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Index theorems for
uniformly elliptic operators

Alexander Engel

Abstract. We generalize Roe’s index theorem for graded generalized
Dirac operators on amenable manifolds to multigraded elliptic uniform
pseudodifferential operators. The generalization will follow from a local
index theorem that is valid on any manifold of bounded geometry. This
local formula incorporates the uniform estimates present in the definition
of uniform pseudodifferential operators.
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1. Introduction

Recall the following index theorem of Roe for amenable manifolds (with
notation adapted to the one used in this article):
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Theorem ([Roe88a, Theorem 8.2]). Let M be a Riemannian manifold of
bounded geometry and D a generalized Dirac operator associated to a graded
Dirac bundle S of bounded geometry over M .

Let (Mi)i be a Følner sequence1 for M , τ ∈ (`∞)∗ a linear functional
associated to a free ultrafilter on N, and θ the corresponding trace on the
uniform Roe algebra of M .

Then we have

θ(µu(D)) = τ
( 1

volMi

∫
Mi

ind(D)
)
.

Here ind(D) is the usual integrand for the topological index of D in
the Atiyah–Singer index formula, so the right hand side is topological in
nature. On the left hand side of the formula we have the coarse index class
µu(D) ∈ K0(C∗u(M)) of D in the K-theory of the uniform Roe algebra of
M evaluated under the trace θ. This is an analytic expression and may be
computed as θ(µu(D)) = τ

(
1

volMi

∫
Mi

trs kf(D)(x, x) dx
)
, where kf(D)(x, y)

is the integral kernel of the smoothing operator f(D), where f is an even
Schwartz function with f(0) = 1.

In this article we generalize this theorem to all multigraded, elliptic, sym-
metric uniform pseudodifferential operators. So especially we also encompass
Toeplitz operators since they are included in the ungraded case. This general-
ization will follow from a local index theorem that will hold on any manifold
of bounded geometry, i.e., without an amenability assumption on M .

Let us state our local index theorem in the formulation using twisted Dirac
operators associated to spinc structures:

Theorem A (Theorem 4.1). Let M be an m-dimensional spinc manifold
of bounded geometry and without boundary. Denote the associated Dirac
operator by D.

Then we have the following commutative diagram:

K∗u(M)
−∩[D]

∼=
//

ch(−)∧ind(D)

��

Ku
m−∗(M)

α∗◦ch∗

��

H∗b,dR(M) ∼=
// Hu,dR

m−∗(M)

where in the top row ∗ is either 0 or 1 and in the bottom row ∗ is either ev
or odd.

Here Ku
m−∗(M) is uniform K-homology of M invented by Špakula [Špa09]

and K∗u(M) is the corresponding uniform K-theory which we will recall in
Section 2.3. The map −∩ [D] is the cap product and that it is an isomorphism
was shown in [Eng15a, Section 4.4]. Moreover, H∗b,dR(M) denotes the bounded

1That is to say, for every r > 0 we have volBr(∂Mi)
volMi

i→∞−→ 0. Manifolds admitting such a
sequence are called amenable.
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de Rham cohomology of M and ind(D) the topological index class of D in
there. Furthermore, Hu,dR

m−∗ (M) is the uniform de Rham homology of M to be
defined in Section 3.2 via Connes’ cyclic cohomology, and that it is Poincaré
dual to bounded de Rham cohomology is proved in Theorem 3.10. Finally,
let us note that we will also prove in Section 3.3 that the Chern characters
induce isomorphisms after a certain completion that also kills torsion, similar
to the case of compact manifolds.

Using a series of steps as in Connes’ and Moscovici’s proof of [CM90,
Theorem 3.9] we will generalize the above computation of the Poincaré dual
of (α∗ ◦ ch∗)([D]) ∈ Hu,dR

m−∗(M) to symmetric and elliptic uniform pseudodif-
ferential operators:

Theorem B (Theorem 4.3 and Remark 4.5). Let M be an oriented Rie-
mannian manifold of bounded geometry and without boundary, and P be a
symmetric and elliptic uniform pseudodifferential operator of positive order.

Then ind(P ) ∈ H∗b,dR(M) is Poincaré dual to (α∗ ◦ ch∗)([P ]) ∈ Hu,dR
∗ (M).

Using the above local index theorem we will derive as a corollary the
following local index formula:

Corollary C (Corollary 4.7). Let [ϕ] ∈ Hk
c,dR(M) be a compactly supported

cohomology class and define the analytic index ind[ϕ](P ) as Connes–Moscovici
[CM90] for P being a multigraded, symmetric, elliptic uniform pseudodiffer-
ential operator of positive order. Then we have

ind[ϕ](P ) =

∫
M

ind(P ) ∧ [ϕ]

and this pairing is continuous, i.e.,
∫
M ind(P ) ∧ [ϕ] ≤ ‖ ind(P )‖∞ · ‖[ϕ]‖1,

where ‖−‖∞ is the sup-seminorm on Hm−k
b,dR (M) and ‖−‖1 the L1-seminorm

on Hk
c,dR(M).

Note that the corollary reads basically the same as the local index formula
of Connes and Moscovici [CM90]. The fundamentally new thing in it is the
continuity statement for which we need the uniformity assumption for P .

As a second corollary to the above local index theorem we will derive the
generalization of Roe’s index theorem for amenable manifolds.

Corollary D (Corollary 4.20). Let M be a manifold of bounded geometry
and without boundary, let (Mi)i be a Følner sequence for M and let τ ∈ (`∞)∗

be a linear functional associated to a free ultrafilter on N. Denote the from the
choice of Følner sequence and functional τ resulting functional on K0(C∗u(M))
by θ.

Then for both p ∈ {0, 1}, every class [P ] ∈ Ku
p (M) with P being a p-graded,

symmetric, elliptic uniform pseudodifferential operator over M , and every
u ∈ Kp

u(M) we have

〈u, [P ]〉θ = 〈ch(u) ∧ ind(P ), [M ]〉(Mi)i,τ .
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Roe’s theorem [Roe88a] is the special case where P = D is a graded (i.e.,
p = 0) Dirac operator and u = [C] is the class in K0

u(M) of the trivial,
1-dimensional vector bundle over M .

To put the above index theorems into context, let us consider manifolds
with cylindrical ends. These are the kind of non-compact manifolds which
are studied to prove for example the Atiyah–Patodi–Singer index theorem.
In the setting of this paper, the relevant algebra would be that of bounded
functions with bounded derivatives, whereas in papers like [Mel95] or [MN08]
one imposes conditions at infinity like rapid decay of the integral kernels (see
the definition of the suspended algebra in [Mel95, Section 1]).

Note that this global index theorem arising from a Følner sequence is
just a special case of a certain rough index theory, where one pairs classes
from the so-called rough cohomology with classes in the K-theory of the
uniform Roe algebra, and Følner sequences give naturally classes in this rough
cohomology. For details see the thesis [Mav95] of Mavra. It seems that it
should be possible to combine the above local index theorem with this rough
index theory, since it is possible in the special case of Følner sequences. The
author investigated this in [Eng15b].

Let us say a few words about the proofs of the above index theorems.
Roe used in [Roe88a] the heat kernel method to prove his index theorem for
amenable manifolds and therefore, since the heat kernel method does only
work for Dirac operators, it can not encompass uniform pseudodifferential
operators. So what we will basically do in this paper is to set up all the
necessary theory in order to be able to reduce the index problem from
pseudodifferential operators to Dirac operators.

The main ingredient is a version of Poincaré duality of uniformK-homology
with uniform K-theory proved by the author in [Eng15a, Section 4.4]. With
this at our disposal we will then be able to reduce the index problem for
elliptic uniform pseudodifferential operators to Dirac operators by proving a
uniform version of the Thom isomorphism in order to conclude that symbol
classes of elliptic uniform pseudodifferential operators may be represented
by symbol classes of Dirac operators. So it remains to show the local index
theorem for Dirac operators, but since up to this point we will already have
set up all the needed machinery, this proof will be basically the same as the
proof of the local index theorem of Connes and Moscovici in [CM90].

The last collection of results that we want to highlight in this introduction
are all the various (duality) isomorphisms proved in this paper.

Theorem E (Theorems 3.14, 3.8 and 3.10). Let M be an m-dimensional
manifold of bounded geometry and no boundary. Then the Chern characters
induce linear, continuous isomorphisms

K∗u(M) ⊗̄C ∼= H∗b,dR(M) and Ku
∗ (M) ⊗̄C ∼= Hu,dR

∗ (M),

and we also have the isomorphism

HP ∗cont(W
∞,1(M)) ∼= Hu,dR

∗ (M).



INDEX THEOREMS FOR UNIFORMLY ELLIPTIC OPERATORS 547

If M is oriented we further have the isomorphism

H∗b,dR(M) ∼= Hu,dR
m−∗(M).

If M is spinc we have Poincaré duality K∗u(M) ∼= K∗m−∗(M), which is
proved in [Eng15a, Theorem 4.29].

Acknowledgements. This article contains Section 5 of the preprint [Eng15a]
which is being split up for easier publication. It arose out of the Ph.D. thesis
[Eng14] of the author written at the University of Augsburg.

2. Review of needed material

In this section we review the needed material from the literature. We
start with the notion of bounded geometry for Riemannian manifolds, define
Sobolev spaces and discuss the Sobolev embedding theorem, and at the end
of Section 2.1 we prove the technical Lemma 2.14 about constructing covers
with certain properties on manifolds of bounded geometry. In Section 2.2
we discuss the calculus of uniform pseudodifferential operators that we will
use in this paper, and in Section 2.3 we recall the basic facts about uniform
K-homology and uniform K-theory.

2.1. Manifolds of bounded geometry. We will recall in this section the
notion of bounded geometry for manifolds and for vector bundles and discuss
basic facts about uniform Cr-spaces and Sobolev spaces on them. Almost all
material presented here is already known, and we tried to give proper credits
wherever possible. As a genuine reference one might also use Eldering [Eld13,
Chapter 2].

Definition 2.1. We say that a Riemannian manifold M has bounded geome-
try, if

• the curvature tensor and all its derivatives are bounded, i.e.,

sup
x∈M
‖∇k Rm(x)‖ <∞

for all k ∈ N0, and
• the injectivity radius is uniformly positive, i.e.,

inf
x∈M

inj-radM (x) > 0.

If E →M is a vector bundle with a metric and compatible connection, then
E has bounded geometry, if the curvature tensor of E and all its derivatives
are bounded. �

Examples 2.2. The most important examples of manifolds of bounded
geometry are coverings of closed Riemannian manifolds equipped with the
pull-back metric, homogeneous manifolds with an invariant metric, and leafs
in a foliation of a compact Riemannian manifold (Greene [G78, lemma on
page 91 and the paragraph thereafter]).
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For vector bundles, the most important examples are of course again pull-
back bundles of bundles over closed manifolds equipped with the pull-back
metric and connection, and the tangent bundle of a manifold of bounded
geometry. �

We now state an important characterization in local coordinates of bounded
geometry since it allows one to show that certain local definitions are inde-
pendent of the chosen normal coordinates.

Lemma 2.3 ([Shu92, Appendix A1.1]). Let the injectivity radius of M be
positive.

Then the curvature tensor of M and all its derivatives are bounded if
and only if for any 0 < r < inj-radM all the transition functions between
overlapping normal coordinate charts of radius r are uniformly bounded, as
are all their derivatives (i.e., the bounds can be chosen to be the same for all
transition functions).

Another fact which we will need about manifolds of bounded geometry is
the existence of uniform covers by normal coordinate charts and corresponding
partitions of unity. A proof may be found in, e.g., [Shu92, Appendix A1.1]
(Shubin addresses the first statement about the existence of such covers
actually to the paper [Gro81a] of Gromov).

Lemma 2.4. Let M be a manifold of bounded geometry.
For every 0 < ε < inj-radM

3 exists a cover of M by normal coordinate
charts of radius ε with the properties that the midpoints of the charts form a
uniformly discrete set and that the coordinate charts with double radius 2ε
form a uniformly locally finite cover of M .

Furthermore, there is a subordinate partition of unity 1 =
∑

i ϕi with
suppϕi ⊂ B2ε(xi), such that in normal coordinates the functions ϕi and all
their derivatives are uniformly bounded (i.e., the bounds do not depend on i).

If the manifold M has bounded geometry, we have analogous equivalent
local characterizations of bounded geometry for vector bundles as for man-
ifolds. The equivalence of the first two bullet points in the next lemma is
stated in, e.g., [Roe88a, Proposition 2.5]. Concerning the third bullet point,
the author could not find any citable reference in the literature (though both
Shubin [Shu92] and Eldering [Eld13] use this as the definition).

