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An investigation of stability on
certain toric surfaces

Lars Martin Sektnan

Abstract. We investigate the relationship between stability and the
existence of extremal Kähler metrics on certain toric surfaces. In par-
ticular, we consider how log stability depends on weights for toric sur-
faces whose moment polytope is a quadrilateral. For quadrilaterals, we
give a computable criterion for stability with 0 weights along two of the
edges of the quadrilateral. This in turn implies the existence of a defi-
nite log-stable region for quadrilaterals. This uses constructions due to
Apostolov-Calderbank-Gauduchon and Legendre.
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1. Introduction

The search for canonical metrics such as extremal Kähler metrics is a
central topic in complex geometry. One of the key conjectures is the Yau-
Tian-Donaldson conjecture relating the existence of extremal Kähler metrics
in the first Chern class of a line bundle to algebro-geometric stability, the
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predominant stability notion being K-stability. There is also a version of
this stability notion called relative log K-stability. Here one fixes a simple
normal crossings divisor D in a complex manifold and attaches non-negative
weights to each irreducible component of D. For each choice of weights, one
gets a different criterion for stability.

In this article we study how relative log K-stability (with respect to toric
degenerations) depends on weights, for certain toric surfaces. Toric varieties
correspond to Delzant polytopes and the weights can be described by a
measure on the boundary of the polytope. The stability condition we are
considering therefore depends on the Delzant polytope and the boundary
measure. However, this definition works equally well on any bounded convex
polytope with such a boundary measure, regardless of whether it is Delzant
or not, and we will work in this generality. Allowing any polytope, not
just Delzant ones, features in Donaldson’s continuity method for extremal
metrics on toric varieties, see [Don08]. There is also some geometric meaning
for such polytopes, as they arise for toric Sasakian manifolds with irregular
Reeb vector fields, see e.g. [MSY06], [Abr10] and [Leg11b].

Log stability is conjectured to be equivalent to the existence of an extremal
metric with a mixture of singularities along the divisors corresponding to
the facets of the polytope. For non-zero weights, the singularities are cone
angle singularities with angle prescribed by the weight. The predominant
behaviour along the edges with 0 weight was expected to be Poincaré type
singularities. However, we show that this is not the only behaviour one
could expect for 0 weights.

A key to understanding the Yau-Tian-Donaldson conjecture is to under-
stand what happens when an extremal metric does not exist. For toric vari-
eties, Donaldson conjectured in [Don02, Conj. 7.2.3] that there should be a
splitting of the moment polytope into subpolytopes that each are semistable
when attaching a 0 measure to the sides that are not from the original mo-
ment polytope. In [Szé08], Székelyhidi showed that such a splitting exists
in a canonical way, under the assumption that the optimal destabilizer is a
piecewise linear function.

The subpolytopes in the splitting should come in two types. If the sub-
polytopes are in fact stable, they are conjectured to admit complete ex-
tremal Kähler metrics on the complement of the divisors corresponding to
the edges with vanishing boundary measure, whenever the subpolytopes are
Delzant. If they are not stable, they are conjectured to be trapezia with
no stable subpolytopes. Trapezia correspond to CP1-bundles over CP1, and
this corresponds to the collapsing of an S1 in the fibre over each point of
this subpolytope, when trying to minimize the Calabi functional.

The work relates to several directions in Kähler geometry. Extremal
Kähler metrics are solutions to a non-linear PDE, and explicit solutions
are usually very difficult to find, even if one knows that such a metric ex-
ists. By using the constructions of Apostolov-Calderbank-Gauduchon and
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Legendre, we get explicit solutions to this PDE in ambitoric coordinates.
Also, the stability condition is often difficult to verify, and we find an eas-
ily computable criterion for the stability of a weighted quadrilateral with 2
weights being 0.

In general, the boundary measure attaches a non-negative weight to each
facet of a polytope. For a quadrilateral Q with weight vanishing along at
least two edges, there is therefore a two parameter family of possible weights
that we can attach to the remaining two edges, for each choice of edge pairs.
Log stability on toric varieties is invariant under scaling of the weights, and
so it therefore suffices to consider the weights k1, k2 such that k1 + k2 = 1.
The main result of the article is the following theorem. See section 3 for the
conventions in the statement and the description of the numbers r0 and r1.

Theorem 1.1. Let Ei, Ej be two different edges of Q that are not parallel.
Then there exists explicit numbers 0 ≤ r0 < r1 ≤ 1 such that (1−r)Ei+rEj
is

• stable if r ∈ (r0, r1),
• not stable if r ∈ [0, r0) or r ∈ (r1, 1].

Moreover, (1− r)Ei + rEj is

• stable at r0 and r1 if Ei and Ej are adjacent, unless r0 = 0 or r1 = 1,
respectively,
• not stable at r0 and r1 if Ei and Ej are opposite.

If Ei and Ej are parallel, then (1− r)Ei + rEj is unstable for all r ∈ [0, 1].
In the adjacent case, r0 = 0 occurs if and only if Ei is parallel to its

opposite edge, and r1 = 1 occurs if and only if Ej is parallel to its opposite
edge.

The condition defining r0 and r1 can be computed easily from the data
of the weighted quadrilateral, see [Sek16, Sect. 4.5] for explicit formulae.
Note that while the proof of this theorem uses the ambitoric coordinates of
[ACG15], the condition for stability can be expressed without mention of
the ambitoric structure.

For the case of Hirzebruch surfaces, our results say the following. Note
that the case of P1 × P1 was completely understood already; A weight is
stable if and only if the weight is not zero on two edges that are opposite
to one another. We therefore focus only on the case of the higher Hirze-
bruch surfaces below, whose moment polytopes are trapezia which are not
parallelograms.

Corollary 1.2. Let Q be a trapezium with edges E1, · · · , E4 that are suc-
cessively adjacent to one another, such that E2 and E4 are parallel to one
another, and E1 and E3 are not parallel. Then there are explicitly com-
putable c1, · · · , c6 ∈ (0, 1) such that for r ∈ [0, 1]

• (1− r)E1 + rE2 is stable for all r ∈ [c1, 1) and unstable otherwise.
• (1− r)E2 + rE3 is stable for all r ∈ (0, c2] and unstable otherwise.
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• (1− r)E3 + rE4 is stable for all r ∈ [c3, 1) and unstable otherwise.
• (1− r)E1 + rE4 is stable for all r ∈ [c4, 1) and unstable otherwise.
• (1− r)E1 + rE3 is stable for all r ∈ (c5, c6) and unstable otherwise.
• (1− r)E2 + rE4 is unstable for all r ∈ [0, 1].

In the final case above, all weights are strictly semistable, i.e. semistable
but not stable.

Expressed in a different way, the above result says that the set of unstable
weights (r1, r2, r3, r4) inside

∑
i ri = 1 for the moment polytope of a (non-

product) Hirzebruch surface consists of three connected components: two
non-intersecting sets containing open neighbourhoods around the weights
(1, 0, 0, 0) and (0, 0, 1, 0), respectively, and the line (0, 1− r, 0, r).

Similar arguments allow us to deduce Corollary 3.2 which says that the
number of connected components of the unstable set for a generic quadri-
lateral is 4, for generic trapezia is 3 and for parallelograms is 2.

Our results also give some indications about the metrics one should ex-
pect to arise in Donaldson’s conjecture on the splitting of a polytope into
semistable subpolytopes. When allowing 0 boundary measure, we have the
following

Corollary 1.3. Let Q be a quadrilateral which is not a parallelogram. Then
the set of weights dσ for which (Q, dσ) is stable, identified with a subset of
R4
≥0 \ {0}, is neither open nor closed.

This follows because the criterion defining the numbers r0, r1 in Theorem
1.1 is a closed condition in the case of boundary measures with 0 weight
along two adjacent edges.

This non-openness is unexpected, since stability is an open condition when
all boundary measures are positive. The aim of section 6 is to relate this
phenomenon to the singular behaviour the extremal metrics coming from
the ambitoric ansatz have along the divisors corresponding to the edges
with 0 boundary measure, see Corollary 6.5. This shows that there are sev-
eral distinct asymptotics occuring for extremal potentials corresponding to
weighted polytopes with 0 boundary measure along some edges. Further-
more, this indicates that one may expect several types of singular behaviour
for the metrics in Donaldson’s conjecture.

In Corollary 6.8, we show that strictly semistable quadrilaterals admit a
splitting into two stable subpolytopes, confirming Donaldson’s conjecture in
this case.

The organisation of the paper is as follows. We begin in section 2 by
recalling some background relating to toric varieties, stability and Poincaré
type metrics.

In section 3, we start considering the special case of quadrilerals and
state some conventions and notation we will be using. In section 4, we
recall the ambitoric construction of Apostolov-Calderbank-Gauduchon in
[ACG16] and [ACG15]. Their construction is phrased for rational data, but
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we note that it can be applied for quadrilaterals of non-Delzant type, with
arbitrary non-negative boundary measure. This is no different, in [ACG15]
it has simply been stressed what one has to check in the ambitoric setting to
ensure that the data corresponds to the moment polytope of a toric orbifold
surface.

The main body of work is in section 5, which is devoted to proving Theo-
rem 1.1 using the ambitoric framework. We find a definite stable region that
generically splits the region that is unstable into 4 connected components.
Moreover, in contrast to when the boundary measure is positive on all edges
of the quadrilateral, we show that the stable region is in general not open.

In section 6, we relate our findings of the previous section to the question
of existence of extremal metrics on the corresponding orbifold surface, when-
ever the quadrilateral is Delzant, shedding more light on [ACG15, Rem. 4].
In particular, we describe how the predominant behaviour of our solutions
are of mixed cone singularity and Poincaré type singularities, in a weak
sense. We show that the non-openness of the stable region when allowing
the boundary measure to vanish on some edges is related to the existence of
an extremal metric with singularities along a divisor, but that this singular
behaviour is neither conical nor of Poincaré type.

Acknowledgements: This work was done as a part of the author’s PhD
thesis at Imperial College London. I would like to thank my supervisor Si-
mon Donaldson for his encouragement and insight. I gratefully acknowledge
the support from the Simons Center for Geometry and Physics, Stony Brook
University at which some of the research for this paper was performed. I
would also like to thank Vestislav Apostolov for helpful comments. Finally,
I thank the referee for careful reading of the manuscript and many useful
suggestions for improvement.

2. Background

We begin by recalling some of the background relevant to the article.
The classification of toric varieties is discussed in subsection 2.1. In 2.2, we
consider log K-stability for toric varieties and state it in the more general
context of weighted, bounded, convex polytopes. We also prove some basic
properties that we will make use of in the particular case of quadrilaterals.
The metrics we will mostly be concerned with later are Poincaré type met-
rics, whose definition we recall in 2.3, before considering how they can be
described in the toric setting in 2.4.

