of 7., W, ([f]) is
the permutation induced on the m punctures. We can now conclude that
the short exact sequence (2) above is obtained from the action of Mod (X , )

0,m
on Hl(E&m;Z).

Punctures and marked points. Our lifting criteria above can only be
applied to unbranched covering spaces. However we ultimately want a pre-
sentation for LMod, (3, B), where ¥ is a surface with branch points 5.

To resolve the distinction between punctures and branch points, let p :
¥ — ¥ be a branched covering space of surfaces with set of branch points
B < X. As above, it may be necessary to remove the branch points in
¥ to obtain the punctured surface ¥° = ¥\B. We then must also remove
the preimages of the branch points in ¥ to obtain the punctured surface
50 = S\p~1(B). Let p So 5° — ¥° be an unbranched covering map. We
use the 3° notation specifically when we work with a surface with branch
points removed (or 20.m when we need to specify the number of punctures).
There is an inclusion map ¢ : X° — ¥ where the punctures of X° are filled in
with marked points. These marked points exactly comprise the set of branch
points B of the cover. Then Mod(X°) is isomorphic to Mod (X, B) because
homeomorphisms and homotopies of ¥§ must fix the set of punctures and
Mod (3, B) must fix the set of branch points. On the other hand, in the
inclusion map 7': 3° — 3 the punctures are filled in with nonmarked points.
Then Mod(2) and Mod(E°) are not isomorphic because the set of points
p~1(B) are not treated as marked points in Mod(3).
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Work of Birman and Hilden [BH72, BH73] gives an isomorphism between
LMod, (%, B) and a subgroup of Mod(X) modulo the homotopy classes of the

deck transformations. The group Mod () need not stabilize the set p~!(B)
in their work.

3. The balanced superelliptic covers

3.1. The construction. Choose a pair of integers g, k = 2 such that £ —1

divides g, and let n = g/(k —1). Embed %, a surface of genus g, in R so it

is invariant under a rotation by 27 /k about the z-axis as we describe below.
The intersection of ¥, with the plane z = a is:

Empty for a < 0 and a > 2n + 1.

A point at the origin for a = 0 and a = 2n + 1.

Homeomorphic to a circle for 2m < a < 2m + 1 with m € {0,...,n}.
A rose with k petals for a € {1,...,2n}.

k disjoint simple closed curves invariant under a rotation of 2m/k
about the z-axis for 2m — 1 < a < 2m with m € {1,...,n}. In the
special case a = 2m — 1/2, put polar coordinates (r,#) on the plane
z = 2m — 1/2. Then we have k disjoint circles with centers on the
rays 0 = 2nd/k, d € {0,..., k — 1}.

See Figure 1 for the embedding when ¢ = 4 and k = 3.

Consider a homeomorphism ¢ : ¥, — X, of order k given by rotation
about the z-axis by 27/k. The homeomorphism ( fixes 2n + 2 points, which
are the points of intersection of ¥, with the z-axis. Define an equivalence
relation on X, given by « ~ y if and only if (?(x) = y for some q. The
resulting surface ¥,/ ~ is homeomorphic to a closed sphere ¥3. The quotient
map pgk : 2g — 2o is a k-fold cyclic branched covering map with 2n + 2
branch points, which are the images of the points fixed by (. The deck
group of p, 1 is a cyclic group of order k generated by (. When k = 2, ( is
a hyperelliptic involution.

An important collection of arcs. Fix a pair of integers g,k > 2 such
that £ — 1 | g, and consider the surface ¥, embedded in R? as described
above. Using cylindrical coordinates in R3, let Py, = {(r,6p,2) € R? : r > 0}
be a closed half plane. The intersection of ¥, and Py is a collection of
n + 1 arcs where n = g/(k — 1). Call these arcs 1, ..., Bn+1. For each arc
Bi : [0,1] — ¥4, orient it so that 3;(0) = (0,0, 2i—2) and j3;(1) = (0,0,2i—1)
in R3. Number the endpoints 1,---,2n + 2 in order of increasing z value
and fix the numbering for the remainder of the paper.

Consider the balanced superelliptic covering map pg ;. as defined above.
For each ¢ with 1 <4 <n + 1, let a; = py1B;. Each o; is an arc

(673N [O, 1] i 20.

The endpoints of a; are in the set of branch points B(2n + 2) < Xy. Let
« be the union of the arcs «; in Xy. Let [a] denote the relative homology



LIFTABLE MAPPING CLASS GROUP 143

ﬁl/Q\ ﬁZ /Q\ﬁg
\O./\_/.\O/

FIGURE 2. The arcs (51, (2, 83 € X4 and the arcs aq, as, ag € Y.

class of a in Hy (X, B;Z). The class [o] is calculated Y [a;]. Figure 2
shows the embeddings of the arcs £1, 82, 83 € ¥4 and a1, as, ag € Xy for the

3-fold balanced superelliptic cover of ¥4 over X.

3.2. A lifting criterion for superelliptic covers. The goal of this sec-
tion is to prove Lemma 3.4.

An intersection form for punctured surfaces. In Lemma 3.1, we abuse
notation and identify curves in ¥, with their image in ¥ under the in-
clusion E&m — Y.

Lemma 3.1. Let ¥, be a closed surface and B(m) a set of m points in ¥.
There exists a homomorphism

o Hi(55,,:Z) x Hy(Sg, B(m); Z) — Z

giwen by c e a = i(c,a) where ¢ is a homotopy class of curves in g, a is

a homotopy class of curves or arcs in (X4,B), and i(c,a) is the algebraic
intersection of ¢ and a.

This is a well-known result and a proof can be found in the appendix of
[GoM80], for example.
We need the following combinatorial lemma.

Lemma 3.2. Let G be the weighted digraph

N Iy
N v

and let T' be a finite walk on G beginning at Sy. Define the weight of T,
which we denote w(I'), as the sum of the weights of the edges traversed in
the walk. Then I' terminates at S;, if and only if w(I') =4 mod k.

Proof. Induct on the length of the walk. O
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In order to apply this lemma, we use the union of arcs « in ¥ defined in
Section 3.1 and their preimages in 3.

The full preimage pgj,lg(oz) is a collection of k(n + 1) oriented arcs in ¥,
and we will denote the union by &. The union of arcs & consists of the orbits
B; under the action of the deck group of pg .