Lemma 2.5. Let M be a manifold of bounded geometry and E →M a vector
bundle. Then the following are equivalent:

• E has bounded geometry,
• the Christoffel symbols Γβiα(y) of E with respect to synchronous fram-
ings (considered as functions on the domain B of normal coordinates
at all points) are bounded, as are all their derivatives, and this bounds
are independent of x ∈M , y ∈ expx(B) and i, α, β, and
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• the matrix transition functions between overlapping synchronous fram-
ings are uniformly bounded, as are all their derivatives (i.e., the
bounds are the same for all transition functions).

We will now give the definition of uniform C∞-spaces together with a local
characterization on manifolds of bounded geometry. The interested reader is
refered to, e.g., the papers [Roe88a, Section 2] or [Shu92, Appendix A1.1] of
Roe and Shubin for more information regarding these uniform C∞-spaces.
Definition 2.6 (Cr-bounded functions). Let f ∈ C∞(M). We say that f is
a Crb -function, or equivalently that it is Cr-bounded, if ‖∇if‖∞ < Ci for all
0 ≤ i ≤ r. �

If M has bounded geometry, being Cr-bounded is equivalent to the state-
ment that in every normal coordinate chart |∂αf(y)| < Cα for every mul-
tiindex α with |α| ≤ r (where the constants Cα are independent of the
chart).

The definition of Cr-boundedness and its equivalent characterization in
normal coordinate charts for manifolds of bounded geometry make also sense
for sections of vector bundles of bounded geometry.
Definition 2.7 (Uniform C∞-spaces). Let E be a vector bundle of bounded
geometry over M . We will denote the uniform Cr-space of all Cr-bounded
sections of E by Crb (E).

Furthermore, we define the uniform C∞-space C∞b (E)

C∞b (E) :=
⋂
r

Crb (E)

which is a Fréchet space. �

Now we get to Sobolev spaces on manifolds of bounded geometry. Much of
the following material is from [Shu92, Appendix A1.1] and [Roe88a, Section 2],
where the reader can find more thorough discussions of this matters.

Let s ∈ C∞c (E) be a compactly supported, smooth section of some vector
bundle E → M with metric and connection ∇. For k ∈ N0 and p ∈ [1,∞)
we define the global W k,p-Sobolev norm of s by

(2.1) ‖s‖p
Wk,p :=

k∑
i=0

∫
M
‖∇is(x)‖pdx.

Definition 2.8 (Sobolev spaces W k,p(E)). Let E be a vector bundle which
is equipped with a metric and a connection. The W k,p-Sobolev space of E
is the completion of C∞c (E) in the norm ‖ − ‖Wk,p and will be denoted by
W k,p(E). �

If E and Mm both have bounded geometry than the Sobolev norm (2.1)
for 1 < p <∞ is equivalent to the local one given by

(2.2) ‖s‖p
Wk,p

equiv
=

∞∑
i=1

‖ϕis‖pWk,p(B2ε(xi))
,
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where the balls B2ε(xi) and the subordinate partition of unity ϕi are as
in Lemma 2.4, we have chosen synchronous framings and ‖ − ‖Wk,p(B2ε(xi))

denotes the usual Sobolev norm on B2ε(xi) ⊂ Rm. This equivalence enables
us to define the Sobolev norms for all k ∈ R, see Triebel [Tri10] and Große–
Schneider [GroS13]. There are some issues in the case p = 1, see the discussion
by Triebel [Tri83, Section 2.2.3], [Tri10, Remark 4 on Page 13].

Assuming bounded geometry, the usual embedding theorems are true:

Theorem 2.9 ([Aub98, Theorem 2.21]). Let E be a vector bundle of bounded
geometry over a manifold Mm of bounded geometry and without boundary.

Then we have for all values (k − r)/m > 1/p continuous embeddings

W k,p(E) ⊂ Crb (E).

We define the space

(2.3) W∞,p(E) :=
⋂
k∈N0

W k,p(E)

and equip it with the obvious Fréchet topology. The Sobolev Embedding
Theorem tells us now that we have for all p a continuous embedding

W∞,p(E) ↪→ C∞b (E).

Finally, we come to a technical statement (Lemma 2.14) about the existence
of open covers with special properties on manifolds of bounded geometry,
similar to Lemma 2.4. As a preparation we first have to recall some facts about
simplicial complexes of bounded geometry and corresponding triangulations
of manifolds of bounded geometry.

Definition 2.10 (Bounded geometry simplicial complexes). A simplicial
complex has bounded geometry if there is a uniform bound on the number of
simplices in the link of each vertex.

A subdivision of a simplicial complex of bounded geometry with the
properties that

• each simplex is subdivided a uniformly bounded number of times on
its n-skeleton, where the n-skeleton is the union of the n-dimensional
sub-simplices of the simplex, and that
• the distortion length(e)+length(e)−1 of each edge e of the subdivided
complex is uniformly bounded in the metric given by barycentric
coordinates of the original complex,

is called a uniform subdivision. �

Theorem 2.11 (Attie [Att94, Theorem 1.14]). Let M be a manifold of
bounded geometry and without boundary.
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Then M has a triangulation as a simplicial complex of bounded geometry
such that the metric given by barycentric coordinates is bi-Lipschitz equivalent2

to the one on M induced by the Riemannian structure. This triangulation is
unique up to uniform subdivision.

Conversely, if M is a simplicial complex of bounded geometry which is
a triangulation of a smooth manifold, then this smooth manifold admits a
metric of bounded geometry with respect to which it is bi-Lipschitz equivalent
to M .

Remark 2.12. Attie uses in [Att94] a weaker notion of bounded geometry as
we do: additionally to a uniformly positive injectivity radius he only requires
the sectional curvatures to be bounded in absolute value (i.e., the curvature
tensor is bounded in norm), but he assumes nothing about the derivatives (see
[Att94, Definition 1.4]). But going into his proof of [Att94, Theorem 1.14],
we see that the Riemannian metric constructed for the second statement of
the theorem is actually of bounded geometry in our strong sense (i.e., also
with bounds on the derivatives of the curvature tensor).

As a corollary we get that for any manifold of bounded geometry in Attie’s
weak sense there is another Riemannian metric of bounded geometry in our
strong sense that is bi-Lipschitz equivalent the original one (in fact, this
bi-Lipschitz equivalence is just the identity map of the manifold, as can be
seen from the proof). �

The last auxiliary lemma (before we come to the crucial Lemma 2.14) is
about coloring covers of manifolds with only finitely many colors:

Lemma 2.13. Let a covering {Uα} of M with finite multiplicity be given.
Then there exists a coloring of the subsets Uα with finitely many colors such
that no two intersecting subsets have the same color.

Proof. Construct a graph whose vertices are the subsets Uα and two vertices
are connected by an edge if the corresponding subsets intersect. We have to
find a coloring of this graph with only finitely many colors where connected
vertices do have different colors.

To do this, we firstly use the theorem of de Bruijin–Erdös stating that
an infinite graph may be colored by k colors if and only if every of its finite
subgraphs may be colored by k colors (one can use the Lemma of Zorn to
prove this).

Secondly, since the covering has finite multiplicity it follows that the
number of edges attached to each vertex in our graph is uniformly bounded
from above, i.e., the maximum vertex degree of our graph is finite. But this
also holds for every subgraph of our graph, with the maximum vertex degree

2Two metric spaces X and Y are said to be bi-Lipschitz equivalent if there is a homeo-
morphism f : X → Y with

1
C
dX(x, x′) ≤ dY (f(x), f(x′)) ≤ CdX(x, x′)

for all x, x′ ∈ X and some constant C > 0.
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possibly only decreasing by passing to a subgraph. Now a simple greedy
algorithm shows that every finite graph may be colored with one more color
than its maximum vertex degree: just start by coloring a vertex with some
color, go to the next vertex and use an admissible color for it, and so on. �

Lemma 2.14. Let M be a manifold of bounded geometry and without bound-
ary.

Then there is an ε > 0 and a countable collection of uniformly discretely
distributed points {xi}i∈I ⊂ M such that {Bε(xi)}i∈I is a uniformly locally
finite cover of M . We can additionally arrange such that it has the following
two properties:

(1) It is possible to partition I into a finite amount of subsets I1, . . . , IN
such that for each 1 ≤ j ≤ N the subset Uj :=

⋃
i∈Ij Bε(xi) is a

disjoint union of balls that are a uniform distance apart from each
other, and such that for each 1 ≤ K ≤ N the connected components
of UK := U1 ∪ . . . ∪ Uk are also a uniform distance apart from each
other (see Figure 1).

(2) Instead of choosing balls Bε(xi) to get our cover of M it is possible
to choose other open subsets such that additionally to the property
from Point 1 for any distinct 1 ≤ m,n ≤ N the symmetric difference
Um∆Un consists of open subsets of M which are a uniform distance
apart from each other.3

Proof. Let us first show how to get a cover of M satisfying Point 1 from the
lemma.

We triangulate M via the above Theorem 2.11. Then we may take the
vertices of this triangulation as our collection of points {xi}i∈I and set ε to
2/3 of the length of an edge multiplied with the constant C which we get since
the metric derived from barycentric coordinates is bi-Lipschitz equivalent to
the metric derived from the Riemannian structure.

Two balls Bε(xi) and Bε(xj) for xi 6= xj intersect if and only if xi and xj
are adjacent vertices, and in the case that they are not adjacent, these balls
are a uniform distance apart from each other. Hence it is possible to find a
coloring of all these balls {Bε(xi)}i∈I with only finitely many colors having
the claimed Property 1: apply Lemma 2.13 to the covering {Bε(xi)}i∈I which
has finite multiplicity due to bounded geometry.

To prove Point 2, we replace in our cover of M the balls Bε(xi) with
slightly differently chosen open subsets, as shown in the 2-dimensional case
in Figure 2 (we are working in a triangulation of M as above in the proof of
Point 1). �

3To see a non-example, in the lower part of Figure 1 this is actually not the case.
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Figure 1. Illustration for Lemma 2.14.1.

Figure 2. Illustration for Lemma 2.14.2.

2.2. Uniform pseudodifferential operators. In this section we will re-
call the definition of uniform pseudodifferential operators and some basic
properties of them. This class of pseudodifferential operators was introduced
by the author in his Ph.D. thesis [Eng14], but similar classes were also
considered by Shubin [Shu92] and Kordyukov [Kor91].

Let Mm be an m-dimensional manifold of bounded geometry and let E
and F be two vector bundles of bounded geometry over M .
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Definition 2.15. An operator P : C∞c (E)→ C∞(F ) is a uniform pseudodif-
ferential operator of order k ∈ Z, if with respect to a uniformly locally finite
covering {B2ε(xi)} of M with normal coordinate balls and corresponding
subordinate partition of unity {ϕi} as in Lemma 2.4 we can write

(2.4) P = P−∞ +
∑
i

Pi

satisfying the following conditions:
• P−∞ is a quasilocal smoothing operator,4
• for all i the operator Pi is with respect to synchronous framings of E
and F in the ball B2ε(xi) a matrix of pseudodifferential operators on
Rm of order k with support5 in B2ε(0) ⊂ Rm, and
• the constants Cαβi appearing in the bounds

‖Dα
xD

β
ξ pi(x, ξ)‖ ≤ C

αβ
i (1 + |ξ|)k−|β|

of the symbols of the operators Pi can be chosen to not depend on i,
i.e., there are Cαβ <∞ such that

(2.5) Cαβi ≤ C
αβ

for all multi-indices α, β and all i. �

To define ellipticity we have to recall the definition of symbols. We let π∗E
and π∗F denote the pull-back bundles of E and F to the cotangent bundle
π : T ∗M →M of the m-dimensional manifold M .

Definition 2.16. Let p be a section of the bundle Hom(π∗E, π∗F ) over the
space T ∗M .

• We call p a symbol of order k ∈ Z, if the following holds: choosing
a uniformly locally finite covering {B2ε(xi)} of M through normal
coordinate balls and corresponding subordinate partition of unity
{ϕi} as in Lemma 2.4, and choosing synchronous framings of E and F
in these balls B2ε(xi), we can write p as a uniformly locally finite sum
p =

∑
i pi, where pi(x, ξ) := p(x, ξ)ϕ(x) for x ∈M and ξ ∈ T ∗xM , and

interpret each pi as a matrix-valued function on B2ε(xi)×Cm. Then
for all multi-indices α and β there must exist a constant Cαβ <∞
such that for all i and all x, ξ we have

(2.6) ‖Dα
xD

β
ξ pi(x, ξ)‖ ≤ C

αβ(1 + |ξ|)k−|β|.

• We will call p elliptic, if there is an R > 0 such that p||ξ|>R6 is
invertible and this inverse p−1 satisfies the Inequality (2.6) for α, β = 0

4That is to say, for all k, l ∈ N0 we have that P−∞ : H−k(E)→ Hl(F ) has the following
propety: there is a function µ : R>0 → R≥0 with µ(R)→ 0 for R→∞ and such that for all
L ⊂M and all u ∈ H−k(E) with suppu ⊂ L we have ‖Au‖Hl,M−BR(L) ≤ µ(R) · ‖u‖H−k .