2.1. Toric varieties. Toric varieties are compactifications of the complex
n-torus TnC = (C∗)n admitting a holomorphic action of this torus extending
the action on itself. From the symplectic point of view, one instead considers
the action of the compact group Tn = (S1)n and the space as a fixed sym-
plectic manifold. Compact toric varieties are classified in terms of certain
polytopes, called Delzant polytopes.
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Definition 2.1. A toric symplectic manifold of dimension 2n is a symplectic
2n-dimensional manifold (M,ω) with a Hamiltonian action of the n-torus
Tn.

There is then a moment map µ : M → (tn)∗ for the torus action. The
image of the moment map µ is the convex hull of the fixed points of the
action, provided M is compact. Only a certain type of images appear. The
following definitions will capture precisely the type of image occuring in the
compact case. Recall that a half-space H in a vector space V is a set of the
form {x ∈ V : l(x) ≥ 0} for some affine function l : V → R. Its boundary
∂H is the set {x ∈ V : l(x) = 0}.

Definition 2.2. A convex polytope ∆ in a finite dimensional vector space
V is a non-empty intersection ∩ki=1Hi of finitely many half-spaces Hi. A
face of ∆ is a non-trivial intersection

F = ∆ ∩ ∂H

for some half-space H such that ∆ ⊆ H. If H is unique, then F is called a
facet.

Let 〈·, ·〉 denotes the contraction V × V ∗ → R. Given a lattice Λ in V ∗, a
polytope ∆ is called Delzant, with respect to this lattice, if it is bounded and
can be represented as

∆ =

k⋂
i=1

{x ∈ V : 〈x, ui〉 ≥ ci}

where each ui ∈ Λ and each cj ∈ R, and moreover that each vertex is an
intersection of exactly n facets Fi such that the corresponding ui form a basis
of the lattice over Z, where n is the dimension of V .

We make some remarks and mention some language we will use. We will
call the ui appearing in the definition of a facet Fi the conormal to Fi. In
general, the conormal to a facet is not unique, but we can fix it as follows.
An element u of the lattice Λ is called primitive if λu ∈ Λ for some |λ| ≤ 1
implies that λ = ±1. So up to sign, there is a unique multiple u of ui which
is primitive. We can fix the sign of u by requiring that ∆ ⊆ {x : 〈x, u〉 ≥ ci}.
We then say that u is inward-pointing.

The classification theorem for symplectic toric manifolds says that they
are classified by Delzant polytopes.

Theorem 2.3 ([Del88]). Let (M,ω) be a symplectic toric manifold and let
µ be a moment map for the torus action. Then the image µ(M) of M is a
Delzant polytope in (tn)∗ with respect to the integer lattice in tn = Rn. Iso-
morphic symplectic toric manifolds give isomorphic Delzant polytopes and
moreover, for each Delzant polytope P , there exists a toric symplectic man-
ifold (MP , ωP ) with a moment map whose image is P .
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Note here that µ maps to (tn)∗, so in terms of Definition 2.2, we have
V = (tn)∗, V ∗ = tn and Λ = Zn = ker(exp : tn → Tn). The theorem was
extended to the orbifold case by Lerman-Tolman in [LT97].

All compact toric symplectic manifolds are obtained as the symplectic
reduction of a torus T d acting on Cd, for some d. One then takes the
quotient by a subtorus N = T d−n and is left with a quotient space MP on
which an n-torus Tn = T d/N acts in a Hamiltonian fashion. This gives a
construction of (MP , ωP ), the toric manifold associated to a polytope P .

To construct the manifold above (ignoring the symplectic form), we could
instead have started with a complex point of view, where we would have
everything complexified. That is, we would work with the complexified
groups NC ∼= T d−nC , T dC and TnC and taken a quotient Cd � NC, the GIT
quotient. As a smooth manifold, these are diffeomorphic, but the symplectic
quotient comes with a symplectic structure and the GIT quotient comes with
a complex structure.

Remark 2.4. The complex quotient Cd�NC does not depend on which mo-
ment map we chose for the action on the resulting smooth manifold. That
is, it does not depend on translations of P . In fact, more is true. Differ-
ent polytopes can give rise to the same manifold (the complex quotient only
depends on the “fan” of P , which in the compact case is the arrangement
of the conormals of P in the lattice). The significance is that the polytope
contains more information than the complex picture, we have also specified
a cohomology class Ω = [ω] ∈ H2(M,R). This cohomology class turns out
to be integral if and only if, after a translation, the vertices of P lie on the
lattice.

2.2. Weighted stability. Let dλ be the Lebesgue measure. We say a
measure dσ on the boundary of a bounded convex polytope P is a positive
boundary measure for P if on the ith facet Fi of P , dσ satisfies

li ∧ dσ = ±ridλ(2.1)

where li is an affine function defining Fi and the ri > 0 are constants. We
say dσ is non-negative if we relax the condition to ri ≥ 0, only. If dσ is a
non-negative boundary measure on P , we call the pair (P, dσ) a weighted
polytope.

Note that if P is Delzant, then there is a canonical associated boundary
measure. This is given by satisfying equation (2.1) with ri = 1 and the li
being the defining functions

li(x) = 〈ui, x〉+ ci,

where ci ∈ R and ui is the primitive inward-pointing conormal to the facet
l−1i (0) ∩ P .

Let A be a bounded function on a bounded convex polytope P . One can
then define a functional LA on the space of continuous convex functions on
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P by

LA(f) =

∫
∂P
fdσ −

∫
P
Afdλ.(2.2)

Note that there is a unique affine linear A such that LA(f) = 0 for all affine
linear f .

Definition 2.5. Given a weighted polytope (P, dσ), we call the affine linear
function A such that LA vanishes on all affine linear functions the affine
linear function associated to the weighted polytope (P, dσ). Also, we write
L = LA.

We say a function f on P is convex piecewise linear if it is the maximum
of a finite number of affine linear functions. We say it is rational if the
coefficients of the affine linear functions are all rational, up to multiplication
by a common constant.

Definition 2.6. Let (P, dσ) be a weighted polytope. We say P is weighted
polytope stable, or more briefly stable, if

L(f) ≥ 0(2.3)

for all convex piecewise linear functions f , with equality if and only if f is
affine linear. If (P, dσ) is not stable, we say it is unstable. If (2.3) holds
for all piecewise linear f , but there is a non-affine function f with L(f) = 0,
we say (P, dσ) is strictly semistable. We say (P, dσ) is semistable if it is
either stable or strictly semistable.

Remark 2.7. If P is Delzant and dσ is the canonical boundary measure
associated to P , then this is the definition of relative K-stability with respect
toric degenerations, see [Don02].

A natural question one could ask is given a bounded convex polytope
P , how does stability depend on the weight dσ? By specifying a positive
background measure dσ0, we identify the set of weights with Rd≥0 \ {0}. We
now give two elementary lemmas about the set of stable weights.

Lemma 2.8. Let (P, dσ0) be a polytope with d facets F1, · · · , Fd, and with
dσ0 an everywhere positive measure on the boundary ∂P of P as above.
Then the set of weights r = (r1, · · · , rd) ∈ Rd≥0 such that (P, dσr) is stable

is a convex subset of Rd≥0.

Proof. Let r0, r1 be stable weights, and set rt = (1 − t)r0 + tr1. Let At
be the affine function associated to the weighted polytope (P, dσrt). Then
At = (1− t)A0 + tA1, and so, for all convex functions f on P , we have

Lrt(f) = (1− t)Lr0(f) + tLr1(f)

≥ 0.



AN INVESTIGATION OF STABILITY ON CERTAIN TORIC SURFACES 325

Moreover, since Lrt(f) ≥ 0 with equality if and only if f is affine for t = 0, 1,
it follows that this holds for all t ∈ [0, 1] too. Hence rt is a stable weight for
all t ∈ [0, 1], as required. �

Lemma 2.9. Let r be a stable weight for (P, dσ0). Then c · r is a stable
weight for all c > 0.

Proof. Ac·r = cAr, and so Lcr = c · Lr. The lemma follows immediately
from this. �

The stable set in Rd is thus a convex cone on the stable weights with∑
i ri = 1, and so to fully describe the stable set one can without loss of

generality consider weights such that
∑

i ri = 1. Later we investigate the
dependence of stability on the weights in the particular case of quadrilaterals.

We end the section with two important lemmas. For the first, let SPL(P )
denote the space of simple piecewise linear functions on P ⊆ (R2)∗, that
is functions f of the form x 7→ max{0, h(x)} for an affine linear function
h : (R2)∗ → R. Note that we have a map

SPL : Aff(R2)→ SPL(P )

given by

h 7→ max{0, h(x)}.

Let P be a 2-dimensional convex bounded polytope with boundary mea-
sure dσ and fix two edges E1 and E2 of P with vertices v1, w1 and v2, w2,
respectively. Any point p on E1, respectively q on E2, can then be written
as

p = (1− s)v1 + sw1,

q = (1− t)v2 + tw2

for some s, t ∈ [0, 1]. Let pi, respectively qi, be the ith component of p,
respectively q. This determines an affine linear function ls,t which vanishes
on p, q and for which the coefficients for the non-constant terms are linear
in s and t. Specifically, writing ls,t = ax+ by + c, let

a = q2 − p2,
b = p1 − q1,
c = −ap1 − bp2.

We then have

Lemma 2.10. Let φ : [0, 1]× [0, 1]→ R be given by

(s, t) 7→ L(SPL(ls,t)).

Then φ is a polynomial in (s, t) of bidegree (3, 3) and total degree 5.
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For the proof the integrals one has to perform, say the ones over the
polytope, can be decomposed as the integral of Als,t over some fixed region
R, where this statement holds, and a quadilateral region Qs,t bounded by

E1, E2, l
−1
0,0(0) and l−1s,t (0). Direct computation, which we omit, then shows

that this holds. Similarly for the boundary region.
The second lemma we will need concerns edges with 0 weight in weighted

two dimensional polytopes.

Lemma 2.11. Let P be a 2-dimensional polytope with non-negative bound-
ary measure dσ. Let φ(s, t) be the polynomial in Lemma 2.10 for two edges
F1 and F2 adjacent to an edge E along which dσ vanishes. Then the point in
[0, 1]× [0, 1] corresponding to a simple piecewise linear function with crease
E is a critical point of φ.

