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A multivariate generalization of the von
Neumann–Wold decomposition

Ameer Athavale

Abstract. Let H be a complex infinite-dimensional separable Hilbert
space. If T is an isometry acting on H, then the von Neumann–Wold
decomposition theorem asserts that T can be expressed as a direct sum
of the unilateral shift (of some multiplicity) and a unitary operator. We
establish a multivariate generalization of the von Neumann–Wold de-
composition and explore some of the implications of that generalization.
In particular we derive a universal representation theorem for members
of a special class of spherical isometries and verify that any member of
that class is hyperreflexive.
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1. Introduction

In this note the symbols N and Z+ respectively stand for the set of positive
integers and for the set of nonnegative integers. If H is a complex infinite-
dimensional separable Hilbert space, then we use B(H) to denote the algebra
of bounded linear operators on H and use IH to denote the identity operator
on H. If {ep}p∈N is an orthonormal basis for H, then the operator S(1) ∈
B(H) defined by S(1)ep = ep+1 is referred to as a unilateral shift. (Since
any two unilateral shifts are unitarily equivalent, one usually employs the
expression the unilateral shift). For a cardinal k, the k-fold direct sum of S(1)
with itself acting on the k-fold orthogonal ampliation of H is the unilateral
shift of multiplicity k.

If T is an isometry in B(H), the classical von Neumann–Wold decompo-
sition theorem asserts that H can be written as the orthogonal direct sum
H = H1⊕H2 where both H1 and H2 are reducing for T , where T |H1 is the
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unilateral shift of some multiplicity k(≤ ℵ0), and where T |H2 is a unitary
operator (which, we note, is a normal isometry); in other words,

T = S
[k]
(1) ⊕ U on H1 ⊕H2

with U unitary (refer to [22, Theorem 3.5.17]). (One of the summands may
be absent).

Let {ep1,...,pn}(p1,...,pn)∈Nn be an orthonormal basis for H. The n-tuple
S(n) = (S1, . . . , Sn) of operators Si ∈ B(H) defined by

Siep1,...,pn =

√
pi + 1

p1 + · · ·+ pn + n
ep1,...,pi+1,...pn

will be referred to as a spherical shift. (Since any two spherical shifts are
unitarily equivalent in the sense that a single unitary operator intertwines
their corresponding operator coordinates, we hereafter employ the expres-
sion the spherical shift). The tuple Mz = (Mz1 , . . . ,Mzn) of multiplica-
tions by coordinate functions zi on the Hardy space H2(B2n) of the unit
ball B2n in Cn, to be referred to as the Szegö tuple, is a classical model
of the spherical shift (refer to [18, Section 2]). For the spherical shift
S(n) = (S1, . . . , Sn), one has SiSj = SjSi for all i and j and also that
the equality IH−S∗1S1−· · ·−S∗nSn = 0 holds; thus S(n) is a spherical isom-
etry (refer to [5]). For a cardinal k, the coordinatewise k-fold direct sum of
S(n) with itself acting coordinatewise on the k-fold orthogonal ampliation of
H may be referred to as the spherical shift of multiplicity k. For n = 1, the
spherical shift is the unilateral shift and a spherical isometry is an isometry.
It is thus natural to seek a generalization of the von Neumann–Wold de-
composition in the context of a spherical isometry and the spherical shift; in
other words, one would like to explore for a spherical isometry T the validity
of

T = S
[k]
(n) ⊕ U

for some cardinal k and some U = (U1, . . . , Un) where U is a spherical
unitary, that is, a spherical isometry consisting of normal operators.

It is our plan to characterize those operator tuples that admit such a
decomposition and then capture the classical von Neumann–Wold decom-
position for the case n = 1. For that purpose, we find it convenient to
use some of the notation and terminology from [6]. Let T = (T1, . . . , Tn)
be a tuple of commuting operators Ti in B(H). We use T ∗ to denote the
tuple (T ∗1 , . . . , T

∗
n). Also, for any polynomial p(z, w) =

∑
s,t∈Zn

+
as,tz

swt in

the variables z = (z1, . . . , zn) and w = (w1, . . . , wn) with real coefficients
as,t, we interpret p(T, T ∗) to be the operator

∑
s,t∈Zn

+
as,tT

∗tT s. For q ∈ N,

a tuple T = (T1, . . . , Tn) of commuting operators in B(H) is said to be a
q-hypercontraction if

(1− z1w1 − · · · − znwn)r(T, T ∗) ≥ 0 for all r ∈ N such that 1 ≤ r ≤ q.
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We say that T extends to W if there exist a Hilbert space K, a tuple W =
(W1, . . . ,Wn) of commuting operators Wi in B(K), and an isometry V from
H into K such that Range(V ) is invariant for each i and Ti = V ∗WiV for
each i. (It is customary to think of V as the inclusion of H into a larger
Hilbert space K, identify H with V (H), and to think of V ∗ as the orthogonal
projection of K onto H).