The surface ¥,\{a} is a union of k subsurfaces of 3,. The subsurfaces
are cyclically permuted by the action of the deck group. Label one of these
connected subsurfaces Ry, and for each £ € {1,...,k—1} label ¢!(Ry) by Ry.
We will refer to the embedding of each R, in ¥, as a region in X,.

Consider a curve 7 in 3, that does not contain any of the 2n + 2 points
on the z-axes and that intersects & transversely. Choose an orientation for

q.

Denote the algebraic intersection of 5 and & by (¥, &). Homotopy pre-
serves algebraic intersection, so the algebraic intersection is well defined for
all representatives within the class. The orientation of & is consistent with
respect to the covering map py .

Consider a parameterization 5 : [0,1] — X, with 5(0) = 7(1). Let
to € [0, 1] be a value such that Y(tg) € ¥ n @. Fix € > 0 such that

’7(150—6,7504-6) N a = t.

Then either (o — €) € R(; mod k) and F(to + €) € R(i11 mod k) for some
0<i<k—T1or%(to—€) € R mod k) and Y(to +€) € R(;_1 mod k) for some
1 < i < k. All intersections of ¥ and & where the index of R; increases
modulo k& will have the same sign of intersection. All intersections of 4 and
& where the index of R; decreases modulo k will have sign of intersection
opposite to those where the index of R; increases.

Lemma 3.3. Let py ;. : X — X be an unbranched balanced superelliptic
covering map of degree k. If a curve vy in Xg lifts, then %(fy,a) =0 mod k.

Proof. Consider the regions Ry, -, Rp—1 < (34\&) as above. For each
R; € Xy, there is a corresponding embedding of Rj\p;}c(B) in ¥7. We will
also denote the embeddings of Rj\p;,lg(B) in X7 by R; as it will be clear
from context when we are referring to punctured regions.

Let v be a curve in 3 that lifts to a multicurve ¥ in 3. The multicurve ¥
has k components in 7. Each component of ¥ is a map [0, 1] /{0,1} — X.
Let 7; denote the component of 5 such that 7;(0) = 7;(1) € R;.

By compactness, |y n @] < c0. We may assume that 7 is transverse to a.
Let Z € ¥ n @. Since the action of the deck group is transitive, the orbit of
Z is of order k. Indeed, the orbit of ¥ is exactly ﬁ;,lg(ﬁg,k (Z)). The signs of
intersection of all points in the orbit of Z are equal. Thus all components
of 4 have the same algebraic and geometric intersections with &. Therefore
i(v, a) = i3, &) for any component 5; of 7.

Let G be the weighted digraph as in lemma 3.2. Let S; be the vertex in
G corresponding to the region R; in 3.
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We now construct a walk I'y, in G corresponding to each 7;. The walk
I'5, begins at the vertex S;. If %; n & is empty, the point S; is the entire path
G.

If 3, na # &, let {t;} < [0, 1] be the set of values such that ¥;(¢;) € ¥; N &
and t; < tj;1. Choose a value € > 0 so that 7;(t; —€,t; + €) n & = t; for
each t;. We construct the walk I'y, by adding an edge and a vertex for each
tj, in the order of increasing j. The vertices will be those corresponding
to the regions containing the elements 7;(t; + €) for each j. Add the edge
corresponding to ty, which connects the vertex corresponding to the region
containing 7;(t; — €) to the vertex corresponding to the region containing
Yilte + ).

For each component ¥;, the walk I'y, begins and terminates at S;. By
Lemma 3.2, ’z\(fNyz, &) =0 mod k. Then by the discussion above, ’7,'\(7, a)=0
mod k as well. O

We are now ready to prove Lemma 3.4, which is Lemma 3.3 and its
converse.

Lemma 3.4 (A lifting criterion for curves). Let py; = ¥g — Xg be the
unbranched balanced superelliptic covering space. Let v be a curve on Y.
Then [7] € ker(®) if and only if i(v,o) =0 mod k.

We note that an analogue of Lemma 3.4 is true for all cyclic branched
covers of the sphere, but the collection of arcs « is specific to the balanced
superelliptic covers.

Proof. Let i(—,a) : H{(X$;Z) — Z be the homomorphism from Lem-
ma 3.1, and let 7 : Z — Z/kZ be the natural projection map. Let
¢ =moi(—,a): H(X;Z) — L/kL.

The homomorphism ¢ is surjective since there is a curve v such that

%(/Ya Oé) =1L

Let @ : Hi(X§;Z) — Z/kZ be the defining homomorphism for the un-
branched balanced superelliptic cover. By Lemma 2.3,

ker(p) = {[7] € Hy(S5:2) : v lifts).

Lemma 3.3 shows that ker(¢) < ker(®). However, these are both index k
subgroups of H1(Xg;7Z), so ker(¢) = ker ().

By the definition of ¢, ker(¢) = {[7] € H1(X$;Z) : i(y,a) = 0 mod k}.
This completes the proof. ([l

Recall from Lemma 2.3 that a curve  lifts if and only if [y] € ker(). This
together with Lemma 3.4 allows us to decide whether or not a curve lifts
simply by computing its algebraic intersection number with the collection
of arcs a.
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Lemma 3.5. Let p,, be an unbranched balanced superelliptic covering map
of degree k. Number the punctures of 3 from 1 to 2n+ 2 as in Section 3.1.
Let z; be the homology class of curves surrounding the jth puncture of ¥
for 1 < j <2n+1 and oriented counterclockwise. The set {x1,...,Ton41}
forms a basis for H1(X§;Z). Let vy be a curve in 3§ with

V] = (71, -+ y2n41) € Hi(X0; Z)

with respect to this basis. Then ~ lifts if and only if

2n+1

Z (-=1)"y =0 mod k.

i=1

Note that Lemma 3.5 is the key lemma that distinguishes the balanced

superelliptic covers from other superelliptic covers. In order to use our
methods for other families of superelliptic covers, one must characterize the
curves that lift, as we do here for the balanced superelliptic covers.

Proof. Let « be the collection of arcs defined above and observe that

%(ma)— 1 if j is odd
P =1 if s even.

Then i(y, @) = 321 (~1)"*14;. Combining this with Lemma 3.4 completes

the proof. O

This lemma shows that the family of balanced superelliptic covers are
modeled by plane curves defined by Equation (1).

