
New York Journal of Mathematics
New York J. Math. 24 (2018) 233–239.

Concordances from connected sums of
torus knots to L-space knots

Charles Livingston

Abstract. If a knot is a nontrivial connected sum of positive torus
knots, then it is not concordant to an L-space knot.
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1. Introduction

In a recent paper about involutive knot Floer homology, Zemke [19] ob-
served that invariants arising from Heegaard Floer knot homology can ob-
struct a knot from being concordant to an L-space knot. He considered
examples of connected sums of torus knots, such as T (4, 5) #T (4, 5) and
−T (3, 4) #−T (4, 5) #T (5, 6), and noted that in some cases alternative ob-
structions are available. Here we use classical knot invariants along with the
Ozsváth–Szabó tau invariant [14], τ(K), to prove the following theorem.

Theorem. Let {(pi, qi)}i=1,...,n be a set of pairs of relatively prime positive
integers with 2 ≤ pi < qi for all i and with n > 1. Then #i T (pi, qi) is not
concordant to an L-space knot.

The main idea of the proof can be illustrated with the example K =
T (4, 5) #T (4, 5). Since τ(K) = 12, if K is concordant to a knot J , then
τ(J) = 12. If J is an L-space knot, then the Alexander polynomial of J
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is of degree 24. The Alexander polynomial ∆K(t) is the product of cy-
clotomic polynomials φ10(t)

2φ20(t)
2. Since the Levine–Tristram signature

function [10, 18] for K jumps by four at the roots of φ20(t) and φ10(t), the
same is true for J . This implies that φ10(t)

2φ20(t)
2 divides ∆J(t). By de-

gree considerations, this implies ∆J(t) = φ210(t)φ
2
20(t) = t24 − 2t23 + · · ·+ 1.

However all coefficients of the Alexander polynomial of an L-space knot are
±1.

Krcatovich [9] proved that all L-space knots are prime, so such connected
sums are definitely not L-space knots. A proof that such connected sums
cannot be concordant to L-space knots appears to be inaccessible using Hee-
gaard Floer theory alone. The proof of the main theorem depends on a
detailed analysis of the signature functions and Alexander polynomials of
connected sums of torus knots. This dependance on classical invariants
seems to be necessary, as the following example shows. We will see that
the connected sum T (2, 3) #T (2, 3) is not concordant to an L-space knot.
However, the torus knot T (2, 5) is an L-space knot. The Heegaard Floer
complex CFK∞(T (2, 5)) is formed from CFK∞(T (2, 3) #T (2, 3)) by adding
an acyclic summand, and thus known concordance invariants that arise from
CFK∞(K) cannot alone prove that K is not concordant to an L-space knot.
(See the survey [5] for a discussion of the role of acyclic summands in Hee-
gaard Floer knot theory.)

References. Basic facts about the Alexander polynomials of torus knots
are covered in textbooks on knot theory, such as [3, 17]. For facts about
L-space knots and the necessary Heegaard Floer theory, see [14, 15, 16].
Basic results concerning the Levine–Tristram signature function [10, 18], a
step-function on the unit interval, are contained in the original sources. Its
behavior under cabling is described in [11].

There is a jump function, JK(t), associated to the signature function of
a knot; this is defined in Section 2.2. One fact about JK(t) that is used is
that for each t,

∣∣JK(t)
∣∣ is bounded above by the order of e2πit as a root of

the Alexander polynomial ∆K(t). Also, the jump equals the order of that
root modulo two. This follows most easily from Milnor’s description [13] of
what are now called Milnor signatures, which Matumoto [12] proved equal
the jumps in the signature function; for recent presentations, see [6, 8].

Acknowledgments. Thanks are due to John Baldwin, Matt Hedden, Jen
Hom, David Krcatovich, Adam Levine, and Ian Zemke. Valuable comments
from the referee are also appreciated.

2. Torus knot Alexander polynomials and signature
functions

2.1. Alexander polynomials of torus knots. The Alexander polyno-
mial of the positive torus knot T (p, q) is given by

(1) ∆p,q(t) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
.
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Roots of this are pq-roots of unity that are not p-roots of unity or q-roots of
unity. Letting φn(t) denote the nth cyclotomic polynomial, we have:

Lemma 2.1. With notation as above,

∆p,q(t) =
∏

φαjβj (t),

where the product is over the set of all pairs (αj , βj) for which αj is a factor
of p, βj is a factor of q, and both are greater than 1.

