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The liftable mapping class group of
balanced superelliptic covers

Tyrone Ghaswala and Rebecca R. Winarski

Abstract. The hyperelliptic mapping class group has been studied in
various contexts within topology and algebraic geometry. What makes
this study tractable is that there is a surjective map from the hyper-
elliptic mapping class group to a mapping class group of a punctured
sphere. A general superelliptic cover does not, in general, surject on to
a mapping class group of a punctured sphere, but on to a finite index
subgroup. We call this finite index subgroup the liftable mapping class
group. In order to initiate the generalization of results on the hyperellip-
tic mapping class group to the broader family of superelliptic mapping
class groups, we study an intermediate family called the balanced su-
perelliptic mapping class group. We compute the index of the liftable
mapping class group in the full mapping class group of the sphere and
show that the liftable mapping class group is independent of the de-
gree of the cover. We also build a presentation for the liftable mapping
class group, compute its abelianization, and show that the balanced
superelliptic mapping class group has finite abelianization. Although
our calculations focus on the subfamily of balanced superelliptic map-
ping class groups, our techniques can be extended to any superelliptic
mapping class group, even those not within the balanced family.
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1. Introduction

Let Σg be a surface of genus g, and let ζ be a finite order homeomorphism
of Σg such that Σg{xζy is homeomorphic to the sphere Σ0. The quotient map
is a branched covering map p : Σg Ñ Σ0 with the deck group D generated
by ζ. The points on Σg which are fixed by a nontrivial power of ζ map to
the branch points B Ă Σ0.

The mapping class group of Σ0 relative to B, denoted ModpΣ0,Bq, consists
of homotopy classes of orientation preserving homeomorphisms of Σ0 where
both homotopies and homeomorphisms preserve B. On the other hand,
homeomorphisms of Σg need not preserve the points fixed by ζ.

Let D̂ be the image of the deck group D in ModpΣgq. Let SModppΣgq

be the subgroup of ModpΣgq consisting of isotopy classes of fiber preserv-

ing homeomorphisms. Then SModppΣgq is equal to the normalizer of D̂ in
ModpΣgq [BH73, Theorem 4].

Due to work of Birman and Hilden [BH72, BH73], it is known that

SModpΣgq{D̂ is isomorphic to a finite index subgroup of ModpΣ0,Bq pro-
vided g ą 1. We will call the finite index subgroup of ModpΣ0,Bq the
liftable mapping class group, denoted LModppΣ0,Bq. The liftable mapping
class group is exactly comprised of isotopy classes of homeomorphisms of Σ0

that lift to homeomorphisms of Σg.

The hyperelliptic involution. The isomorphism

SModpΣgq{D̂ – LModppΣ0,Bq

has been successfully expoited, most notably in the case where ζ is a hyperel-
liptic involution e.g., A’Campo [A’C79], Arnol’d [Arn68], Brendle–Margalit–
Putman [BrMP15], Gries [Gri04], Hain [Hai06], Magnus–Peluso [MP69],
Morifuji [Mor03], Stukow [Stu04a]. Here SModppΣgq is called the hyper-
elliptic mapping class group. When g “ 2, the hyperelliptic mapping class
group is equal to ModpΣ2q. Birman and Hilden used this fact to find the first
presentation for ModpΣ2q. Bigelow and Budney proved that SModppΣgq is
linear [BiB01] when ζ is a hyperelliptic involution.

One of the reasons the covering space induced by a hyperelliptic involution
has been fertile ground for research is that in this case the liftable mapping
class group LModppΣ0,Bq equals ModpΣ0,Bq. In general LModppΣ0,Bq is
only finite index in ModpΣ0,Bq. Although the finite index implies that
LModppΣ0,Bq enjoys many properties of ModpΣ0,Bq such as finite pre-
sentability and linearity, it must be better understood in order to use the
relationship LModppΣ0,Bq – SModpΣgq{D̂ for explicit calculations.

Cyclic branched covers of a sphere. Every finite cyclic branched cover-
ing space of a sphere can be modeled by a superelliptic curve, a plane curve
with equation of the form yk “ fpxq for some fpxq P Crxs, k P N. Indeed,
choose distinct points a1, . . . , at P C. Then a cyclic branched cover of the
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sphere can be modeled by an irreducible plane curve C defined by

yk “ px´ a1q
d1 ¨ ¨ ¨ px´ atq

dt

where 1 ď di ď k´1 for all i. Let rC be the normalization of the plane curve
C. Projection onto the x-axis gives a k-sheeted cyclic branched covering
rC Ñ P1 branched at the roots of fpxq and possibly at infinity.

Removing the branch points B Ă P1 and their preimages in rC, we obtain
a cyclic (unbranched) covering space of P1zB. By the Galois correspondence
for covering spaces, this covering is determined by the kernel of a surjective
homomorphism φ : π1pP1zB, xq Ñ Z{kZ for some point x P P1zB. Let γi
be a loop based at x that runs counterclockwise around the branch point
ai. Then φpγiq ” di mod k. Note that the irreducibility of C implies the
surjectivity of φ.

The family of balanced superelliptic covers. In this paper we study a
specific family of superelliptic curves, where

(1) yk “ px´ a1qpx´ a2q
k´1 ¨ ¨ ¨ px´ a2n`1qpx´ a2n`2q

k´1.

There is no branching at infinity. As k and n vary, we call the family of
normalized curves balanced superelliptic curves.

Topologically, the balanced superelliptic curves describe a covering space
as follows. Fix integers g, k ě 2 such that k ´ 1 divides g. Let

pg,k : Σg Ñ Σ0

be a cyclic branched covering map of degree k branched at 2n ` 2 points,
where n “ g{pk ´ 1q. In this case, we will denote LModppΣ0,Bq by

LModg,kpΣ0,Bq.

We will refer to the surface Σg and the covering map pg,k together as a
balanced superelliptic cover. When k “ 2 we recover the case where the deck
group is generated by a hyperelliptic involution. The example where g “ 4
and k “ 3 is shown in Figure 1.

Goals. The goals of this paper are to intiate the study of LModppΣ0,Bq
and SModppΣgq in general, and to remove the restriction that LModppΣ,Bq
is equal to ModpΣ,Bq in programs such as Brendle–Margalit–Putman’s
[BrMP15] and McMullen’s [McM13]. In the case where Σg Ñ Σ0 is a degree
k balanced superelliptic cover, we call SModppΣgq the balanced superelliptic
mapping class group and denote it SModg,kpΣgq.

We focus on the family of balanced superelliptic covers for a number of
reasons. First, when k ą 2 it is no longer the case that LModg,kpΣ0,Bq is
equal to ModpΣ0,Bq. Therefore the balanced superelliptic covers provide a
family of counterexamples to Lemma 5.1 of [BH73], which is in error (see
[BHar] and [GhW17] for a correction). Second, the covers can be embedded
in R3 so that the deck group is generated by a rotation about the z-axis. This
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Figure 1. The 3-fold cyclic branched covering space of Σ4

and Σ4 Ñ Σ0.

picture should provide insight into the study of the balanced superelliptic
mapping class group.

McMullen [McM13], Venkataramana [Ven14], Chen [Che15], and others
have studied a family of cyclic branched covering spaces of the sphere

p : Σg Ñ Σ0

that also generalize the cover induced by a hyperelliptic involution. Their
family arises from curves of the form

yk “ px´ a1qpx´ a2q ¨ ¨ ¨ px´ anq.

Note that there may be branching at infinity. In their family, every homeo-
morphism of Σ0 that fixes the point at infinity lifts to a homeomorphism of
Σg. When k “ 2 we recover the cover induced by a hyperelliptic involution.

General cyclic covers. Although our focus is on the balanced superelliptic
covers, the results in this paper could be generalized to any cyclic branched
cover over the sphere. Indeed, let p : Σg Ñ Σ0 be a cyclic branched cover

with branch points B Ă Σ0. Let pΨ : LModppΣ0,Bq Ñ GL|B|´1pZq be the
homomorphism given by the action of LModppΣ0,Bq on H1pΣ0zB;Zq. Then
pΨpLModppΣ0,Bqq is isomorphic to a subgroup of the symmetric group S|B|.
While calculating this subgroup of S|B| is feasible in practice for a single cover
or family of covers, we do not see a way to state an explicit general form. If
one were able to find a presentation for ΨpLModppΣ0,Bqq in general, then
the results of this paper could be generalized to all cyclic branched covers
using the techniques developed within.

1.1. Results. Let p : Σg Ñ Σ0 be the k-fold superelliptic covering space
branched at 2n` 2 points. For k ą 2 we compute the index

rModpΣ0,Bq : LModg,kpΣ0,Bqs “
p2n` 2q!

2ppn` 1q!q2

in Scholium 3.7. In fact, for a fixed number of branch points, the liftable
mapping class group is independent of the degree of the cover. That is, for
any integers g1, g2 and k1, k2 ą 2 such that ki ´ 1 divides gi and

g1{pk1 ´ 1q “ g2{pk2 ´ 1q

for i “ 1, 2, LModg1,k1pΣ0,Bq “ LModg2,k2pΣ0,Bq.
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The main technical result in the paper is an explicit presentation for
LModg,kpΣ0,Bq in Theorem 5.7. This allows us to prove our main theorems.

Theorem 1.1. Let k ě 3. Then

H1pLModg,kpΣ0,Bq;Zq –

#

Z{2Zˆ Z{2Zˆ Z{pnpn´ 1q2qZ if n is odd

Z{2Zˆ Z{p2npn´ 1q2qZ if n is even.

Theorem 1.2. The abelianization of the balanced superelliptic mapping
class group H1pSModg,kpΣgq;Zq is a finite noncyclic abelian group. In par-
ticular, the first Betti number of SModg,kpΣgq is 0.

Kevin Kordek pointed out that since the first Betti number of SModg,kpΣgq

is 0, there is an isomorphism between H1pSModg,kpΣgq;Zq and the torsion

subgroup of the orbifold Picard group of the orbifold TgpD̂q{SModg,kpΣgq

[Kor16]. Here TgpD̂q is the sublocus of Teichmüller space consisting of the

points fixed by the deck group D̂.