3.3. The exact sequence for LMod,(Xg, B). Let p : Y > % be a
finite cyclic branched cover of the sphere. Let B(m) be the set of m branch
points of the covering space. Recall that Mod (X, B(m)) and Mod(%g ,,) are
isomorphic. Recall that the action of Mod(%,,) on H1 (X ,,,Z) induces a
homomorphism W, : Mod(%g,,) — Sy on the short exact sequence (2).
We will also consider the map T, : Mod(Xg, B(m)) — Sy, by precomposing
VU, with the isomorphism Mod(2o, B(m)) =~ Mod(%g,,). By Lemma 2.4
and the short exact sequence (2), PMod(Xo, B(m)) = ker U, is contained
in LMod,, (X9, B(m)). This gives us the short exact sequence

1 — PMod(%g, B(m)) — LMod, (o, B(m)) — ¥,,(LMod, (39, B(m))) — 1.

Since U,,(Mod(Zg, B(m))) = Sy, the group \T/m(LModp(Eo,B(m))) is iso-
morphic to a subgroup of Sp,. Our next goal is to find the subgroup of Sy,
isomorphic to ¥,,(LMod, (X, B(m))) where p is a balanced superelliptic
covering map.

Let pgx : Xy — Yo be the balanced superelliptic cover. We will denote
LMod,, (X0, B) by LMody (X0, B). Recall that

B =B(2n +2)



LIFTABLE MAPPING CLASS GROUP 147

where n = g/(k —1). We will suppress the 2n + 2 in our notation, since the
number of branch points of the balanced superelliptic covers is determined
by ¢ and k.

Parity of a permutation. Fix an integer m > 2. Let 7 be a permutation in
Sm- We say that 7 preserves parity if 7(q¢) = ¢ mod 2 for all g € {1,--- ,m}.
We say that 7 reverses parity if 7(q) # ¢ mod 2 for all g€ {1,--- ,m}.

Let Sy be the symmetric group on the set {1,...,2l}. Let Wy < Sy
be the subgroup consisting of permutations that either preserve parity, or
reverse parity. Then

Wy = (Sl X Sl) X Z/2Z
where Z/27 acts on S; x S; by switching the coordinates.

Lemma 3.6. Let p, ) : Sqg — So be a balanced superelliptic covering map
of degree k. Let Wo,i2 : Mod(X5) — Soni2 be the homomorphism in-
duced from the action of Mod(X§) on H1(X5,Z). If k = 2, the image
\I’2n+2(LMOdg’2(Eo, B)) = Sgn+2. For k > 2,

U 12(LMody (S0, B)) = Wan 2.

Lemmas 3.4 and 3.5 characterize the curves in X that lift. Let v be a
curve in X5 and let T, be a Dehn twist about «. It is possible for 7', to lift
to a homeomorphism of 3, even if v does not lift.

Proof of Lemma 3.6. Let v be a curve in 3§ and let

2n+1

[v] = D) vimi € Hi(35;Z).
i=1

Let [f] € Mod(X§) and let o = U([f]) € San+2.
Let Yon+2 = 0. Then

2n+1

Lf()] = 2 (’Ya*l(i) — )T

i=1
in homology, where o(j) = 2n + 2. Indeed, if j = 2n + 2, then
2n+1 2n+1 2n+1

[FOD] = D) Vi = D) Yom1i = D, (Vom1(s) — V2n+2)i-
b o

i=1
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If j # 2n + 2, let § is a curve homotopic to the (2n + 2)nd puncture. Then

[5] = = 321" @i. Thevefore [f(z;)] = — X1 2; and
j—1 2n+1 2n+1
S = 20 ety + D) Yoty =i ( > x)

i=1 j+1 i=1

= D1 (o) = 1) | = Yito@are)

ie{1,...2n+1}
i#0(2n+2)

2n+1

= > (Yomri) — W)
i=1

The curve v lifts if and only if Y7"7?(~1)"*1y; = 0 mod k. Let f be a
homeomorphism of ¥§ and ¥([f]) = o with (j) = 2n + 2. The image f(7)
lifts if and only if Z?Z#(—l)i“(fyaq(i) —7;) =0 mod k by Lemma 3.5.

Case 1. k = 2. Let [f] € Mod(X§) with ¥([f]) = o such that o(j) = 2n+2.
Observe that in Z/27,

2n+2 2n+2

3 ) (e — ) = @n+ 25+ Y (<),
=1 i=1
2n+2 )
= > (=D
=1

so v lifts if and only if f(v) lifts. We can then conclude f lifts. There-
fore the image of [f] under the isomorphism Mod(X§) — Mod(Xo, B) is in
LMod (5, B).

Case 2. k > 3. Let [f] € Mod(X§) with U([f]) = o such that o(j) = 2n+2
and o € Wy, 9. If o is parity preserving then

2n+2 ) 2n+2 . 2n42 '
2 (_1)Z+1(’Ya*1(i) - ’Yj) = 2 (—1)H1’)/U—1(i) = Z (—1)Z+1%
=1 i=1 i=1

so v lifts if and only if f(v) lifts. If o is parity reversing,

Z (—1)14-1(70,1(1.) — ’Yj) = Z (_1)14—1,}/071(1.) _ Z (_1)z+1%
=1 i=1 izl

so « lifts if and only if f(v) lifts. If o is either parity reversing or parity
preserving, then f lifts. Therefore the image of [f] under the isomorphism
Mod(X§) — Mod(Xy, B) is in LMod(X2o, B).

Conversely, assume that o ¢ W, 2. Then there exist odd integers p and
g such that o(p) is odd and o(q) is even. Without loss of generality, we may
assume that o(p) = 1,0(q) = 2.
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Let f € Mod(X, B) such that \T/gn+2(f) = 0~ !. We need to show that
there exists some curve 7 that lifts such that f(n) does not lift. Indeed, let
n = x1 + T2, then i(n,a) = 0. The homology class of f(n) is x, + x4, but
since both p and ¢ are odd, i(f(n),a) = 2. Therefore f(n) does not lift and
the homeomorphism f does not lift by Lemma 2.4. U

Let py 1, : Sg — So be a balanced superelliptic covering map of degree k.
The short exact sequence (2) restricts to a short exact sequence:

(3) 1— PMOd(Eo,B) — LMOdg’k(Eo, B) — Waopio — 1 for k = 3.

Lemma 3.6 gives us the following result. The case k = 2 has already been
proven by Birman and Hilden [BH71] using different methods.

