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Representations of surface groups with
finite mapping class group orbits

Indranil Biswas, Thomas Koberda, Mahan Mj
and Ramanujan Santharoubane

Abstract. Let (S, ∗) be a closed oriented surface with a marked point,
let G be a fixed group, and let ρ : π1(S) −→ G be a representation such
that the orbit of ρ under the action of the mapping class group Mod(S, ∗)
is finite. We prove that the image of ρ is finite. A similar result holds
if π1(S) is replaced by the free group Fn on n ≥ 2 generators, and
where Mod(S, ∗) is replaced by Aut(Fn). We show that if G is a linear
algebraic group and if the representation variety of π1(S) is replaced
by the character variety, then there are infinite image representations
which are fixed by the whole mapping class group.
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1. Introduction

Let G and Γ be groups, and let

R(Γ, G) := Hom(Γ, G)

be the representation variety of Γ. The automorphism group Aut(Γ) acts
on R(Γ, G) by precomposition.

Let Γ = π1(S), where S is a closed, orientable surface of genus at least two
with a base-point ∗. The Dehn–Nielsen–Baer Theorem (see [FM]) implies
that the mapping class group Mod(S, ∗) of S which preserves ∗ is identified
with an index two subgroup of Aut(Γ). In this note, we show that if ρ ∈
R(Γ, G) has a finite Mod(S, ∗)-orbit, then the image of ρ is finite. We show
that the same conclusion holds if Γ is the free group Fn of finite rank n ≥ 2,
and Mod(S, ∗) is replaced by Aut(Fn).

1.1. Main results. In the sequel, we assume that S is a closed, orientable
surface of genus g ≥ 2 and that Fn is a free group of rank at least two, unless
otherwise stated explicitly.

Theorem 1.1. Let Γ = π1(S) or Fn, and let G be an arbitrary group.
Suppose that ρ ∈ R(Γ, G) has a finite orbit under the action of Aut(Γ).
Then ρ(Γ) is finite.

Note that if Γ = π1(S) then ρ has a finite orbit under Aut(Γ) if and only if
it has a finite orbit under Mod(S, ∗), since Mod(S, ∗) is a subgroup of Aut(Γ)
of finite index. Note also that if the homomorphism ρ has finite image then
the orbit of ρ for the action of Aut(Γ) on R(Γ, G) is finite, because Γ is
finitely generated. We remark that the principal content of Theorem 1.1 is
the passage from a fixed point to a finite orbit. It is rather straightforward
to establish the conclusion of the main result for a fixed point of Aut(Γ), and
the main difficulties involve the generalization to a nontrivial finite orbit.

We will show by example that Theorem 1.1 fails for a general group Γ.
Moreover, Theorem 1.1 fails if Γ is a linear algebraic group with the repre-
sentation variety of Γ being replaced by the character variety Hom(Γ, G)/G,
as follows fairly easily from a result of the second and fourth authors:

Proposition 1.2. Let Γ = π1(S) and let

X (Γ,GLn(C)) := Hom(Γ,GLn(C))//GLn(C)

be its GLn(C) character variety. For n � 0, there exists a point χ ∈
X (Γ,GLn(C)) such that χ is the character of a representation with infinite
image, and such that the action of Mod(S, ∗) on X (Γ,GLn(C)) fixes χ.

Proposition 1.2 resolves a well–known question of M. Kisin.

1.2. Punctured surfaces. If S is not closed then π1(S) is a free group,
and the group Mod(S, ∗) is identified with a subgroup of Aut(π1(S)), though
this subgroup does not have finite index. The conclusion of Theorem 1.1
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fails for surfaces with punctures unless the mapping class group is replaced
by the automorphism group of the free group. See Proposition 4.2.

2. Aut(Γ)-invariant representations

We first address the question in the special case where the Aut(Γ)-orbit
of ρ : Γ −→ G on R(Γ, G) consists of a single point.

Lemma 2.1. Let Γ be any group, and suppose that ρ ∈ R(Γ, G) is Aut(Γ)-
invariant. Then ρ(Γ) is abelian.

