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Density of orbits of endomorphisms of
commutative linear algebraic groups

Dragos Ghioca and Fei Hu

Abstract. We prove a conjecture of Medvedev and Scanlon for en-
domorphisms of connected commutative linear algebraic groups G de-
fined over an algebraically closed field k of characteristic 0. That is,
if Φ: G −→ G is a dominant endomorphism, we prove that one of
the following holds: either there exists a non-constant rational func-
tion f ∈ k(G) preserved by Φ (i.e., f ◦ Φ = f), or there exists a point
x ∈ G(k) whose Φ-orbit is Zariski dense in G.
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1. Introduction

Throughout our paper, we work over an algebraically closed field k of char-
acteristic 0. Let N denote the set of positive integers and N0 := N ∪ {0}.
For any self-map Φ on a set X, and any n ∈ N0, we denote by Φn the
n-th compositional power, where Φ0 is the identity map. For any x ∈ X,
we denote by OΦ(x) its forward orbit under Φ, i.e., the set of all iterates
Φn(x) for n ∈ N0. An endomorphism of an algebraic group G is defined as
a self-morphism of G in the category of algebraic groups.

Our main result is the following.

Theorem 1.1. Let G be a connected commutative linear algebraic group
defined over an algebraically closed field k of characteristic 0, and Φ: G −→
G a dominant endomorphism. Then either there exists a point x ∈ G(k)
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such that OΦ(x) is Zariski dense in G, or there exists a non-constant rational
function f ∈ k(G) such that f ◦ Φ = f .

Theorem 1.1 answers affirmatively the following conjecture by Medvedev
and Scanlon in [MS14] for the case of endomorphisms of Gk

a × G`
m. Note

that any connected commutative linear algebraic group splits over an alge-
braically closed field k of characteristic 0 as a direct product of its largest
unipotent subgroup (which is in our case a vector group, i.e., the additive
group Gk

a of a finite-dimensional k-vector space) with an algebraic torus G`
m.

Conjecture 1.2 (cf. [MS14, Conjecture 7.14]). Let X be a quasi-projective
variety defined over an algebraically closed field k of characteristic 0, and
ϕ : X 99K X a dominant rational self-map. Then either there exists a point
x ∈ X(k) whose orbit under ϕ is Zariski dense in X, or ϕ preserves a
non-constant rational function f ∈ k(X), i.e., f ◦ ϕ = f .

With the notation as in Conjecture 1.2, it is immediate to see that if ϕ
preserves a non-constant rational function, then there is no Zariski dense
orbit. So, the real difficulty in Conjecture 1.2 lies in proving that there
exists a Zariski dense orbit for a dominant rational self-map ϕ of X, which
preserves no non-constant rational function.

The origin of [MS14, Conjecture 7.14] lies in a much older conjecture
formulated by Zhang in the early 1990s (and published in [Zha10, Conjec-
ture 4.1.6]). Zhang asked that for each polarizable endomorphism ϕ of a
projective variety X defined over Q there must exist a Q-point with Zariski
dense orbit under ϕ. Medvedev and Scanlon [MS14] conjectured that as long
as ϕ does not preserve a non-constant rational function, then a Zariski dense
orbit must exist; the hypothesis concerning polarizability of ϕ already im-
plies that no non-constant rational function is preserved by ϕ. We describe
below the known partial results towards Conjecture 1.2.

(i) In [AC08], Amerik and Campana proved Conjecture 1.2 for all un-
countable algebraically closed fields k (see also [BRS10] for a proof
of the special case of this result when ϕ is an automorphism). In
fact, Conjecture 1.2 is true even in positive characteristic, as long as
the base field k is uncountable (see [BGR17, Corollary 6.1]); on the
other hand, when the transcendence degree of k over Fp is smaller
than the dimension of X, there are counterexamples to the corre-
sponding variant of Conjecture 1.2 in characteristic p (as shown in
[BGR17, Example 6.2]).

(ii) In [MS14], Medvedev and Scanlon proved their conjecture in the
special case X = Ank and ϕ is given by the coordinatewise action
of n one-variable polynomials (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn));
their result was established over an arbitrary field k of characteristic
0 which is not necessarily algebraically closed.

