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Basis properties of complex exponentials
and invertibility of Toeplitz operators

Mishko Mitkovski

Abstract. We give a criterion for basicity of a sequence of complex
exponentials in terms of the invertibility properties of a certain naturally
associated Toeplitz operator. The criterion is similar to the well-known
criterion of Hruschev, Nikolskii and Pavlov, the main difference being
that we don’t require preliminary translation of the frequency sequence
to the upper half-plane.
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1. Introduction

Questions about various types of expansion properties of the sequence
of complex exponentials {eiλnt} in L2[0, 1] have a very long history, with
origins in the work of Paley and Wiener [12], and Levinson [6]. Today, this
is considered to be a classical topic with an extensive literature behind (see,
e.g., [4, 5, 16,17] and references therein.)

The idea, to use Toeplitz operators in the study of complex exponentials,
was first introduced in the seventies by Douglas, Sarason, and Clark [2,3] and
culminated with the remarkable paper of Hruschev, Pavlov, and Nikolski [5]
where the solution of the Riesz basis problem for complex exponentials was
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presented. The later paper gives a thorough, comprehensive treatment of
the Riesz basis problem and shows how most of the related results obtained
by that point can be derived using their approach. More recently, Makarov
and Poltoratski [7, 8] used the Toeplitz operator method to give a new ap-
proach to the difficult completeness problem for complex exponentials. Their
approach opened a possibility for several important applications and gen-
eralizations [1, 9, 10, 13, 14]. The goal of this note is to present yet another
connection between the basis properties of a given sequence of complex ex-
ponentials {eiλnt} with a frequency sequence Λ = {λn} and the invertibility
properties of a certain Toeplitz operator.

To better explain our motivation we briefly recall the basic idea of the
Toeplitz operator approach. Using the Fourier transform it is easy to see that
studying the basis properties of complex exponentials {eiλnt}λn∈Λ in L2[0, 1]
is equivalent to studying the basis properties of the corresponding sequence
of normalized reproducing kernels in the model space Keiz = H2 	 eizH2.
If the frequency sequence Λ = {λn} is uniformly discrete, by the Carleson
interpolation theorem, the sequence of normalized reproducing kernels in
the model space KBΛ′ = H2 	 BΛ′H2 forms a Riesz basis, where BΛ′ is the
Blaschke product with zero set Λ′ = Λ+i = {λn+i} ⊂ C+. The crucial idea
is then to observe that the basis properties of the normalized reproducing
kernels in Keiz are encoded in the invertibility properties of the orthogonal
projection onto Keiz restricted to KBΛ′ , which is in turn equivalent to the
corresponding invertibility properties of the Toeplitz operator TB̄Λ′S . Con-

sequently, complex exponentials form a Riesz basis if and only if the Toeplitz
operator TB̄Λ′S is invertible, where S(z) = eiz is the singular inner function.

One novelty introduced in the Makarov-Poltoratski Toeplitz approach was
that they worked with the original sequence Λ with a special inner func-
tion ΘΛ satisfying Λ = {ΘΛ = 1} instead of using the translated sequence
Λ′ = Λ + i, and the corresponding Blaschke product. In a sense, they were
forced to do this since they needed to handle the case when the frequency
sequence Λ is not uniformly discrete, i.e., separated. It was observed slightly
later by Baranov [1] that for the Riesz basis problem one needs to be careful
in doing this. Namely, he showed that there exists a sequence Λ ⊂ R and
an inner function Θ satisfying Λ = {Θ = 1} such that the Topelitz operator
TS̄Θ is invertible, even though the corresponding sequence of complex expo-
nentials is not a Riesz basis. Similarly, in the opposite direction, he gave an
example of a Riesz basis of complex exponentials and an inner function Θ
satisfying Λ = {Θ = 1} such that the Topelitz operator TS̄Θ is not invertible.
As an alternative he provided a Riesz basis criterion in terms of naturally
associated de Branges spaces, generalizing the criterion for Fourier frames
obtained earlier by Seip and Ortega-Cerda [11].

The goal of this note is to show that the analog of the Hruschev, Nikolski,
Pavlov criterion can be obtained without using the translated sequence. This
might be slightly surprising in the view of the Baranov’s counterexamples
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mentioned above. For this, we needed to impose a slightly stronger assump-
tion on the frequency sequence. To state our result we need to introduce
some terminology that will be also used throughout the paper.