Proof. Since ρ ∈ R(Γ, G) is invariant under the normal subgroup Inn(Γ) <
Aut(Γ) consisting of inner automorphisms,

ρ(ghg−1) = ρ(h)

for all g, h ∈ G. Hence we have ρ(g)ρ(h) = ρ(h)ρ(g). �

Lemma 2.2. Let Γ = π1(S) or Γ = Fn, and let ρ : Γ −→ G be Aut(Γ)-
invariant. Then ρ(Γ) is trivial.

Proof. Without loss of generality, assume that ρ(Γ) = G. By Lemma 2.1,
the group ρ(Γ) is abelian. Hence ρ factors as

(1) ρ = ρab ◦A ,

where

A : Γ −→ Γ/[Γ, Γ] = H1(Γ, Z)

is the abelianization map, and ρab : H1(Γ,Z) −→ G is the induced represen-
tation of H1(Γ,Z)

We first suppose that Γ = π1(S), where S is closed of genus g, so that the
rank of H1(Γ, Z) is 2g. Fix a symplectic basis

{a1, . . . , ag, b1, . . . , bg}

of H1(Γ, Z). The group of automorphisms of H1(Γ, Z) preserving the sym-
plectic form is identified with Sp2g(Z), and it is a standard fact that the nat-
ural action of Mod(S, ∗) on H1(Γ, Z) induces a surjection to Sp2g(Z) [FM].

Consider the group ρ(Γ), and consider the action of Sp2g(Z) on H1(Γ, Z),
induced by the action of the mapping class group Mod(S, ∗) on H1(Γ, Z).
There is an element of Sp2g(Z) taking ai to ai + bi. Therefore, from the
assumption that the action of Mod(S, ∗) on ρ has a trivial orbit, it follows
that ρab(ai) = ρab(ai + bi), and hence ρab(bi) = 0. Exchanging the roles of
ai and of bi, we have ρab(ai) = 0. Thus ρab is a trivial representation, and
hence ρ is also trivial by (1).

A similar argument works if we set Γ = Fn. Instead of Sp2g(Z), we
have an action of GLn(Z) on H1(Γ, Z) after choosing a basis {a1, . . . , an}
for H1(Γ, Z). Then for each 1 ≤ j ≤ n and i 6= j, there exists an element of
GLn(Z) that takes ai to ai+aj . This implies that ρab(aj) = 0 as before. �
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The following is an immediate generalization of Lemma 2.2 whose proof
is identical to the one given:

Lemma 2.3. Let Γ be group, let

H1(Γ, Z)Out(Γ) = H1(Γ, Z)/〈φ(v)− v | v ∈ H1(Γ, Z) and φ ∈ Out(Γ)〉
be the module of co-invariants of the Out(Γ) action on H1(Γ, Z), and let ρ ∈
R(Γ, G) be an Aut(Γ)-invariant representation of Γ. If H1(Γ,Z)Out(Γ) = 0
then ρ(Γ) is trivial. If H1(Γ,Z)Out(Γ) is finite then ρ(Γ) is finite as well.

Corollary 2.4. Let Γ be a closed surface group or a finitely generated free
group, and let H < Aut(Γ) be a finite index subgroup. Then the module of
H–co-invariants for H1(Γ, Z) is finite.

Proof. Since H < Aut(Γ) has finite index, there exists an integer N such
that for each φ ∈ Aut(Γ), we have φN ∈ H. In particular, the N th mul-
tiples of the transvections occurring in the proof of Lemma 2.2 lie in H,
whence the N th multiples of elements of a basis for H1(Γ, Z) must be triv-
ial. Consequently, the module of H–co-invariants is finite. �

3. Representations with a finite orbit

3.1. Central extensions of finite groups.

Lemma 3.1. Let Γ be any group, and let ρ : Γ −→ G be a representation.
Suppose that the orbit of ρ under the action of Aut(Γ) on R(Γ, G) is finite.
Then ρ(Γ) is a central extension of a finite group.

Proof. By restricting the action of Aut(Γ) to the action of Inn(Γ), we have
that the ρ-orbit of the action of Inn(Γ) on R(Γ, G) is finite. Consequently,
there exists a finite index subgroup Γ1 of Γ that fixes ρ under the inner
action. Hence by the same argument as in Lemma 2.1, the group ρ(Γ1)
commutes with ρ(Γ), so the center of ρ(Γ) contains ρ(Γ1). Since Γ1 is of
finite index in Γ, the result follows. �

Lemma 3.2. Let ρ be as in Lemma 3.1 and let H = Stab(ρ) < Aut(Γ) be
the stabilizer of ρ. Then the center Z of ρ(Γ) is isomorphic to the module
of co-invariants ZH under the H-action.