5An operator P is supported in a subset K, if suppPu ⊂ K for all u in the domain of
P and if Pu = 0 whenever we have suppu ∩K = ∅.

6We restrict p to the bundle Hom(π∗E, π∗F ) over {(x, ξ) ∈ T ∗M | |ξ| > R} ⊂ T ∗M .
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and order −k (and of course only for |ξ| > R since only there the
inverse is defined). Note that as in the compact case it follows that
p−1 satisfies the Inequality (2.6) for all multi-indices α, β. �

Definition 2.17. Let P be a uniform pseudodifferential operator. We will
call P elliptic, if its principal symbol σ(P ) is elliptic. �

The main fact about elliptic operators that we will need later is the
following one. Of course ellipticity is also crucially used to show that we can
define a uniform K-homology class for such operators (see Example 2.23).

Corollary 2.18 ([Eng15a, Corollary 2.47]). Let P be a symmetric and elliptic
uniform pseudodifferential operator of positive order.

If f is a Schwartz function, then f(P ) is a quasi-local smoothing operator.

2.3. Uniform K-homology and uniform K-theory. Let us start with
uniform K-homology. For this we first have to recall briefly the notion of
multigraded Hilbert spaces. They arise as L2-spaces of vector bundles on
which Clifford algebras act.

• A graded Hilbert space is a Hilbert space H with a decomposition
H = H+ ⊕H− into closed, orthogonal subspaces. This is equivalent
to the existence of a grading operator ε (a selfadjoint unitary) such
that its ±1-eigenspaces are H±.
• If H is a graded space, then its opposite is the graded space Hop

with underlying vector space H but with the reversed grading, i.e.,
(Hop)+ = H− and (Hop)− = H+. This is equivalent to εHop = −εH .
• An operator on a graded space H is called even if it maps H± again
to H±, and it is called odd if it maps H± to H∓. Equivalently, an
operator is even if it commutes with the grading operator ε of H, and
it is odd if it anti-commutes with it.

Definition 2.19. Let p ∈ N0.
• A p-multigraded Hilbert space is a graded Hilbert space equipped with
p odd unitary operators ε1, . . . , εp such that εiεj + εjεi = 0 for i 6= j,
and ε2j = −1 for all j.
• Note that a 0-multigraded Hilbert space is just a graded Hilbert space,
and by convention a (−1)-multigraded Hilbert space is an ungraded
one.
• Let H be a p-multigraded Hilbert space. Then an operator on H will
be called multigraded, if it commutes with the multigrading operators
ε1, . . . , εp of H. �

To define uniform Fredholm modules we will need the following notions.
Let us define

L-LipR(X) := {f ∈ Cc(X) | f is L-Lipschitz, diam(supp f) ≤ R and ‖f‖∞ ≤ 1}.

Definition 2.20 ([Špa09, Definition 2.3]). Let T ∈ B(H) be an operator on
a Hilbert space H and ρ : C0(X)→ B(H) a representation.
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We say that T is uniformly locally compact, if for every R,L > 0 the
collection

{ρ(f)T, Tρ(f) | f ∈ L-LipR(X)}
is uniformly approximable.7

We say that T is uniformly pseudolocal, if for every R,L > 0 the collection

{[T, ρ(f)] | f ∈ L-LipR(X)}
is uniformly approximable. �

Definition 2.21 (Multigraded uniform Fredholm modules, cf. [Špa09, Defi-
nition 2.6]). Let p ∈ Z≥−1. A triple (H, ρ, T ) consisting of

• a separable p-multigraded Hilbert space H,
• a representation ρ : C0(X)→ B(H) by even, multigraded operators,
and
• an odd multigraded operator T ∈ B(H) such that

– the operators T 2 − 1 and T − T ∗ are uniformly locally compact
and

– the operator T itself is uniformly pseudolocal
is called a p-multigraded uniform Fredholm module over X. �

Definition 2.22 (Uniform K-homology, [Špa09, Definition 2.13]). We define
the uniform K-homology group Ku

p (X) of any locally compact, separable
metric space X to be the abelian group generated by unitary equivalence
classes of p-multigraded uniform Fredholm modules with the relations:

• if x and y are operator homotopic8, then [x] = [y], and
• [x] + [y] = [x⊕ y],

where x and y are p-multigraded uniform Fredholm modules. �

Example 2.23. Špakula [Špa09, Theorem 3.1] showed that the usual Fred-
holm module arising from a generalized Dirac operator is uniform if we assume
bounded geometry: if D is a generalized Dirac operator acting on a Dirac
bundle S of bounded geometry over a manifold M of bounded geometry, then
the triple (L2(S), ρ, χ(D)), where ρ is the representation of C0(M) on L2(S)
by multiplication operators and χ is a normalizing function, is a uniform
Fredholm module. It is multigraded if the Dirac bundle S has an action of a
Clifford algebra.

The author [Eng15a, Theorem 3.39 and Proposition 3.40] generalized this
to symmetric and elliptic uniform pseudodifferential operators over manifolds
of bounded geometry, and also showed that this uniform K-homology class
only depends on the principal symbol of the operator. �

7A collection of operators A ⊂ K(H) is said to be uniformly approximable, if for every
ε > 0 there is an N > 0 such that for every T ∈ A there is a rank-N operator k with
‖T − k‖ < ε.

8A collection (H, ρ, Tt) of uniform Fredholm modules is called an operator homotopy if
t 7→ Tt ∈ B(H) is norm continuous.
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Let us now recall uniform K-theory, which was introduced by the author
in his Ph.D. thesis [Eng14].

Definition 2.24 (Uniform K-theory). Let X be a metric space. The uniform
K-theory groups of X are defined as

Kp
u(X) := K−p(Cu(X)),

where Cu(X) is the C∗-algebra of bounded, uniformly continuous functions
on X. �

On manifolds of bounded geometry we have an interpretation of uniform
K-theory via isomorphism classes of vector bundles of bounded geometry. In
order to state this, we first have to recall the needed notion of isomorphy.

Let M be a manifold of bounded geometry and E and F two complex
vector bundles equipped with Hermitian metrics and compatible connections.

Definition 2.25 (C∞-boundedness / C∞b -isomorphy of vector bundle ho-
momorphisms). We will call a vector bundle homomorphism ϕ : E → F
C∞-bounded, if with respect to synchronous framings of E and F the matrix
entries of ϕ are bounded, as are all their derivatives, and these bounds do
not depend on the chosen base points for the framings or the synchronous
framings themself.
E and F are called C∞b -isomorphic, if there is an isomorphism ϕ : E → F

such that both ϕ and ϕ−1 are C∞-bounded. �

An important property of vector bundles over compact spaces is that they
are always complemented, i.e., for every bundle E there is a bundle F such
that E ⊕F is isomorphic to the trivial bundle. Note that this fails in general
for non-compact spaces. The following proposition shows that we have the
analogous property for vector bundles of bounded geometry. We state it here
since we will need the proposition later in this paper.

Definition 2.26 (C∞b -complemented vector bundles). A vector bundle E
will be called C∞b -complemented, if there is some vector bundle E⊥ such that
E ⊕ E⊥ is C∞b -isomorphic to a trivial bundle with the flat connection. �

Proposition 2.27 ([Eng15a, Proposition 4.13]). Let M be a manifold of
bounded geometry and let E →M be a vector bundle of bounded geometry.

Then E is C∞b -complemented.

We can now state the interpretation of uniform K-theory on manifolds of
bounded geometry via vector bundles.

Theorem 2.28 (Interpretation of K0
u(M), [Eng15a, Theorem 4.18]). Let M

be a Riemannian manifold of bounded geometry and without boundary.
Then every element of K0

u(M) is of the form [E] − [F ], where both [E]
and [F ] are C∞b -isomorphism classes of complex vector bundles of bounded
geometry over M .

Moreover, every complex vector bundle of bounded geometry over M defines
naturally a class in K0

u(M).
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Note that the last statement in the above theorem is not trivial since it
relies on the fact that every vector bundle of bounded geometry is suitably
complemented.

Theorem 2.29 (Interpretation of K1
u(M), [Eng15a, Theorem 4.21]). Let M

be a Riemannian manifold of bounded geometry and without boundary.
Then every elements of K1

u(M) is of the form [E] − [F ], where both [E]
and [F ] are C∞b -isomorphism classes of complex vector bundles of bounded
geometry over S1×M with the following property: there is some neighbourhood
U ⊂ S1 of 1 such that [E|U×M ] and [F |U×M ] are C∞b -isomorphic to a trivial
vector bundle with the flat connection (the dimension of the trivial bundle is
the same for both [E|U×M ] and [F |U×M ]).

Moreover, every pair of complex vector bundles E and F of bounded
geometry and with the above properties define a class [E]− [F ] in K1

u(M).

We have a cap product9

∩ : Kp
u(X)⊗Ku

q (X)→ Ku
q−p(X).

Let us collect in the next proposition some properties of it.

Proposition 2.30 ([Eng15a, Proposition 4.28]).
• We have the formula

(2.7) (P ⊗Q) ∩ T = P ∩ (Q ∩ T )

for all elements P,Q ∈ K∗u(X) and T ∈ Ku
∗ (X), where ⊗ is the

internal product10 on uniform K-theory.
• We have the following compatibility with the external products:

(2.8) (P ×Q) ∩ (S × T ) = (−1)qs(P ∩ S)× (Q ∩ T ),

where P ∈ Kp
u(X), Q ∈ Kq

u(X) and S ∈ Ku
s (X), T ∈ Ku

t (X).
• If E →M is a vector bundle of bounded geometry over a manifold M
of bounded geometry and D an operator of Dirac type over M , then
we have

(2.9) [E] ∩ [D] = [DE ] ∈ Ku
∗ (M),

where DE is the twisted operator.

The main reason why we have recalled the cap product is the following
duality result:

Theorem 2.31 (Uniform K-Poincaré duality, [Eng15a, Theorem 4.29]). Let
M be an m-dimensional spinc manifold of bounded geometry and without
boundary.

9We need some assumptions on the space X to construct the cap product. But because
every space occuring in this paper will satisfy them, we have refrained from stating these
assumptions explicitly.

10If the classes are represented by vector bundles, then the internal product is just
given by the tensor product bundle.
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Then the cap product − ∩ [M ] : K∗u(M) → Ku
m−∗(M) with its uniform

K-fundamental class [M ] ∈ Ku
m(M) is an isomorphism.

3. Uniform homology theories and Chern characters

In Section 3.1 we recall the definition of (periodic) cyclic cohomology and
construct the Chern–Connes characters ch: Ku

∗ (M) 99K HP ∗cont(W
∞,1(M)).

In Section 3.2 we will then map further into uniform de Rham homology
Hu,dR
∗ (M) and prove various additional results, e.g., that we have the isomor-

phism HP ∗cont(W
∞,1(M)) ∼= Hu,dR

∗ (M) and the Poincaré duality isomorphism
H∗b,dR(M) ∼= Hu,dR

m−∗ (M). At the end of Section 3.2 we will discuss the Chern
character ch: K∗u(M)→ H∗u,dR(M) and the whole Section 3.3 is devoted to
the proof of the Chern character isomorphism theorem.

3.1. Cyclic cocycles of uniformly finitely summable modules. The
goal of this section is to construct the homological Chern character maps from
uniform K-homology Ku

∗ (M) of M to continuous periodic cyclic cohomology
HP ∗cont(W

∞,1(M)) of the Sobolev space W∞,1(M).
First we will recall the definition of Hochschild, cyclic and periodic cyclic

cohomology of a (possibly non-unital) complete locally convex algebra A11.
The classical reference for this is, of course, Connes’ seminal paper [Con85].
The author also found Khalkhali’s book [Kha13] a useful introduction to
these matters.

Definition 3.1. The continuous Hochschild cohomology HH∗cont(A) of A is
the homology of the complex

C0
cont(A)

b−→ C1
cont(A)

b−→ . . . ,

where Cncont(A) = Hom(A⊗̂(n+1),C) and the boundary map b is given by

(bϕ)(a0, . . . , an+1) =
n∑
i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an+1)+

+ (−1)n+1ϕ(an+1a0, a1, . . . , an).

We use the completed projective tensor product ⊗̂ and the linear functionals
are assumed to be continuous. But we still factor out only the image of the
boundary operator to define the homology, and not the closure of the image
of b. �

Definition 3.2. The continuous cyclic cohomology HC∗cont(A) of A is the
homology of the following subcomplex of the Hochschild cochain complex:

C0
λ,cont(A)

b−→ C1
λ,cont(A)

b−→ . . . ,

11We consider here only algebras over the field C. Furthermore, we assume that
multiplication in A is jointly continuous.
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where

Cnλ,cont(A) = {ϕ ∈ Cncont(A) : ϕ(an, a0, . . . , an−1) = (−1)nϕ(a0, a1, . . . , an)}
are the cochain spaces. �

There is a certain periodicity operator S : HCncont(A) → HCn+2
cont (A). For

the tedious definition of this operator on the level of cyclic cochains we refer
the reader to Connes’ original paper [Con85, Lemma 11 on p. 322] or to his
book [Con94, Lemma 14 on p. 198].