We will say that a sequence of real numbers Λ = {λn} is discrete if it
has no finite accumulation points. A discrete sequence is called uniformly
discrete or separated if infm,n |λm − λn| > 0. The sequence Λ = {λn}n∈Z
will be always indexed in an increasing way, i.e., λn < λn+1 for all n. Below
and throughout the paper S(z) will always denote the singular inner function
eiz.

Theorem 1.1. Let Λ = {λn}n∈Z be a discrete sequence of real numbers.
Assume that there exists an inner function Θ such that {Θ = 1} = Λ and
|Θ′(t)| ' 1, t ∈ R, i.e., there exist 0 < c ≤ C <∞ such that c < |Θ′(t)| < C
for all t ∈ R. Then

(i) the sequence of complex exponentials {eiλnt}λn∈Λ is a Riesz sequence
in L2[0, 1] if and only if the Toeplitz operator TΘ̄S : H2 → H2 is
injective with closed range;

(ii) the sequence of complex exponentials {eiλnt}λn∈Λ is a frame in L2[0, 1]
if and only if the Toeplitz operator TΘ̄S : H2 → H2 is surjective;

(iii) the sequence of complex exponentials {eiλnt}λn∈Λ is a Riesz basis
in L2[0, 1] if and only if the Toeplitz operator TΘ̄S : H2 → H2 is
invertible;

(iv) the sequence of complex exponentials {eiλnt}λn∈Λ is l2-independent
in L2[0, 1] if and only if the Toeplitz operator TΘ̄S : H2 → H2 is
injective;

(v) the sequence of complex exponentials {eiλnt}λn∈Λ is complete in L2[0, 1]
if and only if the Toeplitz operator TΘ̄S : H2 → H2 has dense range.

Remark 1. Notice that there the set of inner functions that satisfy the
requirements of Theorem 1.1 may be empty. Still, if in addition to separation
we also impose the stronger condition supn |λn+1 − λn| < ∞, then there
always exists a meromorphic inner function Θ such that |Θ′| ' 1 on R (see
Lemma 6.1 in [8]). This stronger condition is necessary for Riesz bases and
hence it is not a big restriction in this case.

Remark 2. Part (v) has been proved in [7] with no additional assumptions
on Θ. We include our more restricted version here for completeness reasons
only. It should be also mentioned that for part (iv) we only need |Θ′| . 1
on R.

2. Preliminaries

A bounded analytic function Θ : C+ → C in the upper half-plane C+ is
said to be inner if its modulus coincides with 1 a.e. on the real line. We
say that the inner function Θ is meromorphic inner function if it allows a
meromorphic extension to the whole complex plane.
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Each inner function Θ defines a model space

KΘ := H2 	ΘH2.

This is a reproducing kernel space with reproducing kernels given by

KΘ
w (z) :=

1

2πi

1−Θ(z)Θ(w)

w̄ − z
, w ∈ C+.

If Θ is meromorphic inner function then every function f ∈ KΘ can be
extended analytically exactly at those points at which Θ can be extended.
Moreover, point evaluations at those points are again bounded and conse-
quently for each λ ∈ R there exists a reproducing kernel

KΘ
λ (z) =

1

2πi

1−Θ(z)Θ(λ)

λ− z
∈ KΘ.

A well known result of D. Clark [2] (see also [15]) says that the system of
normalized reproducing kernels

kΘ
λn(z) =

1

i |Θ′(λn)|
1−Θ(z)

λn − z
∈ KΘ

indexed by the points λn ∈ {Θ = 1} forms an orthonormal basis for KΘ

which is sometimes called Clark basis.
The following (easy to check) equality between normalized reproducing

kernels will be repeatedly use in our proof.

Lemma 2.1. Let Θ(z) be an inner function with a level set {Θ = 1} =
{λn} such that supn |Θ′(λn)| < ∞. Then for every sequence {an} ∈ l2 the
following equality between normalized reproducing kernels holds:

(1−Θ)
∑

ank
S
λn =

∑
an
∣∣Θ′(λn)

∣∣ kΘ
λn − S

∑
an
∣∣Θ′(λn)

∣∣S(λn)kΘ
λn .

We will also use the following lemma. The first part of it is essentially
Lemma 5.4 from [1]. For the sake of completeness we state it here in the
form that will be used below.