(iii) Conjecture 1.2 is known for all projective varieties of positive Ko-
daira dimension; see for example [BGRS17, Proposition 2.3].
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(iv) In [Xie15], Conjecture 1.2 was proven for all birational automor-
phisms of surfaces (see also [BGT15] for an independent proof of
the case of automorphisms). Later, Xie [Xie17] established the va-
lidity of Conjecture 1.2 for all polynomial endomorphisms of A2

k.
(v) In [BGRS17], the conjecture was proven for all smooth minimal 3-

folds of Kodaira dimension 0 with sufficiently large Picard number,
contingent on certain conjectures in the Minimal Model Program.

(vi) In [GS17], Conjecture 1.2 was proven for all abelian varieties; later
this result was extended to dominant regular self-maps for all semi-
abelian varieties (see [GS]).

(vii) In [GX], it was proven that if Conjecture 1.2 holds for the dy-
namical system (X,ϕ), then it also holds for the dynamical system
(X × Akk, ψ), where ψ : X × Akk 99K X × Akk is given by (x, y) 7→
(ϕ(x), A(x)y) and A ∈ GLk(k(X)).

We note that combining the results of [GS] (which, in particular, proves
Conjecture 1.2 when X = G`

m) with the results of [GX], one recovers our
Theorem 1.1. However, our proof of Theorem 1.1 avoids the more compli-
cated arguments from algebraic geometry which were used in the proofs from
[GX] and instead we use mainly number-theoretic tools, employing in a cru-
cial way a theorem of Laurent [Lau84] regarding polynomial-exponential
equations. So, with this new tool which we bring to the study of the
Medvedev–Scanlon conjecture, we are able to construct explicitly points
with Zariski dense orbits (which is not available in [GX]). Besides the in-
trinsic interest in our new approach, as part of our proof, we also obtain
in Theorem 2.1 a more precise result of when a linear transformation has a
Zariski dense orbit.

2. Proof of main results

We start by proving the following more precise version of the special case in
Theorem 1.1 when G is a connected commutative unipotent algebraic group
over k, i.e., G = Gk

a for some k ∈ N.

Theorem 2.1. Let Φ: Gk
a −→ Gk

a be a dominant endomorphism defined
over an algebraically closed field k of characteristic 0. Then the following
are equivalent:

(i) Φ preserves a non-constant rational function.
(ii) There is no α ∈ Gk

a(k) whose orbit under Φ is Zariski dense in Gk
a.

(iii) The matrix A representing the action of Φ on Gk
a is either diagonal-

izable with multiplicatively dependent eigenvalues, or it has at most
k − 2 multiplicatively independent eigenvalues.

Proof. Clearly, (i) =⇒ (ii). We will prove that (iii) =⇒ (i) and then that
(ii) =⇒ (iii). First of all, using [GS17, Lemma 5.4], we may assume that A
is in Jordan (canonical) form. Strictly speaking, [GS17, Lemma 5.4] proves
that the Medvedev–Scanlon conjecture for abelian varieties is unaffected
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after replacing the given endomorphism by a conjugate of it through an
automorphism; however, its proof goes verbatim for any endomorphism of
any quasi-projective variety. Also, because the part (iii) above is unaffected
after replacing A by its Jordan form, then from now on, we assume that A
is a Jordan matrix.

Now, assuming (iii) holds, we shall show that (i) holds. Indeed, if A
is diagonalizable, then since it has multiplicatively dependent eigenvalues
λ1, . . . , λk, i.e., there exist some integers c1, . . . , ck not all equal to 0 such

that
∏k
i=1 λ

ci
i = 1, then Φ preserves the non-constant rational function

f : Gk
a −→ P1

k given by f(x1, . . . , xk) =
k∏
i=1

xcii ,

as claimed. Now, assuming A is not diagonalizable and it has at most k− 2
multiplicatively independent eigenvalues, we will derive (i). There are 3 easy
cases to consider:

Case 1. A has k− 2 Jordan blocks of dimension 1 and one Jordan block of
dimension 2 and moreover, the corresponding k−1 eigenvalues λ1, . . . , λk−1

are multiplicatively dependent, i.e., there exist some integers c1, . . . , ck−1

not all equal to 0 such that
∏k−1
i=1 λ

ci
i = 1. Without loss of generality, we

may assume that λ1 corresponds to the unique Jordan block of dimension
2. Namely,

A = Jλ1,2
⊕

diag(λ2, . . . , λk−1).