Scholium 3.7. For k = 2, LMod 1(Xo, B) = Mod(Xq, B). For k > 3, the

index [Mod(Xo, B) : LMod, (20, B)] is %

Proof. If k = 2, we are in case 1 in the proof of 3.6.
For k=3

[Mod(Zo, B) : LMod, (S0, B)]
= [Mod(%, B)/ PMod (X0, B) : LMod, (S0, B)/ PMod (S0, B)]
= [Son+2 1 Wany2].
Observing that |Wa, 12| = 2((n + 1)!)? completes the proof. O

4. Presentations of PMod(X, B(m)) and Wy,

As in Section 3, LModg (20, B(2n + 2)) can be written as a group ex-
tension of Wa, 12 by the pure mapping class group PMod (3¢, B(2n +2)). A
presentation of PMod (X, B(2n+2)) is found in Lemma 4.1. A presentation
of Wy, 19 is found in Lemma 4.2.

4.1. A presentation of PMod(X¢, B(m)). Let D,, be a disk with m
marked points. Number the marked points from 1 to m. Let o; be the
half-twist that exchanges the ith and (7 + 1)st marked points where the arc
about which o; is a half-twist in ¥g is shown in Figure 3. The pure braid
group, denoted PB,, is generated by elements A;; with 1 <7 < j < m of
the form:

Aij=(0j-1-" 'Ui+1)012(0j71 o)

An example of of the curve about which A; ; is a twist is in Figure 3.

Lemma 4.1. The group PMod(Xg, B(m)) is generated by A; ; for 1 <i <
7 <m —1 and has relations:

(1) [Apg, Ars] =1 wherep < g <r <s.
=1 wherep<qg<r<s.
g = AgrApqApr = Ap gAprAgr wherep < q <.
ri,Aqs] =1 wherep<qg<r<s.

(2) [Aps, Ags]
(3) APJ"AQJ'AP
(4) [ArsAp, A



150 TYRONE GHASWALA AND REBECCA R. WINARSKI

(5) (A1,2A1,3 e Al,m—l) T (Am—3,n—2Am—3,n—1)(Am—lm—l) =1.

Proof. Let PB,, be the braid group on m strands, which is isomorphic to
the mapping class group of a disk D,, with m marked points.

By the capping homomorphism Cap : PB,,—1 —> PMod (%o, B(m)),
there is a short exact sequence:

(4) 1 —Z —> PBp_1 <% PMod (S, B(m)) —> 1.

Here Z is generated by the Dehn twist about a curve homotopic to the
boundary of D,_1, which we will denote T3. From [FM11, page 250] we
have

Tg = (A12A13 - Aim) - (Am—3m—24m—3m—1)(Am—2m—1)-

Using the presentation for PB,, in Margalit-McCammond [MarM09, The-
orem 2.3] and Lemma 2.1, we obtain the desired presentation. ]

4.2. A presentation of Ws,, ;2. Asin Section 3.3, Wa,, 19 is the subgroup
the symmetric group Sz, 12 given by all permutations of {1,...,2n + 2} that
either preserve or reverse parity.

The symmetric group .S, admits the presentation:

(5) S =
=1 forallie{l,...,m—1}
<7'1, cesTm—1 | S TiTis1Ti = TiaTiTiyr forallie {1,...,m — 2}
[7i,75] =1 for |i —j| > 1

where 7; is the transposition (i ¢ + 1).

Lemma 4.2. Let Sont2 be the symmetric group on {1,...,2n + 2}. Let
= (20—12i+1),y;,=(20 2i+2), and z = (1 2)---(2n+ 1 2n + 2).
Then Wap 1o admits a presentation with generators {x1, ..., Tn, Y1, Yn, 2}
and relations:

(1) [zi,y;] =1 foralli,je{1,...,n}.

(2) 22 =1 andy? =1 forallie {1,...,n}.

(3) TiTip17; = Tig1%i%iq1 and YiYi1Yi = Yir1YiYir1, 1 € {1,...,n — 1}
(4) [zs,25] =1 and [y;,y;] = 1 for all |i — j| = 2.

(5) 22 =1.

(6) zxiz=t =y,; for allie{1,...,n}

Proof. We have the short exact sequence
11— Sn+1 X Sn+1 LN W2n+2 LN Z/2Z — 1.

The homomorphism « maps the first coordinate in S, 11 X Sp,+1 to permu-
tations of {1,3,...,2n + 1} and the second coordinate to permutations of
{2,4,...,2n+ 2}. The map 7 is given by m(0) = 0 if o is parity preserving,
and (o) = 1 if it is parity reversing.
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Using the presentation (5) for S, 11 and Lemma 2.2, we find the presen-
tation. The details are left as an exercise. O

5. Presentation of LMod (2o, B)

In this section we compute a presentation for LModg ;. (X, B), which is
given in Theorem 5.7. Throughout this section, let py s : 3y — Yo be the
balanced superelliptic cover of degree k. Let I be the set of 2n + 2 branch
points in Y.

We apply Lemma 2.2 to the short exact sequence (3) from Section 3.3:

1 — PMod (%, B) — LMod(2o, B) 225> Wapsoe — 1.

The inclusion map ¢ : PMod(2¢, B) — LModg (X0, B) maps the generators
of PMod(Xo, B) to generators of LMod, 1(20,8) by the identity. Thus the

generators of PMod(Xo, B(2n + 2)) comprise the set Sx from Lemma 2.2 in
LMod, x(X0, B). Similarly, the relations of PMod(3, B) comprise the set
Ry in LMod, 1 (20, B).

The generators S r are the lifts in LMod, 5 (3o, B) of the generators of
Wanga. The relations Ry are the lifts in LMod, 1 (30, B) of the relations
of Wan4o. We calculate the lifts in LMod, (3o, B) of both generators of
Waon+o and relations of Wo, 19 in 5.1.

Finally the set Ry is comprised of relations that come from conjugations
of elements of S i by elements in S 7. We calculate the conjugation relations
in three steps in Section 5.2.

5.1. Lifts of generators and relations. Let o; be the half-twist that
exchanges the ith and ¢+ 1st branch points about the arc in ¥ as in Figure 3.
The mapping class group Mod (X, B) admits the presentation [FM11, page
122]

loi,05] =1 i—jl>1,
0i0i4105 = 0i410i0i11 i€{l,...,2n},
Oly---502n+1 ’ (0_10_2 .. O2n+1)2n+2 — 1’

(010410241 -+ 01) =1

Since LMod, (X0, B) is a subgroup of Mod (X, B), we define the genera-
tors of LModg 1, (20, B) in terms of the {o;} in Lemma 5.1.