1.2. Applications and future work. In the family of covers where

p : rΣ Ñ Σ

is a 3-fold, simple branched cover of the disk, Birman and Wajnryb found a
presentation for LModppΣ,Bq [BW85]. However, a 3-fold simple cover does

not induce an isomorphism between LModppΣ,Bq and SModpprΣq [BE79,
Win15]. In contrast, the balanced superelliptic covers we study do induce the
Birman–Hilden isomorphism. Therefore the presentation of LModg,kpΣ0,Bq
can be used to find a presentation for SModg,kpΣgq.

In particular, the generators of LModg,kpΣ0,Bq give us the generators of
SModg,kpΣgq, which is an infinite index subgroup of ModpΣgq.

Corollary 1.3. Let Σg be a surface of genus g ě 2. Let pg,k : Σg Ñ Σ0

be a balanced superelliptic cover of degree k ě 3 with set of branch points
B. Choose lifts of each of the generators of LModg,kpΣ0,Bq. The subgroup
SModg,kpΣg,Bq is generated by these lifts and a generator of the deck group
of pg,k.

Generation by torsion elements. Stukow proved that the hyperellip-
tic mapping class group SModg,2pΣgq is generated by two torsion elements
[Stu04b]. We ask if there is an analogue for general SModg,kpΣgq.

Question. Can SModg,kpΣgq be generated by a small number of torsion
elements?

Monodromy representation. Let Σg be a genus g surface and the map
Σg Ñ Σ0 be a cyclic branched cover. Let D be the deck group of the

covering space and D̂ the image of D in ModpΣgq. The mapping class
group ModpΣgq acts on H1pΣg,Zq and the action preserves the interesection
form on H1pΣg,Zq. Thus the action induces a surjective representation
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ρ : ModpΣgq Ñ Spp2g,Zq. Let G be a group. Let CGpHq denote the
centralizer of a subgroup H in G. McMullen asks when ρpCModpΣgqpDqq is
finite index in CSpp2g,ZqpρpDqq [McM13]. While McMullen looks at a different
family of covering spaces than we do, our work could be used to extend his
program to the family of balanced superelliptic curves.

Question. What is the image ρpSModg,kpΣg,Bqq in Spp2g,Zq?

Since SModg,kpΣgq is the normalizer of D̂ in ModpΣgq, we have an ana-
logue of McMullen’s question [McM13]:

Question. Let p : Σg Ñ Σ0 be any cyclic branched cover of the sphere.

When is ρpSModppΣgqq finite index in the normalizer of ρpD̂q?

The generators for SModg,kpΣgq in Corollary 1.3 may be useful in answer-
ing this question for balanced superelliptic covers, and as noted above, it is
possible to extend our techniques to other superelliptic covers.

Outline of paper. In Section 2, we review the necessary combinatorial
group theory and lifting properties for constructing our presentation. In
Section 3, we explicitly construct the family of balanced superelliptic covers,
and we prove that LModg,kpΣ0,Bq is an extension of a subgroup W2n`2 of
the symmetric group S2n`2 by the pure mapping class group PModpΣ0,Bq.
In Section 4 we find presentations for PModpΣ0,Bq and W2n`2 in the group
extension. We build the presentation for LModg,kpΣ0,Bq in Section 5. Fi-
nally, we prove Theorems 1.1 and 1.2 in Section 6.

Acknowlegements. The authors would like to thank Joan Birman, Tara
Brendle, Neil Fullarton, Mike Hilden, Lalit Jain, Dan Margalit, David McK-
innon, Kevin Kordek and Doug Park for their comments and suggestions.
The authors would also like to thank the referee for suggestions for clarifi-
cation.

2. Preliminary definitions and lemmas

In this section, we survey the combinatorial group theory and algebraic
topology results used later in the paper. We first find a presentation of a
group when given a short exact sequence of groups in Section 2.1. We then
use homological arguments to characterize the mapping classes that lift.

2.1. Group Presentations and Short Exact Sequences. To obtain the
presentation in Section 5, we use two well-known results concerning short
exact sequences and group presentations.

Lemma 2.1. Let
1 ÝÑ K

α
ÝÑ G

π
ÝÑ H ÝÑ 1

be a short exact sequence of groups. Let xS | Ry be a presentation for G
where each symbol s P S denotes a generator gs P G. Let K be normally
generated by tkβu Ă K and for each β, let wβ be a word in the symbols S
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denoting αpkβq. Then H admits the presentation xS | RYtwβuy where s P S
denotes πpgsq.

A proof of Lemma 2.1 can be found in [MKS04, Section 2.1].
For Lemma 2.2, let

1 ÝÑ K
α
ÝÑ G

π
ÝÑ H ÝÑ 1

be a short exact sequence of groups. Let K – xSK | RKy. Let t P SK .
Assign the generator kt P K to t. Similarly, let H – xSH | RHy. Let s P SH .
Assign the generator hs P H to s.

For each generator hs ofH, choose an element gs P G such that πpgsq “ hs.

Then let s P SH , and let s̃ denote gs. Let rSH “ ts̃ : s P SHu. For each

kt P K, let t̃ P rSK denote αpktq P G. Let rSK “ tt̃ : t P SKu.
Each word in RH can be written in the form sε11 ¨ ¨ ¨ s

εm
m with si P SH and

εi P t˘1u. Let r P RH be sε11 ¨ ¨ ¨ s
εm
m . Denote the word rs1

ε1 ¨ ¨ ¨Ăsm
εm in rSH by

rr. Then rr is a word in rSH denoting some g P G. The element g is such that
πpgq “ idH . Since the sequence is exact, this means that g P αpKq. Let wr
be a word in rSK denoting g and define the set of words

R1 :“ tr̃w´1
r : r P RHu.

Since αpKq is normal in G, for every kt P K and gs P G, the element

gsαpktqg
´1
s P αpKq. Let vs,t be a word in rSK that denotes gsαpktqg

´1
s .

Define the set of words

R2 :“ ts̃t̃s̃´1v´1
s,t : t̃ P rSK , s̃ P rSHu.

Finally, let rRK :“ tr̃ : r P RKu where r̃ is the word in rSK obtained by
replacing every symbol t by t̃ in the same way as in the definition of R1.

Lemma 2.2. Let

1 ÝÑ K
α
ÝÑ G

π
ÝÑ H ÝÑ 1

be a short exact sequence of groups. Then G admits the presentation

G – xrSK Y rSH | R1 YR2 Y rRKy.

where rSK , rSH , R1, R2, and rRK are defined as above.

A proof is left to the reader.

2.2. Lifting mapping classes. Our goal is to characterize which mapping
classes in ModpΣ0,Bq belong to LModg,kpΣ0,Bq. Because all homotopies of
Σ0 lift to homotopies of Σg, it is sufficient to determine which homeomor-
phisms of Σ0 lift to homeomorphisms of Σg. In 2.2.1 we characterize curves
in Σ0 that lift to closed curves in Σg. In 2.2.2 we characterize homeomor-
phisms of Σ0 that lift to homeomorphisms of Σg.
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2.2.1. Lifting Curves. Throughout this section we will work in generality.

Let rX be a path connected topological space.

Let p : rX Ñ X be an unbranched covering space. Let c : S1 Ñ X be a

curve in X. Recall that c lifts if there exists c̃ : S1 Ñ rX such that pc̃ “ c.

Let p : rX Ñ X be an abelian covering space with deck group D. Fix x0 P

X. There is a one-to-one correspondence between regular covering spaces

of X and normal subgroups of π1pX,x0q. The covering space p : rX Ñ X
corresponds to the kernel of a surjective homomorphism ϕ : π1pX,x0q Ñ D.
Let Φ : π1pX,x0q Ñ H1pX;Zq be the Hurewicz homomorphism. Since D is
abelian, there exists a homomorphism ϕ : H1pX;Zq Ñ D such that ϕ “ ϕΦ.

Conversely, given a homomorphism ϕ : H1pX;Zq Ñ D, we can define
a homomorphism ϕ : π1pX,x0q Ñ D by setting ϕ “ ϕΦ. Since kerpϕq is
a normal subgroup of π1pX,x0q, it determines a regular cover. So, for a
regular abelian cover we will call the homomorphism ϕ : H1pX;Zq Ñ D the
defining homomorphism of the cover. Note that this homomorphism is well
defined up to an automorphism of D.

Unwrapping these definitions we get the following lemma.

Lemma 2.3. Let p : rX Ñ X be a regular abelian cover with deck group
D, and let ϕ : H1pX;Zq Ñ D be the defining homomorphism. A curve
c : S1 Ñ X lifts if and only if rcs P kerϕ ă H1pX;Zq.

2.2.2. Lifting homeomorphisms. Let rX be a path connected topological

space. Let p : rX Ñ X be a finite-sheeted covering map.
A homeomorphism f : X Ñ X lifts if there exists a homeomorphism

f̃ : rX Ñ rX such that pf̃ “ fp
Let f be a homeomorphism of X and let f˚ be the induced map on

H1pX,Zq.

Lemma 2.4. Let p : rX Ñ X be a regular abelian cover, with X, rX path
connected. Let D be the deck group and let ϕ : H1pXq Ñ D be the defining
homomorphism. Then a homeomorphism f : X Ñ X lifts if and only if the
induced map on homology f˚ satisfies f˚pkerϕq “ kerϕ.

A well-known corollary follows immediately:

Corollary 2.5. Let rX be a path connected topological space. Let p : rX Ñ X
be an abelian cover. A homeomorphism f : X Ñ X lifts if and only if for
all curves c that lift, fpcq also lifts.

Surfaces. Let Σg be a closed surface and let Bpmq Ă Σg be a set of m
marked points in Σg. Let Σ˝g,m “ ΣgzBpmq. If the number of punctures m is
either clear from context or irrelevent, we will write Σ˝g to denote a surface
with punctures.

2.3. The group extension. Let PModpΣ˝0,mq denote the pure mapping
class group of Σ˝0,m. The pure mapping class group is the subgroup of
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ModpΣ˝0,mq that fixes each of the punctures. Let Sm be the symmetric
group on m elements. There is an exact sequence:

(2) 1 Ñ PModpΣ˝0,mq Ñ ModpΣ˝0,mq Ñ Sm Ñ 1.