Then we conclude that Φ preserves a non-constant rational function

f : Gk
a −→ P1

k given by f(x1, . . . , xk) =

k−1∏
i=1

xcii+1.

Case 2. A has at least two Jordan blocks of dimension 2 each. Again, we
may assume that the first two Jordan blocks of A are given by Jλi,2 with
i = 1, 2 (it may happen that λ1 = λ2). Then we see that Φ preserves the
non-constant rational function Gk

a −→ P1
k given by

(x1, . . . , xk) 7→
x1

λ2x2
− x3

λ1x4
.

(Note that λ1λ2 6= 0 because the endomorphism Φ is dominant and hence
none of its eigenvalues equals 0. This is also true in the following cases.)

Case 3. A has a Jordan block of dimension at least equal to 3 which is
denoted by Jλ,m with 3 ≤ m ≤ k. Clearly, it suffices to prove that the
endomorphism ϕ : Gm

a −→ Gm
a (induced by the action of Φ restricted on

the generalized eigenspace corresponding to the eigenvalue λ) preserves a
non-constant rational function. Note that the action of ϕ is given by the
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Jordan matrix

Jλ,m =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1
0 0 · · · 0 λ

 .

We conclude that ϕ preserves the non-constant rational function f : Gm
a −→

P1
k given by

f(x1, . . . , xm) =
2xm−2

xm
−
x2
m−1

x2
m

+
xm−1

λxm
.

Therefore, it remains to prove that if (ii) holds, then (iii) must follow.
In order to prove this, we show that if A is either diagonalizable with mul-
tiplicatively independent eigenvalues, or if A has k − 2 Jordan blocks of
dimension 1 and one Jordan block of dimension 2 and moreover, the k − 1
eigenvalues corresponding to these k − 1 Jordan blocks are all multiplica-
tively independent, then there exists a k-point with a Zariski dense orbit.
So, we have two more cases to analyze.

Case 4. A is diagonalizable with multiplicatively independent eigenvalues
λ1, . . . , λk. In this case, we shall prove that the orbit of α := (1, 1, . . . , 1)
is Zariski dense in Gk

a. Indeed, if there were a nonzero polynomial F ∈
k[x1, . . . , xk] vanishing on the points of the orbit of α under Φ, then we
would have that F (λn1 , . . . , λ

n
k) = F (Φn(α)) = 0 for each n ∈ N0. Let

F (x1, . . . , xk) =
∑

(i1,...,ik)

ci1,...,ik

k∏
j=1

x
ij
j ,

where the coefficients ci1,...,ik ’s are nonzero (and clearly, there are only
finitely many of them appearing in the above sum). Then it follows that∑

(i1,...,ik)

ci1,...,ik · Λ
n
i1,...,ik

= 0 for each n ∈ N0,

where Λi1,...,ik :=
∏k
j=1 λ

ij
j . On the other hand, since for (i1, . . . , ik) 6=

(j1, . . . , jk) we know that Λi1,...,ik/Λj1,...,jk is not a root of unity (because the
λi’s are multiplicatively independent), F (Φn(α)) is a non-degenerate linear
recurrence sequence (see [Ghi, Definition 3.1]). Hence [Sch03] (see also [Ghi,
Proposition 3.2]) yields that as long as F is not identically equal to 0 (i.e.,
not all coefficients ci1,...,ik are equal to 0), then there are at most finitely
many n ∈ N0 such that F (Φn(α)) = 0, which is a contradiction. So, indeed,
OΦ(α) is Zariski dense in Gk

a.

Case 5. A has k− 2 Jordan blocks of dimension 1 and one Jordan block of
dimension 2 and moreover, the corresponding k−1 eigenvalues λ1, . . . , λk−1
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are multiplicatively independent. Without loss of generality, we may assume
that

A = Jλ1,2
⊕

diag(λ2, . . . , λk−1) =


λ1 1 0 · · · 0
0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λk−1

 ,

and so,

An = Jnλ1,2
⊕

diag(λn2 , . . . , λ
n
k−1) =


λn1 nλn−1

1 0 · · · 0
0 λn1 0 · · · 0
0 0 λn2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λnk−1

 .