Lemma 2.2. Let Θ(z) be a meromorphic inner function such that |Θ′(t)| .
1 for t ∈ R.

(a) If f ∈ KS vanishes on the whole level set Λ = {λn} = {Θ = 1}, then
f/(1−Θ) ∈ KS .

(b) If {fk} is a sequence of functions in KS such that ‖(1−Θ)fk‖2 → 0
then ‖fk‖2 → 0.

Proof. (b) Seeking contradiction, assume that {fk} does not converge to 0.
In this case, by passing to a subsequence if necessary, we may assume that
‖fk‖2 > d for some constant d > 0 and all k. For small enough ε > 0 there
exists a constant c > 0 such that

|1−Θ(t)| ≥ c > 0,
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for all t satisfying dist(t,Λ) ≥ ε. Notice that we may choose this ε as small
as we wish. With no loss of generality choose ε > 0 so that the separation
constant for Λ is larger than 6ε. Denote by Eε the set consisting of all real
t such that dist(t,Λ) ≤ ε. Then,∫

Ecε

|1−Θ(t)|2|fk(t)|2dt ≥ c2

∫
Ecε

|fk(t)|2.

Now, since

lim
k→∞

‖(1−Θ)fk‖
‖fk‖

= 0,

there exists k(ε) such that

‖(1−Θ)fk‖22 < c2 ‖fk‖22
2

,

for all k ≥ k(ε). Therefore, we have

c2

∫
Ecε

|fk(t)|2dt < c2
‖fk‖2

2
,

and consequently

‖fk‖2 =

∫
R
|fk(t)|2dt < 2

∫
Eε

|fk(t)|2dt,

for all k ≥ k(ε). Now, let t ∈ (−3ε, 3ε) and fix k ≥ k(ε). Using the well
known inequality ∫ ∞

−∞
|fk(x+ iy)|2dx ≤ e2|y| ‖fk‖2 ,

holding for functions fk ∈ KS = H2 ∩ SH2 we obtain that∑
n

|fk(λn+t)|2 ≤
∑
n

1

9πε2

∫
B(λn+t,3ε)

|fk(z)|2dA(z) ≤ 1

9πε2

∫ 3ε

−3ε

∫ ∞
−∞
|fk(x+iy)|2dxdy

≤ 2‖fk‖22
3πε

e6ε − 1

6ε
.

Thus,

1

2
‖fk‖2 <

∫
Eε

|fk(t)|2 =

∫ ε

−ε

∑
n

|fk(λn + t)|2dt ≤ 4‖fk‖22
3π

e6ε − 1

6ε
.

Since fk 6= 0 we therefore have

1

2
<

4

3π

e6ε − 1

6ε
,

which fails for small enough ε > 0. Contradiction!
�
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3. Proof of Theorem 1.1

Notice first that if there exists an inner function Θ with Λ = {Θ = 1}
such that |Θ′| ' 1 on R, then Λ must be separated (uniformly discrete). So
we only consider such frequency sequences. It is well-known that a sequence
of complex exponentials {e2πiλnt}λn∈Λ (see e.g. [17]) is a Bessel sequence if
and only if its frequency sequence Λ can be represented as a finite union of
separated (uniformly discrete) sequences. Therefore, the Bessel condition
is always fulfilled for sequences {e2πiλnt}λn∈Λ considered in our theorem.
Thus, we only need to concentrate to lower inequalities for frames and Riesz
sequences.

Recall also (as already mentioned in the introduction) that a sequence
of complex exponentials {e2πiλnt}λn∈Λ is a Riesz sequence (frame, Riesz
basis, l2-independent, complete) in L2[0, 1] if and only if the corresponding
sequence of normalized reproducing kernels {kSλn}λn∈Λ is a Riesz sequence

(frame, Riesz basis, l2-independent, complete) in the model space KS .