Lemma 5.1. The group LMod, (X0, B) is generated by:
(1) {(0j-10j-2+0141)07 (01052 0341) T 1 1< i< j < 2n+ 1},
(2) o103 0241,
(3) {021'021'_102_141 11 E {1, e n}}, and
(4) {0214_1021'0'2:411 11 E {1, e n}}
Proof. The elements from (1) are exactly the images of the generators for
PMod (%, B) from Lemma 4.1 under the inclusion map ¢. The element from
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FIGURE 3. Left to right: the arcs about which o;, ay, and b,
are half-twists, the curve about which A;; is a Dehn twist,
and the collection of arcs about which ¢ is a composition
of half-twists. The labels above the marked points are to
indicate the enumeration.

(2) maps to z; the elements from (3) map to z;; the elements from (4) map
to y; in Lemma 4.2.

Lemma 2.2 tells us that the generators of types (1)—(4) suffice to form a
generating set for LMod (3o, B(2n + 2)). O

We will denote the generators by the following symbols:
(6) Aij = (0j_10j—2+0i41)02(0jo10j—2- - 0i41) ", 1<i<j<2n+1
€= 0103 02n—-102n+1
ag = 024025_102}1, te{l,...,n}

by = O’QK_HUQKUZ_;JA, te{l,...,n}.

The generators A; ;, ay, and by are all shown in Figure 3. The elements
ay exchange consecutive odd marked points and the elements b, exchange
consecutive even marked points. The generator c is the composition of half-
twists about the arcs on the right side of Figure 3, and ¢ switches each odd
marked point with an even marked point.

Although the elements Ai,2n+2 = (02n+1 v O-i+1)0'1'2(0'2n+1 oo O'i+1)_1 are
in PMod(Xy, B), they are not part of the generating set (6). However, it
will be useful to use the elements A; 2,12 in the set of relations for our final
presentation. The next lemma rewrites the elements A; 2,12 as words in the
generators A; ; with 1 <7 <j <2n + 1.

Lemma 5.2. Fiz (€ {1,...,2n+ 1}. Define

Aij ifj <4t
Aij = AZ}+1Ai7J+1A€,j+1 ifi<l<]j
Ai1j41 if € <.

Then Aponia = (A12- - A12n)(A23- - A22n)  (A2n—12n)-
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To prove Lemma 5.2, we use the following facts:
Let T, s = 0p 4507 45-1- -0y, then:
(1) r2n 7014 T 2n—r — Ai,j lf] <Tr.
(2) r2n rA i 2n—r = A;}+1Ai,j+1Ar,j+1 ifi<r<j.
(3) r2n rA 7JTT oIn—r — Ai+17]‘+1 if r <1

These facts can be checked through routine, but lengthy computation.
Proof of Lemma 5.2. We first show that
Aopiionye = (A1 Aron) (A3 - A22n) - - (A2n—1.2n)-

Indeed, let v be the curve about which Agy, 41 2,42 is a twist. The curve 7 is
a separating curve in the sphere with 2n + 2 marked points. On one side,
bounds a disk containing the first 2n marked points and on the other side,
~ bounds a disk containing the n + 1st and n + 2nd marked points. A Dehn
twist about the boundary of the disk with 2n marked points can be written
as

(A1 A1n)(A23 - Azon) - (A2n—22n—142n—2.2n) (A2n—1,2n),

as seen in Farb and Margalit [FM11, page 260)].
Then let T' = T} 9,42. Notice that Ay o,40 = 71 Aopii1,on42T . Facts (1),
(2), and (3) above show T71A; ;T = A; ; for all 1 < i < j < 2n. Therefore

Apont2
=T ' Agpi10n2T
=T 1A TT - TT ' Ay, TT!
TT Ay 200 1TT  Agy 29, TT 1 Agpy—1.2,T
= (A12 - A190)(A23 - Ag2n) - (Aan—22n-1A42n—220) (A2n—12,). O

The relations of Ry of Lemma 2.2 are given in Lemma 5.3. To consolidate
the family of commutator relations, let

—1 —1 P .
A1 9i4%:41, 21+2A22>1,2i+2A2z‘,2i+1 ifi=j

(7) Ci,j = AQ;H 2i+2

1 otherwise

A, 2H3A2i+2,2z‘+3142i,2z'+1 ifi=j+1

for1<i<j<

Lemma 5.3. Let A; j,ap, by, and c be the generators defined in (6). The
following relations hold.
Commutator relations:
(1) [ai,bj] = Ci; where C;j is given by (7).
Braid relations:
(2) aiaiy10; = air10i0;41 and bibiy1b; = bip1bibiyr forie {1,...,n—1}.
(3) lai,a;] = [bi,bj] =1 if [j —i] > 1.
Half twists squared are Dehn twists:
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(4) a? = Agi_1,2i+1 and bzz = AQZ"QH_Q f07‘ 1€ {1, ceoy n}
(5) ¢ = A12A434 - Aspi1,2n42-
Parity flip:

(6) caic iyt =1.

Proof. For (1) it suffices to show [a;, bj]C._jl is the identity. If ¢ = j,

2,

[ai, b;1C; " = (021091105, ) (02141025054 1) (0205, 105, ) (0214105, 03y )

1 _— B e R | 2
(‘727; 021'1)(U2i+1a2i0—2i7102i7102i Uzi+1)(02i+1)(02i—1‘72z‘—1)-

Any solution to the word problem for the braid group, for example De-
hornoy’s handle reduction [Deh97], will reduce the word [a;, bj]C;jl to the
identity.

The remaining cases can be deduced similarly and details are available in
[GhW16]. O

Topological interpretation. Although the proof of Lemma 5.3 is purely
algebraic, there are topological interpretations of most of the relations. Let
~¢ be the arc about which a; is a half-twist, and &, the arc about which by
is a half-twist.

When i # j,j + 1, 7; and §; can be modified by homotopy to be disjoint
so the relations [a;,b;] = 1 in (1) hold. The homeomorphisms {a;} are
supported on a closed neighborhood of the union v; U - - - U ,, which is an
embedded disk D,y with n+ 1 marked points. The mapping class group of
D, 11 is isomorphic to the braid group B,,+;. Embedding D, in ¥y with
2n + 2 marked points induces a homomorphism

t: Bpy1 — Mod(Xg, B(2n + 2)).

The homomorphism ¢ maps the standard braid generators to the a;, and so
the braid relations (2) and (3) hold. The same applies to the b;.