We shall prove again that the orbit of α = (1, . . . , 1) under the action of Φ
is Zariski dense in Gk

a. Let Ψ: Gk
a −→ Gk

a be the automorphism given by

(x1, x2, x3, . . . , xk) 7→ (λ1(x1 − x2), x2, x3, . . . , xk)

(note that all λi’s are nonzero because Φ is dominant). It suffices to prove
that Ψ(OΦ(α)) is Zariski dense in Gk

a. This is equivalent with proving that
there is no nonzero polynomial F ∈ k[x1, . . . , xk] vanishing on

Ψ(Φn(α)) = (nλn1 , λ
n
1 , λ

n
2 , . . . , λ

n
k−1).

So, letting F (x1, . . . , xk) :=
∑

(i1,...,ik) ci1,...,ikx
i1
1 · · ·x

ik
k , we get that

(2.1.1) F (Ψ(Φn(α))) =
∑

(i1,...,ik)

ci1,...,ikn
i1
(
λi1+i2

1 · λi32 · · ·λ
ik
k−1

)n
= 0.

Letting Λj1,...,jk−1
:= λj11 · λ

j2
2 · · ·λ

jk−1

k−1 , we can rewrite (2.1.1) as

(2.1.2)
∑

(j1,...,jk−1)

Qj1,...,jk−1
(n) · Λnj1,...,jk−1

= 0,

where
Qj1,...,jk−1

(n) :=
∑

i1+i2=j1 and
i3=j2,...,ik=jk−1

ci1,i2,i3,...,ikn
i1 .

As in the previous Case 4, the left-hand side of (2.1.2) represents the general
term of a non-degenerate linear recurrence sequence (i.e., such that the
quotient of any two of its distinct characteristic roots is not a root of unity).
It follows from [Sch03] (see also [Ghi, Proposition 3.2]) that there are at
most finitely many n ∈ N0 such that (2.1.2) holds, unless F = 0 (i.e., each
coefficient ci1,...,ik equals 0). Therefore, Ψ(OΦ(α)) is indeed Zariski dense in

Gk
a and hence so is OΦ(α).

This concludes our proof of Theorem 2.1. �
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Remark 2.2. We note that in Theorem 2.1 we actually proved a stronger
statement as follows. If A is a Jordan matrix acting on Gk

a and either it
has k multiplicatively independent eigenvalues, or it is not diagonalizable,
but it still has k − 1 multiplicatively independent eigenvalues, then there
is no proper subvariety of Gk

a which contains infinitely many points from
the orbit of (1, . . . , 1) under the action of A. So, not only that the orbit of
(1, . . . , 1) is Zariski dense in Gk

a, but any infinite subset of its orbit must also
be Zariski dense in Gk

a. This strengthening is similar to the one obtained in
[BGT10, Corollary 1.4] for the action of any étale endomorphism of a quasi-
projective variety (see also [BGT16] for the connections of these results to
the dynamical Mordell–Lang conjecture).

The next result will be used in our proof of Theorem 1.1.

Proposition 2.3. Let A ∈ M`,`(Z) be a matrix with nonzero determinant,
and let #»p ∈ M`,1(Z) be a nonzero vector. Let c1 and c2 be positive real
numbers. If there exists an infinite set S of positive integers such that for
each n ∈ S, we have that An · #»p is a vector whose entries are all bounded
in absolute value by c1n + c2, then A has an eigenvalue which is a root of
unity.

Proof. Let B ∈ M`,`(Q) be an invertible matrix such that J := BAB−1

is the Jordan canonical form of A. For each n ∈ N, let # »pn := An · #»p and
#»qn := B · # »pn. So, we know that each entry in # »pn is an integer bounded in
absolute value by c1n + c2 for any n ∈ S ⊆ N. Then, according to our
hypotheses, there exist some positive constants c3 and c4 such that each
entry in #»qn is bounded in absolute value by c3n+ c4. Furthermore, for any
σ ∈ Gal(Q/Q), denoting by #»v σ the vector obtained by applying σ to each
entry of the vector #»v ∈M`,1(Q), we have that each entry in #»qn

σ is bounded
by c5n+ c6 for some positive constants c5 and c6 which are independent of
n and σ. Indeed, this claim follows from the observation that #»qn

σ = Bσ · # »pn,
because # »pn has integer entries (since both #»p and A have integer entries) and
moreover, the entries in # »pn are all bounded in absolute value by c1n+ c2.