Proof. After a translation and an SL2(Z)-transformation, we may assume
that the vertex at the intersection of F1 and E is the origin, that these two
edges are perpendicular to one another and that the polytope is contained
in the positive quadrant. That is, we may assume that F1 =⊆ l−11 (0),

F2 =⊆ l−12 (0) and E ⊆ l−13 (0), where l1, l2, l3 are given by

l1(x, y) = x,

l2(x, y) = −qx+ py + q,

l3(x, y) = y,

for some p, q with q 6= 0. The boundary measure vanishes along E, is r1dy
along F1 and r2dy along F2 for some non-negative constants r1, r2. The
affine function ls,t that we integrate in Lemma 2.10 is

ls,t(x, y) = (sq − tk)x− (1 + sp)y + tk(1 + sp)

and the point corresponding to the crease being the edge E is (s, t) = (0, 0).
By linearity it suffices to show that the directional derivative in two inde-

pendent directions vanish. We first consider the partial derivative ∂φ
∂t (0, 0).

So we are letting s = 0 and we would like to compute the derivative of

t 7→
∫
∂P∩{lt≥0}

ltdσ −
∫
P∩{lt≥0}

ltAdλ

at 0, where lt = tk− y− tkx. Here A is the affine linear function associated
to the weighted polytope (P, dσ).

In taking the integral over the polytope, the integrals of all the terms in
lA is always divisible by t2, since the constant and x-term in l has a factor
of t, and all integrals involving y will introduce an extra factor of t. Thus
the derivative of

∫
P∩l>0 lAdλ is 0 and we only need to consider the terms

coming from the integral over the boundary.
For this part, we are then considering the derivative of

t 7→
∫
F1∩{lt≥0}

ltdσ
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since lt is only positive on E and F1, and the boundary measure vanishes
on E. But this equals

r1

∫ tk

0
(tk − y)dy,

since F1 ⊆ {x = 0} and so lt = tk − y on F1. It follows that the derivative
of this function vanishes at t = 0.

To complete the proof we need to check that the directional derivative in
a linearly independent direction vanishes. One can consider ∂φ

∂s (0, 0). This
case is similar. It then follows that (0, 0) is a critical point. �

2.3. Poincaré type metrics. Consider the punctured unit (open) disk
B∗1 ⊆ C with the metric

|dz|2

(|z| log |z|)2
.(2.4)

Here we use the notation |dz|2 = dx2 + dy2, where z = x + iy. This is the
standard cusp or Poincaré type metric on B∗1 . The associated symplectic
form is

idz ∧ dz
|z|2 log2(|z|)

= 4i∂∂(log(− log(|z|2))).(2.5)

Poincaré type metrics are Kähler metrics on X \D which near D look like
the product of the Poincaré type metric on B∗1 with a metric on D. These
metrics have a rich history of study. A central result is the existence of
Kähler-Einstein metrics with such asymptotics, analogous to Yau’s theorem
in the compact case, by Cheng-Yau, Kobayashi and Tian-Yau in [CY80],
[Kob84] and [TY87], respectively.

Auvray made a general definition of metrics with such singularities along
a simple normal crossings divisor D in a compact complex manifold X. That
D is simple normal crossings means that we can write D =

∑
kDk, where

each Dk is smooth and irreducible, and the Dk intersect transversely in the
sense that for each choice k1, · · · , kl if distinct indices, we can around each
point in Dk1 ∩ · · · ∩Dkl find a holomorphic chart (U, z1, · · · , zn) such that
Dkj ∩ U = {zj = 0} ∩ U . Note that in particular l is at most the dimension
of X. Also, on each such chart U , we have a standard locally defined cusp
metric whose associated 2-form is given by

ωcusp =

l∑
j=1

idzj ∧ dzj
(|zj | log |zj |)2

+
∑
j>l

idzj ∧ dzj .

Given such a divisor, one can for each k define a model function fk, which
when patched together gives the model Kähler potential for a Poincaré type
metric. More precisely, fix a holomorphic section σk of O(Dk) such that Dk

is the zero set of σk. Also fix a Hermitian metric | · |k on O(Dk), which we
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assume satisfies |σk|k ≤ e−1. Thus, for each λ sufficiently large, the function
fk = log(λ− log(|σk|2k)) is defined on X \Dk.

Let ω0 be a Kähler metric on the whole of the compact manifoldX. By the
above we can, for sufficiently large λ, pick Ak > 0 such that if f =

∑
k Akfk,

then ωf = ω0−i∂∂f is a positive (1, 1)-form on X\D. Poincaré type metrics
are then metrics on X \D defined by a potential with similar asymptotics
to f near D.

Definition 2.12 ([Auv17, Def. 0.1],[Auv13, Def. 1.1]). Let X be a compact
complex manifold and let D be a simple normal crossings divisor in X. Let
ω0 be a Kähler metric on X in a class Ω ∈ H2(X,R). A smooth, closed,
real (1, 1) form on X \D is a Poincaré type Kähler metric if

• ω is quasi-isometric to ωcusp. That is, for every chart U as above,
and every compact subset K of B 1

2
∩ U , there exists a C such that

throughout K, we have

Cωcusp ≤ ω ≤ C−1ωcusp.

Moreover, the class of ω is Ω if

• ω = ω0 + i∂∂ϕ for a smooth function ϕ on X \D with |∇jωfϕ| bounded
for all j ≥ 1 and ϕ = O(f).

2.4. Poincaré type metrics on toric varieties. From the works of Abreu
and Guillemin in [Abr98] and [Gui94], respectively, one can describe all Tn-
invariant Kähler metrics in a given Kähler class through a space of strictly
convex functions on the associated moment polytope. We will now describe
how one can extend this to the case of metrics with mixed Poincaré and cone
angle singularities along the torus-invariant divisors of a toric manifold.

One way to view the correspondence between Tn-invariant Kähler metrics
on compact toric manifolds and certain strictly convex functions on P is the
following. For each strictly convex function u on P which is smooth on P ◦,
the Legendre transform induces a map ψu : P ◦ × Tn → (C∗)n, which we
can then think of as a map between the free orbits in the symplectic quo-
tient MP and the complex quotient NP associated to P , respectively. The
Guillemin boundary conditions for the function u are the precise bound-
ary conditions such that ψu extends as a diffeomorphism MP → NP taking
[ωP ] ∈ H2(MP ,R) to ΩP ∈ H2(NP ,R).

It will be convenient to encode the data of the singularities in a boundary
measure again. Given a positive boundary measure there is a unique li such
that P ⊆ l−1i ([0,+∞)) for all i, and that equation (2.1) is satisfied with
ri = 1. We call the collection l1, · · · , ld the canonical defining functions of
(P, dσ). For any bounded convex polytope P , we then define a space of
symplectic potentials.

Definition 2.13. Let P be a bounded convex polytope and let dσ be a posi-
tive boundary measure for P . Let li be the canonical defining functions for
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(P, dσ). We define the space of symplectic potentials SP,dσ to be the space
of strictly convex functions u ∈ C∞(P ◦) ∩ C0(P ) satisfying

u =
1

2

∑
i

li log li + h,

for some h ∈ C∞(P ) and which further satisfies that the restriction of u to
the interior of any face of P is strictly convex.

In the case when P is Delzant, SP,dσ then precisely describes metrics
with cone angle singularities along the torus-invariant divisors, the cone
angle being prescribed by dσ.

Proposition 2.14 ([DGSW18, Prop. 2.1]). Let P be a Delzant polytope
with canonical measure dσ0. Let dσ be a positive boundary measure for P ,
so on each facet Fi of P , dσ satisfies

dσ|Fi
= ridσ

0
|Fi

for some ri > 0. Then through the Legendre transform, symplectic potentials
u ∈ SP,dσ induce metrics with cone singularities along the torus invariant
divisors Di corresponding to the facets Fi. The cone angle singularity along
Di is 2πri.

Let D be a not necessarily irreducible torus-invariant divisor in NP , so D
is a union of some of the Di as above. The goal of this section is to instead
describe the precise conditions on the function u such that ψu induces a dif-
feomorphism such that (ψ−1u )∗(ωP ) is a metric on NP \D with Poincaré type
singularities along D and cone angle single singularities along the remaining
torus-invariant divisors.

The model cusp metric on the unit punctured disk in C has associated
Kähler form given by

idz ∧ dz
|z|2 log2(|z|2)

.

It is induced by the Legendre transform of the function

− log(x).

This motivates the definition below of the space of Poincaré type metrics.
Let P be a Delzant polytope with facets F1, · · · , Fd. We let (NP ,ΩP )

be the corresponding complex manifold and Kähler class associated to P ,
and let Di be the divisor in NP corresponding to the facet Fi. Suppose dσ
is a non-negative boundary measure for P . Let {i1, · · · , ik} be the subset
of {1, · · · , d} on which ri vanishes, which, after relabelling of the Fi, we
will assume is 1, · · · , k. Then we let D denote the divisor D1 + · · · + Dk

corresponding to the facets on which dσ vanishes.
Given a non-negative boundary measure dσ for P , let dσ̃ be a positive

boundary measure which agrees with dσ on the facets where dσ does not
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vanish. For a symplectic potential v ∈ SP,dσ̃ and positive real numbers
a1, · · · , ak > 0, define ua,v : P ◦ → R by

ua,v = v +

k∑
i=1

(−ai log li).(2.6)

In the author’s thesis [Sek16], it was shown that potentials of this form
induce metrics with Poincaré type singularities along D. More precisely,

Proposition 2.15. Let (P, dσ) be a weighted Delzant polytope, where dσ
is a non-negative boundary measure. Then through the Legendre transform,
ua,v defines a Kähler metric on NP \D with mixed Poincaré and cone angle
singularities in the class ΩP . The Poincaré type singularity is along D, and
the cone angle singularities are along the divisors Di with i > k, the cone
angle singularity along Di being equal to that of the metric induced by v.

This serves as model Poincaré type potentials. More generally, the space
of Tn-invariant Poincaré type metrics in a given class can be described by
functions satisfying the following definition.

Also, recall that associated to dσ̃ there is a canonical choice of defining
functions li for P , whose zero sets intersect P in facets Fi. For a non-negative
boundary measure dσ we can get canonical defining functions for the i such
that dσ|Fi

6= 0 by the same requirement on these facets.
For the functions u and ua,v below we will let U and Ua,v denote their

respective Hessians. Given a non-negative boundary measure dσ, we let
dPT : P → R be a positive function on P which is smaller than 1 everywhere,
and which agrees with the distance function to the Poincaré type facets near
these facets. The Poincaré type facets are the facets on which dσ vanishes.

Definition 2.16. Let P be a polytope with facets F1, · · · , Fd and let dσ be
a non-negative boundary measure. Let li be the canonical defining functions
for the i such that dσ does not vanish along Fi. Define SP,dσ to be the space
of smooth strictly convex functions u : P ◦ → R that can be written as

u =
1

2

∑
i:dσ|Fi

6=0

li log li + h,(2.7)

for some h ∈ C∞(P \ ∪i:dσ|Fi
=0Fi), and which moreover satisfy that there is

a model potential ua,v for (P, dσ) such that

• u restricted to each facet where the boundary measure does not vanish
is strictly convex,
• |u| ≤ C(− log(dPT )) for some C > 0,
• there is a c > 0 such that

c−1Ua,v ≤ U ≤ cUa,v,(2.8)

• for all i ≥ 1, we have that |∇iu|ua,v and |∇iua,v|ua,v are mutually
bounded.
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Here ∇u = ∇1u is the gradient of u with respect to ua,v, ∇i denotes the
higher derivatives with respect to the Levi-Civita connection of ua,v and |·|ua,v
denotes the norm on the higher tensor bundles of TP ◦ with respect to ua,v.

