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Dense images of the power maps in Lie
groups and minimal parabolic subgroups

Arunava Mandal

Abstract. In this note, we study the density of the images of the k-th
power maps Pk : G → G given by g → gk, for a connected Lie group
G. We characterize Pk(G) being dense in G in terms of the minimal
parabolic subgroups of G. For a simply connected simple Lie group G,
we characterize all integers k, for which Pk(G) has dense image in G.
We show also that for a simply connected semisimple Lie group weak
exponentiality is equivalent to the image of the squaring map being
dense.
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1. Introduction

Let G be a connected Lie group. For any positive integer k, let Pk denote
the k-th power map, defined by Pk(g) = gk for all g ∈ G. There is a consid-
erable amount of literature on the surjectivity of the individual power maps
(for e.g. [Ch], [DM], and see references cited there), which can be applied, in
particular, to study exponentiality of Lie groups. Here we consider a weaker
question than surjectivity of the power maps, namely that of the image be-
ing dense. In the case of the exponential map, a connected Lie group for
which the image is dense is said to be weakly exponential; this property is
well-studied (for e.g. [HM], [H], [N], etc.). However, the question of density
of images of the individual power maps has not been studied in detail so far.

In [BhM], it was shown that for a connected Lie group G, the image of
the exponential map is dense in G if and only if Pk(G) is dense in G for all
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k ∈ N. Criteria were given for the image of the individual power maps to be
dense, in terms of conditions on regular elements and Cartan subgroups of
G. It was proved that Pk(G) being dense depends only on the semisimple
quotient of G. For simple Lie groups, the set of integers k, for which Pk(G)
is dense, was analyzed.

Let G̃ be a simply connected simple Lie group. When either G̃ is compact
or Ad(G̃) is split, or Z(G̃) does not contain an infinite cyclic subgroup,

conditions for Pk(G̃) to be dense were described in [BhM]. In general, the
question remains open.

In this context, we obtain here a characterization of image of the density
of the power map in terms of the minimal parabolic subgroups, analogous
to the result of Jaworski for the exponential map (see Theorem 1.1). Using
this, we characterize the integers k, for which Pk has dense image, for simply
connected simple Lie groups (see Theorem 1.2). From the results, we deduce

equivalence between weak exponentiality of G̃ and density of P2(G̃), for a

simply connected semisimple Lie group G̃ (see Corollary 1.3).
Let G be a connected semisimple Lie group and let Ad : G → Ad(G)

be the adjoint representation of G. Consider an Iwasawa decomposition
G = KAN , where K, A, and N are closed subgroups of G, Ad(K) is a max-
imal compact subgroup of Ad(G), Ad(A) is a maximal connected subgroup
consisting of elements diagonalisable over R, and N is a simply connected
nilpotent Lie subgroup normalised by A. Note that K contains the center
of G, and K is compact if and only if the center is finite.

We denote by M the subgroup ZK(A), the centralizer of A in K. Then M
is a closed (not necessarily connected) subgroup of G, and it normalizes N.
The subgroup P := MAN is a minimal parabolic subgroup of G associated
with the Iwasawa decomposition G = KAN. We recall that all minimal
parabolic subgroups of G are conjugate to each other.

We have the following theorem on density of the images of the power
maps.

Theorem 1.1. Let G be a connected semisimple Lie group and P be a
minimal parabolic subgroup of G. For k ∈ N, Pk(G) is dense if and only if
Pk(P ) is dense.

From Theorem 1.1 we deduce the following results, using the structure of
the subgroup M̃ of the minimal parabolic subgroup P̃ = M̃AN (notations

as before) of G̃.

Theorem 1.2. Let G̃ be a simply connected simple Lie group. Then the
following statements hold:

(i) If G̃ = S̃L(2,R), S̃O
∗
(2n) (n even), S̃p(n,R), S̃U(p, p), ˜Spin

∗
(2, q)

(q 6= 2), or Ẽ7(−25), then Pk(G̃) is not dense in G̃ for any k ∈ N.
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(ii) If G̃ = S̃L(n,R) (n > 2), ˜Spin
∗
(p, q) (p 6= 1, 2 and q 6= 2, and

p ≤ q), Ẽ6(6), Ẽ6(2), Ẽ7(7), Ẽ7(−5), Ẽ8(8), Ẽ8(−24), F̃4(4), or G̃2(2),

then Pk(G̃) is dense in G̃ if and only if k is an odd integer.