Definition 3.3. The continuous periodic cyclic cohomology HP ∗cont(A) of A
is defined as the direct limit

HP ∗cont(A) = lim−→ HC∗+2n
cont (A)

with respect to the maps S. �

Let (H, ρ, T ) be a graded uniform Fredholm module over M and denote
by ε the grading automorphism of the graded Hilbert space H. Moreover,
assume that (H, ρ, T ) is involutive12 and uniformly p-summable, where the
latter means supf∈L- LipR(M) ‖[T, ρ(f)]‖p <∞ for the Schatten p-norm ‖−‖p.

Having such an involutive, uniformly p-summable Fredholm module at
hand we define for all m with 2m+ 1 ≥ p a cyclic 2m-cocycle on W∞,1(M),
i.e., on the Sobolev space of infinite order and L1-integrability, by

ch0,2m(H, ρ, T )(f0, . . . , f2m) := 1
2(2πi)mm! tr

(
εT [T, f0] · · · [T, f2m]

)
.

We have the compatibility S ◦ ch0,2m = ch0,2m+2 and therefore we get a map

ch0 : Ku
0 (M) 99K HP 0

cont(W
∞,1(M)).

The dashed arrow indicates that we do not know that every uniform, even
K-homology class is represented by a uniformly finitely summable module,
and we also do not know if the map is well-defined, i.e., if two such modules
representing the same K-homology class will be mapped to the same cyclic
cocycle class. For spinc manifolds the first mentioned problem is solved by
Poincaré duality which states that every uniform K-homology class may
be represented by the difference of two twisted Dirac operators (which are
uniformly finitely summable). But the second mentioned problem about the
well-definedness is much more serious and will only be solved by the local
index theorem. We will state the resolution of this problem in Corollary 4.4.

Given an ungraded, involutive, uniformly p-summable Fredholm module
(H, ρ, T ), we define for all m with 2m ≥ p a cyclic (2m− 1)-cocycle on the
space W∞,1(M) by

ch1,2m−1(H, ρ, T )(f0, . . . , f2m−1) =

= (2πi)m 1
2(2m− 1)(2m− 3) · · · 3 · 1 tr

(
T [T, f0] · · · [T, f2m−1]

)
.

12Recall that a Fredholm module (H, ρ, T ) is called involutive if T = T ∗, ‖T‖ ≤ 1 and
T 2 = 1.
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Again, this definition is compatible with the periodicity operator S and so
defines a map

ch1 : Ku
1 (M) 99K HP 1

cont(W
∞,1(M)).

3.2. Uniform de Rham (co-)homology. In the previous section we con-
structed the characters ch: Ku

∗ (M) 99K HP ∗cont(W
∞,1(M)). The first goal of

this section is to map further to uniform de Rham homology Hu,dR
∗ (M). In

the second part of this section we will then prove Poincaré duality of the
latter with bounded de Rham cohomology: H∗b,dR(M) ∼= Hu,dR

m−∗(M). And at
the end of this section we will introduce uniform de Rham cohomology and
construct the uniform Chern character from uniform K-theory to it.

Definition 3.4. We define the space of uniform de Rham p-currents Ωu
p(M)

to be the topological dual space of the Fréchet space W∞,1(Ωp(M)), i.e.,

Ωu
p(M) := Hom(W∞,1(Ωp(M)),C).

Recall from Definition 2.8 and Equation (2.3) that W∞,1(Ωp(M)) denotes
the Sobolev space of p-forms whose derivatives are all L1-integrable.

Since the exterior derivative d : W∞,1(Ωp(M))→W∞,1(Ωp+1(M)) is con-
tinuous we get a corresponding dual differential (also denoted by d)

(3.1) d : Ωu
p(M)→ Ωu

p−1(M).

We define the uniform de Rham homology Hu,dR
∗ (M) with coefficients in C

as the homology of the complex

. . .
d−→ Ωu

p(M)
d−→ Ωu

p−1(M)
d−→ . . .

d−→ Ω0(M)→ 0,

where d is the dual differential (3.1). �

Definition 3.5. We define a map α : Cpcont(W
∞,1(M))→ Ωu

p(M) by

α(ϕ)(f0df1 ∧ . . . ∧ dfp) :=
1

p!

∑
σ∈Sp

(−1)σϕ(f0, fσ(1), . . . , fσ(p)),

where Sp denotes the symmetric group on 1, . . . , p. �

The antisymmetrization that we have done in the above definition of α
maps Hochschild cocycles to Hochschild cocycles and vanishes on Hochschild
coboundaries. This means that α descends to a map

α : HH∗cont(W
∞,1(M))→ Ωu

∗(M)

on Hochschild cohomology.
Before we can prove that α is an isomorphism we need a technical lemma:

Lemma 3.6. Let M and N be manifolds of bounded geometry and without
boundary. Then we have

W∞,1(M) ⊗̂W∞,1(N) ∼= W∞,1(M ×N),

where ⊗̂ denotes the projective tensor product.
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Proof. This is an elaboration of P. Michor’s answer [Mic14] on MathOverflow.
The reference he gives is [Mic78]: combining the theorem on p. 78 in it with
Point (c) on top of the same page we get the isomorphism L1(M) ⊗̂L1(N) ∼=
L1(M ×N). This result was first proven by Chevet [Che69].

Let us incorporate derivatives. In [KMR15, End of Section 6] it is proven13

that we have a continuous inclusion W∞,1(M) ⊗̂W∞,1(N)→W∞,1(M ×N).
Note that we have to use [Che69, Théorème 1 on p. 124] to conclude that the
family of seminorms used in [KMR15] for W∞,1(M) ⊗̂W∞,1(N) generates
indeed the projective tensor product topology.

It remains to show that W∞,1(M ×N) → W∞,1(M) ⊗̂W∞,1(N) is con-
tinuous. For this we will use the fact that we may represent the projective
tensor product norm on the algebraic tensor product E ⊗alg F of two Banach
spaces by

‖u‖E ⊗̂F = inf
{∑

‖xi‖E‖yi‖F
}
,

where the infimum ranges over all representations u =
∑

i xi⊗ yi. In our case
now note that we have for w :=

∑
i(∇Xpi)⊗ qi, where X is a vector field on

M with ‖X‖∞ ≤ 1, the chain of inequalities

‖w‖L1(M) ⊗̂L1(N) =
∥∥∥∑(∇Xpi)⊗ qi

∥∥∥
L1(M) ⊗̂L1(N)

≤ C
∥∥∥∑(∇Xpi) · qi

∥∥∥
L1(M×N)

≤ C‖
∑

pi · qi‖W 1,1(M×N),(3.2)

where the first inequality comes from the fact L1(M) ⊗̂L1(N) ∼= L1(M ×N)
which we already know. Now for v :=

∑
i si ⊗ ti we have

‖v‖W 1,1(M) ⊗̂L1(N) =
∥∥∥∑ si ⊗ ti

∥∥∥
W 1,1(M) ⊗̂L1(N)

(3.3)

= inf
{∑(

‖xi‖L1(M) + ‖∇xi‖L1(M)

)
‖yi‖L1(N)

}
= inf

{∑
‖xi‖L1(M)‖yi‖L1(N)

}
︸ ︷︷ ︸
=‖v‖L1(M) ⊗̂L1(N)≤C‖v‖L1(M×N)

+ inf
{∑

‖∇xi‖L1(M)‖yi‖L1(N)

}
,

where the infima run over all representations
∑

i xi ⊗ yi of v. Furthermore,
for a fixed compactly supported vector field X with ‖X‖∞ ≤ 1 we have

(3.4) inf
A

{∑
‖∇Xxi‖L1(M)‖yi‖L1(N)

}
= inf
B

{∑
‖ei‖L1(M)‖fi‖L1(N)

}
,

where A is the set of all representations
∑

i xi ⊗ yi of v =
∑

i si ⊗ ti and
B the set of all representations

∑
i ei ⊗ fi of

∑
i(∇Xsi)⊗ ti. This equality

holds because every element of A gives rise to an element of B by deriving

13To be concrete, they proved it only for Euclidean space, but the argument is the same
for manifolds of bounded geometry.
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the first component and also vice versa by integrating it. By Inequality
(3.2) we now get that the infima in Equation (3.4) are less than or equal to
C‖v‖W 1,1(M×N). Since this holds for any vector field X with ‖X‖∞ ≤ 1 we
can combine it now with Estimate (3.3) to get

‖v‖W 1,1(M) ⊗̂L1(N) ≤ 2C‖v‖W 1,1(M×N).

We iterate the argument to get estimates for all higher derivatives and
also for the second component. This proves that the map W∞,1(M ×N)→
W∞,1(M) ⊗̂W∞,1(N) is continuous and hence completes the whole proof. �

Theorem 3.7. For any Riemannian manifold M of bounded geometry and
without boundary the map α : HHp

cont(W
∞,1(M)) → Ωu

p(M) is an isomor-
phism for all p.

Proof. The proof is analogous to the one given in [Con85, Lemma 45a on
page 128] for the case of compact manifolds. We describe here only the places
where we have to adjust it for non-compact manifolds.

The proof in [Con85] relies heavily on Lemma 44 there. First note that
direct sums, tensor products and duals of vector bundles of bounded geometry
are again of bounded geometry. Since the tangent and cotangent bundle
of a manifold of bounded geometry have, of course, bounded geometry, the
bundles Ek occuring in Lemma 44 of [Con85] have bounded geometry.

Furthermore, [Con85, Lemma 44] needs a nowhere vanishing vector field
on M , and since we are working here in the bounded geometry setting we
need for our proof a nowhere vanishing vector field of norm one at every
point and with bounded derivatives. Since we can without loss of generality
assume that our manifold is non-compact (otherwise we are in the usual
setting where the result that we want to prove is already known), we can
always contruct a nowhere vanishing vector field on M : we just pick a generic
vector field with isolated zeros and then move the vanishing points to infinity.
But if we normalize this vector field to norm one at every point, then it will
usually have unbounded derivatives (since we moved the vanishing points
infinitely far, i.e., we disturbed the derivatives arbitrarily large). Fortunately,
Weinberger proved in [Wei09, Theorem 1] that on a manifold M of bounded
geometry a nowhere vanishing vector field of norm one and with bounded
derivatives exists if and only if the Euler class e(M) ∈ Hm

b,dR(M) vanishes
(the latter group denotes the top-dimensional bounded de Rham cohomology
of M ; see Definition 3.9). So if the Euler class of M vanishes, we are ok
and can move on with our proof. If the Euler class does not vanish, then we
have to use the same trick that already Connes used to prove Lemma 45a in
[Con85]: we take the product with S1.

Also, we need the isomorphism W∞,1(M) ⊗̂W∞,1(M) ∼= W∞,1(M ×M).
This is exactly the content of the above Lemma 3.6.

The fact that the modules Mk = W∞,1(M ×M,Ek) are topologically
projective, i.e., are direct summands of topological modules of the form
M′k = W∞,1(M ×M) ⊗̂ Ek, where Ek are complete locally convex vector
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spaces, follows from the fact that every vector bundle F of bounded geometry
is C∞b -complemented, i.e., there is a vector bundle G of bounded geometry
such that F ⊕G is C∞b -isomorphic to a trivial bundle with the flat connection.
This is stated in Proposition 2.27.

With the above notes in mind, the proof of [Con85, Lemma 45a on page
128] for the case of compact manifolds works also for non-compact manifolds
in our setting here. If there are constructions to be done in the proof we have
to do them uniformly (e.g., controlling derivatives uniformly in the points of
the manifold) by using the bounded geometry of M . �

The inverse map β : Ωu
p(M)→ HHp

cont(W
∞,1(M)) of α is given by

β(C)(f0, f1, . . . , fp) = C(f0df1 ∧ . . . ∧ dfp).

Now the proofs of Lemma 45b and Theorem 46 in [Con85] translate without
change to our setting here so that we finally get:

Theorem 3.8. Let M be a Riemannian manifold with bounded geometry and
no boundary.

For each n ∈ N0 the continuous cyclic cohomology HCncont(W
∞,1(M)) is

canonically isomorphic to

Zun(M)⊕Hu,dR
n−2 (M)⊕Hu,dR

n−4 (M)⊕ . . . ,

where Zun(M) ⊂ Ωu
n(M) is the subspace of closed currents.

The periodicity operator S : HCncont(W
∞,1(M)) → HCn+2

cont (W∞,1(M)) is
given under the above isomorphism as the map that sends cycles of Zun(M)
to their homology classes.