For a Delzant polytope, elements of SP,dσ also give Kähler metrics with
mixed Poincaré type and cone singularities. For the proof, see [Sek16, Prop.
3.10].

Proposition 2.17. Suppose P is a Delzant polytope and let dσ be a non-
negative boundary measure. Then for all u ∈ SP,dσ, u defines through the
Legendre transform a Kähler metric on NP in the class ΩP with mixed
Poincaré type and cone angle singularities, the singularity being prescribed
by dσ.

Conversely, if ω ∈ ΩP is the Kähler form of a Tn-invariant metric on NP

of Poincaré type along a torus-invariant divisor D, then it is induced by a
function u on P ◦ satisfying Definition 2.16.

3. Conventions for the case of quadrilaterals

We now come to the main part of the article, where we investigate weighted
polytope stability for quadrilaterals. We begin by stating the conventions
we will use.

Let Q be the quadrilateral with vertices v1 = (0, 0), v2 = (1, 0), v3 =
(1 + p, q) and v4 = (0, k), for some q, k > 0 and p > max {− q

k ,−1}. Then
Q is a convex quadrilateral, and all quadrilaterals can be mapped to such
a quadrilateral via a translation and a linear transformation. When the
parameters are rational, this is a rational Delzant polytope, and so, after
choosing appropriate boundary weights, corresponds to a toric orbifold sur-
face XQ. Since it is a quadrilateral, b2(XQ) = 2.1 The edges E1, · · · , E4 of

Q are given as l−1i (0) ∩Q, where

l1(x, y) = y,

l2(x, y) = −qx+ py + q,

l3(x, y) = (q − k)x− (1 + p)y + k(1 + p),

l4(x, y) = x,

and Q =
⋂
i l
−1
i ([0,∞)). The canonical measure dσ on ∂Q associated to

these defining equations is thus given by

dσ|E1
= dx,

dσ|E2
=

1

q
dy,

dσ|E3
= (1 + p)dx,

dσ|E4
= dy.

1In general, a two dimensional rational Delzant polytope with d edges is the moment
polytope of a toric orbifold surface with b2 = d− 2.
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We will identify the weight r = (r1, · · · , r4), and so also the correspond-
ing measure, with a formal sum

∑
i riEi. Thus, for example, (12 ,

1
2 , 0, 0) is

identified with 1
2E1 + 1

2E2.
The property describing the explicit numbers r0 and r1 of Theorem 1.1 is

the following. Q has two pairs of opposite sides. Let φ(s, t) and ψ(s, t) denote
the polynomials of Lemma 2.10 for these two pairs of edges. The domains of
these functions each have two points which correspond to affine functions,
i.e. the crease is exactly an edge of Q. These points are opposite vertices
of [0, 1]× [0, 1], and, after possibly replacing e.g. φ(s, t) with φ(s, 1− t), we
can take these to be (0, 0) and (1, 1).

Similarly, we can also assume that in the case when dσ vanishes on two
adjacent sides, (0, 0) in each domain is the point corresponding to the crease
being on an edge with vanishing boundary measure. In the case of dσ vanish-
ing on two opposite edges, we can assume φ is the function parameterising
the Donaldson-Futaki invariant of simple piecewise linear functions with
crease along the other pair of opposite edges. In particular, the points (0, 0)
and (1, 1) in the domain of φ correspond to simple piecewise linear functions
with crease on an edge where dσ vanishes.

Recall that Lemma 2.11 implies that the points where the corresponding
crease is an edge with vanishing boundary measure are critical points of φ
or ψ. In particular, we get that the vanishing of the determinant at such a
point does not depend on the scale we used in defining φ and ψ.

Lemma 3.1. Let dσr be the boundary measure for Q corresponding to rEi+
(1− r)Ej for edges Ei, Ej of Q, and let the polynomials of Lemma 2.10 for
this boundary measure be φr and ψr. Then the determinant of the Hessian
of φr or ψr at a point in [0, 1]× [0, 1] is quadratic in r.

Proof. From their definition and Lemma 2.8, φr and ψr are linear in r, and
hence so are all their second derivatives with respect to s and t. Hence the
determinant is of degree 2 in r. �

We can then finally characterise what the r0 and r1 in Theorem 1.1 are.
They are given as the end-points of the intersection of the two regions where
φr and ψr have non-negative determinant at the points corresponding to sim-
ple piecewise linear functions with crease an edge with 0 boundary measure.
As remarked above, this does not depend on our choice of scale for φ and ψ.

In [ACG15, App. B], Apostolov-Calderbank-Gauduchon showed that un-
less Q is a parallelogram, it has both unstable and stable weights, when all
weights are positive. From Theorem 1.1, we also get a result about the set
of unstable weights for quadrilaterals, now allowing weights to be 0. The
vertices of

∑
ri = 1, corresponding to measures supported on one edge only,

are always unstable. Thus the set of unstable weights can have at most
four connected components. This is generically the case, but in the case of
parallel sides there is different behaviour. Specifically, we have the following.
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Corollary 3.2. Let Q be a quadrilateral. Then the number of connected
components of the unstable set is

• 4 if Q has no parallel sides,
• 3 if Q is a trapezium which is not a parallelogram,
• 2 if Q is a parallelogram.

Proof. If Q has no parallel sides, then Theorem 1.1 implies that there is a
stable weight on each edge of the 3-simplex

∑
i ri = 1. Since the stable set

is a convex set, it follows that the stable set contains a sub-simplex whose
complement has 4 connected components. Thus the unstable set does too.

If Q is a trapezium, but not a parallelogram, then the weights along the
edge corresponding to weights which are non-zero only on the two parallel
sides are all unstable. This reduces the number of connected components
by one.

Finally, if Q is a parallelogram, the unstable set is precisely the two edges
of the simplex

∑
ri corresponding to having zero weights on two opposite

edges of Q, which has two connected components. This follows because
whenever dσ does not vanish on two opposite edges, then one can use the
product of the extremal potentials for P1 with Poincaré type singularity at
one fixed point and cone angle singularity at the other fixed point to give
an extremal potential for Q. Hence the unstable weights for a parellogram
are precisely the ones vanishing on opposite edges of Q. �

The method of proof of Theorem 1.1 is as follows. We first show that given
any weights, there is a formal ambitoric solution, unless a simple condition
necessary for stability is violated. A formal solution is a matrix-valued
function H ij with the correct boundary conditions associated to (Q, dσ)

and for which H ij
ij is affine, but it may not be positive-definite everywhere

in Q◦. We then show that stability is equivalent to the positive-definiteness
of the formal solution. We also show that in this case H ij is in fact the
inverse Hessian of a symplectic potential, so that in the case where Q is
Delzant this is equivalent to the existence of a genuine extremal metric on
the corresponding toric orbifold.

4. Formal solutions for quadrilaterals

We begin this section by reviewing the construction of Apostolov-Calderbank-
Gauduchon, which we will refer to as the ACG construction. It will suffice
for us to describe the construction only briefly. In particular, we will omit a
lot of the formulae that are not directly used. However these can be found
in [ACG15, Sect. 3.2].

Given a quadrilateral Q with no parallel edges, there is a 1-parameter
family of conics C(Q) such that the edges of Q lie on tangent lines to C(Q).
Indeed, this condition just fixes four points on a dual conic C∗(Q), and there
is a 1-parameter family of conics going through these four points. Given such
a conic, we can swipe out the quadrilateral Q by taking the intersection of
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two tangent lines to C(Q), provided we avoid having to use the tangent line
to a point of C(Q) at infinity.

Assuming this holds, we then get a new set of coordinates (x, y) on Q,
by parameterising C(Q) and identifying a point in (x, y) ∈ C(Q) × C(Q)
with the intersection of the tangent lines to C(Q) at x and y. The map is
then well-defined away from the diagonal, and so to avoid any ambiguity
we require x > y, so that Q is the image under this map of a product of
intervals D = [α0, α∞]× [β0, β∞] with

α0 < α∞ < β0 < β∞.(4.1)

This will be positive ambitoric coordinates for a quadrilateral Q.
Another way one could obtain new coordinates for a quadrilateral Q is

the following. Take a line L with two marked points p1, p2. One can then
parameterise all the lines going through p1 and p2, respectively, and take
their intersections. This is well-defined provided we do not use the line L
itself. For a given quadrilateral Q, there are two pairs (F1, F

′
1) and (F2, F

′
2)

of opposite sides of Q. These coordinates are then obtained by letting pi
be the point corresponding to the intersection of Fi and F ′i . We call these
coordinates negative ambitoric coordinates. This gives us a well-defined co-
ordinate system provided the line containing p1 and p2 does not pass through
the interior of the quadrilateral. Allowing one of the points pi to be at infin-
ity gives trapezia, whereas allowing the line to be the line at infinity gives
parallelograms. Again, we can assume this map is defined on some product
D = [α0, α∞]× [β0, β∞] of closed intervals satisfying the inequalities (4.1).

Thus given the choice of such data, we get a map µ±, depending on
whether we are considering positive or negative ambitoric coordinates. These
send D to quadrilaterals Q±. For rational parameters, [ACG15] showed that
these were coordinates arising from what they call an ambitoric structure
on a 4-orbifold. However, the maps can also be seen as simply giving new
coordinates for quadrilaterals.

Remark 4.1. Any given quadrilateral can admit multiple ambitoric coordi-
nate systems, depending on the choice of data above, and it can also admit
both positive and negative ambitoric coordinates.

We now fix ambitoric coordinates as above, either positive or negative,
and let A,B be quartic polynomials such that

A(α0) = 0, A′(α0) = rα0 ,

A(α∞) = 0, A′(α∞) = rα∞ ,

B(β0) = 0, B′(β0) = rβ0 ,(4.2)

B(β∞) = 0, B′(β∞) = rβ∞ ,

and

A+B = qπ.(4.3)
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Here the rγ are non-negative real numbers, q(z) = q0z
2 + 2q1z + q2 is a

quadratic, positive on [α0, α∞] × [β0, β∞], which is fixed by the choice of
ambitoric coordinates for Q, and π is some other quadratic. This uniquely
determines A and B, as these are 10 equations for 10 unknowns. It was
shown in [ACG15] that these are in fact independent conditions.