Relations (4) and (5) reflect the fact that squaring a half-twist about an
arc is homotopic to a Dehn twist about a curve surrounding the arc. Recall
that if 7, is a half-twist about an arc v in ¥y and f is a homeomorphism
of ¥, then f17, f = Tf(y)- We realize ca;c”' = b; in (6) by applying the
homeomorphism ¢! to the arc 7;, where 7; is the arc about which a; is a
half-twist.

5.2. Conjugation relations. We now shift our attention to finding the
relations that comprise Ry from Lemma 2.2. Lemmas 5.4, 5.5, and 5.6 give
us the conjugation relations.
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T Y J Yie1,j—1
e ® - - -

S AL
Ai—1,(vi3)) b

zlz

'Yzj

FIGURE 4. Bothi and j are even. The left figure shows ; ;
and its image under ¢!, which is a product of half-twists
about the dashed arcs. Starting at the top left and going
clockwise, the right figure shows v;—1 -1, Ai—1;(Vi—1,j-1)
and A, 1Z(Ai71,j (7i-1,j=1)). The dashed curves indicate the

curves about which A4;_; ; and AZ-__l1 ;, are Dehn twists.

First we consider conjugation of the pure braid group generators by c.
Let

-

Ai,j forodd i, j=4¢+1
Ai+1,]+1 for odd i,j
(8) Xij =9 (Aim1 AT ) A1 (A AT ) for even i, j
A;]+1AZ_1J+1A1~J+1 for even 4, odd j
kAJ,LJAZ-JrLj,lAj__ll,j otherwise.

Lemma 5.4. For 1 <i<j<2n+1, let A;; and c be as above. Then
cAi,jc_l = X

where the X; ; are as in (8).

Proof. Recall that

Aij = (0jo10j—2 0141)07(0j—10j—2 - Tip1) "

forl<i<j<2n+1and c=0103 " 02,_102,11-

Let ; ; be the simple closed curve in ¥y about which A; ; is a Dehn twist.
Let T, , = Aij. Recall that ¢T,, ¢! =T, e—1(;,) (Where we maintain our
convention that we read products from left to right). Therefore to prove the
lemma, it suffices to show that ¢71(v; ;) is the curve about which X; ; is a
twist. The homeomorphism ¢! is the product of (counterclockwise) twists
01,03, ,09,+1. LThe cases for the image of c_l(%-’j) depend on the signs
of the intersections of arcs about which c is a twist and ; ;.

We first note that when 7 is odd and 7 = ¢ 4+ 1 the curve ; ; is disjoint
from c, therefore cA; jc™! = A; j. We then consider the remaining cases.

Case. i and j are both even. The curves v; ; and ¢~ !(v; ;) where i and j
are even are shown in Figure 4.
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As seen in Figure 4, the curve 071(%7‘7) is a conjugate of v;,_1j—1 by an
element of PMod(X¢, B(2n + 2)). In Figure 4, we see that

~1
A Qe (ie1,-1))
(with composition applied as indicated) is isotopic to ¢71(v; ;).

The remaining cases can be calculated similarly. The details are left as
an exercise or are available in [GhW16]. O

Next we consider conjugation of the elements A;; by the generators ay.
The resulting relations (along with the conjugates by by in Lemma 5.6)

correspond to the conjugates of the words in Sk by the words in Sp. Let

(9) Yije=

Ai,j ifi<20—1,5>20+1,
Ay ifi,j>20+1orij<20—1
Aijio ifi<20—1,j=20-1
(Al_j 1A',j+1) A (A;J 1Ai,j+1) ifi<20— 1,j =2
AT A 0 A ifi<20—1,j=20+1

Lo, S A ifi=20—1j=20
A ifi=20—1,j=20+1
Ai+2’j ife=20—1,7>20+1
A;_ 1,j—1 ifi=20j=20+1
(Az Zl_;,_lAi—l,i)_lALj (A;i1+1Ai—17i) ife=20,j>20+1
Ai’].lAz,z,in,j ifi=20+1,7>20+1

Lemma 5.5. For 1 <i<j<2n+1and e {l,...,n}, let A;; and ay be
as above. Then

agdija;t =Y
where the Y; j, are as in (9).

Proof. Recall that AiJ = (Uj_lUj_Q cee Ui+1)0i2(0j—10j—2 s O'H_l)*l and
ay = O‘QgO‘Qg_lo'Q_Zl. The transpositions o, and o, commute if [p — ¢q| > 2
Therefore a, and A; ; commute if they only contain commuting transposi-
tions. That is if either both (20 —1)—(j—1)>2and 20— (i +1) > 2, or if
1,7 >20+ 1, orif 4,5 <20 —1.

Therefore in the first two cases of (9), a; and A;; commute. In the
remaining cases, at least one of 7 and j is equal to 2¢ — 1,2/, or 2¢ + 1. The
calculations are routine, but lengthy and can be done either algebraically or
topologically as in Lemma 5.4. Details are also given in [GhW16]. O

Next we consider conjugation of the elements A; ; by the generators by.
The resulting relations correspond to the remaining words in the set of
conjugates of the words in Sk by the words in Sh.
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Let

(10)
Aij ifi<20j>20+2
Aij ifi,j>20+2o0ri,j<20
Aij+2 ifi<20,j=20
(45, gl 1A}j+1)_1Ai,j(A;jl_lAm_Fﬂ ifi<20,j=20+1
AT Aij oA ifi<20,j=2042

Zije =4 Aijr1dsie1 Az ifi=20j=20+1
Aij ifi=20j=20+2
Aitaj if§=20j>20+2
Ai-1-1 ifi=204+1,5=20+2
(Al Ai) Ay (A Aiay)  ifi=20+1,5>20+2
(A7) Ai-25Ai ifi=20+27>20+2.

Lemma 5.6. For 1 <i<j<2n+1andle{l,...,n}, let A;; and by be
as above. Then

beAijb; ' = Zi
where the Z; j, are as in (10).

The proof of Lemma 5.6 is the same as the proof of Lemma 5.5 with an
increase in index by 1.

5.3. Proof of the presentation. We are now ready to write down a pre-
sentation for LMod, (X0, B).

Theorem 5.7. Let X, be a surface of genus g = 2. Let ¥y — Yo be a
balanced superelliptic cover of degree k = 3 with set of branch pomts
B =B(2n+2).
The subgroup LMod, (X0, B) is generated by
Aij=(0j_10j—2-- Ui+1)ai2(aj_1aj_2 i Ui+1)_1, 1<i<j<2n+1

C= 0103 02,-102n+1

a; = agiagi,laz_il, ie{l,...,n}

b; = 02¢+102i02_iil, ie{l,...,n}.