Let p : Σg Ñ Σ0 be a finite branched covering space with set of m
branch points Bpmq. Our goal is to find a sequence analogous to (2) for
LModppΣ0,Bpmqq.

Action on homology. The first homology groupH1pΣ
˝
0,m;Zq is isomorphic

to Z‘m´1, and a basis can be chosen as follows. Number the punctures
1, . . . ,m, and let xi be the homology class of curve on Σ˝0,m surrounding
the ith puncture, oriented counterclockwise around the puncture. Then
tx1, . . . , xm´1u Ă H1pΣ

˝
0,mq forms a basis.

Let Ψm : ModpΣ˝0,mq Ñ GLm´1pZq be the homomorphism given by the

action of ModpΣ˝0,mq on H1pΣ
˝
0,m;Zq. Since each basis element is supported

on a neighborhood of a puncture, any element of the pure mapping class
group will act trivially on homology. Conversely, any homeomorphism which
induces a nontrivial permutation on the punctures will permute homology
classes of loops surrounding the punctures.

From this discussion we see that the kernel of Ψm is equal to the pure
mapping class group PModpΣ˝0,mq, and the image of Ψm is isomorphic to the

symmetric group Sm. Indeed, if f is a homeomorphism of Σ˝0,m, Ψmprf sq is
the permutation induced on the m punctures. We can now conclude that
the short exact sequence (2) above is obtained from the action of ModpΣ˝0,mq

on H1pΣ
˝
0,m;Zq.

Punctures and marked points. Our lifting criteria above can only be
applied to unbranched covering spaces. However we ultimately want a pre-
sentation for LModppΣ0,Bq, where Σ0 is a surface with branch points B.

To resolve the distinction between punctures and branch points, let p :
rΣ Ñ Σ be a branched covering space of surfaces with set of branch points
B Ă Σ. As above, it may be necessary to remove the branch points in
Σ to obtain the punctured surface Σ˝ “ ΣzB. We then must also remove

the preimages of the branch points in rΣ to obtain the punctured surface
rΣ˝ “ rΣzp´1pBq. Let p

ˇ

ˇ

rΣ˝ : rΣ˝ Ñ Σ˝ be an unbranched covering map. We
use the Σ˝ notation specifically when we work with a surface with branch
points removed (or Σ˝0,m when we need to specify the number of punctures).
There is an inclusion map ι : Σ˝ Ñ Σ where the punctures of Σ˝ are filled in
with marked points. These marked points exactly comprise the set of branch
points B of the cover. Then ModpΣ˝q is isomorphic to ModpΣ,Bq because
homeomorphisms and homotopies of Σ˝0 must fix the set of punctures and
ModpΣ,Bq must fix the set of branch points. On the other hand, in the

inclusion map rι : rΣ˝ Ñ rΣ the punctures are filled in with nonmarked points.

Then ModprΣq and ModprΣ˝q are not isomorphic because the set of points

p´1pBq are not treated as marked points in ModprΣq.
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Work of Birman and Hilden [BH72, BH73] gives an isomorphism between

LModppΣ,Bq and a subgroup of ModprΣqmodulo the homotopy classes of the

deck transformations. The group ModprΣq need not stabilize the set p´1pBq
in their work.

3. The balanced superelliptic covers

3.1. The construction. Choose a pair of integers g, k ě 2 such that k´1
divides g, and let n “ g{pk´ 1q. Embed Σg, a surface of genus g, in R3 so it
is invariant under a rotation by 2π{k about the z-axis as we describe below.

The intersection of Σg with the plane z “ a is:

‚ Empty for a ă 0 and a ą 2n` 1.
‚ A point at the origin for a “ 0 and a “ 2n` 1.
‚ Homeomorphic to a circle for 2m ă a ă 2m` 1 with m P t0, . . . , nu.
‚ A rose with k petals for a P t1, . . . , 2nu.
‚ k disjoint simple closed curves invariant under a rotation of 2π{k

about the z-axis for 2m ´ 1 ă a ă 2m with m P t1, . . . , nu. In the
special case a “ 2m´ 1{2, put polar coordinates pr, θq on the plane
z “ 2m ´ 1{2. Then we have k disjoint circles with centers on the
rays θ “ 2πd{k, d P t0, . . . , k ´ 1u.

See Figure 1 for the embedding when g “ 4 and k “ 3.
Consider a homeomorphism ζ : Σg Ñ Σg of order k given by rotation

about the z-axis by 2π{k. The homeomorphism ζ fixes 2n` 2 points, which
are the points of intersection of Σg with the z-axis. Define an equivalence
relation on Σg given by x „ y if and only if ζqpxq “ y for some q. The
resulting surface Σg{ „ is homeomorphic to a closed sphere Σ0. The quotient
map pg,k : Σg Ñ Σ0 is a k-fold cyclic branched covering map with 2n ` 2
branch points, which are the images of the points fixed by ζ. The deck
group of pg,k is a cyclic group of order k generated by ζ. When k “ 2, ζ is
a hyperelliptic involution.

An important collection of arcs. Fix a pair of integers g, k ě 2 such
that k ´ 1 | g, and consider the surface Σg embedded in R3 as described
above. Using cylindrical coordinates in R3, let Pθ0 “ tpr, θ0, zq P R3 : r ě 0u
be a closed half plane. The intersection of Σg and Pπ{k is a collection of
n ` 1 arcs where n “ g{pk ´ 1q. Call these arcs β1, . . . , βn`1. For each arc
βi : r0, 1s Ñ Σg, orient it so that βip0q “ p0, 0, 2i´2q and βip1q “ p0, 0, 2i´1q
in R3. Number the endpoints 1, ¨ ¨ ¨ , 2n ` 2 in order of increasing z value
and fix the numbering for the remainder of the paper.

Consider the balanced superelliptic covering map pg,k as defined above.
For each i with 1 ď i ď n` 1, let αi “ pg,kβi. Each αi is an arc

αi : r0, 1s Ñ Σ0.

The endpoints of αi are in the set of branch points Bp2n ` 2q Ă Σ0. Let
α be the union of the arcs αi in Σ0. Let rαs denote the relative homology
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β1 β2 β3 α1 α2 α3

Figure 2. The arcs β1, β2, β3 P Σ4 and the arcs α1, α2, α3 P Σ0.

class of α in H1pΣ0,B;Zq. The class rαs is calculated
řn`1
i“1 rαis. Figure 2

shows the embeddings of the arcs β1, β2, β3 P Σ4 and α1, α2, α3 P Σ0 for the
3-fold balanced superelliptic cover of Σ4 over Σ0.

3.2. A lifting criterion for superelliptic covers. The goal of this sec-
tion is to prove Lemma 3.4.

An intersection form for punctured surfaces. In Lemma 3.1, we abuse
notation and identify curves in Σ˝0,m with their image in Σ0 under the in-
clusion Σ˝0,m Ñ Σ0.

Lemma 3.1. Let Σg be a closed surface and Bpmq a set of m points in Σg.
There exists a homomorphism

‚ : H1pΣ
˝
g,m;Zq ˆH1pΣg,Bpmq;Zq Ñ Z

given by c ‚ a “ îpc, aq where c is a homotopy class of curves in Σg,m, a is

a homotopy class of curves or arcs in pΣg,Bq, and îpc, aq is the algebraic
intersection of c and a.

This is a well-known result and a proof can be found in the appendix of
[GoM80], for example.

We need the following combinatorial lemma.

Lemma 3.2. Let G be the weighted digraph

´1

´1

´1

´1

`1

`1

`1

`1

`1
´1

`1
´1

S0

S1

S2

Sk´1

Sk´2

and let Γ be a finite walk on G beginning at S0. Define the weight of Γ,
which we denote wpΓq, as the sum of the weights of the edges traversed in
the walk. Then Γ terminates at Si, if and only if wpΓq ” i mod k.

Proof. Induct on the length of the walk. �
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In order to apply this lemma, we use the union of arcs α in Σ0 defined in
Section 3.1 and their preimages in Σg.

The full preimage p´1
g,kpαq is a collection of kpn ` 1q oriented arcs in Σg

and we will denote the union by rα. The union of arcs rα consists of the orbits
βi under the action of the deck group of pg,k.

The surface Σgztrαu is a union of k subsurfaces of Σg. The subsurfaces
are cyclically permuted by the action of the deck group. Label one of these
connected subsurfaces R0, and for each ` P t1, . . . , k´1u label ζ`pR0q by R`.
We will refer to the embedding of each R` in Σg as a region in Σg.

Consider a curve rγ in Σg that does not contain any of the 2n` 2 points
on the z-axes and that intersects rα transversely. Choose an orientation for
rγ.

Denote the algebraic intersection of rγ and rα by îprγ, rαq. Homotopy pre-
serves algebraic intersection, so the algebraic intersection is well defined for
all representatives within the class. The orientation of rα is consistent with
respect to the covering map pg,k.

Consider a parameterization rγ : r0, 1s Ñ Σg with rγp0q “ rγp1q. Let
t0 P r0, 1s be a value such that rγpt0q P rγ X rα. Fix ε ą 0 such that

rγpt0 ´ ε, t0 ` εq X rα “ t0.

Then either rγpt0 ´ εq P Rpi mod kq and rγpt0 ` εq P Rpi`1 mod kq for some
0 ď i ď k´ 1 or rγpt0 ´ εq P Rpi mod kq and rγpt0 ` εq P Rpi´1 mod kq for some
1 ď i ď k. All intersections of rγ and rα where the index of Ri increases
modulo k will have the same sign of intersection. All intersections of rγ and
rα where the index of Ri decreases modulo k will have sign of intersection
opposite to those where the index of Ri increases.

Lemma 3.3. Let pg,k : Σ˝g Ñ Σ˝0 be an unbranched balanced superelliptic

covering map of degree k. If a curve γ in Σ˝0 lifts, then îpγ, αq ” 0 mod k.