Given A,B satisfying the above, let

g± =
( x− y
q(x, y)

)±1( dx2

A(x)
+

dy2

B(y)
+A(x)

(y2dτ0 + 2ydτ1 + dτ2
(x− y)q(x, y)

)2
+B(y)

(x2dτ0 + 2xdτ1 + dτ2
(x− y)q(x, y)

)2)
.

These define t-invariant metrics onD◦×t provided A,B are positive through-
out D◦.

Above q(x, y) denotes q0xy+q1(x+y)+q2 and (τ0, τ1, τ2) are coordinates
the torus t that satisfy

2q1τ1 = q2τ0 + q0τ2.(4.4)

The function q is determined by the ambitoric coordinate system, as we
are realizing the 2-dimensional affine subspace in which the quadrilateral
lies as an affine subspace of a fixed space 3-dimensional vector space with
coordinates τ0, τ1, τ2, through the equation (4.4).

Regardless of whether or not A and B are positive, the projection of this
to the t-fibres of the tangent bundle of D◦× t comes from a map D◦ → S2t∗,
which moreover is actually the restriction of a smooth map D → S2t∗.

We can then use one of the maps µ± to consider this as a map on Q±

instead. From the formulae of [ACG15], the µ± are defined on an open subset
containing D, and so it takes smooth functions on D to smooth functions
on Q±. Let H± : Q± → S2t∗ be the function sending (x, y) to(
x− y
q(x, y)

)±1(
A(x)

(y2dτ0 + 2ydτ1 + dτ2
(x− y)q(x, y)

)2
+B(y)

(x2dτ0 + 2xdτ1 + dτ2
(x− y)q(x, y)

)2)
.

Then H± is smooth on Q±. We then also have, as in [ACG15], that H±

satisfies the boundary conditions required in Lemma 4.4 below for Q± with
a boundary measure determined by the rk and a choice of lattice, which
we take to be generated by the normals to two adjacent sides of Q±. In

[ACG15], it was also shown that H ij
ij is affine if and only if in equation

(4.3), the quadratic π is orthogonal to the quadratic q under a suitable
inner product.

Given a boundary measure dσ on ∂Q, there is an associated affine func-
tion, see Definition 2.5. In this section we will follow [ACG15] and call this
affine function ζ, as A is used in the definition of an ambitoric metric above.
We will need the following definition.

Definition 4.2 ([Leg11a, Defn. 1.2]). Let Q be a quadrilateral. Let its
vertices v1, · · · , v4 be ordered such that v1 and v3 do not lie on a common
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edge of Q. An affine function f on a quadrilateral Q is equipoised on Q if∑
i

(−1)if(vi) = 0.

A weighted quadrilateral (Q, dσ) is an equipoised quadrilateral if its associ-
ated affine function ζ is equipoised.

There are many choices of ambitoric coordinates for a given quadrilateral.
However, in the search for extremal potentials on weighted quadrilaterals,
there is a preferred such coordinate system. In [ACG15], it was shown that
almost all weighted rational Delzant quadrilaterals with rational weights
admits ambitoric coordinates of the form above in which the solution H ij

to the system (4.2) has π orthogonal to q, under a necessary condition
for stability. However, their argument did not use the rationality of the
weights nor of the quadrilateral and so holds in the setting where we consider
irrational parameters, and non-negative boundary measures.

Lemma 4.3 ([ACG15, Lem. 4]). Let (Q, dσ) be a weighted quadrilateral.
Then provided (Q, dσ) is not an equipoised trapezium, Q admits ambitoric
coordinates such that the matrix H solving the system (4.2) has π is orthog-
onal to q if and only if φ(1, 0) and φ(0, 1) are positive.

Here φ is the polynomial described in section 3. The points (1, 0) and
(0, 1) correspond to the two simple piecewise linear functions with crease
along a diagonal of Q.

We will call these coordinates preferred ambitoric coordinates for (Q, dσ),
and to obtain extremal potentials from the ambitoric ansatz we necessarily
have to work in these coordinates. For the case of equipoised trapezia,
we will require a different construction of Calabi type toric metrics due to
Legendre in [Leg11a, Sect. 4] that we describe in the next section.

The key in the argument of [ACG15] to show that relative K-stability
is equivalent to the existence of an ambitoric extremal metric, goes back
to Legendre in [Leg11a], where she takes such an approach for positively
weighted convex quadrilaterals which are equipoised. The idea is to use
the formal solution H ij in preferred coordinates for (Q, dσ), even though
this is not necessarily positive-definite. One then shows that the positive-
definiteness of H ij is equivalent to stability.

The crucial lemma for this argument in the case of positive boundary
measure is a version of Donaldson’s toric integration by parts formula in
[Don02]. The formula is applied to matrices that may not be the inverse
Hessian of a function. In Donaldson’s work, the f are allowed to blow-up
near the boundary at a certain rate. However, we will only need to consider
smooth functions, so we only include these in our statement. In this case
the proof is easier, as it is a direct application of Stokes’s theorem, and so
we omit it. This lemma has been used also in several other works such as in
[Leg11a]. The only difference is that we are allowing the ri to be 0, which
does not affect the proof.
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Lemma 4.4. Let P be a polytope in t∗, with facets Fi = l−1i (0) for some
affine functions li that are non-negative on P . Let ui = dli be the conormal
to Fi, and define a measure dσ on ∂P by dσ|Fi

∧ ui = ±dλ, where dλ is the

Lebesgue measure on t∗. Suppose H : P → S2t∗ is a smooth function on P
such that on ∂P ,

H(ui, v) =0 for all i and for all v,

dH(ui, ui) =riui for all i,

for non-negative numbers ri. Then for any smooth function f on P ,∫
P
H ijfijdλ =

∫
P
H ij

ijfdλ+

∫
∂P
fdσr,

where fij is the Hessian of f computed with respect to a basis of t∗ whose
volume form is dλ, H ij is the matrix obtained by evaluating H on the dual

basis for t and H ij
kl is the Hessian of the function H ij computed in these

coordinates.

The formal solutions from the preferred ambitoric coordinates will give

functions satisfying these boundary conditions, and with H ij
ij affine. We

will then show that stability is equivalent to H ij being positive-definite. In
the next section we will also see that if H ij is positive-definite, then it is the
inverse of the Hessian of a symplectic potential.

We are now ready to prove that stability is equivalent to the existence of
positive formal solutions. Since the ambitoric coordinates work equally well
for non-Delzant quadrilaterals and for boundary measures that are arbitrary
non-negative real numbers, the proof is exactly as in [ACG15]. However, we
include it for completeness.

Proposition 4.5. Let HA,B be the formal extremal solution associated to
a weight dσ of a quadrilateral Q admitting preferred ambitoric coordinates
for this weight. Then dσ is a stable weight if and only if A,B are positive
functions on (α0, α∞) and (β0, β∞), respectively.

Proof. From Lemma 4.4 and that H = HA,B solves H ij
ij = ζ, it follows

that

L(f) =

∫
P
H ijfijdλ

for all smooth f . This can also be applied in the sense of distributions to
piecewise linear functions, and one obtains as in [ACG15, p. 6], that for
simple piecewise linear functions with crease I,

L(f) =

∫
I
H(uf , uf )dνf ,(4.5)

where uf is a conormal to I suitably scaled and dνf satisfies uf ∧ dνf = dλ.
For a general piecewise linear function f , one gets a positive combination of
such contributions over all creases of f .
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In particular, if A,B are positive on the interior regions, then HA,B is
positive-definite and so this is positive for all piecewise linear functions.
Thus (Q, dσ) is stable.

Conversely, suppose A,B are not both positive on the interior regions.
Assume first that A(α) ≤ 0 with α ∈ (α0, α∞). Then letting f be a simple
piecewise linear function with crease I = µ({α} × [β0, β∞]), one gets in
(4.5) that H(uf , uf ) is a positive multiple of A(α), and in particular L(f)
is a positive multiple of A(α), and hence non-negative. Thus (Q, dσ) is not
stable. The argument for B is identical, using a simple piecewise linear
function with crease of the form µ([α0, α∞]× {β}) instead. �

5. The stable region

In this section we will apply the ACG construction to arbitrary quadri-
laterals with non-negative boundary measure to analyse the set of weights
for which a quadrilateral is stable, and in particular prove Theorem 1.1.

We begin with a lemma giving a sufficient condition for a weighted quadri-
lateral to admit preferred ambitoric coordinates. Given two edges E,F , let
φ, ψ be the functions [0, 1]× [0, 1]→ R parameterising the Donaldson-Futaki
invariant of simple piecewise linear functions with crease meeting the two
edges adjacent to E and F , respectively. We can suppose (0, 0) is the vertex
of [0, 1]× [0, 1] corresponding to the affine function vanishing exactly along
E and similarly for ψ and F . Then (1, 0) and (0, 1) correspond to the two
simple piecewise linear functions with crease a diagonal of Q, both for ψ and
φ.

Lemma 5.1. Let (Q, dσ) be a weighted quadrilateral with dσ vanishing on
two edges E and F . If the Hessians of φ and ψ at (0, 0) are both positive
semi-definite, then φ and ψ are positive at (1, 0) and (0, 1).

Proof. The proof uses direct computation. Consider the one-parameter
family of boundary measures dσr as in the statement of Theorem 1.1, and
let the corresponding polynomials be φr and ψr. Note that φr(1, 0) is linear
in r, and similarly for φr(0, 1). Let r1, r2 be the values for which φr(1, 0) = 0
and φr(0, 1) = 0, respectively.

A calculation shows the key property for our purposes, namely that the
sign of the determinant of the Hessian of φri at (0, 0) is the opposite of the
sign of the determinant of the Hessian of ψri at (0, 0). Thus the set of r
for which these determinants are both positive is contained in the region
where φr(1, 0) and φr(0, 1) have the same sign. Moreover, when r = 0, 1 at
most one of the diagonals can correspond to a destabilising simple piecewise
linear function. In particular, the region in which φr(1, 0) and φr(0, 1) have
the same sign must intersect [0, 1] and necessarily be such that this sign is
positive. Then the region where the determinant condition holds must be
contained in this region and the result follows. �
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We now use Proposition 4.5 to give an easily computable criterion for sta-
bility on weighted quadrilaterals with no parallel sides and with 0 boundary
measure on two adjacent sides. For a quadrilateral Q with edges E1, · · · , E4,
let φ and ψ be the two functions corresponding to evaluating L on simple
piecewise linear functions with crease meeting two opposite edges of Q. Also,
given edges Ei, Ej , let dσr be the measure corresponding to the formal sum
rEi + (1− r)Ej , as in the statement of Theorem 1.1.