Last, since periodic cyclic cohomology is the direct limit of cyclic cohomol-
ogy, we finally get

α∗ : HP
ev/odd
cont (W∞,1(M))

∼=−→ Hu,dR
ev/odd(M).

We denote this isomorphism by α∗ since it is induced from the map α defined
above.

Let us now get to the dual cohomology theory to uniform de Rham
homology.

Definition 3.9 (Bounded de Rham cohomology). Let Ωp
b(M) denote the

vector space of p-forms on M , which are bounded in the norm

‖γ‖ := sup
x∈M
{‖γ(x)‖+ ‖dγ(x)‖}.

The bounded de Rham cohomology H∗b,dR(M) is defined as the homology of
the corresponding complex. �

For an oriented manifold the Poincaré duality map between bounded de
Rham cohomology and uniform de Rham homology is defined as the map
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induced by the following map on forms:

(3.5) Ωp
b(M)→ Ωu

m−p(M), γ 7→
(
ω 7→

∫
M
ω ∧ γ

)
.

Theorem 3.10. Let Mm be an oriented Riemannian manifold of bounded
geometry and without boundary.

Then the Poincaré duality map (3.5) induces an isomorphism

H∗b,dR(M)
∼=−→ Hu,dR

m−∗(M)

between bounded de Rham cohomology of M and uniform de Rham homology
of M .

Proof. We will do a Mayer–Vietoris induction, similar as in the proof of
Poincaré duality between uniform K-theory and uniform K-homology in
[Eng15a, Section 4.4].

We invoke Lemma 2.14 to get a cover of M by open subsets having
Properties 1 and 2 from that lemma.14 We use the notation Uj and UK from
it, and the induction will be over the index j (and hence the proof will only
consist of finitely many induction steps).

We have to show that we have the Mayer–Vietoris sequences. The ar-
guments are the same as in the case of compact manifolds, and we will
only mention where we have to be cautios because we are working in the
setting of uniform theories. We will only discuss the case of bounded de
Rham cohomology, since the additional arguments (because of the uniform
situation) in the case of uniform de Rham homology are similar.

For bounded de Rham cohomology we have to show that the following
sequence is exact in order to get a Mayer–Vietoris sequence:

(3.6) 0→ Ω∗b(UK ∪ Uk+1)→ Ω∗b(UK)⊕ Ω∗b(Uk+1)→ Ω∗b(UK ∩ Uk+1)→ 0.

The crucial step is to show that the map Ω∗b(UK)⊕Ω∗b(Uk+1)→ Ω∗b(UK∩Uk+1)
is surjectice. The usual argument in the case of compact manifolds uses a
partition of unity, and here we have to make sure now that the partition
of unity has uniformly bounded derivatives of all orders. The reason that
we can construct such a partition of unity here is because of Property 2 of
Lemma 2.14.

That the above defined Poincaré duality map (3.5) is a natural trans-
formation from one Mayer–Vietoris sequence to the other may be proved
analogously as in the case of compact manifolds; see, e.g., [Lee03, Exercise
16-6].

And finally, let us discuss the first step of the induction. We have collections
U1, U2 and U1 ∩U2 which are each a uniformly disjoint union of open subsets
of M which have a uniform bound on their diameters. So all three sets are

14With the additional property that the boundaries of the open subsets are smooth,
but it is clear that we can arrange this.
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boundedly homotopy equivalent15 to an infinite collection of open balls, for
which we already know from the case of compact manifolds that the Poincaré
duality map is an isomorphism. �

Bounded de Rham cohomology does not perfectly fit the setting in this
paper since the condition that the exterior derivative of a form is bounded
does not imply that in local coordinates the coefficient functions have a
uniformly bounded first derivative, and it also does not say anything about
the higher derivatives. Hence the following definition and proposition.

Definition 3.11. The uniform de Rham cohomology H∗u,dR(M) of a Rie-
mannian manifold M of bounded geometry is defined by using the complex of
uniform C∞-spaces16 C∞b (Ω∗(M)), i.e., differential forms on M which have
in normal coordinates bounded coefficient functions and all derivatives of
them are also bounded. �

Proposition 3.12. Let M be a manifold of bounded geometry and without
boundary. Then we have

H∗u,dR(M) ∼= H∗b,dR(M).

Proof. The proof is analogous to the one of Theorem 3.10 — the important
thing is that we have Mayer–Vietoris sequences and the argument given in
the proof of Theorem 3.10 for bounded de Rham cohomology also applies to
uniform de Rham cohomology. �

Theorem 3.13 (Existence of the uniform Chern character). Let M be a
Riemannian manifold of bounded geometry and without boundary.

Then we have a ring homomorphism ch: K∗u(M)→ H∗u,dR(M) with

ch(K0
u(M)) ⊂ Hev

u,dR(M) and ch(K1
u(M)) ⊂ Hodd

u,dR(M).

Proof. The Chern character is defined via Chern–Weil theory. That we
get uniform forms if we use vector bundles of bounded geometry is proven
in [Roe88a, Theorem 3.8] and so we get a map ch: K0

u(M) → Hev
u,dR(M).

That we also have a map ch: K1
u(M) → Hodd

u,dR(M) uses the description of
K1
u(M) from Theorem 2.29, i.e., that it consists of suitable vector bundles

over S1 ×M , and a corresponding suspension isomorphism for the uniform
de Rham cohomology. Details (for bounded cohomology, but for uniform
cohomology it is analogous) may be found in the author’s Ph.D. thesis [Eng14,
Sections 5.4 & 5.5]. �

15Let f, g : M → N be two maps of bounded dilatation. We say that they are boundedly
homotopic, if there is a homotopy H : M× [0, 1]→ N from f to g, which itself is of bounded
dilatation. Recall that a map h has bounded dilatation, if ‖h∗V ‖ ≤ C‖V ‖ for all tangent
vectors V . Bounded homotopy invariance of bounded de Rham cohomology was shown by
the author in [Eng14, Corollary 5.26].

16see Definition 2.7
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3.3. Uniform Chern character isomorphism theorems. The results
of the last two sections tell us that we have constructed Chern characters
K∗u(M) → H∗u,dR(M) and Ku

∗ (M) → Hu,dR
∗ (M). Here we already use the

Corollary 4.4 further below which states that the uniform homological Chern
character is well-defined. In the compact case the Chern characters are
isomorphisms modulo torsion and it is natural to ask the same question here
in the uniform setting. It is the goal of this section to answer this question
positively.

The proofs use the same Mayer–Vietoris induction as the proof of Poincaré
duality in [Eng15a, Section 4.4] and Theorem 3.10. Therefore we will discuss
in this section only the parts of the proofs which need additional arguments.

The most crucial detail to discuss here is the statement of the theorem
itself since we cannot just take the tensor product of the K-groups with the
complex numbers to get isomorphisms. In turns out that we additionally have
to form a certain completion of the algebraic tensor product of the K-groups
with C. We will discuss this completion directly after the statement of the
theorem.

Theorem 3.14. LetM be a manifold of bounded geometry and without bound-
ary. Then the Chern characters induce linear, continuous isomorphisms17

K∗u(M) ⊗̄C ∼= H∗u,dR(M) and Ku
∗ (M) ⊗̄C ∼= Hu,dR

∗ (M).

Let us discuss why we have to take a completion at all. Consider the
beginning of the Mayer–Vietoris induction where we have to show that the
Chern characters induce isomorphisms on a countably infinite collection of
uniformly discretely distributed points. Let these points be indexed by a set
Y . Then the K-groups of Y are given by `∞Z (Y ), the group of all bounded,
integer-valued sequences indexed by Y , and the de Rham groups are given
by `∞(Y ), the group of all bounded, complex valued sequences on Y . But
since Y is countably infinite we have `∞Z (Y )⊗ C 6∼= `∞(Y ). Instead we have
`∞Z (Y )⊗ C ∼= `∞(Y ).

To define the completed topological tensor product of an abelian group with
C we will need the notion of the free (abelian) topological group: if X is any
completely regular18 topological space, then the free topological group F (X)
on X is a topological group such that we have

• a topological embedding X ↪→ F (X) of X as a closed subset, so that
X generates F (X) algebraically as a free group (i.e., the algebraic

17The inverse maps are in general not continuous, because H∗u,dR(M), respectively
Hu,dR
∗ (M), are in general (e.g., if M is not compact) not Hausdorff, whereas K∗u(M) ⊗̄C,

respectively Ku
∗ (M) ⊗̄C, are. The topology on the latter spaces is defined by equipping

the K-groups with the discrete topology and then forming the completed tensor product
with C which will be discussed after the statement of the theorem.

18That is to say, every closed set K can be separated with a continuous function from
every point x /∈ K. Note that this does not necessarily imply that X is Hausdorff.



568 ALEXANDER ENGEL

group underlying the free topological group on X is the free group
on X), and we have
• the following universal property: for every continuous map φ : X → G,
where G is an arbitrary topological group, we have a unique extension
Φ: F (X)→ G of φ to a continuous group homomorphism on F (X):

X �
�

//

φ
��

F (X)

∃!Φ
||

G

The free abelian topological group A(X) has the corresponding analogous
properties. Furthermore, the commutator subgroup [F (X), F (X)] of F (X)
is closed and the quotient F (X)/[F (X), F (X)] is both algebraically and
topologically A(X).

As an easy example consider X equipped with the discrete topology. Then
F (X) and A(X) also have the discrete topology.

It seems that free (abelian) topological groups were apparently introduced
by Markov in [Mar41]. But unfortunately, the author could not obtain any
(neither russian nor english) copy of this article. A complete proof of the
existence of such groups was given by Markov in [Mar45]. Since his proof was
long and complicated, several other authors gave other proofs, e.g., Nakayama
in [Nak43], Kakutani in [Kak44] and Graev in [Gra48].

Now let us construct for any abelian topological group G the complete
topological vector space G ⊗̄C. We form the topological tensor product G⊗C
of abelian topological groups in the usual way: we start with the free abelian
topological group A(G× C) over the topological space G× C equipped with
the product topology19 and then take the quotient A(G×C)/N of it,20 where
N is the closure of the normal subgroup generated by the usual relations for
the tensor product.21 Now we may put on G⊗C the structure of a topological
vector space by defining the scalar multiplication to be λ(g ⊗ r) := g ⊗ λr.

What we now got is a topological vector space G ⊗ C together with a
continuous map G× C→ G⊗ C with the following universal property: for
every continuous map φ : G × C → V into any topological vector space V
and such that φ is bilinear22, there exists a unique, continuous linear map

19Note that every topological group is automatically completely regular and therefore
the product G× C is also completely regular.

20Since A(X) is both algebraically and topologically the quotient of F (X) by its
commutator subgroup, we could also have started with F (G×C) and additionally put the
commutator relations into N .

21That is to say, N contains (g1 + g2)× r− g1× r− g2× r, g× (r1 + r2)− g× r1− g× r2

and zg × r − z(g × r), g × zr − z(g × r), where g, g1, g2 ∈ G, r, r1, r2 ∈ C and z ∈ Z.
22That is to say, φ(·, r) is a group homomorphism for all r ∈ C and φ(g, ·) is a linear

map for all g ∈ G. Note that we then also have φ(zg, r) = zφ(g, r) = φ(g, zr) for all z ∈ Z,
g ∈ G and r ∈ C.
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Φ: G⊗ C→ V such that the following diagram commutes:

G× C //

φ
��

G⊗ C

∃!Φ
yy

V

Since every topological vector space may be completed we do this with
G ⊗ C to finally arrive at G ⊗̄C. Since every continuous linear map of
topological vector spaces is automatically uniformly continuous, i.e., may be
extended to the completion of the topological vector space, G ⊗̄C enjoys the
following universal property which we will raise to a definition:

Definition 3.15 (Completed topological tensor product with C). Let G be
an abelian topological group. Then G ⊗̄C is a complete topological vector
space over C together with a continuous map G×C→ G ⊗̄C that enjoy the
following universal property: for every continuous map φ : G× C→ V into
any complete topological vector space V and such that φ is bilinear23, there
exists a unique, continuous linear map Φ: G ⊗̄C→ V such that

G× C //

φ
��

G ⊗̄C

∃!Φ
yy

V

is a commutative diagram. �

We will give now two examples for the computation of G ⊗̄C. The first
one is easy and just a warm-up for the second which we already mentioned.
Both examples are proved by checking the universal property.

Examples 3.16. The first one is Z ⊗̄C ∼= C.
For the second example consider the group `∞Z consisting of bounded,

integer-valued sequences. Then `∞Z ⊗̄C ∼= `∞. �

Since we want to use the completed topological tensor product with C in a
Mayer–Vietoris argument, we have to show that it transforms exact sequences
to exact sequences.