We state for the reader’s convenience that the spherical shift S(n) as de-
fined here is to be identified with the tuple Mm+p of [6] by choosing m = n

and p = 0 and is to be identified with the tuple S(n)∗ of [23] (as acting co-
ordinatewise on l2(Zn+,C) = l2(Zn+)). It is known that the Taylor spectrum
σ(S(n)) of S(n) (as well as the Taylor spectrum σ(S∗(n)) of S∗(n)) equals the

closure of the unit ball B2n in Cn (refer to [12]). The following result plays
a crucial role in the sequel and is a special consequence of [6, Theorem 4.2].

Theorem 1.1. Let S be an n-tuple of commuting operators in B(H) such
that σ(S) is contained in the closure of B2n. The following statements are
equivalent.

(i) S is an n-hypercontraction.
(ii) There exist a Hilbert space K and a unital representation (that is, a
∗-homomorphism) π : B(H2(B2n)) → B(K) such that S extends to
π(M∗z ) ≡ (π(M∗z1), . . . , π(M∗zn)) (where Mz = (Mz1 , . . . ,Mzn) is the
Szegö tuple).

In Section 2 we prove our main result (which is Theorem 2.1) and in
Section 3 we demonstrate a couple of its applications.

Remark 1.2. Expanding on the ideas of [25], [9, Theorem 1.8] provided
in particular a characterization of n-tuples T of operators in B(H) that

admit decompositions of the type S
[k]
(n) ⊕ U ; such tuples T must of course

be spherical isometries. As shown by Theorem 2.1 below, several of the
sufficiency conditions in [9, Theorem 1.8] can be replaced by the condition
that T be a spherical isometry. Further, it is not clear to the author how
the result of Theorem 2.1 can be deduced from that of [9, Theorem 1.8].

2. Main result

Theorem 2.1. Let T = (T1, . . . , Tn) be an n-tuple of operators Ti ∈ B(H).
Then the following statements are equivalent.

(1) H is the orthogonal direct sum of Hilbert spaces H1 and H2 where
H1 and H2 are reducing for each Ti and are such that

T = S
[k]
(n) ⊕ U on H1 ⊕H2

for some cardinal k(≤ ℵ0) and some U = (U1, . . . , Un) where U is a
spherical unitary. (One of the summands may be absent).

(2) T is a spherical isometry and T ∗ is an n-hypercontraction.
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Proof. Suppose (1) holds. That T is a spherical isometry is obvious. Since
U is a spherical unitary, one has

(1− z1w1 − · · · − znwn)r(U∗, U∗∗) = 0

for all r ∈ N such that 1 ≤ r ≤ n. Considering π to be the identity
representation from B(H2(B2n)) onto B(H2(B2n)) and considering S to be
M∗z in (ii) of Theorem 1.1, it follows that M∗z (and equivalently S∗(n)) is

an n-hypercontraction. (That S∗(n) is an n-hypercontraction can also be

seen from [23, Corollary 3 and Lemma 7]). It is now clear that T ∗ is an
n-hypercontraction.

Conversely, suppose (2) holds. In view of [23, Remarks. 70], the Taylor
spectrum σ(T ∗) of T ∗ is contained in the closure of the unit ball B2n in Cn.
By Theorem 1.1 there exist a Hilbert space K and a unital representation

π : B(H2(B2n))→ B(K)

such that T ∗ extends to π(M∗z ). We let π1 = π|C∗(Mz) where C∗(Mz) is
the (unital) C∗-subalgebra of B(H2(B2n)) generated by all Mzi ; clearly, T ∗

extends to π1(M
∗
z ). We can thus write, for each i,

π1(M
∗
zi) =

[
T ∗i Xi

0 Yi

]
with Xi : K 	H → H and Yi : K 	H → K	H.

Since π1 is a unital representation and Mz is a spherical isometry, we have

IK =

n∑
i=1

π1(M
∗
zi)π1(Mzi) =

[ ∑n
i=1 T

∗
i Ti +XiX

∗
i

∑n
i=1XiY

∗
i∑n

i=1 YiX
∗
i

∑n
i=1 YiY

∗
i

]
.

However, T being a spherical isometry, one has
∑n

i=1 T
∗
i Ti = IH and that

forces Xi = 0 for each i. This shows that H is reducing for π1(C
∗(Mz)). We

next consider the subrepresentation π2 : C∗(Mz) → B(H) of π1 defined by
π2(A) = π1(A)|H, A ∈ C∗(Mz). Clearly, π2(Mzi) = Ti for each i. We are
now in a position to invoke some standard theory related to the splitting of
representations as elucidated in [2, Sections 1.3 and 1.4] (refer also to [4]).

It is well-known (see, for example, [11]) that C∗(Mz) contains the C∗-
algebra K(H2(B2n)) of compact operators on H2(B2n) and that the following
exact sequence obtains:

0→ K(H2(B2n))
i→ C∗(Mz)

φ→ C(S2n−1).