3.1. Proof of (i) - Riesz sequences.

Proof. Assume that {kSλn}λn∈Λ is not a Riesz sequence in L2[0, 1]. Then

there exists a sequence {ak} ∈ l2 in the unit sphere of l2 (
∑

n |akn|2 = 1

for all k) such that gk :=
∑

n a
k
nk

S
λn
→ 0 in KS as k → ∞. Therefore, by

Lemma 2.1 we have that

S
∑

akn
∣∣Θ′(λn)

∣∣S(λn)kΘ
λn −

∑
akn
∣∣Θ′(λn)

∣∣ kΘ
λn → 0,

as k →∞. Thus, if we take

fk :=
∑

akn
∣∣Θ′(λn)

∣∣S(λn)kΘ
λn ∈ H

2,

we obtain TΘ̄Sfk → 0 and ‖fk‖2 =
∑

n |Θ′(λn)|2 |akn|2 ' 1. Thus, TΘ̄S is not
bounded below.

Conversely, assume that TΘ̄S is not bounded below. Then there exists a
sequence {fk} of elements in H2 all with norm one such that TΘ̄Sfk → 0 as

k →∞. Let hk := TΘ̄Sfk ∈ H2 and let gk := Θ̄Sfk − hk ∈ H2. Notice that
since hk → 0 and ‖fk‖ = 1 we have that ‖gk‖ ' 1.

Since Θgk ∈ KΘ we have Θgk =
∑

n g
k
nk

Θ
λn

for some {gkn} ∈ l2. Therefore,
by Lemma 2.1 we have

Θhk = Sfk−
∑
n

gknk
Θ
λn = Sfk−S

∑
n

gknS(λn)kΘ
λn − (1−Θ)

∑
n

gkn
|Θ′(λn)|

kSλn .

Thus,

Sfk − S
∑
n

gknS(λn)kΘ
λn −

∑
n

gkn
|Θ′(λn)|

kSλn = Θhk −Θ
∑
n

gkn
|Θ′(λn)|

kSλn .
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The difference of the first two terms on the left side is in SH2 while the last
term is in KS . Using orthogonality and the triangle inequality, we obtain∥∥∥∥∥Sfk − S∑

n

gknS(λn)kΘ
λn

∥∥∥∥∥
2

+

∥∥∥∥∥∑
n

gkn
|Θ′(λn)|

kSλn

∥∥∥∥∥
2

≤

(∥∥∥∥∥Θ
∑
n

gkn
|Θ′(λn)|

kSλn

∥∥∥∥∥+ ‖Θhk‖

)2

.

Since hk → 0, the last inequality implies Sfk−S
∑

n g
k
nS(λn)kΘ

λn
→ 0. Using

this and 3.1 we obtain

(1−Θ)
∑
n

gkn
|Θ′(λn)|

kSλn → 0.

Finally, using Lemma 2.2 (b) we derive∑
n

gkn
|Θ′(λn)|

kSλn → 0,

which together with∑
n

∣∣∣∣ gkn
Θ′(λn)

∣∣∣∣2 '∑
n

∣∣∣gkn∣∣∣2 = ‖Θgk‖2 = ‖gk‖2 ' 1,

implies that {kSλn} cannot be a Riesz sequence in KS .
�

3.2. Proof of (ii) - frames.

Proof. Assume that {kSλn}λn∈Λ is not a frame in KS . Then there exists a
sequence of elements fk ∈ KS all with norm 1 such that∑

n

∣∣〈fk, kSλn〉∣∣2 → 0

as k →∞.
Let hk ∈ KΘ be defined by hk =

∑
n

〈
fk, k

S
λn

〉
kΘ
λn

. Then

‖hk‖22 =
∑
n

|fk(λn)|2 → 0

as k →∞. Finally, define

gk :=
fk − hk
1−Θ

.

By Lemma 2.2 gk ∈ H2. Moreover, since clearly fk−hk ∈ KΘS we also have
that gk ∈ KS . Now,

S̄fk = S̄gk − S̄Θgk + S̄hk.

By projecting to H2 we obtain

TS̄Θgk = P+S̄hk.