Proposition 5.2. Let Ei, Ej be adjacent sides of Q. Then (Q, dσr) for
r 6= 0, 1 is stable if and only if the Hessians of the functions φ and ψ are
positive semi-definite at the points corresponding to the simple piecewise
linear function whose crease is an edge with 0 boundary measure.

Proof. First note that under these conditions (Q, dσ) is never an equipoised
trapezium. Now, if the Hessians of φ and ψ at the points p, q corresponding
to the simple piecewise linear function with crease an edge with 0 boundary
are not positive semi-definite, then (Q, dσr) is not stable. Indeed, from
Lemma 5.1, p and q are critical points of φ and ψ. Thus if the positive
semi-definiteness does not hold, then either φ or ψ decreases in some ray
away from p or q. Since φ and ψ are 0 at p and q, respectively, it follows
that Lr is negative on some simple piecewise linear function, hence r is not
a stable weight for Q.

Conversely, suppose the Hessians are positive semi-definite. From Lemma
5.1, (Q, dσr) admits preferred ambitoric coordinates. So we must show that
the formal solution HA,B has A and B positive in (α0, α∞) and (β0, β∞),
respectively.

We first show that A is positive if the Hessian of φ(s, t) is positive semi-
definite at p, where φ is the Donaldson-Futaki invariant of simple piecewise
linear functions with crease along the edges corresponding to y = β0 and
y = α∞. Consider the Donaldson-Futaki invariant of functions fc with
crease x = c. From the proof of Proposition 4.5 we have that this is given
by

L(fc) = A(c)hc,

where hc is a function obtained from integrating a smooth positive function
over Ic = {(c, t) : t ∈ [β0, β∞]}. In particular, if for simplicity the edge with
0 boundary measure is x = α0, we have that A(α0) = A′(α0) = 0, and so

d2

ds2 |s=0
(L(fα0+s)) = A′′(α0)hα0 .

It follows that A′′(α0) ≥ 0, since φs,t is positive semi-definite.
Now, A is a polynomial of degree 4 with a double zero at α0 and a simple

zero at α∞. Moreover, the condition on A′(α∞) implies that A is positive
near α∞. If A′′(α0) > 0, then A is positive near α0, too, and so this means
that A must have two more zeros, counted with multiplicites, if A is not
positive in (α0, α∞). But this means that A has five zeros, counted with
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multiplicities, and so A has degree at least 5, a contradiction. If A′′(α0) = 0,
then A can have no zeros in (α0, α∞), since it has degree 4 and we have 4
zeros at α0 and α∞ counted with multiplicity. In particular, A has constant
sign in this interval. Since A is positive near α∞, it therefore follows that A
is positive in (α0, α∞).

Similarly, one obtains the result for the case when the 0 boundary measure
occurs at α∞. The same argument also works to show that B is positive in
(β0, β∞) if ψ has positive semi-definite Hessian at q. �

We are now ready to prove an analogous result for the case when opposite
sides have 0 boundary measure. Also here we get a criterion that is easy
to compute, but note that in this case it is an open condition. Note also
that we only need to check this for one of the functions φ, ψ. Lemma 5.5
below, which forms part of the proof, will show that if φ is positive-definite
at (0, 0), then ψ is automatically positive.

Proposition 5.3. Let (Q, dσ) be a weighted quadrilateral where dσ vanishes
exactly on two opposite edges and such that (Q, dσ) is not an equipoised
trapezium. Then (Q, dσ) is stable if and only if the Hessian of the function
φ is positive-definite at the point (0, 0).

Remark 5.4. We will see below that in the case of equipoised trapezia the
same conclusion holds, but for now we will consider the cases where we can
apply the ACG construction.

Proof. As before, the points corresponding to an affine function are critical
points of φ. Therefore, if the Hessian is not positive semi-definite at these
points, then φ decreases in some direction. Since φ is zero at these points, it
follows that if the Hessian is not positive semi-definite, then (Q, dσ) is not
stable.

Now assume the determinant condition holds. By Lemma 5.1, (Q, dσ)
admits preferred ambitoric coordinates. Without loss of generality, assume
that in these coordinates, the edges with 0 boundary measure correspond to
x = α0 and x = α∞, respectively. Let A,B be the quartics for the formal
solution HA,B.

To show that the B is positive, it suffices to show that all B’s in a region
of weights containing the weights for which the Hessian condition holds, are
positive. This follows from Lemma 5.5 below and the positivity of the A on
(α0, α∞) for all weights satisfying the Hessian condition that we will now
show.

We do this by a similar argument as in the adjacent case, considering the
second derivative of the Donaldson-Futaki invariant

L(fc) = A(c)hc

of the family fc of simple piecewise linear functions with crease x = c. The
sign of this is the same as A′′(α0). Now, since A is a quartic with a double
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zero at both α0 and α∞, it follows that A(z) = λ(z − α0)
2(z − α∞)2. Thus

A′′(α0) = λ(α0 − α∞)2.

In particular, the sign of λ, which is positive if and only if A is positive
on (α0, α∞), equals the sign of the second derivative of L(fc). Since φ is
positive-definite at the critical point, it follows that L(fc) > 0. Thus λ > 0
and so A is positive throughout (α0, α∞).

Finally we must consider the borderline case when the Hessian is strictly
positive semi-definite. The above also shows that if φ is only positive semi-
definite, then L vanishes on functions with crease x = α for all α ∈ [α0, α∞].
So in this case positive semi-definiteness is not sufficient, one needs φ to be
positive-definite. �

To complete the proof of Proposition 5.3, we must show the following
Lemma.

Lemma 5.5. Let (Q, dσ) be a quadrilateral admitting preferred ambitoric
coordinates and for which dσ vanishes on two opposite edges of Q. Moreover,
suppose dσ is such that the Hessian of φ is strictly positive semi-definite at
(0, 0). Then for the formal solution HA,B associated to dσ, B is positive on
(β0, β∞).

Proof. Under this Hessian condition, it follows that in the formal solution
A is identically zero. Thus the formal solution satisfies

π(z)q(z) = A(z) +B(z)

= B(z).

Thus q divides B and so the zeros of B are β0, β∞ and the zeros of q.
However, recall that q must be chosen so that it does not have any zeros in
[β0, β∞]. Thus B has no zeros in (β0, β∞), and so has constant sign in this
interval. Since the boundary conditions imply that B increases from β0, it
therefore follows that B is positive throughout (β0, β∞), as required. �

We have now found an easily computable criterion for stability for all
weighted quadrilaterals with boundary measure vanishing on two edges,
apart from equipoised trapezia, where either the boundary measure van-
ishes on two non-parallel sides or the boundary measure vanishes on the two
parallel sides and is equal on the two non-parallel sides, using a normalisa-
tion as in [Leg11a, Eqn. 4.7].

Of these two cases, the former are always unstable by an example due to
Székelyhidi.

Proposition 5.6 ([Szé08, Prop. 15] ). Suppose Q has parallel sides. Then
for any boundary measure which is supported on the two parallel sides,
(Q, dσ) is strictly semistable.
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For the latter case, let E and F be the two sides that are not parallel. We
can apply a simple argument using the ACG construction in almost all situ-
ations to determine the stability of the boundary measure dσr corresponding
to rE + (1 − r)F . The construction applies to all but one value of r, say
r′. Doing this we get from Proposition 5.3 that for r ∈ (0, 1) \ {r′}, dσr is a
stable weight for all r ∈ (r0, r1) \ {r′}, for some r0, r1. Since the stable set
is connected it follows that provided r′ is neither r0 nor r1, the stable set is
(r0, r1).

To rule out that r′ can be one of the ri and be a stable weight, we briefly
mention the construction of Legendre in [Leg11a] for equipoised trapezia.
From this it will also be clear that the arguments of the next section will
apply to this construction, so that stability for such trapezia are equivalent
to the existence of an extremal metric with Poincaré type singularities along
the two divisors corresponding to the opposite edges.

In this case, one can realize the moment polytope as the image of [α1, α2]×
[β1, β2] under the map

(x, y) 7→ (x, xy),

for some α2 > α1 > 0 and β2 > β1 ≥ 0. Let t1, t2 be the angle coordinates
corresponding to these coordinates. One obtains metrics from two functions
A : [α1, α2] → R and B : [β1, β2] → R, positive on the interiors of their
domains, as

xdx2

A(x)
+
xdy2

B(y)
+
A(x)

x
(dt1 + ydt2)

2 + xB(y)dt22,

whenever A,B vanish at the end-points, and the derivatives of A and B at
the end-points are determined by dσ, for positive weights.

The extremal condition is that A is a polynomial of degree at most 4, B is
a polynomial of degree 2 with leading term −a2, where a2 is the coefficient
of x2 in A. This determines A and B uniquely and puts a condition on
the conormals, only involving those along the edges y = β1 and y = β2. As
before we can let A have double zeros at either end-points, which correspond
to the boundary measure vanishing at x = α1 or x = α2. In the case when
the boundary measure vanishes on both sides, one can then use exactly
the same arguments as before to determine that stability is equivalent to
this formal solution being positive on the interior, and that this in turn is
equivalent to the Hessian condition of Proposition 5.3.

We now analyse the stable region, with the goal of proving that the re-
gion in which the Hessian condition is satisfied is non-empty, unless (Q, dσ)
satisfies the conditions of Székelyhidi’s example. We first consider measures
supported on adjacent sides.

Proposition 5.7. Let Q be a quadrilateral and fix two adjacent sides E and
F . Then there exists a boundary measure dσ supported on E and F such
that (Q, dσ) is stable.
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The key step to proving this is the following lemma.

Lemma 5.8. Let (Q, dσ) be a weighted quadrilateral, and let ∆1,∆2 be
the two triangles obtained by splitting Q in two via a diagonal. Define a
boundary measure dτi on ∆i to be dσ on the edges shared with Q and 0
on the edge corresponding to the diagonal of Q. Then the associated affine
linear functions Ai of (∆i, dτi) are never equal.

Proof. We can assume that ∆1 has vertices (−1, 0), (0, 1) and (0, c) with
c > 0 and that ∆2 as vertices (−1, 0), (0, 1) and (p,−q) with q > 0. The
edges Ei of Q have defining functions

l1(x, y) = c− cx− y,
l2(x, y) = c+ cx− y,
l3(x, y) = q + qx+ (1 + p)y,

l4(x, y) = q − qx+ (1− p)y.

We must also assume that l1(p, q) and l2(p, q) are positive to ensure that
∆1 ∪∆2 is a convex quadrilateral. The boundary measure along Ei can be
written as ridy, for some ri ≥ 0, but not all 0. Let dσ1 be the boundary
measure for ∆1 and similarly for ∆2.

A long but elementary calculation shows that the affine linear function
Ai associated to (∆i, dσi) is given by

A1(x, y)) =3(r1 − r2)x+
3(r1 + r2)

c
y,

A2(x, y) =3(r4 − r3)x−
3(r3 + r4 + r3p− r4p)

q
y.