So we have to show that the functor G 7→ G ⊗̄C is exact. But we have to
be careful here: though taking the tensor product with C is exact, passing
to completions is usually not—at least if the exact sequence we started with
was only algebraically exact. Let us explain this a bit more thoroughly: if we
have a sequence of topological vector spaces

. . . −→ Vi
ϕi−→ Vi+1

ϕi+1−→ Vi+2 −→ . . .

which is exact in the algebraic sense (i.e., imϕi = kerϕi+1), and if the maps
ϕi are continuous such that they extend to maps on the completions Vi, we

23see Footnote 22
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do not necessarily get that

. . . −→ Vi
ϕi−→ Vi+1

ϕi+1−→ Vi+2 −→ . . .

is again algebraically exact. The problem is that though we always have
kerϕi = kerϕi, we generally only get imϕi ⊃ imϕi. To correct this problem
we have to start with an exact sequence which is also topologically exact, i.e.,
we need that not only imϕi = kerϕi+1, but we also need that ϕi induces a
topological isomorphism Vi/ kerϕi ∼= imϕi.

To prove that in this case we get imϕi = imϕi we consider the inverse
map

ψi := ϕ−1
i : imϕi → Vi/ kerϕi.

Since ψi is continuous (this is the point which breaks down without the
additional assumption that ϕi induces a topological isomorphism Vi/ kerϕi ∼=
imϕi), we may extend it to a map

ψi : imϕi → Vi/ kerϕi = Vi/kerϕi,

which obviously is the inverse to ϕi : Vi/kerϕi → imϕi showing the desired
equality imϕi = imϕi.

Coming back to our functor G 7→ G ⊗̄C, we may now prove the following
lemma:

Lemma 3.17. Let

. . . −→ Gi
ϕi−→ Gi+1

ϕi+1−→ Gi+2 −→ . . .

be an exact sequence of topological groups and continuous maps, which is
in addition topologically exact, i.e., for all i ∈ Z the from ϕi induced map
Gi/ kerϕi → imϕi is an isomorphism of topological groups.

Then
. . . −→ Gi ⊗̄C −→ Gi+1 ⊗̄C −→ Gi+2 ⊗̄C −→ . . .

with the induced maps is an exact sequence of complete topological vector
spaces, which is also topologically exact.

Proof. We first tensor with C (without the completion afterwards). This is
known to be an exact functor and our sequence also stays topologically exact.
To see this last claim, we need the following fact about tensor products: if
ϕ : M →M ′ and ψ : N → N ′ are surjective, then the kernel of ϕ⊗ ψ : M ⊗
M ′ → N ⊗N ′ is the submodule given by

ker(ϕ⊗ ψ) = (ιM ⊗ 1)
(
(kerϕ)⊗N

)
+ (1⊗ ιN )

(
M ⊗ (kerψ)

)
,

where ιM : kerϕ→M and ιN : kerψ → N are the inclusion maps. We will
suppress the inclusion maps from now on to shorten the notation.

We apply this with the map ϕ : M → M ′ taken to be the quotient map
Gi → Gi/ kerϕi and ψ : N → N ′ being the identity id : C→ C to get

ker(ϕi ⊗ id) = (kerϕi)⊗ C.
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Since we have (imϕi)⊗C = im(ϕi⊗ id), we get that ϕ⊗ id : Gi⊗C→ Gi⊗C
induces an algebraic isomorphism (Gi/ kerϕi) ⊗ C → imϕi ⊗ C. But this
has now an inverse map given by tensoring the inverse of Gi/ kerϕi → imϕi
with id : C → C. So the isomorphism (Gi/ kerϕi) ⊗ C ∼= imϕi ⊗ C is also
topological.

Now we apply the discussion before the lemma to show that the completion
of this new sequence is still exact and also topologically exact. �

To show K∗u(M) ⊗̄C ∼= H∗u,dR(M) it remains to construct Mayer–Vietoris
sequences with continuous maps in them (we need this since in constructing
the completed tensor product with C we have to pass to the completion
and without continuity of the maps in both the Mayer–Vietoris sequences
for uniform K-theory and for uniform de Rham cohomology we would not
be able to conclude that the squares are still commutative). If we recall
from the proof of Proposition 3.12 how we get the boundary maps in the
Mayer–Vietoris sequence for uniform de Rham cohomology, we see that we
must construct a continuous split to the last non-trivial map in the sequence
(3.6).24 But we proved surjectivity of this map in the usual way by using
partitions of unity (with uniformly bounded derivatives). Hence we have
already constructed the continuous split.

In the proof of Poincaré duality between uniform K-theory and uniform
K-homology in [Eng15a, Section 4.4] we used groups denoted by K∗u(O ⊂M)
for the Mayer–Vietoris sequence for uniform K-theory. These groups are
defined as K−∗(Cu(O, d)), where (O, d) is the metric space O equipped with
the subspace metric derived from the metric spaceM . For the construction of
the Chern character K∗u(O ⊂M)→ H∗u,dR(O) we have to pass to a smooth
subalgebra of Cu(O, d). This will be of course C∞b (O) ⊂ Cu(O, d), which is a
local C∗-algebra.25 We have to argue now why it is a dense subalgebra: so
let f ∈ Cu(O, d) be given. Then we know from [Eng15a, Lemma 4.36] that
there is a bounded, uniformly continuous extension F of f to M . Now we use
[Eng15a, Lemma 4.7] to approximate F by functions from C∞b (M), which
will give us by restriction to O an approximation of f by functions from
C∞b (O). Therefore we get an interpretation of K∗u(O ⊂M) by vector bundles
of bounded geometry over O (cf. Section 2.3) and may define by Chern–Weil
theory (as in Theorem 3.13) the Chern character K∗u(O ⊂M)→ H∗u,dR(O).

The last thing that we have to discuss is the small ambiguity in extending
the maps K∗u(O ⊂ M) ⊗ C → H∗u,dR(O) to K∗u(O ⊂ M) ⊗̄C. It occurs
because the target H∗u,dR(O) is not necessarily Hausdorff. What we have to
make sure is that the extensions we choose in the Mayer–Vietoris argument
for the subsets Uk, respectively UK , do match up, i.e., produce at the end

24The referenced sequence is for bounded de Rham cohomology. In this proof here we,
of course, have to use the analogous sequence for uniform de Rham cohomology.

25That is to say, its operator K-theory coincides with the operator K-theory of its
C∗-algebra completion Cu(O, d).
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commuting squares in the comparison of the two Mayer–Vietoris sequences
via the Chern characters.

So we have finally discussed everything that we need in order to prove

K∗u(M) ⊗̄C ∼= H∗u,dR(M).

Proving the homological version Ku
∗ (M) ⊗̄C ∼= Hu,dR

∗ (M) is also such a
Mayer–Vietoris argument. But for spinc manifolds there is an easier argu-
ment by combining the cohomological result K∗u(M) ⊗̄C ∼= H∗u,dR(M) with
Theorem 4.1 since taking the wedge product with ind(D) is an isomorphism
on bounded de Rham cohomology, and furthermore using Poincaré duality
between uniform K-theory and uniform K-homology (Theorem 2.31), re-
spectively between bounded de Rham cohomology and uniform de Rham
homology (Theorem 3.10).

4. Index theorems

In this section we assemble everything that we had up to now into various
index theorems. In Section 4.1 we first recall the construction of the topologi-
cal index classes of elliptic operators and then prove local index theorems. In
Section 4.2 we prove a global index theorem, which will be a generalization
of an index theorem of Roe [Roe88a]. He proved it for Dirac operators and
we will generalize it to elliptic pseudodifferential operators.

4.1. Local index formulas. Let M be a Riemannian manifold without
boundary. We denote by DM the disk bundle {ξ ∈ T ∗M : ‖ξ‖ ≤ 1} of its
cotangent bundle and by SM = ∂DM its boundary, i.e., the sphere bundle
SM = {ξ ∈ T ∗M : ‖ξ‖ = 1}. IfM has bounded geometry, we may equip DM
with a Riemannian metric such that it also becomes of bounded geometry26

and DM →M becomes a Riemannian submersion. It follows that SM also
has bounded geometry. What follows will be independent of the concrete
choice of metric on DM . Though we have discussed in Section 2.3 only
uniform K-theory for manifolds without boundary, one can of course define
more generally relative uniform K-theory and discuss it for manifolds with
boundary and of bounded geometry.

Let P ∈ UΨDOk(E) be a symmetric, elliptic and graded uniform pseu-
dodifferential operator. Recall from Definition 2.16 of ellipticity that the
principal symbol σ(P+), viewed as a section of Hom(π∗E+, π∗E−)→ T ∗M ,
where π : T ∗M →M is the cotangent bundle, is invertible outside a uniform
neighbourhood of the zero section M ⊂ T ∗M and satisfies a certain unifor-
mity condition. Then the well-known clutching construction gives us the

26Though we do not have defined bounded geometry for manifolds with boundary, there
is an obvious one (demanding bounds not only for the curvature tensor of M but also for
the second fundamental form of the boundary of M , and demanding the injectivity radius
being uniformly positive not only for M but also for ∂M with the induced metric). See
[Sch01] for a further discussion.
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following symbol class of P :

σP := [π∗E+, π∗E−;σ(P )] ∈ K0
u(DM,SM).

If P is ungraded, then its symbol σ(P ) : π∗E → π∗E, where π : SM →M
is now the unit sphere bundle of M , is a uniform, self-adjoint automorphism.
Hence it gives a direct sum decomposition π∗E = E+ ⊕ E−, where E+

and E− are spanned fiberwise by the eigenvectors belonging to the positive,
respectively negative, eigenvalues of σ(P ), and we get an element

[E+] ∈ K0
u(SM).

Now we define in the ungraded case the symbol class of P as

σP := δ[E+] ∈ K1
u(DM,SM),

where δ : K0
u(SM)→ K1

u(DM,SM) is the boundary homomorphism of the
6-term exact sequence associated to (DM,SM). Two references for this
construction for compact manifolds are, e.g., [BD82, Section 24] and [APS76,
Proposition 3.1].

Applying the Chern character and integrating over the fibers we get in
both the graded and ungraded case π! chσP ∈ H∗b,dR(M) and then the index
class of P is defined as

ind(P ) := (−1)
n(n+1)

2 π! chσP ∧ Td(M) ∈ H∗b,dR(M),

where n = dimM .
Let M be a spinc manifold of bounded geometry and let us denote by

D the Dirac operator associated to the spinc structure of M . Note that
it is m-multigraded, where m is the dimension of the manifold M , and
so defines an element in Ku

m(M). Hence cap product with D is a map
K∗u(M) → Ku

m−∗(M), which is an isomorphism (Theorem 2.31). We have
also the Poincaré duality map H∗b,dR(M)→ Hu,dR

m−∗ (M), and the content of our
local index theorem for uniform twisted Dirac operators is to put these duality
maps into a commutative diagram using the homological Chern character on
the right hand side and on the cohomology side the index class of the twisted
operator.

Theorem 4.1 (Local index theorem for twisted uniform Dirac operators).
Let M be an m-dimensional spinc manifold of bounded geometry and without
boundary. Denote the associated Dirac operator by D.

Then we have the following commutative diagram:

K∗u(M)
−∩[D]

∼=
//

ch(−)∧ind(D)

��

Ku
m−∗(M)

α∗◦ch∗

��

H∗b,dR(M) ∼=
// Hu,dR

m−∗(M)

where in the top row ∗ is either 0 or 1 and in the bottom row ∗ is either ev
or odd.
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Proof. This follows from the calculations carried out by Connes and Moscovici
in their paper [CM90, Section 3] by noting that the computations also apply
in our case where we have bounded geometry and the uniformity conditions.
Note that there the cyclic cocycles are defined using expressions in the opera-
tors e−tD2 . To translate to the definition of the homological Chern character
that we use, see, e.g., [GBVF00, Section 10.2]. �

Remark 4.2. The uniform homological Chern character α∗◦ch∗ : Ku
∗ (M) 99K

Hu,dR
∗ (M) is a priori not well-defined (to be precise, it is defined on uniformly

finitely summable Fredholm modules and it is a priori not clear whether
it descends to classes and even whether every class may be represented
by a uniformly finitely summable module). But using Poincaré duality
between uniform K-homology and uniform K-theory and the above local
index theorem, we see that it is a posteriori well-defined for spinc manifolds.
Note that since D is a Dirac operator, it defines a uniformly finitely summable
Fredholm module, and therefore also all its twists given by taking the cap
product with uniform K-theory classes are uniformly finitely summable.

That the uniform homological Chern character is well-defined for every
manifold M of bounded geometry is content of Corollary 4.4. �

Let P be a symmetric and elliptic uniform pseudodifferential operator
over an oriented manifold M of bounded geometry. It defines a uniform
K-homology class [P ] ∈ Ku

∗ (M) and therefore, if P is in addition uniformly
finitely summable, we may compare the class (α∗ ◦ ch∗)(P ) ∈ Hu,dR

∗ (M)
with ind(P ) ∈ H∗b,dR(M) using Poincaré duality. That they are equal is the
content of the next theorem.