(iii) If G̃ = S̃O
∗
(2n) (n odd), Sp(p, q) (p ≤ q), SU∗(2n), S̃U(p, q) (1 ≤

p < q), ˜Spin
∗
(1, q) (q > 3), Ẽ6(−14), Ẽ6(−26), or F̃4(−20), then Pk(G̃)

is dense in G̃ for all k ∈ N.

Let g denote the Lie algebra of G and let exp : g → G be the associated
exponential map. We recall that a connected Lie group G is said to be weakly
exponential if exp(g) is dense in G. It was proved by W. Jaworski that G
is weakly exponential if and only if all its minimal parabolic subgroups are
connected ([Ja, Theorem 12]). The result can be deduced from Theorem 1.1
(see Corollary 4.2).

For a simply connected semisimple Lie group, we further show the follow-
ing.

Corollary 1.3. Let G̃ be a simply connected semisimple Lie group. Then
G̃ is weakly exponential if and only if P2(G̃) is dense in G̃.

The paper is organized as follows. In §2, we recall some definitions, prove
some preliminary results about regular elements and minimal parabolic sub-
groups, and deduce Theorem 1.1. In §3, we prove Theorem 1.2. Corollar-
ies 4.2 and 1.3 are proved in §4.

2. Characterization of density of the image of Pk

We begin by recalling some definitions, and noting some preliminary re-
sults.

Definition 1 ([H]). An element g in a Lie group G is said to be regular if
the nilspace N(Adg − I) has minimal possible dimension.

The set of regular elements in G is denoted by Reg(G). The set Reg(G)
is an open dense subset of G.

Let G be a group of R-points of a complex semisimple algebraic group
G defined over R. Let g ∈ G = G(R). Then g = gsgu, where gs, and gu
are the Jordan semisimple and unipotent components of g, and the nilspace
of (Adg − I) is equal to Ker(Adgs − I). The dimension of Ker(Adgs − I) is
equal to the dimension of the centralizer ZG(gs). Hence g is regular in G
if and only if ZG(gs) is of minimal possible dimension. Thus for the case
of algebraic groups, Definition 1 coincides with Borel’s definition (see[Bo,
§12.2]) of a regular element. Also, we note that every regular element in G
is necessarily semisimple.

The following results would be generally known to experts in the area.
We include proofs for the convenience of the reader, for want of suitable
references.
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Lemma 2.1. Let G be a connected semisimple Lie group and let P be a
minimal parabolic subgroup of G. Then Reg(G) ∩ P is dense in P.

Proof. We first note that we may assume that G is linear: Let G1 =
G/Z(G) and π : G → G1 be the natural covering map. Then G1 is a
linear group, with P1 := π(P ) as a minimal parabolic subgroup and we have
π−1(Reg(G1)∩P1) = Reg(G)∩P , so it is enough to prove that Reg(G1)∩P1

is dense in P1.
Let G be a linear semisimple Lie group and G be its Zariski closure. Let

P = MAN be a minimal parabolic subgroup of G. Let T = HA, where H
is a maximal torus in M. Then T is an open subgroup of a maximal torus in
G. Let T be the Zariski closure of T in G. Then T is a maximal torus in G
and T is an open subgroup of T(R). Then Reg(G) = Reg(G(R))∩G. Since
T is a maximal torus in G, it follows that T(R) ∩ Reg(G(R)) is dense in
T(R). Since T is open in T(R), this further implies that T ∩Reg(G) is dense
in T. The conjugates of T in P form a dense subset of P. As conjugates of
regular elements are regular, this implies that Rag(G)∩P is dense in P. �

Lemma 2.2. Let G be a connected semisimple Lie group and let P be a
minimal parabolic subgroup of G. Let g ∈ Reg(G) ∩ P. Then there exists a
unique Cartan subgroup C such that g ∈ C ⊂ P.
Proof. Let G1 = G/Z(G) and π : G → G1 denote the natural projection
map. Recall that π−1(Reg(G1)) = Reg(G) ([Bou, Proposition 2, §2]) and
C is a Cartan subgroup if and only if C1 = C/Z(G) is a Cartan subgroup.
Hence we may assume G to be a linear group. Furthermore, we can assume
that G is an algebraic group. Indeed, any connected linear semisimple Lie
group is the connected component of the identity in the Hausdorff topology
in an algebraic group, and the Cartan subgroup (resp. minimal parabolic
subgroup) in G is the intersection with G of a Cartan subgroup (resp. min-
imal parabolic subgroup) in the algebraic group.

Let g ∈ Reg(G)∩P. It is known that any regular element of G is semisim-
ple and ZG(g)0 is a Cartan subgroup of G (can be deduced from [Bo,
Proposition 12.2], as centralizer commutes with base changes). It suffices to
prove that ZG(g)0 is contained in P. By a conjugation we may assume that
P = MAN , where G = KAN is an Iwasawa decomposition, M = ZK(A),
and that g ∈ MA. We note that for g ∈ MA, ZG(g)0 is contained in P.
Indeed, g is regular, and hence 1 is not an eigenvalue of Ad(g)|n, where n is
the Lie algebra of N. Since g is semisimple, by [Bo, Corollary 11.12], we have
g ∈ ZG(g)0 (where G is the Zariski closure of G), and hence g ∈ ZG(g)0 as
required.

The statement about the uniqueness follows from the fact that for a given
regular element, there exists a unique Cartan subgroup containing it. �

Proof of Theorem 1.1. Suppose that Pk(G) is dense in G. By Lem-
ma 2.1, it is enough to show that Reg(G)∩P ⊆ Pk(P ). Let g ∈ Reg(G)∩P.
Then by Lemma 2.2, there exists a Cartan subgroup C containing g, and
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contained in P. Therefore by applying [BhM, Theorem 1.1], we get that
there exists h in C (and hence in P ) such that hk = g.

For the converse, let P be a minimal parabolic subgroup of G. We observe
that E = ∪g∈GgPg−1 is dense in G. Since Pk(G) (the closure of Pk(G) in
G) is invariant under conjugation and contains P , we get that it contains

E. Hence Pk(G) = G. �

For any connected Lie group G, let R = Rad(G) (radical of G). A sub-
group P of G is called a minimal parabolic subgroup of G, if the following
hold:

(i) P ⊃ R.
(ii) P/R is a minimal parabolic subgroup of the connected semisimple

group G/R.

Theorem 1.1 can be extended to all connected Lie groups. The follow-
ing corollary is a straightforward application of [BhM, Proposition 3.3] and
Theorem 1.1, and hence we omit the proof.

Corollary 2.3. Let G be a connected Lie group and k ∈ N. Then Pk(G) is
dense in G if and only if Pk(P ) is dense in P for every minimal parabolic
subgroup P of G.

3. Density of images for simple Lie groups

In this section, we determine conditions for density of the image of Pk

for simply connected covering groups of simple Lie groups, and prove The-
orem 1.2.

Suppose G is a linear Lie group and G = KAN be an Iwasawa decompo-
sition of G. Let π : G̃ → G be the covering of G with K̃ = π−1(K). Then

G̃ = K̃AN. If we set M̃ = π−1(M), then M̃ = ZK̃(A) and P̃ = M̃AN is

the minimal parabolic subgroup of G̃.
Let us fix some notations. Let G̃ be a simply connected simple Lie group

and G = Ad(G̃). Therefore K̃ is the pullback of the maximal compact
subgroup of G.

Proposition 3.1. Let the notations G̃, P̃ , Ã and N be as above. Suppose
M̃/M̃∗ is a group of order 2m for some m > 0. Let k ∈ N. If Pk : M̃ → M̃

is surjective, then Pk : P̃ → P̃ is dense.