Denote by `1, . . . , `m the dimensions of the Jordan blocks of J in the order
as they appear in the matrix J (so, ` = `1 + · · ·+ `m). Let #»q := B · #»p . Since
#»p 6= #»

0 and B is invertible, then #»q is not the zero vector either. Without loss
of generality, we may assume that one of the first `1 entries in #»q is nonzero.
Next, we will prove that the eigenvalue of J corresponding to its first Jordan
block (of dimension `1) must have absolute value at most equal to 1. We
state and prove our result from Lemma 2.4 in much higher generality than
needed since it holds for any valued field (L, | · |) (our application will be for
L = Q equipped with the usual Archimedean absolute value | · |).
Lemma 2.4. Let (L, | · |) be an arbitrary valued field, let Jλ1,r ∈ Mr,r(L)
be a Jordan block of dimension r ≥ 1 corresponding to a nonzero eigenvalue
λ1, and let #»v ∈Mr,1(L) be a nonzero vector. If there exist positive constants
c5, c6, and an infinite set S1 of positive integers such that for each n ∈ S1,
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we have that each entry in Jnλ1,r ·
#»v is bounded in absolute value by c5n+ c6,

then |λ1| ≤ 1.

Proof of Lemma 2.4. Let s be the largest integer with the property that
the s-th entry vs in #»v is nonzero; so, 1 ≤ s ≤ r. Then for each n ∈ S1,
we have that the s-th entry in Jnλ1,r ·

#»v is vsλ
n
1 and hence according to our

hypothesis, we have

(2.4.1) |vsλn1 | ≤ c5n+ c6.

Since vs 6= 0 and equation (2.4.1) holds for each n in the infinite set S1, we
conclude that |λ1| ≤ 1, as desired. Thus, the lemma follows.

So, our assumptions coupled with Lemma 2.4 yield that the eigenvalue λ1

corresponding to the first Jordan block of the matrix J has absolute value
at most equal to 1. Furthermore, as previously explained, for each n ∈ S
and for each σ ∈ Gal(Q/Q), we have that each entry in

#»qn
σ = (B · # »pn)σ = (BAn · #»p )σ = (Jn · #»q )σ = (Jσ)n · #»q σ

is bounded in absolute value by c5n+ c6. Thus, applying again Lemma 2.4,
this time to the first Jordan block of the matrix Jσ, we obtain that |σ(λ1)| ≤
1.

Now, λ1 is an algebraic integer (since it is the eigenvalue of a matrix
with integer entries) and for each σ ∈ Gal(Q/Q), we have that |σ(λ1)| ≤ 1.
Because the product of all the Galois conjugates of λ1 must be a nonzero
integer, we conclude that actually |σ(λ1)| = 1 for each σ ∈ Gal(Q/Q). Then
a classical lemma from algebraic number theory yields that λ1 must be a
root of unity, as desired. �

Now we are ready to prove our main theorem stated in the introduction.

Proof of Theorem 1.1. Because G is a connected commutative linear al-
gebraic group defined over an algebraically closed field k of characteristic
0, then G is isomorphic to Gk

a ×G`
m for some k, ` ∈ N0. Since there are no

nontrivial homomorphisms between Ga and Gm, then Φ splits as Φ1 × Φ2,
where Φ1 and Φ2 are dominant endomorphisms of Gk

a and G`
m, respectively.

So, our conclusion follows once we prove the following statement: if neither
Φ1 nor Φ2 preserve any non-constant rational function, then there exists a
point α ∈ (Gk

a ×G`
m)(k) with a Zariski dense orbit under Φ.