Theorem 4.3 (Local index formula for uniform pseudodifferential operators).
Let M be an oriented Riemannian manifold of bounded geometry and without
boundary.

Let P be a symmetric and elliptic uniform pseudodifferential operator of
positive order acting on a vector bundle E →M of bounded geometry, and
let P be uniformly finitely summable27.

Then ind(P ) ∈ H∗b,dR(M) is the Poincaré dual of (α∗◦ch∗)(P ) ∈ Hu,dR
∗ (M).

Proof. This follows from the above Theorem 4.1 by the same arguments as
in the proof of [CM90, Theorem 3.9]: if M is odd-dimensional we take the
product with S1, and then we use the fact that for oriented, even-dimensional
manifolds uniform K-homology is spanned modulo 2-torsion by generalized
signature operators. This last fact will follow from Theorem 4.6 below. �

Corollary 4.4. The uniform homological Chern character

α∗ ◦ ch∗ : Ku
∗ (M)→ Hu,dR

∗ (M)

27This means that P defines a uniformly finitely summable Fredholm module, i.e., χ(P )
is uniformly finitely summable for some normalizing function χ.
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is well-defined for every manifold M of bounded geometry and without bound-
ary.

Proof. IfM is spinc we know by the Poincaré duality isomorphism that every
class [x] ∈ Ku

∗ (M) may be represented by a uniformly finitely summable
Fredholm module and by Theorem 4.3 we conclude that (α∗ ◦ ch∗)([x]) is
independent of the concrete choice of such a representative. (This was already
mentioned in Remark 4.2.)

In the general case we first pass to the orientation cover X if M is not
orientable. Note that if we know the statement that we want to prove for
a finite covering of M , then we know it also for M itself since Hu,dR

∗ (M)
is a vector space over C (i.e., multiplication by some non-zero number is
an isomorphism). Now we can go on as in the proof of Theorem 4.3: we
take the product with S1 if necessary and then use the fact that on oriented,
even-dimensional manifolds we can represent every uniform K-homology class
by a multiple (concretely, 2dim(M)/2) of a generalized signature operator. For
the latter statement see Theorem 4.6, respectively its proof. �

Remark 4.5. The condition in the above Theorem 4.3 that the operator
P is uniformly finitely summable may be dropped. The statement then is
that (α∗ ◦ ch∗)([P ]) is the dual of the class ind(P ) ∈ H∗b,dR(M). This makes
sense since we now know that the uniform homological Chern character
Ku
∗ (M)→ Hu,dR

∗ (M) is well-defined.
But the problem then is that in order to compute (α∗ ◦ ch∗)([P ]) we would

have to replace P by some other operator P ′ which defines the same uniform
K-homology class as P but which is uniformly finitely summable (so that we
may compute the Chern–Connes character). This seems to be a task which
is not easily carried out in practice.

Connes and Moscovici work in [CM90] with so-called θ-summable Fredholm
modules which are more general than finitely summable modules. So defining
an appropriate version of uniformly θ-summable Fredholm modules we could
certainly prove the above Theorem 4.3 for them and therefore weakening the
condition on P that it has to be uniformly finitely summable. �

Let us state now the Thom isomorphism theorem in the form that we need
for the proof of the above Theorem 4.3.

Theorem 4.6 (Thom isomorphism). Let M be a Riemannian spinc manifold
of bounded geometry and without boundary.

Then the principal symbol of the Dirac operator associated to the spinc
structure of M constitutes an orientation class in K∗u(DM,SM), i.e., it
implements the isomorphism K∗u(M) ∼= K∗u(DM,SM).

If M is only oriented (i.e., not necessarily spinc) and even-dimensional,
the principal symbol of the signature operator of M constitutes an orientation
class in K∗u(DM,SM)[1

2 ].
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Proof. The usual proof as found in, e.g., [LM89, Appendix C], works in
our case analogously. Note that for the proof of [LM89, Theorem C.7] we
have to cover M by such subsets as we used in our proof of Poincaré duality
(see Lemma 2.14) since only in this case we have shown that we have a
Mayer–Vietoris sequence for uniform K-theory. For the statement for only
oriented M see, e.g., the proof of [LM89, Theorem C.12]. �

In [CM90, Theorem 3.9] the local index theorem was written using an index
pairing with compactly supported cohomology classes. We can of course do
the same also here in our uniform setting and the statement is at first glance
the same.28 But the difference is that due to the uniformness we have an
additional continuity statement.
Corollary 4.7. Let [ϕ] ∈ Hk

c,dR(M) be a compactly supported cohomology
class and define the analytic index ind[ϕ](P ) as in [CM90].29 Then we have

ind[ϕ](P ) =

∫
M

ind(P ) ∧ [ϕ]

and this pairing is continuous, i.e.,
∫
M ind(P ) ∧ [ϕ] ≤ ‖ ind(P )‖∞ · ‖[ϕ]‖1,

where ‖−‖∞ is the sup-seminorm on Hm−k
b,dR (M) and ‖−‖1 the L1-seminorm

on Hk
c,dR(M).

Proof. The corollary follows from Theorem 4.3 (if M is not orientable then
we first have to pass to the orientation cover of it). The continuity statement
follows from the definition of the seminorms. The only thing we have to know
is that ind(P ) is given by a bounded de Rham form. �

Remark 4.8. Though it may seem that the above corollary is in some
sense equivalent to Theorem 4.3, it is in fact not. It is weaker in the
following way: in case of a non-compact manifold M the bounded de Rham
cohomology H∗b,dR(M) usually contains elements of seminorm = 0 and due
to the boundedness of the above pairing we see that we can not detect these
elements by it. �

4.2. Index pairings on amenable manifolds. In the last section we
proved the local index theorems for uniform operators. The goal of this
section is to use these local formulas to compute certain global indices of
such operators over amenable manifolds.

So in this section we assume that our manifold M is amenable, i.e., that it
admits a Følner sequence. We will need such a sequence in order to construct
the index pairings.

28Remember that we have another choice of universal constants than Connes and
Moscovici, i.e., in our statement they are not written since they are incorporated in the
definition of the homological Chern character.

29Note that ind[ϕ](P ) is analytically defined and may be computed (up to the universal
constant that we have incorporated into the definition of α∗ ◦ ch∗) as 〈(α∗ ◦ ch∗)(P ), [ϕ]〉,
where 〈−,−〉 is the pairing between uniform de Rham homology and compact supported
cohomology.
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Definition 4.9 (Følner sequences). Let M be a manifold of bounded ge-
ometry. A sequence of compact subsets (Mi)i of M will be called a Følner
sequence30 if for each r > 0 we have

volBr(∂Mi)

volMi

i→∞−→ 0.

A Følner sequence (Mi)i will be called a Følner exhaustion, if (Mi)i is an
exhaustion, i.e., M1 ⊂M2 ⊂ . . . and

⋃
iMi = M . �

Note that if M admits a Følner sequence, then it is always possible to
construct a Følner exhaustion for M (the author did this construction in its
full glory in his thesis [Eng14, Lemma 2.38]).

For example, Euclidean space Rm is amenable, but hyperbolic space Hm≥2

is not. Furthermore, if M has subexponential volume growth at x0 ∈M ,31

then M is amenable (this is proved in [Roe88a, Proposition 6.2]; in this case
a Følner exhaustion for M is given by

(
Brj (x0)

)
j∈N for suitable rj → ∞).

Note that the converse to this last statement is wrong, i.e., there are examples
of amenable spaces with exponential volume growth. Further examples of
amenable manifolds arise from the theorem that the universal covering M̃ of
a compact manifold M is amenable (if equipped with the pull-back metric)
if and only if the fundamental group π1(M) is amenable (this is proved in
[Bro81]).

Let Mm be a connected and oriented manifold of bounded geometry. Then
there is a duality isomorphism Hm

b,dR(M) ∼= Huf
0 (M ;R), where the latter

denotes the uniformly finite homology of Block and Weinberger. This iso-
morphism is mentioned in the remark at the end of Section 3 in [BlW92] and
proved explicitely in [Why01, Lemma 2.2].32 Since we have the characteri-
zation [BlW92, Theorem 3.1] of amenability stating that M is amenable if
and only if Huf

0 (M) 6= 0, we therefore also have a characterization of it via
bounded de Rham cohomology. We are going to discuss this now a bit more
closely.

First we introduce the following notions:

Definition 4.10 (Closed at infinity, [Sul76, Definition II.5]). A Riemannian
manifold M is called closed at infinity if for every function f on M with
0 < C−1 < f < C for some C > 0, we have [f · dM ] 6= 0 ∈ Hm

b,dR(M) (where
dM denotes the volume form of M and m = dimM). �

30In [Roe88a, Definition 6.1] such sequences were called regular.
31This means that for all p > 0 we have e−pr vol(Br(x0))

r→∞−−−→ 0.
32Alternatively, we could use Poincaré duality Hi

b,dR(M) ∼= H∞m−i(M ;R) which is proved
in [AttB98, Theorem 4], where H∞m−i(M ;R) denotes simplicial L∞-homology and M is
triangulated according to Theorem 2.11, and then use the fact thatH∞0 (M ;R) ∼= Huf

0 (M ;R)
under this triangulation (for this we need the assumption that M is connected).
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Definition 4.11 (Fundamental classes, [Roe88a, Definition 3.3]). A funda-
mental class for the manifoldM is a positive linear functional θ : Ωm

b (M)→ R
such that θ(dM) 6= 0 and θ ◦ d = 0. �

If we are given a Følner sequence for M , we can construct a fundamental
class for M out of it; this is done in [Roe88a, Propositions 6.4 & 6.5].33 But
admitting a fundamental class implies that M is closed at infinity.34 This
means especially Hm

b,dR(M) 6= 0. But since this is isomorphic to Huf
0 (M ;R),

we conclude that the latter does also not vanish. So M is amenable, i.e.,
admits a Følner sequence, and so we are back at the beginning of our chain.
Let us summarize this:

Proposition 4.12. Let M be a connected, orientable manifold of bounded
geometry.

Then the following are equivalent:
• M admits a Følner sequence,
• M admits a fundamental class and
• M is closed at infinity.

We know that the universal cover M̃ of a compact manifold M is amenable
if and only if π1(M) is amenable. If this is the case, then we may construct
fundamental classes that respect the structure of M̃ as a covering space:

Proposition 4.13 ([Roe88a, Proposition 6.6]). Let M be a compact Rie-
mannian manifold, denote by M̃ its universal cover equipped with the pull-back
metric, and let π1(M) be amenable.

Then M̃ admits a fundamental class θ with the property

θ(π∗α) =

∫
M
α

for every top-dimensional form α on M and where π : M̃ →M is the covering
projection.

At last, let us state just for the sake of completeness the relation of
amenability to the linear isoparametric inequality.

Proposition 4.14 ([Gro81b, Subsection 4.1]). Let M be a connected and
orientable manifold of bounded geometry.

Then M is not amenable if and only if vol(R) ≤ C ·vol(∂R) for all R ⊂M
and a fixed constant C > 0.

33If (Mi)i is a Følner sequence, then the linear functionals θi(α) := 1
volMi

∫
Mi

α are
elements of the dual of Ωm

b (M) and have operator norm equal to one. Now take θ as
a weak-∗ limit point of (θi)i. The Følner condition for (Mi)i is needed to show that θ
vanishes on boundaries.

34Just use the positivity of the fundamental class θ:

θ(f · dM) ≥ θ(C−1 · dM) = C−1 · θ(dM) 6= 0.
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We can also detect amenability ofM using theK-theory of the uniform Roe
algebra C∗u(Γ) of a discretization Γ ⊂M .35 Recall that one possible definition
for the uniform Roe algebra C∗u(Γ) is the norm closure of the ∗-algebra of all
finite propagation operators in B(`2(Γ)) with uniformly bounded coefficients.

Proposition 4.15 ([Ele97]). Let M be a manifold of bounded geometry and
let Γ ⊂M be a discretization.

Then M is amenable if and only if [1] 6= [0] ∈ K0(C∗u(Γ)) for the distin-
guished class [1] ∈ K0(C∗u(Γ)).

The reason why we stated the above proposition is that it introduces
functionals on K0(C∗u(Γ)) associated to Følner sequences that we will need in
the definition of our index pairings. So let us recall Elek’s argument: Let (Γi)i
be a Følner sequence in Γ36 and let T ∈ C∗u(Γ). Then we define a bounded
sequence indexed by i by 1

#Γi

∑
γ∈Γi

T (γ, γ). Choosing a linear functional
τ ∈ (`∞)∗ associated to a free ultrafilter on N37 we get a linear functional
θ on C∗u(Γ). The Følner condition for (Γi)i is needed to show that θ is a
trace, i.e., descends to K0(C∗u(Γ)). Then θ([1]) = 1 and θ([0]) = 0 for the
distinguished classes [1], [0] ∈ K0(C∗u(Γ)).