We must show that they never can be equal provided Q is convex.
First of all, if p ∈ (−1, 1), then the coefficient of y for A2 is negative.

Since the coefficient of y for A1 is always non-negative, this means we must
have p /∈ (−1, 1). By symmetry it suffices to check all the cases where p ≥ 1,
so we need to check that there is no solution for p ∈ [1, 1 + q

c ], the end-point
1 + q

c coming from the condition that Q is convex.
For this one can check that the general solution to A1 = A2 giving r3 and

r4 in terms of r1 and r2 is affine linear in p. In particular, if r3 is negative
for p = 1 and for p = 1 + q

c whenever r1 and r2 are positive, then this holds
for all p ∈ [1, 1 + q

c ] and we are done.
This is indeed the case as one can check that at p = 1, the solution is

r3 = −q(r1 + r2)

c
,

and at p = 1 + q
c , the solution is

r3 = −r2q
c
,

both of which are negative. �
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We can now prove Proposition 5.7.

Proof. If there were no such weights, then there would have to exist a
strictly semistable (Q, dσ) with unique destabilising simple piecewise linear
function given by a diagonal of Q. Indeed, there would certainly have to be
one such boundary with crease going through one vertex of Q. If this was
the case and this was not a diagonal, then (Q, dσ) would admit preferred
ambitoric coordinates. But then the simple piecewise linear functions with
crease the ambitoric coordinate lines would have positive Donaldson-Futaki
invariant. In particular, the formal solution HA,B would be positive-definite
and so (Q, dσ) would be stable, a contradiction.

If there was such a strictly semistable polytope whose unique destabilising
function had crease a diagonal, it would follow from an argument similar to
one given in [Don02], that the corresponding weighted subpolytopes (∆i, dτi)
would then have equal associated affine linear function Ai. But this violates
Lemma 5.8. �

Finally, we consider the case when the boundary measure is supported on
opposite sides.

Proposition 5.9. Let Q be a quadrilateral and fix two opposite sides E and
F . Then there exists a boundary measure dσ supported on E and F such
that (Q, dσ) is stable if and only if E and F are not parallel.

We already know one direction of this proposition due to Székelyhidi’s
example, so to prove Proposition 5.9, we thus have to show that if E and
F are opposite sides that are not parallel, then there exists a stable weight.
However, it will also be transparent in the proof that both directions are
true.

Proof. We use the determinant condition of Proposition 5.2. This deter-
minant is a quadratic in r. One can show that at the critical point of this
quadratic, the value is

p2k4q (kp+ k + q)2

4ρ1ρ2
,

where

ρ1 = k2p2 + 2 k2p+ 2 kpq + k2 + 2 kp+ 2 kq + q2 + 2 k,

ρ2 = k2p2 + 2 k2pq + 2 k2p+ 2 kpq + 2 kq2 + k2 + 2 kq + q2.

Here we are using the formulae given for the quadrilateral Q and the bound-
ary measure as in section 3.

The numerator of this is always positive unless p = 0, which is the case
when E and F are parallel. Note that kp+ k + q 6= 0. It is in fact positive,
since p > −1 and q > 0. In the case of the denominator, we consider each
factor separately. These are both quadratics in p, so it suffices to show that
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there are no zeros of these quadratics for the allowed values of p, and that
at some point they are positive.

For ρ1 the roots are

p =
−k − q − 1±

√
2 q + 1

k
.

Since k > 0, the larger of these roots is the one taking the positive sign, and
so we must show that such a root is smaller than either −1 or − q

k . But if

−k − q − 1 +
√

2 q + 1

k
> −1,

then √
2q + 1 > q + 1.

Since both sides are greater than 0, this inequality is preserved when squar-
ing, and so this implies

q2 < 0,

a contradiction. Thus all roots of the first factor satisfy that p < −1, hence
it is positive for any convex quadrilateral.

For ρ2, the roots are

p =
−kq − k − q ±

√
k2q2 + 2 k2q

k
.

The greater of these is again taking the positive sign, and if

−kq − k − q +
√
k2q2 + 2 k2q

k
> − q

k
,

then √
k2q2 + 2 k2q > kq + k.

Squaring, this would imply that

k2 < 0,

again a contradition. Thus both terms are positive when p > max{− q
k ,−1}.

We have shown that the critical weight is a stable weight unless E and
F are parallel. What remains is to show that the critical weight is a valid
weight, i.e. lies in (0, 1). Since the determinant condition is violated at both
r = 0 and r = 1, it therefore suffices to show that the determinant increases
at r = 0 to conclude that the critical r must lie in (0, 1).

A computation shows that the derivative of the determinant at r = 0
being positive is equivalent to

k4p4 + 4 k4p3 + 4 k3p3q + 6 k4p2 + 4 k3p3 + 16 k3p2q + 6 k2p2q2 + 4 k4p

+ 12 k3p2 + 16 k3pq + 8 k2p2q + 16 k2pq2 + 4 kpq3 + k4 + 12 k3p+ 4 k3q

(5.1)

+ 16 k2pq + 10 k2q2 + 4 kpq2 + 4 kq3 + q4 + 4 k3 + 8 k2q + 4 kq2
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being positive. Now, if q ≥ k, then p > −1. In this case, we make the
substitution p = −1 + a above, so a > 0. We then have that equation (5.1)
becomes

a4k4 + 4 a3k3q + 4 a3k3 + 4 a2k3q + 6 a2k2q2

+8 a2k2q − 4 k3qa+ 4 k2q2a+ 4 kq3a+ 4 kq2a+ q4.

Since a, k and q are positive, the only negative term above is −4k3qa. How-
ever, since we are assuming q ≥ k, this is dominated by the term +4kq3a.
Hence this is always positive for all a, k, q > 0.

In the case when q ≤ k, one can use the substitution p = − q
k + a in-

stead and use a similar argument to obtain the same conclusion. Thus the
derivative of the determinant is positive at r = 0, and this completes the
proof. �

From the above results we thus get the following characterisation of the
stable weights for a quadrilateral, which is simply the main results of The-
orem 1.1 with the numbers in the statement explicitly given. Recall from
section 3 that fixing two edges Ei and Ej we have two associated polynomials
φ and ψ.

Corollary 5.10. Let Q be a quadrilateral and fix two edges Ei, Ej of Q.
Let c0, c1 denote weights (1 − r)Ei + rEj for which the determinant of φ
vanishes at (0, 0) and similarly define c2, c3 for ψ. Then the weights of this
form which are stable weights for Q are precisely given by

• the intersection of [c0, c1] and [c2, c3] with (0, 1) if Ei and Ej are ad-
jacent,
• (c0, c1) ∩ (0, 1) if Ei and Ej are opposite.

This is always non-empty unless Ei and Ej are parallel edges, and in this
case all such weights are unstable.

The only result left to prove to establish Theorem 1.1 is the following,
which corresponds to having r0 = 0 in the adjacent case.

Proposition 5.11. If Ei and Ej are two adjacent edges of a quadrilateral
Q such that there exists r1 such (1− r)Ei + rEj is stable for all r ∈ (0, r1),
then Ei is parallel to its opposite edge.

Proof. Note first that that if Ei is parallel to its opposite edge, then the
result holds because r0 = 0 is a strictly semistable weight. Indeed, in this
case three weights are 0, and the edge with non-zero weight is parallel to its
opposite edge. We are therefore in the case of Székeyhidi’s strictly semistable
example, Proposition 5.6.

For the converse, this is an application of our results together with [ACG15,
Prop. 6]. The proposition of Apostolov-Calderbank-Gauduchon states that
there are unstable (and stable) weights for a given quadrilateral provided
the polytope is not a parallelogram. Moreover, these are realized by taking
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one weight much larger than all the others on a side that is not parallel to
its opposite side.

In our case, this means that for all r > 0 sufficiently small, (r, r, r, 1) is
an unstable weight, where we are using the ordering such that the weight
of Ei is the final weight. Thus if Ei is not parallel to its opposite edge,
(0, 0, 0, 1) is an unstable weight too, by convexity of the (semi-)stable set.
Since (0, 0, 0, 1) is not a semistable weight, continuity of L(f) with respect to
the weights implies that there is a neighbourhood about (0, 0, 0, 1) in which
some non-affine function f always destabilises. In particular, this holds for
all the weights (1 − r)Ei + rEj , and so the stable set is contained in (ε, 1)
for some ε > 0. �

We now have all the pieces to establish Corollary 1.2. It follows from
the above argument that there are open neighbourhoods around the weights
E1 and E3 that are unstable. This means that r0 > 0 in Theorem 1.1 for
the weights (1 − r)E1 + rEj for any j, and similarly for E3. On the other
hand, all weights where the weight for both E1 and E3 are 0, are strictly
semistable, which gives the final case of Corollary 1.2, as well as that the r1
from Theorem 1.1 in the case (1− r)E1 + rEj with j = 2 or 4 has to be 1.
Similarly for the two remaining adjacent cases involving E3.

From the proof of Proposition 5.11, the same type of arguments imply
Corollary 1.3. It follows in a similar manner from the examples of unstable
positive weights for quadrilaterals with no parallel sides in [ACG15, Prop. 6],
that for a quadrilateral with no parallel sides, and with boundary measure dσ
supported on one edge only, (Q, dσ) is unstable and not strictly semistable,
i.e. L(f) < 0 for some simple piecewise linear function f . From this and our
characterisation of the stable set along edges of the simplex

∑
i ri = 1, it

follows that given two adjacent edges E and F on such a quadrilateral, the
r such that rE+ (1− r)F is stable is a closed non-empty interval, contained
in (0, 1). In the case of trapezia that are not parallelograms, Corollary 1.2
shows that these are half-open intervals instead.

This non-openness is surprising. When looking at positive weights the set
of weights in R4

>0 for which (Q, dσ) is stable is open. Indeed, in Donaldson’s
continuity method for extremal metrics on toric surfaces in [Don08], he in
particular showed that for any polytope with positive weights, the set of
weights which admits an extremal potential is open. The openness of the
stable set then follows as we will show in the next section that when dσ is
positive on each edge of Q and (Q, dσ) is stable, then the formal solution
is the inverse Hessian of a symplectic potential. We will also discuss how
the points on the boundary of the stable region can be explained by the
formation of metrics with different sort of asymptotics than the Poincaré
type metrics.
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6. Relation to the existence of extremal metrics

In the previous section, we showed how the existence of a positive-definite
formal solution is equivalent to stability. In this section we will show that
if the formal solutions are positive-definite then the H ij is the inverse Hes-
sian of a symplectic potential. These (generically) correspond to symplectic
potentials whose metric in sympectic coordinates is quasi-isometric to those
coming from symplectic potentials of Poincaré type metrics on the edges
with weight 0. However, we show that a different behaviour occurs too.
This will explain the non-openness of the stable set in the previous section.
This corresponds to symplectic potential having the behaviour u11 = O(x3)
near an edge lying in x = 0. This in turn correspond to the metric being
modelled on

|dz|2

|z|2(− log(|z|))
3
2

near the divisor corresponding to this edge.
The section has three parts. First we consider edges where the boundary

measure is positive, which is the case considered in [ACG15]. Next, we
take the case when the A,B have exactly double roots on edges where the
boundary measure vanishes, and finally we consider the case of triple root.
We emphasise that in this section we consider all metrics coming from the
ACG construction. In other words, A,B can be arbitrary positive functions
on (α0, α∞) and (β0, β∞), respectively, satisfying the boundary conditions
(4.2) and (4.3), not necessarily extremal potentials.