Thus, we assume that Φ1 and Φ2 do not preserve any non-constant ratio-
nal function. In particular, this means that the action of Φ2 on the tangent
space of the identity of G`

m is given through a matrix A2 whose eigenvalues
are not roots of unity (since otherwise one may argue as in the proof of
[GS17, Lemma 6.2] or [GS, Lemma 4.1] that Φ2 preserves a non-constant
fibration which is not the case). Also, our Theorem 2.1 yields that either
the matrix A1 (which represents Φ1) is diagonalizable with multiplicatively
independent eigenvalues, or the Jordan canonical form of A1 has k−2 blocks
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of dimension 1 and one block of dimension 2 such that the k − 1 eigenval-
ues are multiplicatively independent. Next, we will analyze in detail the
second possibility for A1 (when there is a Jordan block of dimension 2),
since the former possibility (when A1 is diagonalizable with multiplicatively
independent eigenvalues) turns out to be a special case of the latter one.

Arguing as in the proof of Theorem 2.1, at the expense of replacing Φ1

and therefore Φ by a conjugate through an automorphism, we may assume
that A1 is a Jordan matrix of the form

A1 = Jλ1,2
⊕

diag(λ2, . . . , λk−1) =


λ1 1 0 · · · 0
0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λk−1

 ,

where λ1, . . . , λk−1 are multiplicatively independent eigenvalues. We will
prove that there exists a point α ∈ (Gk

a×G`
m)(k) with a Zariski dense orbit.

Suppose that we have proved it for the time being. Then restricting the
action of Φ1 (and thus of A1) to the last k−1 coordinate axes of Gk

a, we obtain
a diagonal matrix with multiplicatively independent eigenvalues. Letting π̂1

be the projection of Gk
a to Gk−1

a with the first coordinate omitted, we obtain
a point γ := (π̂1× idG`

m
)(α) whose orbit under the induced endomorphism of

Gk−1
a ×G`

m is Zariski dense. This justifies our earlier claim that it suffices to
consider the case of a non-diagonalizable linear action Φ1 since the diagonal
case reduces to this more general case.

Let α := (α1, . . . , αk, β1, . . . , β`) ∈ (Gk
a × G`

m)(Q) such that α1 = · · · =
αk = 1, while λ1, . . . , λk−1, β1, . . . , β` are all multiplicatively independent.
We will prove that OΦ(α) is Zariski dense in Gk

a×G`
m. Since λ1, . . . , λk−1 are

multiplicatively independent elements of k (which is an algebraically closed
field containing Q), without loss of generality, we may assume that each
λi ∈ Q. This follows through a standard specialization argument as shown
in [Mas89, Section 5] (see also [Zan12, p. 39]); one can actually prove that
there are infinitely many specializations which would yield multiplicatively
independent λ1, . . . , λk−1, β1, . . . , β`. (Note that if the orbit of α under the
action of a specialization of Φ has a Zariski dense orbit, then OΦ(α) must
itself be Zariski dense in Gk

a ×G`
m.)

Now, suppose to the contrary that there is a hypersurface Y (not nec-
essarily irreducible) of Gk

a × G`
m containing OΦ(α). Similar to the proof

of Theorem 2.1 (see the Case 5), considering the birational automorphism
Ψ1 : Gk

a 99K Gk
a given by

(x1, x2, x3, . . . , xk) 7→
(
λ1(x1 − x2)

x2
, x2, x3, . . . , xk

)
,

which extends to a birational automorphism Ψ := Ψ1 × idG`
m

of Gk
a × G`

m,

we see that Ψ(Y ) is a hypersurface of Gk
a × G`

m containing Ψ(OΦ(α)).
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In particular, this yields that there exists some nonzero polynomial F ∈
Q[x1, . . . , xk+`] (since the entire orbit of α is defined over Q) vanishing at
the following set of Q-points:

Ψ(OΦ(α))

=
{(
n, λn1 , λ

n
2 , . . . , λ

n
k−1, βn,1, βn,2, . . . , βn,`

)
∈ (Gk

a ×G`
m)(Q) : n ∈ N0

}
,

where (βn,1, . . . , βn,`) := Φn
2 (β1, . . . , β`). So, letting

{
m

(n)
i,j

}
1≤i,j≤`

be the

entries of the matrix An2 , then the point Φn
2 (β1, . . . , β`) ∈ G`

m(Q) equals∏̀
j=1

β
m

(n)
1,j

j , . . . ,
∏̀
j=1

β
m

(n)
`,j

j

 ,

or alternatively, we can write it as βA
n
2 , where β := (β1, . . . , β`) ∈ G`

m(Q).
More generally, for a matrix M ∈ M`,`(Z) and some γ := (γ1, . . . , γ`) ∈
G`
m(Q), we let γM be ϕ(γ), where ϕ : G`

m −→ G`
m is the endomorphism cor-

responding to the matrix M (with respect to the action of ϕ on the tangent
space of the identity of G`

m). Furthermore, for any #»a := (a1, . . . , a`) ∈ Z`,
we let γ

#»a ∈ Gm(Q) be
∏`
i=1 γ

ai
i .