Let us finally come to the definition of the index pairings that we are
interested in.

Definition 4.16. Let M be a manifold of bounded geometry, (Mi)i a Følner
sequence for M and let τ ∈ (`∞)∗ a linear functional associated to a free
ultrafilter on N. Denote the resulting functional on K0(C∗u(Γ)) by θ, where
Γ ⊂M is a discretization.38

Then we define for p = 0, 1 an index pairing

〈−,−〉θ : Kp
u(M)⊗Ku

p (M)→ R
by the formula

〈[x], [y]〉θ := θ
(
µu([x] ∩ [y])

)
,

where µu : Ku
∗ (M) → K∗(C

∗
u(Γ)) denotes the rough assembly map (see

Špakula [Špa09] or [Eng15a, Section 3.5]). �

If P is a symmetric and elliptic, graded uniform pseudodifferential operator
acting on a graded vector bundle E, then there is a nice way of computing
the above index pairing of P with the trivial bundle [C] ∈ K0

u(M): recall

35A discretization Γ ⊂M is a uniformly discrete subset such that there exists a c > 0
with Nc(Γ) = M , where Nc(Γ) denotes the neighbourhood of distance c around Γ.

36This means that each Γi is finite and for every r > 0 we have #∂rΓi
#Γi

i→∞−−−→ 0, where

∂rΓi := {γ ∈ Γ: d(γ,Γi) < r and d(γ,Γ− Γi) < r}
and the distance is computed in M (which makes sense since Γ ⊂M).

37That is, if we evaluate τ on a bounded sequence, we get the limit of some convergent
subsequence.

38Note that here we first have to construct from the Følner sequence (Mi)i for M a
corresponding Følner sequence (Γi)i for Γ.
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from Corollary 2.18 that if f ∈ S(R) is a Schwartz function, then f(P ) is a
quasilocal smoothing operator. Hence it has a uniformly bounded integral
kernel kf(P )(x, y) ∈ C∞b (E �E∗). Now we choose an even function f ∈ S(R)
with f(0) = 1 and get a bounded sequence

1

volMi

∫
Mi

trs kf(P )(x, x) dM(x),

where trs denotes the super trace (recall that E is graded), on which we may
evaluate τ . This will coincide with the pairing 〈[C], P 〉θ and is exactly the
analytic index that was defined by Roe in [Roe88a] for Dirac operators. For
details why this will coincide with 〈[C], P 〉θ the reader may consult, e.g., the
author’s Ph.D. thesis [Eng14, Section 2.8].

Let us now define the pairing between uniform de Rham cohomology and
uniform de Rham homology. So let β ∈ C∞b (Ωp(M)) and C ∈ Ωu

p(M), fix
an ε > 0 and choose for every Mi ⊂ M from a Følner sequence for M a
smooth cut-off function ϕi ∈ C∞c (M) with ϕi|Mi ≡ 1, suppϕi ⊂ Bε(Mi)
and such that for all k ∈ N0 the derivatives ∇kϕi are bounded in sup-norm
uniformly in the index i. Then ϕiβ ∈W∞,1(Ωp(M)) and therefore we may
evaluate C on it. The sequence 1

volMi
C(ϕiβ) will be bounded and so we may

apply τ ∈ (`∞)∗ to it. Due to the Følner condition for (Mi)i this pairing will
descend to (co-)homology classes.

Definition 4.17. Let M be a manifold of bounded geometry, let (Mi)i be a
Følner sequence for M and let τ ∈ (`∞)∗ a linear functional associated to a
free ultrafilter on N.

For every p ∈ N0 we define a pairing

〈−,−〉(Mi)i,τ : Hp
u,dR(M)⊗Hu,dR

p (M)→ C

by evaluating τ on the sequence
(

1
volMi

C(ϕiβ)
)
i
for β ∈ Hp

u,dR(M) and for
C ∈ Hu,dR

p (M), where the cut-off functions ϕi are chosen as above. �

Note that this pairing is, similar to the pairing from Corollary 4.7, contin-
uous against the topologies on H∗u,dR(M) and on Hu,dR

∗ (M).
Recall that in the usual case of compact manifolds the index pairing for

K-theory and K-homology is compatible with the Chern-Connes character,
i.e., 〈[x], [y]〉 = 〈ch([x]), ch([y])〉 for [x] ∈ K∗(M) and [y] ∈ K∗(M). The
same also holds in our case here.

Lemma 4.18. Denote by ch: K∗u(M) → H∗u,dR(M) the Chern character
on uniform K-theory and by (α∗ ◦ ch∗) : Ku

∗ (M) → Hu,dR
∗ (M) the one on

uniform K-homology.
Then we have〈

[x], [y]
〉
θ

=
〈

ch([x]), (α∗ ◦ ch∗)([y])
〉

(Mi)i,τ

for all [x] ∈ Kp
u(M) and [y] ∈ Ku

p (M).
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The last thing that we need is the compatibility of the index pairings with
cup and cap products. This is clear by definition for the index pairing for
uniform K-theory with uniform K-homology, and for the pairing for uniform
de Rham cohomology with uniform de Rham homology it is stated in the
following lemma.

Lemma 4.19. Let [β] ∈ Hp
u,dR(M), [γ] ∈ Hq

u,dR(M) and [C] ∈ Hu,dR
p+q (M).

Then we have

〈[β] ∧ [γ], [C]〉(Mi)i,τ = 〈[β], [γ] ∩ [C]〉(Mi)i,τ .

So combining the above two lemmas together with the results of Section 4.1
we finally arrive at our desired index theorem for amenable manifolds which
generalizes Roe’s index theorem from [Roe88a] from graded generalized Dirac
operators to arbitrarily graded, symmetric, elliptic uniform pseudodifferential
operators.

Corollary 4.20. Let M be a manifold of bounded geometry and without
boundary, let (Mi)i be a Følner sequence for M and let τ ∈ (`∞)∗ be a linear
functional associated to a free ultrafilter on N. Denote the from the choice
of Følner sequence and functional τ resulting functional on K0(C∗u(Γ)) by θ,
where Γ ⊂M is a discretization.

Then for both p ∈ {0, 1}, every [P ] ∈ Ku
p (M) for P a p-graded, symmetric,

elliptic uniform pseudodifferential operator over M , and every u ∈ Kp
u(M)

we have
〈u, [P ]〉θ = 〈ch(u) ∧ ind(P ), [M ]〉(Mi)i,τ .

Remark 4.21. The right hand side of the formula in the above corollary
reads as

τ
( 1

volMi

∫
Mi

ch(u) ∧ ind(P )
)

and this is continuous for the sup-seminorm on Hm
b,dR(M) with m = dim(M),

i.e.,
〈u, [P ]〉θ ≤ ‖ ch(u) ∧ ind(P )‖∞.

So, again as in Remark 4.8, we see that with this pairing we can not detect
operators P whose index class ind(P ) ∈ H∗b,dR(M) has sup-seminorm = 0 in
every degree.

Note that it seems that from the results in [Sul76, Part II.§4] it follows
that every element in Hm

b,dR(M) of non-zero sup-seminorm may be detected
by a Følner sequence (i.e., the dual space H∗b,dR(M) of the reduced bounded
de Rham cohomology39 is spanned by Følner sequences). So the difference
between the statement of the above corollary and Theorem 4.3 lies, at least
in top-degree, exactly in the fact that Theorem 4.3 also encompasses all the
elements of sup-seminorm = 0. �

39Reduced bounded de Rham cohomology is defined as H∗b,dR(M) := H∗b,dR(M)/[0],
i.e., as the Hausdorffication of bounded de Rham cohomology.
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Example 4.22. Let us discuss quickly an example that shows that we
indeed may lose information by passing to the reduced bounded de Rham
cohomology groups. Roe showed in [Roe88b, Proposition 3.2] that if Mm is
a connected spin manifold of bounded geometry, then 〈Â(M), [M ]〉−,− = 0
for any choice of Følner sequence and suitable functional τ if M has non-
negative scalar curvature, and later Whyte showed in [Why01, Theorem 2.3]
that Â(M) = [0] ∈ Hm

b,dR(M) under these assumptions. So any connected
spin manifold M of bounded geometry with Â(M) 6= [0] ∈ Hm

b,dR(M) but
Â(M) = [0] ∈ Hm

b,dR(M) can not have non-negative scalar curvature, but this
is not detected by the reduced group. In [Why01] it is also shown how one
can construct examples of manifolds whose Â-genus vanishes in the reduced
but not in the unreduced group. �

5. Final remarks and open questions

In this final section we will collect some open questions arising out of the
present paper.

In Theorem 3.13 we constructed the uniform Chern character ch: K∗u(M)→
H∗u,dR(M) for manifolds of bounded geometry by using Chern–Weil theory.
In the case of compact spaces there exist definitions of the Chern character
which make sense on any finite CW-complex, i.e., are not restricted to smooth
manifolds. Now in our situation, uniform K-theory is defined on all metric
spaces and not just on manifolds, and since uniform de Rham cohomology is
isomorphic to L∞-simplicial cohomology if we triangulate M as a simplicial
complex of bounded geometry using Theorem 2.11 we can make sense out
of it for more general spaces than smooth manifolds. So we arive at the
following question:

Question 5.1. How can we define the uniform Chern characters K∗u(L)→
H∗∞(L) and Ku

∗ (L)→ H∞∗ (L) for a simplicial complex L of bounded geometry
equipped with the metric derived from barycentric coordinates?

One approach might be to consider something like uniform (co-)homology
theories: we could try to put a model structure on the category of uniform
spaces modeling uniform homotopy theory and then try to show that, e.g.,
uniform K-theory is nothing more but uniform homotopy classes of uniform
maps into some uniform version of the K-theory spectrum. Then the uniform
Chern characters should be coming from transformations of uniform spectra
and the above Question 5.1 would be solved.

In the compact case there is a generalization of the Atiyah–Singer index
theorem to manifolds with boundary involving the η-invariant. This version of
the index theorem for compact manifolds with boundary is called the Atiyah–
Patodi–Singer index theorem and was introduced in [APS75]. Of course the
question whether such a theorem may also be proven in the non-compact
case immediately arises.
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Question 5.2. Is there a version of the, e.g., global index theorem for
amenable manifolds, for manifolds of bounded geometry and with boundary?
What would be the corresponding generalization of the η-invariant?

Note that even if we just stick to Dirac operators (i.e., if we don’t try
to work with uniform pseudodifferential operators) the non-compact case
(of bounded geometry) is of course technically much more demanding than
the compact case. Results have been achieved by Ballmann–Bär [BB12] and
Große–Nakad [GroN14].

Some version of pseudodifferential operators on certain non-compact mani-
folds with boundary was investigated by Schrohe [Sch99]. Furthermore, there
is also the work of Ammann–Lauter–Nistor [ALN07] and one should also ask
to which extend it coincides, respectively differs from the one asked for here.

A proof of the index theorem for manifolds with boundary was given by Mel-
rose in [Mel93]. He invented the b-calculus, a calculus for pseudodifferential
operators on manifolds with boundary, and derived the Atiyah–Patodi–Singer
index theorem from it via the heat kernel approach. Therefore it would be
desirable to extend his b-calculus to open manifolds with boundary (similarly
as we extended the calculus of pseudodifferential operators to open manifolds)
and then prove a version of the Atiyah–Patodi–Singer index theorem on
manifolds with boundary and of bounded geometry.

Question 5.3. Can one reasonably extend the b-calculus of Melrose to mani-
folds of bounded geometry and with boundary, and then prove version of large
scale index theorems for manifolds with boundary?

In the case of compact manifolds with boundary Piazza [Pia91] also treated
various parts of the index theorem of Atiyah–Patodi–Singer using the b-
calculus. A connection between uniform pseudodifferential operators on
manifolds of bounded geometry and the b-calculus was established by Albin
[Alb08].

Another direction in which one could work is to look at higher ρ-invariants:
in the last years a lot of progress was made in relation to “mapping sugery
to analysis”, respectively mapping the Stolz positive scalar curvature exact
sequence to analysis. Without going through all the results that have been
achieved, let us mention one particular application [XY14, Corollary 4.5] that
seems worth reshaping into our setting: if Γ acts properly and cocompactly
on M and h is a Riemannian metric on ∂M having positive scalar curvature,
then it is not possible to extend h to a complete, Γ-invariant Riemannian
metric on M of positive scalar curvature if ρ(D∂M , h) 6= 0 ∈ K∗(C∗L,0(∂M)Γ).

Question 5.4. Can one prove a large scale version of the delocalized APS-
index theorem as in [PS15, Theorem 1.22] and use this to prove an analogue
of the above mentioned result [XY14, Corollary 4.5]?
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