Lemma 2.2. Consider a set of n torus knots, {T (pi, qi)}, and let di =
(pi − 1)(qi − 1) be the degree of the ∆T (pi,qi)(t). For K = #i T (pi, qi), the

two highest degree terms of the Alexander polynomial are t
∑
di − nt(

∑
di)−1.

Proof. Consider the numerator of the product of the Alexander polynomials
when is written in the quotient form described by Equation (1). The leading
term arises as the product of terms of degree

∑
(piqi + 1). (This results

from the product of the tpiqi terms times the product of the t terms in the n
factors (t−1).) The next term, of degree one less, is obtained from a similar
product, except one of the t terms from a (t−1) factor is not included, being
replaced with −1 in the product. There are n such possible terms to drop.

The leading term of the denominator is degree s =
∑
pi+

∑
qi. The next

highest degree term is of degree at most s− 2 (which would occur if one of
the pi or qi were equal to two). The result stated in the lemma is now easily
seen, for instance by considering the long division algorithm. �

2.2. Signature functions of torus knots. For a knot K ⊂ S3, let σK(t)
denote the signature of the hermitian form (1 − ω)VK + (1 − ω)V T

K , where
VK is a Seifert matrix and ω = e2πit. The associated jump function is given
by

JK(t) =
1

2

(
lim
s→t+

σK(s)− lim
s→t−

σK(s)

)
.

This function is a concordance invariant of K. Figure 1 illustrates the graph
of the signature function for the knot T (3, 7) on [0, 12 ], which has jumps

at { 1
21 ,

2
21 ,

4
21 ,

5
21 ,

8
21 ,

10
21}, each of value ±1. Notice that the jump at 1

21 is
negative. (The factor of 1/2 in the definition of JK(t) is included to simplify
notation. As defined, JK(t) = σK(t + ε) − σK(t) for all sufficiently small
ε > 0.)

Lemma 2.3. For any positive torus knot T (p, q) and for any positive integer
r, JK(1/r) ≤ 0.

Proof. We use a formula of Litherland [11] to study the signature function.
In this formula, we denote the integer lattice by Λ. For 0 ≤ x ≤ 1, let

S−(x) =

{
(i, j) ∈ Λ

∣∣∣∣ 0 < i < p, 0 < j < q, and
i

p
+
j

q
= x

}
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Figure 1.

and

S+(x) =

{
(i, j) ∈ Λ

∣∣∣∣ 0 < i < p, 0 < j < q, and
i

p
+
j

q
= 1 + x

}
.

According to [11], JT (p,q)(x) is given by the difference of counts:

JT (p,q)(x) = #S−(x)−#S+(x).

The lemma is a consequence of the observation that for any positive in-
teger r, #S−(1/r) = 0. To see this, we consider the equation

i

p
+
j

q
=

1

r
.

Multiplying by pq gives

iq + jp =
pq

r
.

Jumps in the signature function can occur only at roots of the Alexander
polynomial. Applying Lemma 2.1, we need to consider the case of r = α1β1,
where p = α1α2, α1 > 1, q = β1β2, and β1 > 1. Thus, our equation becomes

iq + jp = α2β2.

Since α2 divides p and α2β2 and is relatively prime to q, it must also divide
i. We write i = i′α2 and then divide by α2 to find

i′q + jα1 = β2.

Similarly, β2 divides q (and itself), so it divides jα1. However, β2 and α1

are relatively prime, so j = j′β2. Dividing yields

i′β1 + j′α1 = 1.

Clearly, since both summands are at least one, the sum is at least two.
Thus, there is no solution to the equation, and S−(1/r) = 0, as desired. �
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3. Concordances to L-space knots

We now prove our main theorem.

Theorem 3.1. Let {(pi, qi)}i=1,...,n be a set of pairs of relatively prime pos-
itive integers with 2 ≤ pi < qi for all i and with n > 1. Then #i T (pi, qi) is
not concordant to an L-space knot.