We also write

F (x1, . . . , xk+`) =
∑

(i1,...,ik+`)

ci1,...,ik+`
xi11 · · ·x

ik+`

k+` ,

where each coefficient ci1,...,ik+`
is nonzero so that it is a finite sum. We

denote
#        »
i2,...,k := (i2, . . . , ik) ∈ Zk−1,

#                    »
ik+1,...,k+` := (ik+1, . . . , ik+`) ∈ Z`, and

Λ := (λ1, . . . , λk−1) ∈ Gk−1
m (Q). Note that the λi’s are nonzero since Φ1 is a

dominant endomorphism. Let M := (mr,s) ∈M`,`(Z) be a matrix of integer
variables and consider the polynomial-exponential equation

(2.4.2)
∑

(i2,...,ik+`)

(∑
i1

ci1,...,ik+`
ni1

)
·
(

Λ
#          »
i2,...,k

)n
· β

#                       »
ik+1,...,k+` ·M = 0;

in particular, β
#                       »
ik+1,...,k+` ·M equals

∏̀
s=1

β
∑`

r=1 ik+rmr,s
s =

∏̀
r,s=1

β
ik+rmr,s
s .

With the notation as in (2.4.2), we let

Q #                »
i2,...,k+`

(n) :=
∑
i1

ci1,...,ik+`
ni1 .
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So, the polynomial-exponential equation (2.4.2) has `2 + 1 integer variables;

denoting Λi2,...,ik := Λ
#          »
i2,...,k , we have

(2.4.3)
∑

(i2,...,ik+`)

Q #                »
i2,...,k+`

(n) · Λni2,...,ik ·
∏̀
r,s=1

(
β
ik+r
s

)mr,s

= 0.

We are going to apply [Lau84, Théorème 6]. Note that each n ∈ N0 for
which

F (Ψ(Φn(α))) = 0

yields an integer solution

(
n,
(
m

(n)
i,j

)
1≤i,j≤`

)
of the equation (2.4.3). Now,

for each n ∈ N0, we let Pn be a maximal compatible partition of the set of
indices (i2, . . . , ik+`) in the sense of Laurent (see [Lau84, p. 320]) with the
property that for each part I of the partition Pn, we have that

(2.4.4)
∑

(i2,...,ik+`)∈I

Q #                »
i2,...,k+`

(n) · Λni2,...,ik ·
∏̀
r,s=1

(
β
ik+r
s

)m(n)
r,s

= 0.

Since there are only finitely many partitions of the finite index set of all
(i2, . . . , ik+`), we fix some partition P for which we assume that there exists
an infinite set S of positive integers n such that P := Pn. Then we define

HP as the subgroup of Z`2+1 consisting of all

(
n,
(
m

(n)
i,j

)
1≤i,j≤`

)
such that

for each part I of the partition P and for any two indices
#»
i := (i2, . . . , ik+`)

and
#»
j := (j2, . . . , jk+`) contained in I, we have that

(2.4.5) Λni2,...,ik ·
∏̀
r,s=1

(
β
ik+r
s

)m(n)
r,s

= Λnj2,...,jk ·
∏̀
r,s=1

(
β
jk+r
s

)m(n)
r,s

.