Proof. We recall that N is a simply connected nilpotent Lie group. Let

N = N0 ⊃ N1 ⊃ · · · ⊃ Nr = {e}
be the central series of N. Let Vj := Nj/Nj+1 for j = 0, 1, . . . , r−1. We note
that Vj is a real vector space for all j, as N is simply connected. Consider

the representations ψj : M̃A → GL(Vj) for j = 0, 1, . . . , r − 1, and let

Kj = Ker(ψj). Note that Kj is a closed subgroup of M̃A for all j. Then one
of the following two statements holds:
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(i) dim(Kj) < dim(M̃A) for all j.

(ii) For some j, dim(Kj) = dim(M̃A).

Suppose (i) holds. Then U := M̃A−∪jKj is a dense open set in M̃A. It
is easy to see that all elements in U act non trivially on all Vj ’s. Therefore

by [DM, Theorem 1.1(i)], gN ⊂ Pk(P̃ ) for all g ∈ U. If we take W = U ×N ,

then W is a dense subset of P̃ such that W ⊂ Pk(P̃ ).
Now suppose (ii) holds. Then Kj is the union of some connected com-

ponents of M̃A. Since M̃A/M̃∗A is a group of order 2m (m > 0) and Pk

is surjective, we obtain that k is odd. Also, it follows that Pk(Kj) = Kj

for an odd integer k. Let F be the set of j ∈ {0, 1, . . . , r − 1} such that

dim(Kj) = dim(M̃A). Then for all i ∈ F , Pk(Ki) = Ki and hence for any el-

ement x in Ki, we have xN ⊂ Pk(P̃ ) by [DM, Theorem 1.1(i)]. Now ∪i/∈FKi

is a proper closed analytic subset of M̃A of smaller dimension. Hence as in
case (i), there exists a dense open set W ′ in M̃A such that W1 ⊂ Pk(P̃ ),
where W1 = W ′ ×N. �

Remark 3.2. Let G be a connected semisimple linear Lie group and P =
MAN be a minimal parabolic subgroup of G. Then M = F×M∗, where F is
a group whose elements are of order 2, and M∗ is the connected component
of the identity in M ([K, Theorem 7.53(c)]). Then for odd k, Pk(P ) is dense
in P (by Proposition 3.1). For even k, Pk(P ) = P ∗ and hence Pk : P → P
is not dense. The reader may compare this with [BhM, Remark 3.1]. From
this, one can also reprove [BhM, Corollary 1.5].

Proposition 3.3. Let G̃ be a simply connected Lie group, and let the nota-
tions be as in Proposition 3.1. Then the following statements hold:

(i) If M̃/M̃∗ has Z as a factor, then Pk(G̃) is not dense for any k.

(ii) If M̃/M̃∗ is a group of order 2m for some m > 0, then Pk(G̃) is
dense if and only if k is odd.

(iii) If M̃ is connected, then Pk(G̃) is dense for all k.

Proof. (i) The condition in the hypothesis implies that, Pk is not surjective

for the group M̃/M̃∗. Hence Pk : P̃ → P̃ is not dense. Therefore the result
follows from Theorem 1.1.

(ii) It is immediate from Theorem 1.1 that Pk is not dense for any even
integer k. For odd k, the statement follows from Proposition 3.1 and Theo-
rem 1.1.

(iii) In this case, P̃ is connected and hence by [Ja, Theorem 12], G̃ is

weakly exponential. This implies Pk is dense in G̃ for all k. �

We denote by E6,C, E7,C, E8,C, F4,C and G2,C the complex simply con-
nected simple exceptional Lie groups.

E6(6), E6(2), E6(−14) and E6(−26) denote connected noncompact real forms
of E6,C.

E7(7), E7(−5) and E7(−25) denote connected noncompact real forms of E7,C.
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E8(8) and E8(−24) denote connected noncompact real forms of E8,C.
F4(4) and F4(−20) denote connected noncompact real forms of F4,C.
G2(2) denotes connected noncompact real forms of G2,C.
Among these, E6(6), E7(7), E8(8) and F4(4) are split exceptional simple Lie

groups.