Proof. Consider the regions R0, ¨ ¨ ¨ , Rk´1 Ă pΣgzrαq as above. For each

Rj P Σg, there is a corresponding embedding of Rjzp
´1
g,kpBq in Σ˝g. We will

also denote the embeddings of Rjzp
´1
g,kpBq in Σ˝g by Rj as it will be clear

from context when we are referring to punctured regions.
Let γ be a curve in Σ˝0 that lifts to a multicurve rγ in Σ˝g. The multicurve rγ

has k components in Σ˝g. Each component of rγ is a map r0, 1s {t0, 1u Ñ Σ˝g.
Let rγi denote the component of rγ such that rγip0q “ rγip1q P Ri.

By compactness, |rγ X rα| ă 8. We may assume that rγ is transverse to rα.
Let rx P rγ X rα. Since the action of the deck group is transitive, the orbit of
rx is of order k. Indeed, the orbit of rx is exactly p̄´1

g,kpp̄g,kprxqq. The signs of

intersection of all points in the orbit of rx are equal. Thus all components
of rγ have the same algebraic and geometric intersections with rα. Therefore
pipγ, αq “ piprγi, rαq for any component rγi of rγ.

Let G be the weighted digraph as in lemma 3.2. Let Si be the vertex in
G corresponding to the region Ri in Σg.
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We now construct a walk Γ
rγi in G corresponding to each rγi. The walk

Γ
rγi begins at the vertex Si. If rγiX rα is empty, the point Si is the entire path
G.

If rγiX rα ‰ H, let ttju Ă r0, 1s be the set of values such that rγiptjq P rγiX rα
and tj ă tj`1. Choose a value ε ą 0 so that rγiptj ´ ε, tj ` εq X rα “ tj for
each tj . We construct the walk Γ

rγi by adding an edge and a vertex for each
tj , in the order of increasing j. The vertices will be those corresponding
to the regions containing the elements rγiptj ` εq for each j. Add the edge
corresponding to t`, which connects the vertex corresponding to the region
containing rγipt` ´ εq to the vertex corresponding to the region containing
rγipt` ` εq.

For each component rγi, the walk Γ
rγi begins and terminates at Si. By

Lemma 3.2, piprγi, rαq ” 0 mod k. Then by the discussion above, pipγ, αq ” 0
mod k as well. �

We are now ready to prove Lemma 3.4, which is Lemma 3.3 and its
converse.

Lemma 3.4 (A lifting criterion for curves). Let pg,k : Σ˝g Ñ Σ˝0 be the
unbranched balanced superelliptic covering space. Let γ be a curve on Σ˝0.

Then rγs P kerpϕq if and only if îpγ, αq ” 0 mod k.

We note that an analogue of Lemma 3.4 is true for all cyclic branched
covers of the sphere, but the collection of arcs α is specific to the balanced
superelliptic covers.

Proof. Let îp´, αq : H1pΣ
˝
0;Zq Ñ Z be the homomorphism from Lem-

ma 3.1, and let π : ZÑ Z{kZ be the natural projection map. Let

φ “ π ˝ îp´, αq : H1pΣ
˝
0;Zq Ñ Z{kZ.

The homomorphism φ is surjective since there is a curve γ such that

îpγ, αq “ 1.

Let ϕ : H1pΣ
˝
0;Zq Ñ Z{kZ be the defining homomorphism for the un-

branched balanced superelliptic cover. By Lemma 2.3,

kerpϕq “ trγs P H1pΣ
˝
0;Zq : γ liftsu.

Lemma 3.3 shows that kerpφq Ď kerpϕq. However, these are both index k
subgroups of H1pΣ

˝
0;Zq, so kerpφq “ kerpϕq.

By the definition of φ, kerpφq “ trγs P H1pΣ
˝
0;Zq : îpγ, αq ” 0 mod ku.

This completes the proof. �

Recall from Lemma 2.3 that a curve γ lifts if and only if rγs P kerpϕq. This
together with Lemma 3.4 allows us to decide whether or not a curve lifts
simply by computing its algebraic intersection number with the collection
of arcs α.
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Lemma 3.5. Let pg,k be an unbranched balanced superelliptic covering map
of degree k. Number the punctures of Σ˝0 from 1 to 2n` 2 as in Section 3.1.
Let xj be the homology class of curves surrounding the jth puncture of Σ˝0
for 1 ď j ď 2n ` 1 and oriented counterclockwise. The set tx1, . . . , x2n`1u

forms a basis for H1pΣ
˝
0;Zq. Let γ be a curve in Σ˝0 with

rγs “ pγ1, . . . , γ2n`1q P H1pΣ
˝
0;Zq

with respect to this basis. Then γ lifts if and only if

2n`1
ÿ

i“1

p´1qi`1γi ” 0 mod k.

Note that Lemma 3.5 is the key lemma that distinguishes the balanced
superelliptic covers from other superelliptic covers. In order to use our
methods for other families of superelliptic covers, one must characterize the
curves that lift, as we do here for the balanced superelliptic covers.

Proof. Let α be the collection of arcs defined above and observe that

îpxj , αq “

#

1 if j is odd

´1 if j is even.

Then îpγ, αq “
ř2n`1
i“1 p´1qi`1γi. Combining this with Lemma 3.4 completes

the proof. �

This lemma shows that the family of balanced superelliptic covers are
modeled by plane curves defined by Equation (1).

3.3. The exact sequence for LModppΣ0,Bq. Let p : rΣ Ñ Σ0 be a
finite cyclic branched cover of the sphere. Let Bpmq be the set of m branch
points of the covering space. Recall that ModpΣ0,Bpmqq and ModpΣ˝0,mq are

isomorphic. Recall that the action of ModpΣ˝0,mq on H1pΣ
˝
0,m,Zq induces a

homomorphism Ψm : ModpΣ˝0,mq Ñ Sm on the short exact sequence (2).

We will also consider the map pΨm : ModpΣ0,Bpmqq Ñ Sm by precomposing
Ψm with the isomorphism ModpΣ0,Bpmqq – ModpΣ˝0,mq. By Lemma 2.4

and the short exact sequence (2), PModpΣ0,Bpmqq “ ker pΨm is contained
in LModppΣ0,Bpmqq. This gives us the short exact sequence

1 Ñ PModpΣ0,Bpmqq Ñ LModppΣ0,Bpmqq Ñ pΨmpLModppΣ0,Bpmqqq Ñ 1.

Since pΨmpModpΣ0,Bpmqqq – Sm, the group pΨmpLModppΣ0,Bpmqqq is iso-
morphic to a subgroup of Sm. Our next goal is to find the subgroup of Sm
isomorphic to pΨmpLModppΣ0,Bpmqqq where p is a balanced superelliptic
covering map.

Let pg,k : Σg Ñ Σ0 be the balanced superelliptic cover. We will denote
LModppΣ0,Bq by LModg,kpΣ0,Bq. Recall that

B “ Bp2n` 2q
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where n “ g{pk´ 1q. We will suppress the 2n` 2 in our notation, since the
number of branch points of the balanced superelliptic covers is determined
by g and k.

Parity of a permutation. Fix an integerm ě 2. Let τ be a permutation in
Sm. We say that τ preserves parity if τpqq “ q mod 2 for all q P t1, ¨ ¨ ¨ ,mu.
We say that τ reverses parity if τpqq ‰ q mod 2 for all q P t1, ¨ ¨ ¨ ,mu.

Let S2l be the symmetric group on the set t1, . . . , 2lu. Let W2l ă S2l

be the subgroup consisting of permutations that either preserve parity, or
reverse parity. Then

W2l – pSl ˆ Slq ¸ Z{2Z

where Z{2Z acts on Sl ˆ Sl by switching the coordinates.

Lemma 3.6. Let pg,k : Sg Ñ S0 be a balanced superelliptic covering map
of degree k. Let Ψ2n`2 : ModpΣ˝0q Ñ S2n`2 be the homomorphism in-
duced from the action of ModpΣ˝0q on H1pΣ

˝
0,Zq. If k “ 2, the image

pΨ2n`2pLModg,2pΣ0,Bqq “ S2n`2. For k ą 2,

pΨ2n`2pLModg,kpΣ0,Bqq “W2n`2.

Lemmas 3.4 and 3.5 characterize the curves in Σ˝0 that lift. Let γ be a
curve in Σ˝0 and let Tγ be a Dehn twist about γ. It is possible for Tγ to lift
to a homeomorphism of Σg even if γ does not lift.

Proof of Lemma 3.6. Let γ be a curve in Σ˝0 and let

rγs “
2n`1
ÿ

i“1

γixi P H1pΣ
˝
0;Zq.

Let rf s P ModpΣ˝0q and let σ “ Ψprf sq P S2n`2.
Let γ2n`2 “ 0. Then

rfpγqs “
2n`1
ÿ

i“1

pγσ´1piq ´ γjqxi

in homology, where σpjq “ 2n` 2. Indeed, if j “ 2n` 2, then

rfpγqs “
2n`1
ÿ

i“1

γixσpiq “
2n`1
ÿ

i“1

γσ´1piqxi “
2n`1
ÿ

i“1

pγσ´1piq ´ γ2n`2qxi.
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If j ‰ 2n` 2, let δ is a curve homotopic to the p2n` 2qnd puncture. Then

rδs “ ´
ř2n`1
i“1 xi. Therefore rfpxjqs “ ´

ř2n`2
i“1 xi and

rfpγqs “

j´1
ÿ

i“1

γixσpiq `
2n`1
ÿ

j`1

γixσpiq ´ γj

˜

2n`1
ÿ

i“1

xi

¸

“

¨

˚

˚

˝

ÿ

iPt1,...,2n`1u
i‰σp2n`2q

pγσ´1piq ´ γjqxi

˛

‹

‹

‚

´ γjxσp2n`2q

“

2n`1
ÿ

i“1

pγσ´1piq ´ γjqxi.

The curve γ lifts if and only if
ř2n`2
i“1 p´1qi`1γi ” 0 mod k. Let f be a

homeomorphism of Σ˝0 and Ψprf sq “ σ with σpjq “ 2n` 2. The image fpγq

lifts if and only if
ř2n`2
i“1 p´1qi`1pγσ´1piq ´ γjq ” 0 mod k by Lemma 3.5.