Proof. Let K = #i T (pi, qi). Then ∆K(t) =
∏
j φrj (t)

mj for some set of
distinct rj and exponents mj > 0. Notice that mj is precisely the number
of pairs (pi, qi) for which rj can be written as a product of factor of pi and
a factor of qi, both of which are greater than 1.

For those T (pi, qi) for which φrj (t) is a factor of ∆pi,qi(t), that factor has
exponent one, and hence the jump at 1/rj is either ±1. By Lemma 2.3, the
jump is −1. It now follows that the jump in the signature function of K at
t = 1

rj
equals −mj .

Suppose that J is concordant to K. Then the jump in the signature
function of J at t = 1

rj
also equals −mj . Thus, φrj (t)

mj is a factor of ∆J(t).

It follows that degree(∆J(t)) ≥ degree(∆K(t)).
For a connected sum of positive torus knots, 2τ(K) = degree(∆K(t)).

Also, for any L-space knot, 2τ(J) = degree (∆J(t)). Thus, we have the
inequalities

2τ(K) = degree(∆K(t)) ≤ degree(∆J(t)) = 2τ(J).

But τ(J) = τ(K), so we conclude

∆K(t) = ∆J(t).

By Lemma 2.2, this polynomial does not have all nonzero coefficients equal
to ±1, and thus it cannot be the Alexander polynomial of an L-space knot.

�

4. Generalizations

There are cases in which the main theorem extends to connected sums
of torus knots, not all of which are positive. Here we discuss a few basic
examples. Recently, Samantha Allen [1] proved that the subgroup of the
concordance group generated by a pair of torus knots contains no nontrivial
L-space knots other than the two torus knots themselves.

The simplest example is K = T (2, 5) #−T (2, 3). It has τ(K) = 1 and
Alexander polynomial φ6(t)φ10(t). Since the signature function jumps at all
the 6 and 10 roots of unity, any J concordant to K would have its Alexander
polynomial divisible by ∆K(t), and thus would have degree greater than 2.
In particular since this degree exceeds twice the tau invariant, J could not
be an L-space knot.

A second example is K = −T (3, 4) #−T (4, 5) #T (5, 6). For this knot,
τ(K) = 2, and so if it were concordant to an L-space knot J , the degree of
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∆J(t) would be four. This is impossible, since a calculation shows that the
signature function of K has 32 singular points on the unit circle.

It is a simple matter to build a large collection of examples.
The first example for which results above do not apply is the connected

sum of torus knots K = T (2, 9) #−T (2, 3). This knot has τ(K) = 3 and
Alexander polynomial

∆K(t) = φ18(t)φ6(t)
2 = (1− t3 + t6)(1− t+ t2)2.

The signature function jumps by one at each of the roots of φ18, and only at
those roots. Thus, the results proved above cannot rule out the possibility
that K is concordant to an L-space knot J with ∆J(t) = φ18(t).

In fact, deeper results from Heegaard Floer knot theory can be applied
to the knot T (2, 9) #−T (2, 3). A theorem of Hedden and Watson [7, Corol-
lary 9] states the for an L-space knot of genus g, the leading terms of the
Alexander polynomial are t2g− t2g−1. (This also follows from a recent result
of Baldwin and Vela-Vick [2] which states that if K is fibered of genus g,

then ĤFK(K, g − 1) 6= 0.) However, φ18(t) = t6 − t3 + 1, which is not con-
sistent with this constraint. Arguments along these lines yield large families
of examples, but are not sufficient to give a general independence result.
See [1] for much more general result of this type.

Another interesting area for extending the main theorem is that of al-
gebraic knots. These can be described as iterated cables of torus knots of
the form T (p1, q1)(p2,q2),(p3,q3),..., for which all pi and qi are nonnegative and
qi+1 > piqipi+1 for all i. (A basic reference for algebraic knots is [4]. The
algebraic properties of such knots are developed in [11].) The methods of
this paper apply to show that many connected sums of algebraic knots are
not concordant to L-space knots, but a general result has not been attained.
Thus, we end with a question.

Question: Can a nontrivial connected sum of algebraic knots be concordant
to an L-space knot?
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