For £ e {1,...,2n 4 1}, let Agony2 be defined as in Lemma 5.2. Then
LModg x(X0, B) has defining relations:
Commutator relations:

(1) [Aij, Apgl =1 wherel1 <i<j<p<gqg<2n+1.
(2) [Aig, Jp]—lwherel<z<]<p<q<2n+1
(3) [A A; Apé,A ]—lwherel I<j<p<q<2n+1.
(4) [ai,bj] = C;; where C;j are as in (7).

Braid relations:
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(5) Ai7ij7pAi7j = Aj7pAi7in7p = Ai,in,ij,p where 1 < i < ] <p<
2n + 1.
(6) aiair10; = aiy10;a;41 and bibiy1b; = biy1bibiy1 forie {1,...,n—1}.
(7) las, a;] = [bi,b5] = 1 if [j —i[ > 1.
Subsurface support:
(8) (A12A13 - Atm—1) - (Am—3n—24m—3n-1)(Am—2m-1) = 1 for
m=2n + 2.
Half twists squared are Dehn twists:
(9) a? = Agi—12i41 and b} = Ag;git0 forie {1,...,n}.
(10) ¢* = A1 2434 Agpi1,2n+2.
Parity flip:
(11) ca;c bt =1
Conjugation relations:
12) ¢4, ;¢! = X; ; where the X; ; are as in (8).
J J J
(13) agAMa[l =Y, ¢ where the Y; j, are as in (9).
(14) b@Ai’jbg_l = Z; jo where the Z; jo are as in (10).

Proof. We prove the elements in (6) are the generators of LMod,, ; (X0, B)
in Lemma 5.1.

Let Ry denote the image of the relations of PMod(X¢, B(2n + 2)) in
LModg (X0, B(2n+2)). Then Ry consists of the relations (1), (2), (3), (5),
and (8) by Lemma 4.1.

Let R; denote the lifts in LMod,, (30, B) of the relations of Wy, 4o. The
relations (4), (6), (7), (9), (10), and (11) are the relations of R; in Lem-
ma 5.3.

Finally, the set Ry in Lemma 2.2 consists of the relations (12)-(14) as
proved in Lemmas 5.4, 5.5, and 5.6.

By Lemma 2.2 the sets }NEK, Ry, and Rs comprise all of the relations of
LMod,, (S0, B). O

The strategy we employed to find this presentation can be used to find a
presentation for LMod, (2o, B) where p : ¥, — ¥ is any abelian branched
cover of the sphere. Indeed, LMod, (3o, B) can be written as a group ex-
tension of \fl(LModp(Eo, B)) by PMod(Xy, B). If one can compute a presen-
tation for @(LModp(Eo, B)), which is a subgroup of the symmetric group
S|g, then the generators of LMod, (X, B) will be the lifts of the genera-
tors of \/I\I(LModp(Eo,B)) and the Dehn twists A;; in Theorem 5.7. The
relations can then be found by performing the analogous computations to
Lemmas 5.3, 5.4, 5.5, and 5.6 and applying Lemma 2.2.

6. Abelianization

In this section we will prove Theorems 1.1 and 1.2. Recall that for
any group G, Hi(G;Z) = G/|G,G]. For this section, fix k£ > 3 and let
D,k © 2g — Xo be the balanced superelliptic cover of degree k. Recall that
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there are 2n + 2 branch points where n = ¢g/(k — 1). The abelianization of
LMod, 1 (X0, B) depends on n. For ease of notation, let

Gn = LMod, (S0, B)

for the remainder of this section. Let ¢ : G, — G,,/[G, Gr] be the abelian-
ization map. Note that if a,b € G, are in the same conjugacy class of G,
then ¢(a) = ¢(b).

A presentation for G,,/[G),, Gy] is given by taking a presentation for G,
and adding the set of all commutators to the set of defining relations. We
begin with the presentation given in Theorem 5.7.

Performing Tietze transformations we may add the generators Ay 2,42 for
te{l,...,2n + 1} along with the relations

Aponto = (A12-+ A1) Aoz Az on) -+ (Aopn—2.9n—1420—2.2n) (A2n—1,20)
where the Zi,j are as in Lemma 5.2.
Lemma 6.1. If j —i=t—s mod 2, then A;; is conjugate to Ag; in Gy.

Proof. We consider two cases: either j —i=t—s=0 mod2or j—i=
t—s=1 mod 2.

Case 1. j—i=t—s=0 mod 2. Let ¢ and j be even. Recall conjugation
relations
bedi byt = A A 24
for i < 2¢ and j = 2n + 2, and
bed; byt = Aijio

for i < 2¢ and j = 2¢. Therefore for any fixed even 7, all generators A; ; with
even j are in the same conjugacy class of GG,,. We also have the conjugation
relations
beAi jb; b = Ajvaj
for i = 2¢ and j > 2¢ 4 2, and
bgAl'JbZl = A;]-IAZ',QJAZ'J

for ¢ = 20 4+ 2 and j > 2¢ + 2. Therefore for any fixed even j, all the A; ;
such that ¢ is even are in the same conjugacy class of G,,. Then by varying
J, we conclude that if 4, j, s,t are all even, then A; ; and A; are conjugate.
Similarly we can consider the conjugacy relations agAmae_l =Y, ;0 to
conclude that if 7, j, s, ¢ are all odd, then A; ; is conjugate to As; in Gy,.
Observe that cALgc*1 = As4. We may finally conclude that if j — 7 =
t —s=0 mod 2, then A;; is conjugate to As; in G,,.

Case 2. j—i=t—s=1 mod 2. Similar to the proof of Case 1 above, we
use relations from the family of relations agAMaZl =Y} ;¢ to conclude that
for any fixed even 4, all the A;; for any odd j are in the same conjugacy
class of G. Using relations of the form bgAi’jbzl = Z; ¢ gives us that for
any fixed odd j, all the A; ; for any even ¢ are in the same conjugacy class
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of Gy,. Therefore if i+ and s are even and j and ¢ are odd, then A;; and A
are conjugate in Gy,.

Similarly, if 7 and s are odd and j and ¢ are even, then A;; and A,; are
conjugate in Gy,.