Case 1. k “ 2. Let rf s P ModpΣ˝0q with Ψprf sq “ σ such that σpjq “ 2n`2.
Observe that in Z{2Z,

2n`2
ÿ

i“1

p´1qi`1pγσ´1piq ´ γjq “ p2n` 2qγj `
2n`2
ÿ

i“1

p´1qi`1γσ´1piq

“

2n`2
ÿ

i“1

p´1qi`1γi

so γ lifts if and only if fpγq lifts. We can then conclude f lifts. There-
fore the image of rf s under the isomorphism ModpΣ˝0q Ñ ModpΣ0,Bq is in
LModpΣ0,Bq.

Case 2. k ě 3. Let rf s P ModpΣ˝0q with Ψprf sq “ σ such that σpjq “ 2n`2
and σ PW2n`2. If σ is parity preserving then

2n`2
ÿ

i“1

p´1qi`1pγσ´1piq ´ γjq “
2n`2
ÿ

i“1

p´1qi`1γσ´1piq “

2n`2
ÿ

i“1

p´1qi`1γi

so γ lifts if and only if fpγq lifts. If σ is parity reversing,

2n`2
ÿ

i“1

p´1qi`1pγσ´1piq ´ γjq “
2n`2
ÿ

i“1

p´1qi`1γσ´1piq “ ´

2n`2
ÿ

i“1

p´1qi`1γi

so γ lifts if and only if fpγq lifts. If σ is either parity reversing or parity
preserving, then f lifts. Therefore the image of rf s under the isomorphism
ModpΣ˝0q Ñ ModpΣ0,Bq is in LModpΣ0,Bq.

Conversely, assume that σ RW2n`2. Then there exist odd integers p and
q such that σppq is odd and σpqq is even. Without loss of generality, we may
assume that σppq “ 1, σpqq “ 2.
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Let f P ModpΣ0,Bq such that pΨ2n`2pfq “ σ´1. We need to show that
there exists some curve η that lifts such that fpηq does not lift. Indeed, let

η “ x1 ` x2, then îpη, αq “ 0. The homology class of fpηq is xp ` xq, but

since both p and q are odd, îpfpηq, αq “ 2. Therefore fpηq does not lift and
the homeomorphism f does not lift by Lemma 2.4. �

Let pg,k : Sg Ñ S0 be a balanced superelliptic covering map of degree k.
The short exact sequence (2) restricts to a short exact sequence:

(3) 1 Ñ PModpΣ0,Bq Ñ LModg,kpΣ0,Bq ÑW2n`2 Ñ 1 for k ě 3.

Lemma 3.6 gives us the following result. The case k “ 2 has already been
proven by Birman and Hilden [BH71] using different methods.

Scholium 3.7. For k “ 2, LModg,kpΣ0,Bq “ ModpΣ0,Bq. For k ě 3, the

index rModpΣ0,Bq : LModg,kpΣ0,Bqs is p2n`2q!
2ppn`1q!q2

.

Proof. If k “ 2, we are in case 1 in the proof of 3.6.
For k ě 3,

rModpΣ0,Bq : LModg,kpΣ0,Bqs
“ rModpΣ0,Bq{PModpΣ0,Bq : LModg,kpΣ0,Bq{PModpΣ0,Bqs
“ rS2n`2 : W2n`2s .

Observing that |W2n`2| “ 2ppn` 1q!q2 completes the proof. �

4. Presentations of PModpΣ0,Bpmqq and W2n`2

As in Section 3, LModg,kpΣ0,Bp2n ` 2qq can be written as a group ex-
tension of W2n`2 by the pure mapping class group PModpΣ0,Bp2n` 2qq. A
presentation of PModpΣ0,Bp2n`2qq is found in Lemma 4.1. A presentation
of W2n`2 is found in Lemma 4.2.

4.1. A presentation of PModpΣ0,Bpmqq. Let Dm be a disk with m
marked points. Number the marked points from 1 to m. Let σi be the
half-twist that exchanges the ith and pi` 1qst marked points where the arc
about which σi is a half-twist in Σ0 is shown in Figure 3. The pure braid
group, denoted PBm is generated by elements Ai,j with 1 ď i ă j ď m of
the form:

Ai,j “ pσj´1 ¨ ¨ ¨σi`1qσ
2
i pσj´1 ¨ ¨ ¨σi`1q

´1.

An example of of the curve about which Ai,j is a twist is in Figure 3.

Lemma 4.1. The group PModpΣ0,Bpmqq is generated by Ai,j for 1 ď i ă
j ď m´ 1 and has relations:

(1) rAp,q, Ar,ss “ 1 where p ă q ă r ă s.
(2) rAp,s, Aq,rs “ 1 where p ă q ă r ă s.
(3) Ap,rAq,rAp,q “ Aq,rAp,qAp,r “ Ap,qAp,rAq,r where p ă q ă r.
(4)

“

Ar,sAp,rA
´1
r,s , Aq,s

‰

“ 1 where p ă q ă r ă s.
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(5) pA1,2A1,3 ¨ ¨ ¨A1,m´1q ¨ ¨ ¨ pAm´3,n´2Am´3,n´1qpAm´2,m´1q “ 1.

Proof. Let PBm be the braid group on m strands, which is isomorphic to
the mapping class group of a disk Dm with m marked points.

By the capping homomorphism Cap : PBm´1 ÝÑ PModpΣ0,Bpmqq,
there is a short exact sequence:

(4) 1 ÝÑ Z ÝÑ PBm´1
Cap
ÝÑ PModpΣ0,Bpmqq ÝÑ 1.

Here Z is generated by the Dehn twist about a curve homotopic to the
boundary of Dm´1, which we will denote Tβ. From [FM11, page 250] we
have

Tβ “ pA1,2A1,3 ¨ ¨ ¨A1,mq ¨ ¨ ¨ pAm´3,m´2Am´3,m´1qpAm´2,m´1q.

Using the presentation for PBm in Margalit–McCammond [MarM09, The-
orem 2.3] and Lemma 2.1, we obtain the desired presentation. �

4.2. A presentation of W2n`2. As in Section 3.3, W2n`2 is the subgroup
the symmetric group S2n`2 given by all permutations of t1, . . . , 2n`2u that
either preserve or reverse parity.

The symmetric group Sm admits the presentation:

(5) Sm “

C

τ1, . . . , τm´1 |

$

’

&

’

%

τ2
i “ 1 for all i P t1, . . . ,m´ 1u

τiτi`1τi “ τi`1τiτi`1 for all i P t1, . . . ,m´ 2u

rτi, τjs “ 1 for |i´ j| ą 1

G

where τi is the transposition pi i` 1q.

Lemma 4.2. Let S2n`2 be the symmetric group on t1, . . . , 2n ` 2u. Let
xi “ p2i ´ 1 2i ` 1q, yi “ p2i 2i ` 2q, and z “ p1 2q ¨ ¨ ¨ p2n ` 1 2n ` 2q.
Then W2n`2 admits a presentation with generators tx1, . . . , xn, y1, . . . , yn, zu
and relations:

(1) rxi, yjs “ 1 for all i, j P t1, . . . , nu.
(2) x2

i “ 1 and y2
i “ 1 for all i P t1, . . . , nu.

(3) xixi`1xi “ xi`1xixi`1 and yiyi`1yi “ yi`1yiyi`1, i P t1, . . . , n´ 1u.
(4) rxi, xjs “ 1 and ryi, yjs “ 1 for all |i´ j| ě 2.
(5) z2 “ 1.
(6) zxiz

´1 “ yi for all i P t1, . . . , nu.

Proof. We have the short exact sequence

1 ÝÑ Sn`1 ˆ Sn`1
α
ÝÑW2n`2

π
ÝÑ Z{2Z ÝÑ 1.

The homomorphism α maps the first coordinate in Sn`1 ˆ Sn`1 to permu-
tations of t1, 3, . . . , 2n ` 1u and the second coordinate to permutations of
t2, 4, . . . , 2n` 2u. The map π is given by πpσq “ 0 if σ is parity preserving,
and πpσq “ 1 if it is parity reversing.
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Using the presentation (5) for Sn`1 and Lemma 2.2, we find the presen-
tation. The details are left as an exercise. �

5. Presentation of LModg,kpΣ0,Bq

In this section we compute a presentation for LModg,kpΣ0,Bq, which is
given in Theorem 5.7. Throughout this section, let pg,k : Σg Ñ Σ0 be the
balanced superelliptic cover of degree k. Let B be the set of 2n` 2 branch
points in Σ0.

We apply Lemma 2.2 to the short exact sequence (3) from Section 3.3:

1 ÝÑ PModpΣ0,Bq
ι
ÝÑ LModpΣ0,Bq

pΨ2n`2
ÝÑ W2n`2 ÝÑ 1.

The inclusion map ι : PModpΣ0,Bq Ñ LModg,kpΣ0,Bq maps the generators
of PModpΣ0,Bq to generators of LModg,kpΣ0,Bq by the identity. Thus the

generators of PModpΣ0,Bp2n` 2qq comprise the set rSK from Lemma 2.2 in
LModg,kpΣ0,Bq. Similarly, the relations of PModpΣ0,Bq comprise the set
rRK in LModg,kpΣ0,Bq.

The generators rSH are the lifts in LModg,kpΣ0,Bq of the generators of
W2n`2. The relations R1 are the lifts in LModg,kpΣ0,Bq of the relations
of W2n`2. We calculate the lifts in LModg,kpΣ0,Bq of both generators of
W2n`2 and relations of W2n`2 in 5.1.

Finally the set R2 is comprised of relations that come from conjugations

of elements of rSK by elements in rSH . We calculate the conjugation relations
in three steps in Section 5.2.

5.1. Lifts of generators and relations. Let σi be the half-twist that
exchanges the ith and i`1st branch points about the arc in Σ0 as in Figure 3.
The mapping class group ModpΣ0,Bq admits the presentation [FM11, page
122]

C

σ1, . . . , σ2n`1 |

$

’

’

’

&

’

’

’

%

rσi, σjs “ 1 |i´ j| ą 1,

σiσi`1σi “ σi`1σiσi`1 i P t1, . . . , 2nu,

pσ1σ2 ¨ ¨ ¨σ2n`1q
2n`2 “ 1,

pσ1 ¨ ¨ ¨σ2n`1σ2n`1 ¨ ¨ ¨σ1q “ 1

G

.