Proof. This is immediate, since ρ(Γ) is invariant under the action of H.
Thus, we have that ρ(φ(g)) = ρ(g) for all φ ∈ H and all g ∈ Γ. Restricting to
elements z ∈ Γ such that ρ(z) ∈ Z, we see that the subgroup of Z generated
by elements of the form ρ(φ(z))−ρ(z) is trivial, so that the natural quotient
map Z → ZH is an isomorphism. �

3.2. Homology of finite index subgroups. Let Γ be a finitely generated
group, and let ρ ∈ R(Γ, G) be a representation whose orbit under the action
of Aut(Γ) is finite. By Lemma 3.1, we have that ρ(Γ) fits into a central
extension:

1 −→ Z −→ ρ(Γ) −→ F −→ 1 ,
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where F is a finite group and Z is a (possibly trivial) finitely generated
torsion–free abelian group lying in (though not necessarily equal to) the
center of ρ(Γ).

Consider the group N = ρ−1(Z) < Γ. This is a finite index subgroup of
Γ, since Z has finite index in ρ(Γ). By replacing N by a further finite index
subgroup of Γ if necessary, we may assume that N is characteristic in Γ and
hence N is invariant under automorphisms of Γ.

Since Z is an abelian group, we have that the restriction of ρ to N factors
through the abelianization H1(N, Z). As before, we write

ρab : H1(N, Z) −→ Z

for the corresponding map, and we write Q = Γ/N . The group Γ acts
by conjugation on N and on H1(N, Z), and on Z via conjugation by the
image of ρ, thus turning both H1(N, Z) and Z into Z[Γ]-modules. Observe
that the Γ-action on H1(N, Z) turns this group into a Z[Q]-module, and
that the Z[Γ]-module structure on Z is trivial. Note that the map ρab is a
homomorphism of Z[Γ]-modules. Summarizing this discussion, we have that
following diagram commutes Γ-equivariantly:

N

ρ

��

A // H1(N,Z)

ρabzz
Z

3.3. Chevalley–Weil Theory. Let Γ be a group, and let N < Γ be a
finite index normal subgroup with quotient group

(2) Q := Γ/N .

When Γ is a closed surface group or a finitely generated free group, it is
possible to describe H1(N, Q) as a Q[Q]-module. We address closed surface
groups first:

Theorem 3.3 (Chevalley–Weil Theory for surface groups, [CWH], [GLLM,
Ko]). Let S = Sg be a closed surface of genus g, and let Γ = π1(S). Then
there is an isomorphism of Q[Q]-modules

H1(N,Q)
∼−→ ρ2g−2

reg ⊕ ρ2
0 ,

where ρreg is the regular representation of Q and ρ0 is the trivial repre-
sentation of Q. Moreover, the invariant subspace of H1(N, Q) is Aut(Γ)-
equivariantly isomorphic to H1(Γ, Q) via the transfer map.

The corresponding statement for finitely generated free groups was also
observed by Gaschütz, and is identical to the statement for surface groups,
mutatis mutandis:



246 I. BISWAS, T. KOBERDA, M. MJ AND R. SANTHAROUBANE

Theorem 3.4 (Chevalley–Weil Theory for free groups, [CWH], [GLLM,
Ko]). Let Γ = Fn be a free group of rank n. Then there is an isomorphism
of Q[Q]-modules

H1(N,Q)
∼−→ ρn−1

reg ⊕ ρ0 ,

where ρreg is the regular representation of Q and ρ0 is the trivial repre-
sentation of Q. Moreover, the invariant subspace of H1(N, Q) is Aut(Γ)-
equivariantly isomorphic to H1(Γ, Q) via the transfer map.

Tensoring with Q, we have a map

ρab ⊗Q : H1(N,Q) −→ Z ⊗Q

which is a homomorphism of Q[Γ]-modules since the natural map

ρab : H1(N,Z) −→ Z

is Γ-equivariant. We decompose H1(N,Q) = V0
⊕(
⊕χ Vχ

)
according to its

structure as a Q[Γ]-module, where V0 is the invariant subspace and χ ranges
over nontrivial irreducible characters of Q.