At edges with non-vanishing boundary measure, we get metrics with cone
angles determined by dσ. Below we let F be the union of the edges where
dσ vanishes.

Lemma 6.1. Let (Q, dσ) be a weighted quadrilateral admitting positive or
negative ambitoric coordinates defined on [α0, α∞]× [β0, β∞]. Let A and B
be positive on (α0, α∞) and (β0, β∞), respectively, satisfying (4.2) and (4.3),
but which do not have to be quartics. Let HA,B be the corresponding positive-
definite map Q → S2t∗. Then HA,B is the inverse Hessian of a symplectic
potential on Q◦ which satisfies the Guillemin boundary conditions at each
edge with non-zero boundary measure. In particular, the HA,B equals the
inverse Hessian of a function u which can be written as

1

2

∑
{i:dσ|Ei

6=0}

li log li + h,

where h ∈ C∞(P ◦) ∩ C0(P \ F ) and li is the affine linear function defining
li determined by dσ.

Proof. The proof follows from the analogous statement for rational weights,
proved in [ACG15]. Indeed, by changing basis by a transformation which is
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not necessarily in SL2(Z), one gets that (Q, dσ) gets mapped to a quadri-
lateral where the boundary measure along our given edge E is the standard
one. Thus we get that the (non-closed) polytope Q◦ ∪ E◦ and the compo-
sition of the previous ambitoric coordinates with these transformations are
ambitoric coordinates for this polytope with the new weight. Since this is
rational data, it follows that it comes from an ambitoric structure on C×C∗,
and in particular by a symplectic potential satisfying the standard boundary
conditions along E. It therefore follows that the original positive-definite
matrix HA,B also comes from a symplectic potential satisfying the Guillemin
boundary conditions along E determined by dσ. �

Next, we consider the edges with 0 boundary measure, where the corre-
sponding function vanishes exactly to second order.

Proposition 6.2. Let HA,B be the function associated to an ambitoric struc-
ture on a weighted quadrilateral (Q, dσ) as in Lemma 6.1. Suppose A,B
vanish exactly to second order at the points corresponding to the edges with
0 boundary measure. Then the Hessian of u defines a metric which is quasi-
isometric to a metric induced by a symplectic potential in SQ,dσ to any order.

Proof. We do the proof in the case of positive ambitoric coordinates. The
proof in the negative case is similar.

Let x = α0 be an edge with 0 boundary measure. Let the symplectic
coordinates be χ and η, which turn out to be given by

χ =
(x− α0)(y − α0)

q(x, y)
,

η =
(β0 − x)(y − β0)

q(x, y)
.

We then have that, for example

∂χ

∂x
=

(y − α0)(q(x, y)− (x− α0)
∂q
∂x(x, y))

q2(x, y)
.

Recall the inequalities (4.1), so that e.g. y − α0 is positive and bounded
away from zero. Since q(x, y) is smooth and positive in a neighbourhood of
[α0, α∞]× [β0, β∞], it follows from this and similar calculations for the other
entries in the Jacobian of this coordinate change that taking derivatives with
respect to the (x, y) and (χ, η) variables are mutually bounded.

Taking n derivatives of the Hessian uij of the symplectic potential u in
the χ direction is therefore mutually bounded with taking n derivatives in
the x-direction of

q(x, y)

(x− y)A(x)
.
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This is in turn mutually bounded with taking n derivatives of

1

(x− α0)2

with respect to x, since A vanishes exactly to order 2 at α0. Hence it is
mutually bounded with

1

(x− α0)2+n
.

Taking n derivatives of the Hessian of the model symplectic potential in the
χ-direction is mutually bounded with 1

χ2+n , which in turn near x = α0 is

mutually bounded with

1

(x− α0)2+n

as well. Thus the symplectic potential u is mutually bounded with the model
for derivatives to any order. �

Proposition 6.3. Let HA,B be the function associated to an ambitoric struc-
ture on a weighted quadrilateral (Q, dσ) as in Lemma 6.1. Suppose A or B
vanish to third order at a point corresponding to an edge E = l−1(0) with 0
boundary measure. Then u has the asymptotics of the model potential where
one exchanges the term −a log(l) with

a

l
,

with a > 0.

Proof. The proof is exactly the same as the proof of Proposition 6.2. One
now instead obtains one higher power of 1

(x−α0)
for both the model and the

symplectic potential coming from the ambitoric framework. �

Remark 6.4. One could consider higher order vanishing as well and obtain
metrics with different asymptotics near an edge with 0 boundary measure.
However, for the purposes of extremal metrics, these are the only possibilities
we have to consider. In that case the A and B are quartics with at least two
distinct zeros, and so can at most vanish to third order at one of these zeros.
Note also that a third order zero can only occur in the case when two adjacent
sides have 0 boundary measure, as otherwise both zeros of A or B are double
zeros.

The model potential 1
x on [0,∞) induces the metric

ω =
idz ∧ dz

|z|2(− log(|z|2))
3
2

(6.1)

on the unit punctured disk via the Legendre transform. Thus if one defines
a space analogous to SP,dσ for which the boundary behaviour is modeled on
a
l near a facet E contained in the zero set of an affine linear function l, one
obtains by similar arguments as in the Poincaré type case a metric with the
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behaviour of the symplectic potential of ω near E. In the case when there
are several facets with 0 boundary measure, one can define spaces where one
chooses either this or the Poincaré type behaviour on each such facet to get
metrics with mixed cone singularities, Poincaré type and the behaviour of
(6.1) along torus invariant divisors.

Applying the results of the previous section together with this immedi-
ately gives the following result regarding extremal metrics. Below we will let
K be the Hessian of the function computing the Donaldson-Futaki invariant
of simple piecewise linear functions with crease meeting two adjacent edges
to an edge E with 0 boundary measure.

Corollary 6.5. Suppose (Q, dσ) is a stable weighted Delzant quadrilateral.
Then XQ admits an extremal metric in ΩQ on the complement of the torus
invariant divisors corresponding to edges with 0 weight and with cone angle
singularities along the torus invariant divisors corresponding to edges with
positive weight, the cone angle being prescribed by dσ.

If K is positive-definite at the point corresponding to an affine linear func-
tion with zero set containing an edge E along which the boundary measure
vanishes, then in symplectic coordinates, the metric is quasi-isometric to any
order to a metric with Poincaré type singularities along the torus invariant
divisor corresponding to E, whereas if K is strictly positive semi-definite at
this point, then the singularity along the corresponding divisor is modeled on

idz ∧ dz
|z|2(− log(|z|2))

3
2

.

Remark 6.6. It is important to note that this result holds only in symplectic
coordinates. This does not imply that the same holds in complex coordinates.
Indeed, the metrics induced by potentials modeled on

−(a+ by) log x+
1

2
y log y

with b 6= 0 are quasi-isometric to the Poincaré type potentials in symplectic
coordinates, but not in complex coordinates. Such a phenomenon can occur
because the identification between symplectic and complex coordinates de-
pends on u. The issue of precisely when the potentials above induce genuine
Poincaré type metrics has been taken up in a subsequent joint work with
Apostolov and Auvray, see [AAS17].

Remark 6.7. A natural question to ask is if any of the above metrics are of
constant scalar curvature. In [ACG16], Apostolov-Calderbank-Gauduchon
gave formulae for precisely when this occurs. The exact same formulae also
hold when allowing some boundary weights to be 0. However, if one is inter-
ested in the smooth case, i.e. when the polytope is Delzant and all non-zero
weights are 1, then these can never be constant. For these weighted polytopes,
all cases where the associated affine function is constant are unstable.
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Our final result is an application to Donaldson’s conjecture about what
happens when an extremal metric does not exist. It follows from Lemma 5.8
that there are no strictly semistable weighted quadrilaterals whose unique
destabilising function is a diagonal of Q. In fact, we get the following corol-
lary, which shows that the conjecture of Donaldson holds in this case.

Corollary 6.8. Let Q be a quadrilateral and suppose dσ is a strictly semistable
weight for Q which is not zero at two opposite edges. Then the crease of f
splits Q into two subpolytopes (Qi, dσi), both of which are quadrilaterals and
which admit an extremal potential ui whose metric in symplectic coordinates
is quasi-isometric to any order to an element of SQi,dσi.

Proof. As remarked above, (Q, dσ) admits preferred ambitoric coordinates
in this case. In the formal solution HA,B, we cannot have that both A
and B are positive, as then (Q, dσ) would be stable. Since L(h) is never
negative for any h and A,B at any interior point is a positive multiple of the
Donaldson-Futaki invariant of a simple piecewise linear function, it follows
that either A or B has a zero in the interior of their domains of definition,
but that they are not negative anywhere. Say A has a zero at α ∈ (α0, α∞).
Since A ≥ 0, it follows that A must have a double zero at x = α, unless it
is exactly 0.

In the case when A is not exactly 0, we can then restrict the ambitoric
structure to [α0, α]× [β0, β∞] and [α, α∞]× [β0, β∞], which in turn gives two
subpolytopes of Q. These are quadrilaterals as the crease of f is x = α,
which meets two opposite edges of Q. Moreover, the restriction of A and
B to these subpolytopes give extremal potentials ui for (Qi, dσi). Since the
order of vanishing at x = α is exactly 2, Proposition 6.2 implies that ui is
quasi-isometric to an element of SQi,dσi .

In the case when A is exactly 0, it follows in particular that the derivative
of A at α0 and α∞ is 0. But the derivative of A at αk is a positive multiple
of the weight associated to the edge {αk} × [β0, β∞]. It follows that the
boundary measure must be 0 along the two opposite edges. �

Remark 6.9. Note that while we have shown that metrics with singularities
modelled on that of equation (6.1) can arise as solutions of the extremal
equation when the boundary measure vanishes on at least one side, suggesting
that these types of potentials could arise in the decomposition of a polytope
into semistable subpolytopes, the above corollary shows that this does not
occur for this decomposition for unstable quadrilaterals.
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