Since LModg,kpΣ0,Bq is a subgroup of ModpΣ0,Bq, we define the genera-
tors of LModg,kpΣ0,Bq in terms of the tσiu in Lemma 5.1.

Lemma 5.1. The group LModg,kpΣ0,Bq is generated by:

(1) tpσj´1σj´2 ¨ ¨ ¨σi`1qσ
2
i pσj´1σj´2 ¨ ¨ ¨σi`1q

´1 : 1 ď i ă j ď 2n` 1u,
(2) σ1σ3 ¨ ¨ ¨σ2n`1,
(3) tσ2iσ2i´1σ

´1
2i : i P t1, . . . , nuu, and

(4) tσ2i`1σ2iσ
´1
2i`1 : i P t1, . . . , nuu.

Proof. The elements from (1) are exactly the images of the generators for
PModpΣ0,Bq from Lemma 4.1 under the inclusion map ι. The element from
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σi a` b`
Ai,j

c

i 2` i j

Figure 3. Left to right: the arcs about which σi, a`, and b`
are half-twists, the curve about which Ai,j is a Dehn twist,
and the collection of arcs about which c is a composition
of half-twists. The labels above the marked points are to
indicate the enumeration.

(2) maps to z; the elements from (3) map to xi; the elements from (4) map
to yi in Lemma 4.2.

Lemma 2.2 tells us that the generators of types (1)–(4) suffice to form a
generating set for LModpΣ0,Bp2n` 2qq. �

We will denote the generators by the following symbols:

Ai,j “ pσj´1σj´2 ¨ ¨ ¨σi`1qσ
2
i pσj´1σj´2 ¨ ¨ ¨σi`1q

´1, 1 ď i ă j ď 2n` 1(6)

c “ σ1σ3 ¨ ¨ ¨σ2n´1σ2n`1

a` “ σ2`σ2`´1σ
´1
2` , ` P t1, . . . , nu

b` “ σ2``1σ2`σ
´1
2``1, ` P t1, . . . , nu.

The generators Ai,j , a`, and b` are all shown in Figure 3. The elements
a` exchange consecutive odd marked points and the elements b` exchange
consecutive even marked points. The generator c is the composition of half-
twists about the arcs on the right side of Figure 3, and c switches each odd
marked point with an even marked point.

Although the elements Ai,2n`2 “ pσ2n`1 ¨ ¨ ¨σi`1qσ
2
i pσ2n`1 ¨ ¨ ¨σi`1q

´1 are
in PModpΣ0,Bq, they are not part of the generating set (6). However, it
will be useful to use the elements Ai,2n`2 in the set of relations for our final
presentation. The next lemma rewrites the elements Ai,2n`2 as words in the
generators Ai,j with 1 ď i ă j ď 2n` 1.

Lemma 5.2. Fix ` P t1, . . . , 2n` 1u. Define

Ai,j :“

$

’

&

’

%

Ai,j if j ă `

A´1
`,j`1Ai,j`1A`,j`1 if i ă ` ď j

Ai`1,j`1 if ` ď i.

Then A`,2n`2 “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´1,2nq.
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To prove Lemma 5.2, we use the following facts:
Let Tr,s “ σr`sσr`s´1 ¨ ¨ ¨σr, then:

(1) T´1
r,2n´rAi,jTr,2n´r “ Ai,j if j ă r.

(2) T´1
r,2n´rAi,jTr,2n´r “ A´1

r,j`1Ai,j`1Ar,j`1 if i ă r ď j.

(3) T´1
r,2n´rAi,jTr,2n´r “ Ai`1,j`1 if r ď i.

These facts can be checked through routine, but lengthy computation.

Proof of Lemma 5.2. We first show that

A2n`1,2n`2 “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´1,2nq.

Indeed, let γ be the curve about which A2n`1,2n`2 is a twist. The curve γ is
a separating curve in the sphere with 2n` 2 marked points. On one side, γ
bounds a disk containing the first 2n marked points and on the other side,
γ bounds a disk containing the n` 1st and n` 2nd marked points. A Dehn
twist about the boundary of the disk with 2n marked points can be written
as

pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq,

as seen in Farb and Margalit [FM11, page 260].
Then let T “ T`,2n`2. Notice that A`,2n`2 “ T´1A2n`1,2n`2T . Facts (1),

(2), and (3) above show T´1Ai,jT “ Ai,j for all 1 ď i ă j ď 2n. Therefore

A`,2n`2

“ T´1A2n`1,2n`2T

“ T´1A1,2TT
´1 ¨ ¨ ¨TT´1A1,2nTT

´1 ¨ ¨ ¨

TT´1A2n´2,2n´1TT
´1A2n´2,2nTT

´1A2n´1,2nT

“ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq. �

The relations of R1 of Lemma 2.2 are given in Lemma 5.3. To consolidate
the family of commutator relations, let

(7) Ci,j “

$

’

&

’

%

A´1
2i´1,2iA

´1
2i`1,2i`2A2i´1,2i`2A2i,2i`1 if i “ j

A´1
2i`1,2i`2A

´1
2i,2i`3A2i`2,2i`3A2i,2i`1 if i “ j ` 1

1 otherwise

for 1 ď i ď j ď n.

Lemma 5.3. Let Ai,j , a`, b`, and c be the generators defined in (6). The
following relations hold.

Commutator relations:

(1) rai, bjs “ Ci,j where Ci,j is given by (7).
Braid relations:

(2) aiai`1ai “ ai`1aiai`1 and bibi`1bi “ bi`1bibi`1 for i P t1, . . . , n´1u.
(3) rai, ajs “ rbi, bjs “ 1 if |j ´ i| ą 1.

Half twists squared are Dehn twists:
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(4) a2
i “ A2i´1,2i`1 and b2i “ A2i,2i`2 for i P t1, . . . , nu.

(5) c2 “ A1,2A3,4 ¨ ¨ ¨A2n`1,2n`2.
Parity flip:

(6) caic
´1b´1

i “ 1.

Proof. For (1) it suffices to show rai, bjsC
´1
i,j is the identity. If i “ j,

rai, bjsC
´1
i,j “ pσ2iσ2i´1σ

´1
2i qpσ2i`1σ2iσ

´1
2i`1qpσ2iσ

´1
2i´1σ

´1
2i qpσ2i`1σ

´1
2i σ

´1
2i`1q

pσ´1
2i σ

´1
2i qpσ2i`1σ2iσ

´1
2i´1σ

´1
2i´1σ

´1
2i σ

´1
2i`1qpσ

2
2i`1qpσ2i´1σ2i´1q.

Any solution to the word problem for the braid group, for example De-
hornoy’s handle reduction [Deh97], will reduce the word rai, bjsC

´1
i,j to the

identity.
The remaining cases can be deduced similarly and details are available in

[GhW16]. �

Topological interpretation. Although the proof of Lemma 5.3 is purely
algebraic, there are topological interpretations of most of the relations. Let
γ` be the arc about which a` is a half-twist, and δ` the arc about which b`
is a half-twist.

When i ‰ j, j ` 1, γi and δj can be modified by homotopy to be disjoint
so the relations rai, bjs “ 1 in (1) hold. The homeomorphisms taiu are
supported on a closed neighborhood of the union γ1 Y ¨ ¨ ¨ Y γn, which is an
embedded disk Dn`1 with n`1 marked points. The mapping class group of
Dn`1 is isomorphic to the braid group Bn`1. Embedding Dn`1 in Σ0 with
2n` 2 marked points induces a homomorphism

ι : Bn`1 Ñ ModpΣ0,Bp2n` 2qq.

The homomorphism ι maps the standard braid generators to the ai, and so
the braid relations (2) and (3) hold. The same applies to the bi.

Relations (4) and (5) reflect the fact that squaring a half-twist about an
arc is homotopic to a Dehn twist about a curve surrounding the arc. Recall
that if τγ is a half-twist about an arc γ in Σ0 and f is a homeomorphism
of Σ0, then f´1τγf “ τfpγq. We realize caic

´1 “ bi in (6) by applying the

homeomorphism c´1 to the arc γi, where γi is the arc about which ai is a
half-twist.

5.2. Conjugation relations. We now shift our attention to finding the
relations that comprise R2 from Lemma 2.2. Lemmas 5.4, 5.5, and 5.6 give
us the conjugation relations.
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i jγi,j

c´1pγi,jq
c´1

γi´1,j´1

A´1
i´1,ipAi´1,jpγi,jqq

Ai´1,j

A´1
i´1,i

Figure 4. Both i and j are even. The left figure shows γi,j
and its image under c´1, which is a product of half-twists
about the dashed arcs. Starting at the top left and going
clockwise, the right figure shows γi´1,j´1, Ai´1,jpγi´1,j´1q,

and A´1
i´1,ipAi´1,jpγi´1,j´1qq. The dashed curves indicate the

curves about which Ai´1,j and A´1
i´1,i are Dehn twists.

First we consider conjugation of the pure braid group generators by c.
Let

(8) Xi,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Ai,j for odd i, j “ i` 1

Ai`1,j`1 for odd i, j

pAi´1,jA
´1
i´1,iq

´1Ai´1,j´1pAi´1,jA
´1
i´1,iq for even i, j

A´1
i,j`1Ai´1,j`1Ai,j`1 for even i, odd j

Aj´1,jAi`1,j´1A
´1
j´1,j otherwise.

Lemma 5.4. For 1 ď i ă j ď 2n` 1, let Ai,j and c be as above. Then

cAi,jc
´1 “ Xi,j

where the Xi,j are as in (8).

Proof. Recall that

Ai,j “ pσj´1σj´2 ¨ ¨ ¨σi`1qσ
2
i pσj´1σj´2 ¨ ¨ ¨σi`1q

´1

for 1 ď i ă j ď 2n` 1 and c “ σ1σ3 ¨ ¨ ¨σ2n´1σ2n`1.
Let γi,j be the simple closed curve in Σ0 about which Ai,j is a Dehn twist.