Note that since N is characteristic in Γ, Aut(Γ) acts on H1(N,Q) and this
action preserves V0. Moreover, Theorems 3.3 and 3.4 imply that the Aut(Γ)-
action on V0 is canonically isomorphic to the Aut(Γ) action on H1(Γ, Q),
by the naturality of the transfer map.

We are now ready to prove the main result of this note:

Proof of Theorem 1.1. Recall that if ρ : Γ −→ G has a finite orbit under
the action of Aut(Γ), then ρ(Γ) is a central extension of the form

1 −→ Z −→ ρ(Γ) −→ F −→ 1 ,

where F is finite. Clearly, it suffices to prove that the vector space Z ⊗Q is
trivial.

As discussed above, we have that Z ⊗ Q is a quotient of H1(N,Q) for
a suitable finite index characteristic subgroup N < Γ, where this quotient
map is equivariant with respect to the conjugation action of Γ on itself. We
now apply Chevalley–Weil Theory to H1(N,Q). Considering the image of
each irreducible Γ/N–representation Vχ ⊂ H1(N,Q) under ρab⊗Q, it follows

from Schur’s Lemma that either Vχ is in the kernel of ρab⊗Q or it is mapped

isomorphically onto its image. Since ρab⊗Q is a Q[Γ]-module homomorphism
and since Z ⊗ Q is a trivial Q[Γ]-module, we have that Vχ ⊂ ker ρab ⊗ Q
whenever χ is a nontrivial irreducible character of Q = Γ/N . It follows
that Z ⊗Q is a quotient of V0, the submodule of H1(N,Q) on which Q acts
trivially.

Since the Aut(Γ)-actions on H1(Γ, Z) and on V0 are isomorphic via the
transfer map, Corollary 2.4 implies that the module of rational H-co-invar-
iants for V0 is trivial for any finite index subgroup H < Aut(Γ), meaning

V0/〈φ(v)− v | v ∈ V0 and φ ∈ H〉 = 0.



REPRESENTATIONS OF SURFACE GROUPS WITH FINITE ORBITS 247

Let H = Stab(ρ) < Aut(Γ) be the stabilizer of ρ, which has finite index
in Aut(Γ) by assumption. Let v0 ∈ V0 be an arbitrary element. Since the
module of H–co-invariants of V0 is trivial, we have that

v0 =

k∑
i=1

ai(φi(vi)− vi)

for suitable vectors (v1, . . . , vk) ∈ V k
0 , rational numbers (a1, . . . , ak) ∈ Qk,

and automorphisms (φ1, . . . , φk) ∈ Hk. Applying ρab ⊗Q, we have

(ρab ⊗Q)(v0) =
k∑
i=1

ai · (ρab ⊗Q)(φi(vi)− vi).

Since ρ is H-invariant, we have that (ρab ⊗ Q)(φ(vi) − vi) = 0, whence
(ρab⊗Q)(v0) = 0. Thus, v0 ∈ ker ρab⊗Q, and consequently Z ⊗Q = 0. �

4. Counterexamples for general groups

It is not difficult to see that Theorem 1.1 is false for general groups. We
have the following easy proposition:

Proposition 4.1. Let Γ be a finitely generated group such that Γ surjects
to Z and such that Out(Γ) is finite. Then there exists a group G and a
representation ρ ∈ R(Γ, G) such that ρ has infinite image and such that the
Aut(Γ)-orbit of ρ is finite.

Proof. Set

G = Γab ,

and let ρ : Γ −→ G be the abelianization map. Since Out(Γ) is finite, we
have that Aut(Γ) induces only finitely many distinct automorphisms of G,
and hence ρ has a finite orbit under the Aut(Γ) action on ρ ∈ R(Γ, G). �

It is easy to see that Proposition 4.1 generalizes to the case where ρ has
infinite abelian image with G being an arbitrary group.