Then by [Lau84, Théorème 6], we can write the solution

(
n,
(
m

(n)
i,j

)
1≤i,j≤`

)
as

#  »

N0(n) +
#  »

N1(n), where
#  »

N0 :=
#  »

N0(n),
#  »

N1 :=
#  »

N1(n) ∈ Z1+`2 and moreover,
#  »

N0 ∈HP while the absolute value of each entry in
#  »

N1 is bounded above by
C1 log(Un) +C2, where C1 and C2 are some positive constants independent
of n, and

Un := max

{
n, max

1≤i,j≤`

∣∣m(n)
i,j

∣∣} .
A simple computation for An2 =

(
m

(n)
i,j

)
1≤i,j≤`

yields that there exists a

positive constant C3 such that Un ≤ Cn3 for all n ∈ N. We then conclude

that each entry in
#  »

N1 is bounded in absolute value by C4n + C5, for some
absolute constants C4 and C5 independent of n. Next, we will determine

the subgroup HP of Z1+`2 .
We may first assume that at least one part I of the partition P satisfies

the property that π(I) has at least 2 elements, where π : Zk+`−1 −→ Z` is
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the projection on the last ` coordinates, i.e., (i2, . . . , ik+`) 7→ (ik+1, . . . , ik+`).
Indeed, if #(π(I)) = 1 for each part I of P, then equation (2.4.4) would
actually yield that

(2.4.6)
∑

(i2,...,ik+`)∈I

Q #                »
i2,...,k+`

(n) · Λni2,...,ik = 0.

Thus, since (2.4.6) holds for each part I of P, we would get that there exists
a proper subvariety of Gk

a × G`
m of the form Z × G`

m containing infinitely
many points of Ψ(OΦ(α)). In particular, Z would be a proper subvariety of
Gk
a containing infinitely many points of Ψ1(OΦ1(1, . . . , 1)), which contradicts

the proof of Theorem 2.1 (see also Remark 2.2). Therefore, we may indeed
assume that there exists at least one part I of P such that π(I) contains at
least two distinct elements (ik+1, . . . , ik+`) and (jk+1, . . . , jk+`).

Let
#  »

N0 :=

(
n0,
(
m

(n)
0,i,j

)
1≤i,j≤`

)
. Since

#  »

N0 ∈ HP , by the definition of

HP , we apply (2.4.5) to
#  »

N0 and to (i2, . . . , ik+`), (j2, . . . , jk+`) ∈ I for which
(ik+1, . . . , ik+`) 6= (jk+1, . . . , jk+`) and get that

(2.4.7) Λn0
i2,...,ik

·
∏̀
r,s=1

(
β
ik+r
s

)m(n)
0,r,s

= Λn0
j2,...,jk

·
∏̀
r,s=1

(
β
jk+r
s

)m(n)
0,r,s

.

Using the fact that Λi2,...,ik =
∏k−1
t=1 λ

it+1

t and that λ1, . . . , λk−1, β1, . . . , β`
are multiplicatively independent, equation (2.4.7) yields that

(2.4.8)
∑̀
r=1

ik+rm
(n)
0,r,s =

∑̀
r=1

jk+rm
(n)
0,r,s for any 1 ≤ s ≤ `.

Denote M0
n :=

(
m

(n)
0,r,s

)
1≤r,s≤`

and also let #»p := (ik+1 − jk+1, . . . , ik+` −

jk+`)
t ∈M`,1(Z). Then we may write equation (2.4.8) as #»p t ·M0

n =
#»
0 .

Let
#  »

N1 :=

(
n1,
(
m

(n)
1,r,s

)
1≤r,s≤`

)
and denote M1

n :=
(
m

(n)
1,r,s

)
1≤r,s≤`

. Then

we have An2 = M0
n +M1

n for each n ∈ S, i.e., m
(n)
r,s = m

(n)
0,r,s +m

(n)
1,r,s for each

1 ≤ r, s ≤ `. Using that #»p t ·M0
n =

#»
0 , we obtain that for each n ∈ S we

have

(2.4.9) #»p t ·An2 = #»p t ·M1
n, or equivalently, (At2)n · #»p = (M1

n)t · #»p ,

where Dt always represents the transpose of the matrix D. Using the fact
that each entry in (M1

n)t is bounded in absolute value by C4n + C5, we
obtain that each entry of the vector

(2.4.10) # »pn := (At2)n · #»p = (M1
n)t · #»p

is also bounded in absolute value by C6n + C7 (again for some positive

constants C6 and C7 independent of n). Note that #»p 6= #»
0 and (2.4.10)

holds for all n in the infinite set S of positive integers. It follows from
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Proposition 2.3 that one of the eigenvalues of A2 must be a root of unity,
which contradicts our assumption on A2 at the beginning of the proof.

This concludes our proof of Theorem 1.1. �
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