Let Tγi,j “ Ai,j . Recall that cTγi,jc
´1 “ Tc´1pγi,jq (where we maintain our

convention that we read products from left to right). Therefore to prove the
lemma, it suffices to show that c´1pγi,jq is the curve about which Xi,j is a
twist. The homeomorphism c´1 is the product of (counterclockwise) twists
σ1, σ3, ¨ ¨ ¨ , σ2n`1. The cases for the image of c´1pγi,jq depend on the signs
of the intersections of arcs about which c is a twist and γi,j .

We first note that when i is odd and j “ i ` 1 the curve γi,j is disjoint
from c, therefore cAi,jc

´1 “ Ai,j . We then consider the remaining cases.

Case. i and j are both even. The curves γi,j and c´1pγi,jq where i and j
are even are shown in Figure 4.
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As seen in Figure 4, the curve c´1pγi,jq is a conjugate of γi´1,j´1 by an
element of PModpΣ0,Bp2n` 2qq. In Figure 4, we see that

A´1
i´1,jpAi´1,jpγi´1,j´1qq

(with composition applied as indicated) is isotopic to c´1pγi,jq.

The remaining cases can be calculated similarly. The details are left as
an exercise or are available in [GhW16]. �

Next we consider conjugation of the elements Ai,j by the generators a`.
The resulting relations (along with the conjugates by b` in Lemma 5.6)

correspond to the conjugates of the words in rSK by the words in rSH . Let

(9) Yi,j,` “
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Ai,j if i ă 2`´ 1, j ą 2`` 1,

Ai,j if i, j ą 2`` 1 or i, j ă 2`´ 1

Ai,j`2 if i ă 2`´ 1, j “ 2`´ 1

pA´1
i,j´1Ai,j`1q

´1Ai,jpA
´1
i,j´1Ai,j`1q if i ă 2`´ 1, j “ 2`

A´1
i,j Ai,j´2Ai,j if i ă 2`´ 1, j “ 2`` 1

Ai,j`1Aj,j`1A
´1
i,j`1 if i “ 2`´ 1, j “ 2`

Ai,j if i “ 2`´ 1, j “ 2`` 1

Ai`2,j if i “ 2`´ 1, j ą 2`` 1

Ai´1,j´1 if i “ 2`, j “ 2`` 1

pA´1
i,i`1Ai´1,iq

´1Ai,jpA
´1
i,i`1Ai´1,iq if i “ 2`, j ą 2`` 1

A´1
i,j Ai´2,jAi,j if i “ 2`` 1, j ą 2`` 1.

Lemma 5.5. For 1 ď i ă j ď 2n ` 1 and ` P t1, . . . , nu, let Ai,j and a` be
as above. Then

a`Ai,ja
´1
` “ Yi,j,`

where the Yi,j,` are as in (9).

Proof. Recall that Ai,j “ pσj´1σj´2 ¨ ¨ ¨σi`1qσ
2
i pσj´1σj´2 ¨ ¨ ¨σi`1q

´1 and

a` “ σ2`σ2`´1σ
´1
2` . The transpositions σp and σq commute if |p ´ q| ě 2.

Therefore a` and Ai,j commute if they only contain commuting transposi-
tions. That is if either both p2`´ 1q ´ pj ´ 1q ě 2 and 2`´ pi` 1q ě 2, or if
i, j ą 2`` 1, or if i, j ă 2`´ 1.

Therefore in the first two cases of (9), a` and Ai,j commute. In the
remaining cases, at least one of i and j is equal to 2`´ 1, 2`, or 2`` 1. The
calculations are routine, but lengthy and can be done either algebraically or
topologically as in Lemma 5.4. Details are also given in [GhW16]. �

Next we consider conjugation of the elements Ai,j by the generators b`.
The resulting relations correspond to the remaining words in the set of

conjugates of the words in rSK by the words in rSH .
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Let
(10)

Zi,j,` “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Ai,j if i ă 2`, j ą 2`` 2

Ai,j if i, j ą 2`` 2 or i, j ă 2`

Ai,j`2 if i ă 2`, j “ 2`

pA´1
i,j´1Ai,j`1q

´1Ai,jpA
´1
i,j´1Ai,j`1q if i ă 2`, j “ 2`` 1

A´1
i,j Ai,j´2Ai,j if i ă 2`, j “ 2`` 2

Ai,j`1Aj,j`1A
´1
i,j`1 if i “ 2`, j “ 2`` 1

Ai,j if i “ 2`, j “ 2`` 2

Ai`2,j if i “ 2`, j ą 2`` 2

Ai´1,j´1 if i “ 2`` 1, j “ 2`` 2

pA´1
i,i`1Ai´1,iq

´1Ai,jpA
´1
i,i`1Ai´1,iq if i “ 2`` 1, j ą 2`` 2

A´1
i,j Ai´2,jAi,j if i “ 2`` 2, j ą 2`` 2.

Lemma 5.6. For 1 ď i ă j ď 2n ` 1 and ` P t1, . . . , nu, let Ai,j and b` be
as above. Then

b`Ai,jb
´1
` “ Zi,j,`

where the Zi,j,` are as in (10).

The proof of Lemma 5.6 is the same as the proof of Lemma 5.5 with an
increase in index by 1.

5.3. Proof of the presentation. We are now ready to write down a pre-
sentation for LModg,kpΣ0,Bq.

Theorem 5.7. Let Σg be a surface of genus g ě 2. Let Σg Ñ Σ0 be a
balanced superelliptic cover of degree k ě 3 with set of branch points

B “ Bp2n` 2q.

The subgroup LModg,kpΣ0,Bq is generated by

Ai,j “ pσj´1σj´2 ¨ ¨ ¨σi`1qσ
2
i pσj´1σj´2 ¨ ¨ ¨σi`1q

´1, 1 ď i ă j ď 2n` 1

c “ σ1σ3 ¨ ¨ ¨σ2n´1σ2n`1

ai “ σ2iσ2i´1σ
´1
2i , i P t1, . . . , nu

bi “ σ2i`1σ2iσ
´1
2i`1, i P t1, . . . , nu.

For ` P t1, . . . , 2n ` 1u, let A`,2n`2 be defined as in Lemma 5.2. Then
LModg,kpΣ0,Bq has defining relations:

Commutator relations:

(1) rAi,j , Ap,qs “ 1 where 1 ď i ă j ă p ă q ď 2n` 1.
(2) rAi,q, Aj,ps “ 1 where 1 ď i ă j ă p ă q ď 2n` 1.
(3)

“

Ap,qAi,pA
´1
p,q , Aj,q

‰

“ 1 where 1 ď i ă j ă p ă q ď 2n` 1.
(4) rai, bjs “ Ci,j where Ci,j are as in (7).

Braid relations:
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(5) Ai,pAj,pAi,j “ Aj,pAi,jAi,p “ Ai,jAi,pAj,p where 1 ď i ă j ă p ď
2n` 1.

(6) aiai`1ai “ ai`1aiai`1 and bibi`1bi “ bi`1bibi`1 for i P t1, . . . , n´1u.
(7) rai, ajs “ rbi, bjs “ 1 if |j ´ i| ą 1.

Subsurface support:
(8) pA1,2A1,3 ¨ ¨ ¨A1,m´1q ¨ ¨ ¨ pAm´3,n´2Am´3,n´1qpAm´2,m´1q “ 1 for

m “ 2n` 2.
Half twists squared are Dehn twists:

(9) a2
i “ A2i´1,2i`1 and b2i “ A2i,2i`2 for i P t1, . . . , nu.

(10) c2 “ A1,2A3,4 ¨ ¨ ¨A2n`1,2n`2.
Parity flip:

(11) caic
´1b´1

i “ 1
Conjugation relations:

(12) cAi,jc
´1 “ Xi,j where the Xi,j are as in (8).

(13) a`Ai,ja
´1
` “ Yi,j,` where the Yi,j,` are as in (9).

(14) b`Ai,jb
´1
` “ Zi,j,` where the Zi,j,` are as in (10).

Proof. We prove the elements in (6) are the generators of LModp,kpΣ0,Bq
in Lemma 5.1.

Let rRK denote the image of the relations of PModpΣ0,Bp2n ` 2qq in

LModg,kpΣ0,Bp2n`2qq. Then rRK consists of the relations (1), (2), (3), (5),
and (8) by Lemma 4.1.

Let R1 denote the lifts in LModp,kpΣ0,Bq of the relations of W2n`2. The
relations (4), (6), (7), (9), (10), and (11) are the relations of R1 in Lem-
ma 5.3.

Finally, the set R2 in Lemma 2.2 consists of the relations (12)–(14) as
proved in Lemmas 5.4, 5.5, and 5.6.

By Lemma 2.2 the sets rRK , R1, and R2 comprise all of the relations of
LModp,kpΣ0,Bq. �

The strategy we employed to find this presentation can be used to find a
presentation for LModppΣ0,Bq where p : Σg Ñ Σ0 is any abelian branched
cover of the sphere. Indeed, LModppΣ0,Bq can be written as a group ex-

tension of pΨpLModppΣ0,Bqq by PModpΣ0,Bq. If one can compute a presen-

tation for pΨpLModppΣ0,Bqq, which is a subgroup of the symmetric group
S|B|, then the generators of LModppΣ0,Bq will be the lifts of the genera-

tors of pΨpLModppΣ0,Bqq and the Dehn twists Ai,j in Theorem 5.7. The
relations can then be found by performing the analogous computations to
Lemmas 5.3, 5.4, 5.5, and 5.6 and applying Lemma 2.2.

6. Abelianization

In this section we will prove Theorems 1.1 and 1.2. Recall that for
any group G, H1pG;Zq – G{rG,Gs. For this section, fix k ě 3 and let
pg,k : Σg Ñ Σ0 be the balanced superelliptic cover of degree k. Recall that
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there are 2n ` 2 branch points where n “ g{pk ´ 1q. The abelianization of
LModg,kpΣ0,Bq depends on n. For ease of notation, let

Gn “ LModg,kpΣ0,Bq
for the remainder of this section. Let φ : Gn Ñ Gn{rGn, Gns be the abelian-
ization map. Note that if a, b P Gn are in the same conjugacy class of Gn,
then φpaq “ φpbq.

A presentation for Gn{rGn, Gns is given by taking a presentation for Gn
and adding the set of all commutators to the set of defining relations. We
begin with the presentation given in Theorem 5.7.