Finally, the relation 01412730*1 = A; 1A1,4A2,4 allows us to conclude that if
j—it=t—s=1 mod 2, then A;; is conjugate to As; in Gy, completing
the proof. O

From now on, let A = ¢(A;2) and B = ¢(A;3).
Lemma 6.2. For each ¢ € {1,...,2n + 1}, consider the relation
AZ,2n+2 = (ZI,Z e Zl,Qn)(ZZ,B o '22,271) te (ZQn—Q,Zn—IZ%L—Q,Qn)(ZQn—l,Qn)

where the Ei,j are as in Lemma 5.2. Applying ¢ to each of these relations
gives the relation B~ = A" in Gp,/[Gn, Gn].

Proof. Fix £ € {1,...,2n + 1} and let

- J] A
1<i<j<2n+1
i={ or j=/{
Observe that ¢(W) = ¢(W)¢(L)~L. By Lemma 6.1 we have
$(W) = ((AB)")((AB)" ' A)((AB)"') -+ (AB)(A)
_ AQnA2(n71) . AQBnBQ(nfl)BZ(nfm ...B2
A 2
since Y77 20 = n(n — 1).
If £ is even, ¢(L) = A"T1B"~1. Applying ¢ to the relation above gives
B = ¢(W) _ An(n—&-l)BngA—n—lBl—n.

This rearranges to BrPmn = Al-n®,
If ¢ is odd, ¢(L) = A"B"™. Applying ¢ to the relation above gives

BY = A, O
Lemma 6.3. In the abelianization of Gy, B = A1,
Proof. Consider the subsurface support relation,
(A1 A1 ons1) (A2 - A22n41) - - (Aon—12nA2n—1.2n41) (A2n2n41) = 1.

Applying ¢ to both sides gives 1 = An(n+1) gn? by the computation of ¢(W)
in the proof of Lemma 6.2. ([

Lemma 6.4. For all 1 <i,j <n, ¢(a;) = ¢(b)).



LIFTABLE MAPPING CLASS GROUP 161

Proof. By Lemma 5.3, we have the braid relations

(a71ai)airi(azha) ™! = a;
forie{1,...,n—1} and (b b;)bis1 (b b)) L = b; forallie {1,...,n—1}.
Therefore all ¢(a;) = ¢(a;) and ¢(b;) = ¢(b;) for all 4,5 € {1,...,n — 1}.
The parity flip relation cajc™' = by allows us to deduce that a; and b; are
conjugate for all 1 <i,j <n and ¢(a;) = ¢(b;). O

Lemma 6.5. The abelianization G, /|Gy, Gy] admits the presentation
(a,d, A, B | Bn2—n _ Al—n2 Bn2 :A—n2—1 a2 = B.d2 = A"t T

where a = ¢(a1), d = ¢(c), A = ¢p(A12), B = ¢(A13), and T is the set of
all commutators.

Proof. Lemmas 6.1 and 6.4 show that the elements ¢(a1), ¢(c), $(A1,2) and
¢(A13) form a generating set for G, /[G, Gr].

Lemmas 6.2 and 6.3 show that B® " = A" and B" = A~""~! hold
in G,,/[Gn,Gr]. Applying ¢ to the relation a? = A; 3 shows that a*> = B.
Applying ¢ to the relation ¢? = A12A34 - Aani1,2n42 gives the relation
d2 = An+1L

Lemma 6.2 shows that for all £ € {1,...,2n + 1}, the relation

AE,2n+2 = (Zl,Q e Z1,271)(22,3 o '22,2n) e (Z2n72,2n7122n72,2n)(Z2n71,2n)

is derivable from 7 and B~ = Al-"*,

It remains to show that in the abelianization, the relations from the pre-
sentation of GG, in Theorem 5.7 can be derived from the proposed defining
relations.

The commutator relations (1)—(4) of Theorem 5.7 all map to the identity
under ¢. The braid relations (5) and (7) of Theorem 5.7 are derivable from
T. The braid relation (6) is also derivable from 7 since all relations in this
family take the form a = a in the abelianization. Relation (8) is derivable
from B" = A~""~! by Lemma 6.3. Relations (9) and (10) are derivable
from a®> = B and d> = A™*! respectively. The image qb(caic_lbi_l) is the
identity by Lemma 6.4. Finally, the conjugation relations (12)—(14) are all
of the form A = A or B = B in the abelianization, so they are all derivable
from 7. O

We now have everything needed to prove Theorem 1.1.

Proof of Theorem 1.1. Recall
H,y (LMOdg,k(ZO’ B), Z) = Gn/[Gna Gn]

We will start with the presentation from Lemma 6.5 and perform Tietze
transformations to simplify it.
Starting with B = A we may substitute in the relation

Bn2 _ A—n2 -1
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to obtain A> = B™". Thus we may add the relation A2 = B™" to the set
of defining relations. Observe B~ = A1="% is derivable from A2 = B~
and B" = A=""~1 0 we may delete the relation Bri-n = Al-n?,

Similarly, we may add the relation AM=D? — 1 and delete the relation
B = A—"*-1, Deleting the generator B and replacing it with a? then gives
the presentation

(11)  Gp/[Gn, Gp] =<a,d, A | A* = a~2 AP Zq g2 — AL T

2n 0 2
This presentation has presentation matrix [ 0 0 (n—1)2
0 2 —-1-—n
20 0
If n is odd, this matrix has Smith normal form [0 2 0 . There-
0 0 n(n—1)>2

fore
Hy(LMod, (X0, B); Z) = Z/27 x 7./27 x Z/(n(n — 1))Z.

If n is even, the presentation matrix has Smith normal form

10 0
0 2 0 , SO
0 0 2n(n—1)2
Hi(LMod, (X0, B); Z) = Z/27 x Z)(2n(n — 1)*)Z. O

The first Betti number of a group G is the rank of the abelian group
H,(G;Z) = G/|G,G]. We have the following corollary.
Let D be the image of the deck group in Mod(3,). Recall that

SMOdgyk(EQ)

is the normalizer of D in Mod(%,).

Proof of Theorem 1.2. A result of Birman and Hilden in [BHT73] gives a
short exact sequence

1 — Z/kZ — SModg 1,(X,) — LModg x(X0, B) — 1.
Since the abelianization functor is right exact, we have the exact sequence
Z/kZ — H1(SMody 1(Xg); Z) — Hi(LModg (20, B); Z) — 1.

Since Z/kZ and H;(LModgy(X0,B);Z) are both finite, so is
H(SModg 1(Xy); Z) and the result follows. O

It is known that Theorem 1.2 is also true for the hyperelliptic mapping
class group SModg 2(34) [S09].
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