Since ‖hk‖2 → 0 as k → ∞ this implies that ‖TS̄Θgk‖2 → 0. Finally, since
‖fk − hk‖2 ≤ 2‖gk‖ we have that the Toeplitz operator TS̄Θ is not bounded
from below and consequently TΘ̄S is not surjective.
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Conversely, suppose that TΘ̄S is not surjective. Then there exists a se-
quence {gk} in H2 with ‖gk‖2 = 1 for all k such that ‖TS̄Θgk‖2 → 0. De-
compose gk = fk + Shk in orthogonal components such that fk ∈ KS and
hk ∈ H2. Then TS̄Θfk ∈ KΘ and TS̄ΘShk = Θhk ∈ ΘH2. Consequently,
they are orthogonal and hence each of them tends to 0 as k →∞. Therefore,
for all but finitely many k we have that ‖fk‖22 = ‖gk‖22 − ‖Shk‖22 ≥ c1 > 0.
Now, decompose S̄Θfk = pk + n̄k into orthogonal components pk ∈ KΘ and
nk ∈ H2. Notice that since S̄nk = Θ̄f̄k − Spk ∈ H2 we also have nk ∈ KS .
Finally, define qk := nk − Sf̄k. It easy to check that qk ∈ KS . Moreover,

qk(λn) = S(λn)Θ̄(λn)f̄k(λn)− p̄k(λn)− S(λn)f̄k(λn) = −p̄k(λn).

Therefore,∑
n

∣∣〈qk, kSλn〉∣∣2 =
∑
n

|qk(λn)|2 =
∑
n

|pk(λn)|2 ' ‖pk‖22 = ‖TS̄Θfk‖ → 0.

So, we would be done if we show that lim sup ‖qk‖2 > 0. To see this, first
notice that qk = SΘ̄f̄k − Sf̄k − p̄k. Using orthogonality we then obtain
‖qk‖2 = ‖(1 − Θ)fk‖2 + ‖pk‖22. Thus, it is enough to exclude the possibil-
ity that limk→∞ ‖(1 − Θ)fk‖ = 0. Indeed, otherwise we would be able to
find a convergent subsequence with a positive limit which would easily give
lim sup ‖qk‖2 > 0. However, if limk→∞ ‖(1−Θ)fk‖ = 0 then, by Lemma 2.2,
we would have ‖fk‖ → 0 which contradicts our assumption. So, we are done.

�

3.3. Proof of (iii) - Riesz bases. This is a direct consequence of (i) and
(ii).

3.4. Proof of (iv) - l2-independence.

Proof. Assume that {kSλn} is not l2-independent in KS . Then there exists

a non zero sequence {an} ∈ l2 such that
∑

n ank
S
λn

= 0 in KS . Therefore,
by Lemma 2.1 we have that

S
∑

an
∣∣Θ′(λn)

∣∣S(λn)kΘ
λn =

∑
an
∣∣Θ′(λn)

∣∣ kΘ
λn ∈ KΘ.

Thus, if we take

f :=
∑

an
∣∣Θ′(λn)

∣∣S(λn)kΘ
λn ∈ H

2,

we have that TΘ̄Sf = 0 and f 6= 0, i. e., TΘ̄S is not injective.
Conversely, assume that TΘ̄S is not injective. Let f be some non-zero ele-

ment from kerTΘ̄S . Then Sf ∈ KΘ and by the Clark formula Sf =
∑
bnk

Θ
λn

for some non-zero l2 sequence {bn}. Define also h :=
∑
bnS(λn)kΘ

λn
∈ KΘ.

Clearly, by Lemma 2.1

(1−Θ)
∑

ank
S
λn = Sf − Sh ∈ SH2,

where an := bn |Θ′(λn)|.
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Denote g :=
∑
ank

S
λn
∈ KS . We have g ⊥ S(f−h) and Θg = g−S(f−h).

Therefore ‖Θg‖2 = ‖g‖2 + ‖S(f − h)‖2. This implies that S(f − h) = 0.
Therefore (1 − Θ)g = 0 and hence

∑
ank

S
λn

= g = 0. Thus, {kSλn} is not

l2-independent in KS . �

3.5. Proof of (v) - completeness.

Proof. Assume that {kSλn}λn∈Λ is not complete in KS . Then there exists a
non-zero f ∈ KS which vanishes on Λ. By the Lemma 2.2, g := f/(1−Θ) ∈
KS , and hence

S̄Θg = S̄g − S̄f ∈ H2.

Consequently, the Toeplitz operator TS̄Θ is not injective, and hence TΘ̄S

does not have a dense range.
Conversely, suppose TΘ̄S does not have a dense range. Then there is a

non-zero g ∈ kerTS̄Θ. This implies that both g and Θg belong to KS . So,
f := (1− Θ)g ∈ KS is a non-zero function which vanishes on Λ, and hence
{kSλn}λn∈Λ is not complete in KS . �
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