Performing Tietze transformations we may add the generators A`,2n`2 for
` P t1, . . . , 2n` 1u along with the relations

A`,2n`2 “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq

where the Ai,j are as in Lemma 5.2.

Lemma 6.1. If j ´ i ” t´ s mod 2, then Ai,j is conjugate to As,t in Gn.

Proof. We consider two cases: either j ´ i ” t ´ s ” 0 mod 2 or j ´ i ”
t´ s ” 1 mod 2.

Case 1. j ´ i ” t´ s ” 0 mod 2. Let i and j be even. Recall conjugation
relations

b`Ai,jb
´1
` “ A´1

i,j Ai,j´2Ai,j

for i ă 2` and j “ 2n` 2, and

b`Ai,jb
´1
` “ Ai,j`2

for i ă 2` and j “ 2`. Therefore for any fixed even i, all generators Ai,j with
even j are in the same conjugacy class of Gn. We also have the conjugation
relations

b`Ai,jb
´1
` “ Ai`2,j

for i “ 2` and j ą 2`` 2, and

b`Ai,jb
´1
` “ A´1

i,j Ai´2,jAi,j

for i “ 2` ` 2 and j ą 2` ` 2. Therefore for any fixed even j, all the Ai,j
such that i is even are in the same conjugacy class of Gn. Then by varying
j, we conclude that if i, j, s, t are all even, then Ai,j and As,t are conjugate.

Similarly we can consider the conjugacy relations a`Ai,ja
´1
` “ Yi,j,` to

conclude that if i, j, s, t are all odd, then Ai,j is conjugate to As,t in Gn.
Observe that cA1,3c

´1 “ A2,4. We may finally conclude that if j ´ i ”
t´ s ” 0 mod 2, then Ai,j is conjugate to As,t in Gn.

Case 2. j ´ i ” t´ s ” 1 mod 2. Similar to the proof of Case 1 above, we
use relations from the family of relations a`Ai,ja

´1
` “ Yi,j,` to conclude that

for any fixed even i, all the Ai,j for any odd j are in the same conjugacy

class of G. Using relations of the form b`Ai,jb
´1
` “ Zi,j,` gives us that for

any fixed odd j, all the Ai,j for any even i are in the same conjugacy class
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of Gn. Therefore if i and s are even and j and t are odd, then Ai,j and As,t
are conjugate in Gn.

Similarly, if i and s are odd and j and t are even, then Ai,j and As,t are
conjugate in Gn.

Finally, the relation cA2,3c
´1 “ A´1

2,4A1,4A2,4 allows us to conclude that if
j ´ i ” t ´ s ” 1 mod 2, then Ai,j is conjugate to As,t in Gn, completing
the proof. �

From now on, let A “ φpA1,2q and B “ φpA1,3q.

Lemma 6.2. For each ` P t1, . . . , 2n` 1u, consider the relation

A`,2n`2 “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq

where the Ai,j are as in Lemma 5.2. Applying φ to each of these relations

gives the relation Bn2´n “ A1´n2
in Gn{rGn, Gns.

Proof. Fix ` P t1, . . . , 2n` 1u and let

W “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq

W “ pA1,2 ¨ ¨ ¨A1,2n`1qpA2,3 ¨ ¨ ¨A2,2n`1q ¨ ¨ ¨ pA2n´1,2nA2n´1,2n`1qpA2n,2n`1q

L “
ź

1ďiăjď2n`1
i“` or j“`

Ai,j .

Observe that φpW q “ φpW qφpLq´1. By Lemma 6.1 we have

φpW q “ ppABqnqppABqn´1AqppABqn´1q ¨ ¨ ¨ pABqpAq

“ A2nA2pn´1q ¨ ¨ ¨A2BnB2pn´1qB2pn´2q ¨ ¨ ¨B2

“ Anpn`1qBn2

since
řn´1
i“1 2i “ npn´ 1q.

If ` is even, φpLq “ An`1Bn´1. Applying φ to the relation above gives

B “ φpW q “ Anpn`1qBn2
A´n´1B1´n.

This rearranges to Bn2´n “ A1´n2
.

If ` is odd, φpLq “ AnBn. Applying φ to the relation above gives

Bn2´n “ A1´n2
. �

Lemma 6.3. In the abelianization of Gn, Bn2
“ A´n

2´1.

Proof. Consider the subsurface support relation,

pA1,2 ¨ ¨ ¨A1,2n`1qpA2,3 ¨ ¨ ¨A2,2n`1q ¨ ¨ ¨ pA2n´1,2nA2n´1,2n`1qpA2n,2n`1q “ 1.

Applying φ to both sides gives 1 “ Anpn`1qBn2
by the computation of φpW q

in the proof of Lemma 6.2. �

Lemma 6.4. For all 1 ď i, j ď n, φpaiq “ φpbjq.
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Proof. By Lemma 5.3, we have the braid relations

pa´1
i`1aiqai`1pa

´1
i`1aiq

´1 “ ai

for i P t1, . . . , n´1u and pb´1
i`1biqbi`1pb

´1
i`1biq

´1 “ bi for all i P t1, . . . , n´1u.
Therefore all φpaiq “ φpajq and φpbiq “ φpbjq for all i, j P t1, . . . , n ´ 1u.
The parity flip relation ca1c

´1 “ b1 allows us to deduce that ai and bj are
conjugate for all 1 ď i, j ď n and φpaiq “ φpbjq. �

Lemma 6.5. The abelianization Gn{rGn, Gns admits the presentation

xa, d,A,B | Bn2´n “ A1´n2
, Bn2

“ A´n
2´1, a2 “ B, d2 “ An`1, T y

where a “ φpa1q, d “ φpcq, A “ φpA1,2q, B “ φpA1,3q, and T is the set of
all commutators.

Proof. Lemmas 6.1 and 6.4 show that the elements φpa1q, φpcq, φpA1,2q and
φpA1,3q form a generating set for Gn{rGn, Gns.

Lemmas 6.2 and 6.3 show that Bn2´n “ A1´n2
and Bn2

“ A´n
2´1 hold

in Gn{rGn, Gns. Applying φ to the relation a2
1 “ A1,3 shows that a2 “ B.

Applying φ to the relation c2 “ A1,2A3,4 ¨ ¨ ¨A2n`1,2n`2 gives the relation
d2 “ An`1.

Lemma 6.2 shows that for all ` P t1, . . . , 2n` 1u, the relation

A`,2n`2 “ pA1,2 ¨ ¨ ¨A1,2nqpA2,3 ¨ ¨ ¨A2,2nq ¨ ¨ ¨ pA2n´2,2n´1A2n´2,2nqpA2n´1,2nq

is derivable from T and Bn2´n “ A1´n2
.

It remains to show that in the abelianization, the relations from the pre-
sentation of Gn in Theorem 5.7 can be derived from the proposed defining
relations.

The commutator relations (1)–(4) of Theorem 5.7 all map to the identity
under φ. The braid relations (5) and (7) of Theorem 5.7 are derivable from
T . The braid relation (6) is also derivable from T since all relations in this
family take the form a “ a in the abelianization. Relation (8) is derivable

from Bn2
“ A´n

2´1 by Lemma 6.3. Relations (9) and (10) are derivable
from a2 “ B and d2 “ An`1 respectively. The image φpcaic

´1b´1
i q is the

identity by Lemma 6.4. Finally, the conjugation relations (12)–(14) are all
of the form A “ A or B “ B in the abelianization, so they are all derivable
from T . �

We now have everything needed to prove Theorem 1.1.

Proof of Theorem 1.1. Recall

H1pLModg,kpΣ0,Bq;Zq “ Gn{rGn, Gns.

We will start with the presentation from Lemma 6.5 and perform Tietze
transformations to simplify it.

Starting with Bn2´n “ A1´n2
, we may substitute in the relation

Bn2
“ A´n

2´1
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to obtain A2 “ B´n. Thus we may add the relation A2 “ B´n to the set

of defining relations. Observe Bn2´n “ A1´n2
is derivable from A2 “ B´n

and Bn2
“ A´n

2´1 so we may delete the relation Bn2´n “ A1´n2
.

Similarly, we may add the relation Apn´1q2 “ 1 and delete the relation

Bn2
“ A´n

2´1. Deleting the generator B and replacing it with a2 then gives
the presentation

(11) Gn{rGn, Gns – xa, d,A | A
2 “ a´2n, Apn´1q2 “ 1, d2 “ An`1, T y.

This presentation has presentation matrix

»

–

2n 0 2
0 0 pn´ 1q2

0 2 ´1´ n

fi

fl.

If n is odd, this matrix has Smith normal form

»

–

2 0 0
0 2 0
0 0 npn´ 1q2

fi

fl. There-

fore

H1pLModg,kpΣ0,Bq;Zq – Z{2Zˆ Z{2Zˆ Z{pnpn´ 1q2qZ.

If n is even, the presentation matrix has Smith normal form
»

–

1 0 0
0 2 0
0 0 2npn´ 1q2

fi

fl, so

H1pLModg,kpΣ0,Bq;Zq – Z{2Zˆ Z{p2npn´ 1q2qZ. �

The first Betti number of a group G is the rank of the abelian group
H1pG;Zq “ G{rG,Gs. We have the following corollary.

Let D̂ be the image of the deck group in ModpΣgq. Recall that

SModg,kpΣgq

is the normalizer of D̂ in ModpΣgq.

Proof of Theorem 1.2. A result of Birman and Hilden in [BH73] gives a
short exact sequence

1 ÝÑ Z{kZ ÝÑ SModg,kpΣgq ÝÑ LModg,kpΣ0,Bq ÝÑ 1.

Since the abelianization functor is right exact, we have the exact sequence

Z{kZ ÝÑ H1pSModg,kpΣgq;Zq ÝÑ H1pLModg,kpΣ0,Bq;Zq ÝÑ 1.

Since Z{kZ and H1pLModg,kpΣ0,Bq;Zq are both finite, so is
H1pSModg,kpΣgq;Zq and the result follows. �

It is known that Theorem 1.2 is also true for the hyperelliptic mapping
class group SModg,2pΣgq [S09].
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