Proof of Theorem 1.2. (i) In these cases, from [Jo, Proposition 17.1, 17.4,

17.6, 17.7, 17.9, 14.1 respectively], it follows that M̃/M̃∗ has Z as a factor
group. Therefore the assertion follows from Proposition 3.3.

(ii) When G = E6(6), E7(7), E8(8) or F4(4), the assertion follows from [BhM,

Case-5]. In the rest of the cases, M̃/M̃∗ is a group of order 2m (m = p for
˜Spin
∗
(p, q) (p 6= 1, 2 and q 6= 2, and p ≤ q), m = 3 for Ẽ6(2), Ẽ7(−5),

Ẽ8(−24), and G̃2(2)) ([Jo, Proposition 17.1, 17.5, 13.1, 12.1, 10.4]). Hence by
Proposition 3.1, the result follows.

(iii) In this case M̃ is known to be connected; see [Jo, Proposition 17.2,
17.3, 17.6, 17.8, §17 (9), 15.1, §16]. The theorem therefore follows from
Proposition 3.3(iii). �

4. Application to weak exponentiality

In this section, we deduce Corollaries 4.2 and 1.3.
Let G be a group. An element g in G is said to be divisible if for all k ∈ N,

there exists hk ∈ G such that hkk = g. If all elements of G are divisible, then
G is said to be a divisible group.

Proposition 4.1. Let G be a connected semisimple Lie group and let P
be a minimal parabolic subgroup of G. If Pk(P ) is dense for every positive
integer k, then P is connected.

Proof. Let G1 = G/Z(G) and π : G → G1 be the natural projection map.
Let P1 = π(P ). We note that Z(G) is contained in P. Then we get the
following short exact sequence.

1→ Z(G)→ P → P1 → 1.

Let P ∗ and P ∗1 be the connected components of the identity in P and P1

respectively. Then we have the following short exact sequence.

1→ Z(G)/Z(G) ∩ P ∗ → P/P ∗ → P1/P
∗
1 → 1.

As G1 is a connected linear group, P1/P
∗
1 is finite. Since P/P ∗ is divisible,

so is P1/P
∗
1 . We observe that any finite divisible group is trivial and hence

P1 = P ∗1 . Thus P/P ∗ is a finitely generated abelian group (as Z(G) is
a finitely generated abelian group). Since any finitely generated divisible
abelian group is trivial, we get that P = P ∗. �

Theorem 1.1 can be used to deduce the following Corollary, which is well
known ([Ja, Theorem 12]).
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Corollary 4.2. Let G be a connected semisimple Lie group. Then the fol-
lowing are equivalent:

(i) G is weakly exponential.
(ii) All minimal parabolic subgroups of G are weakly exponential.

Proof. (i)⇒(ii) We note that G being weakly exponential implies Pk(G) is
dense in P for all k. Thus by Theorem 1.1, Pk(P ) is dense in P for all k,
and hence by Proposition 4.1, we get that P is connected. Now by applying
[BhM, Corollary 1.3], we get that (ii) holds.

(ii)⇒(i) Let P be a minimal parabolic subgroup. By hypothesis, P is
connected and Pk(P ) is dense in P for all k. Therefore by Theorem 1.1,
Pk(G) is dense in G for all k. Then by [BhM, Corollary 1.3], it follows that
G is weakly exponential. �

Proof of Corollary 1.3. Let G1, G2, . . . , Gr be the simple factors of G̃.
Since G̃ is simply connected, Gi is simply connected for all i, and

G̃ = G1 ×G2 × · · · ×Gr.

Now Pk(G̃) is dense in G̃ if and only if Pk(Gi) is dense in Gi for all i =
1, 2, . . . , r. By Theorem 1.2, it follows that Gi is weakly exponential if and
only if P2(Gi) is dense in Gi. Since G̃ is weakly exponential if and only if
each Gi is weakly exponential, the assertion as in the Corollary follows. �
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