There are many natural classes of groups which satisfy the hypotheses of
Proposition 4.1. For instance, one can take a cusped finite volume hyper-
bolic 3–manifold or a closed hyperbolic 3–manifold with positive first Betti
number; every closed hyperbolic 3–manifold has such a finite cover by the
work of Agol [Ag]. The fundamental groups of these manifolds are finitely
generated with infinite abelianization, and by Mostow Rigidity, their groups
of outer automorphisms are finite.

Another natural class of groups satisfying the hypotheses of Proposi-
tion 4.1 is the class of random right-angled Artin groups, in the sense of
Charney–Farber [CF]. Every right-angled Artin group has infinite abelian-
ization, though many have infinite groups of outer automorphisms. Certain
graph theoretic conditions which are satisfied by generic finite graphs in a
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suitable random model guarantee that the outer automorphism group is fi-
nite, however. An explicit right-angled Artin group with a finite group of
outer automorphisms is the right-angled Artin group on the pentagon graph.

Let Dn denote the disk with n ≥ 2 punctures. The mapping class group
Mod(Dn, ∂Dn) is identified with the braid group Bn on n strands, and natu-
rally sits inside of Aut(Fn) = Aut(π1(Dn)). The following easy proposition
illustrates another failure of Theorem 1.1 to generalize:

Proposition 4.2. Let G be a group which contains an element of infinite
order. Then there exists an infinite image representation ρ ∈ R(Fn, G)
which is fixed by the action of Bn < Aut(Fn).

Proof. Small loops about the punctures of Dn can be connected to a base-
point on the boundary of Dn in order to obtain a free basis for π1(Dn).
Since the braid group consists of isotopy classes of homeomorphisms of Dn,
we have that Bn acts on the homology classes of these loops by permuting
them. Therefore, we may let ρ be the homomorphism Fn −→ Z obtained by
taking the exponent sum of a word in the chosen free basis for π1(Dn), and
then sending a generator for Z to an infinite order element of G. It is clear
from this construction that ρ is Bn-invariant and has infinite image. �

5. Character varieties

In this section we prove Proposition 1.2, which relies on one of the results
in [KS].

Theorem 5.1 (cf. [KS], Corollary 4.3). Let S be a closed surface of genus
g ≥ 2. Then there exists a linear representation

ρ : Mod(S, ∗) −→ PGLn(C)

such that the restriction of ρ to π1(S) has infinite image.

The basic idea behind Theorem 5.1 is to consider the SO(3)–TQFT rep-
resentations of a mapping class group Mod(S, ∗). Recall that if S is an
orientable surface with negative Euler characteristic then the Birman Exact
Sequence furnishes a normal copy of π1(S) inside of the pointed mapping
class group Mod(S, ∗) (see for instance [Bi, FM]), called the point–pushing
subgroup. The conjugation action of Mod(S, ∗) on this copy of π1(S) is by
the natural action by automorphisms. The TQFT representations give rise
to a family of linear representations of Mod(S, ∗), and in [KS] it was proved
that the image of the point–pushing subgroup is infinite for sufficiently com-
plicated representations in this family.

We remark that in Theorem 5.1, it can be arranged for the image of π1(S)
under ρ to have a free group in its image, as discussion in [KS]. Theorem 5.1
implies Proposition 1.2 without much difficulty.

Proof of Proposition 1.2. Let a representation

ρ : Mod(S, ∗) −→ PGLn(C)
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be given as in Theorem 5.1. Choose an arbitrary embedding of PGLn(C) into
GLm(C) = G for somem ≥ n, and let σ be the corresponding representation
of Mod(S, ∗) obtained by composing ρ with the embedding. We will write
χ for the character of σ, and we claim that χ satisfies the conclusions of the
proposition.

That χ corresponds to a representation of π1(S) with infinite image is
immediate from the construction. Note that χ is actually the character of
a representation of Mod(S, ∗), and that Inn(Mod(S, ∗)) acts trivially on the
character variety X (Mod(S, ∗), G). It follows that Inn(Mod(S, ∗)) fixes χ
even when χ is viewed as a character of π1(S), since

π1(S) < Mod(S, ∗)

is normal. The conjugation action of Mod(S, ∗) on π1(S) is by automor-
phisms via the natural embedding

Mod(S, ∗) < Aut(π1(S)) .

It follows that χ is invariant under the action of Mod(S, ∗), the desired
conclusion. �
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