Here C(S2n−1) is the C∗-algebra of continuous functions on the topological
boundary S2n−1 of B2n, i is the inclusion map, and φ is the symbol map
(sending in particular the operator Mf of multiplication by a continuous
function f on S2n−1 to f).

Let H1 be the closed linear span of {π2(A)f : f ∈ H, A ∈ K(H2(B2n))}
and letH2 be the orthocomplement ofH1 inH. Since K(H2(B2n)) is an ideal
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of C∗(Mz), it is clear that H1 (and hence H2) is reducing for π2(C
∗(Mz)).

We consider the subrepresentations

π3 : C∗(Mz)→ B(H1),

π4 : C∗(Mz)→ B(H2)

of π2 defined by π3(A) = π2(A)|H1 and π4(A) = π2(A)|H2, A ∈ C∗(Mz).
Suppose H2 6= {0}. Since π4 annihilates compact operators (as is clear

from the definition of H2), π4 can be thought of as a representation of

C(S2n−1) ∼= C∗(Mz)
K(H2(B2n))

on H2. Thus the tuple

(π4(Mz1), . . . , π4(Mzn)) = (T1|H2, . . . , Tn|H2)

is a spherical unitary.
Suppse H1 6= {0}. Let

π′3 = π3|K(H2(B2n)) : K(H2(B2n))→ B(H1).

Using the notion of an approximate identity (refer, for example, to [2, Propo-
sition 1.3.1]), it is easy to see that the representation π′3 is nondegenerate
in the sense that the closed linear span of π′3(K(H2(B2n)))(H1) equals H1.
Appealing to [2, Theorem 1.4.4] (and Corollary 2 thereof), one notes that
π′3 can be written as a sum

∑
λ π
′
λ of representations π′λ where, for each λ,

there exist a subspace Kλ of H1 that is reducing for π′3(K(H2(B2n))) and a
unitary operator Uλ from H2(B2n) onto Kλ such that the following hold:

(i) H1 is the orthogonal sum ⊕λKλ.
(ii) π′λ(B) = π′3(B)|Kλ, π′λ(B) = UλBU

∗
λ for each B in K(H2(B2n)) and

for each λ.

Now define, for each λ, τλ : C∗(Mz) → B(Kλ) by τλ(A) = UλAU
∗
λ , A ∈

C∗(Mz), and let τ =
∑

λ τλ. Thus, for A ∈ C∗(Mz),

τ(A)(⊕λhλ) = ⊕λτλ(A)hλ.

Clearly, one has τ(A)π′3(B) = π′3(AB) for A ∈ C∗(Mz), B ∈ K(H2(B2n)).
It follows from the uniqueness considerations present in [2, Section 1.3] that
τ must equal π3. In particular, one has

UλMziU
∗
λ = τλ(Mzi) = τ(Mzi)|Kλ = π3(Mzi)|Kλ = π2(Mzi)|Kλ = Ti|Kλ

for each i. If k is the cardinality of the set {Kλ}λ; then k cannot exceed ℵ0
as H is separable. We note that Ũ = ⊕λUλ is a unitary operator for which

(S
[k]
(n) =)ŨM

[k]
zi Ũ

∗ = Ti|H1 for each i. �

We record two corollaries of Theorem 2.1.

Corollary 2.2. The classical von Neumann–Wold decomposition holds.

Proof. This is the case n = 1. If T = T1 is an isometry in B(H), then
IH − T1T

∗
1 ≥ 0, that is, (1 − z1w1)(T

∗
1 , T

∗∗
1 ) ≥ 0 so that T ∗ = T ∗1 is a

1-hypercontraction perforce; thus Statement (2) of Theorem 2.1 holds and
Statement (1) of Theorem 2.1 follows. �



48 AMEER ATHAVALE

A spherical isometry T = (T1, . . . , Tn) for which T ∗ is an n-hypercontrac-
tion will be referred to as a nice spherical isometry. A simple example of a
spherical isometry that is not a nice spherical isometry is the pair (S(1), 0).

Corollary 2.3. Any nice spherical isometry T = (T1, . . . , Tn) (with Ti ∈
B(H)) that is not a spherical unitary has its Taylor spectrum σ(T ) equal to
the closure of the unit ball B2n in Cn.

3. Applications

Our first application of Theorem 2.1 is a generalization of a universal
representation theorem for an isometry due to Coburn (see [10]; also see [22,
Theorem 3.5.18]).

Theorem 3.1. If T = (T1, . . . , Tn) is a nice spherical isometry with Ti in
B(H), then there exists a unique unital representation φ : C∗(Mz) → B(H)
such that φ(Mzi) = Ti for each i; if T moreover is not a spherical unitary
then φ is isometric.

Proof. Let T be a nice spherical isometry. Using Theorem 2.1, we have

T = S
[k]
(n) ⊕ U on H1 ⊕H2

for some cardinal k and some U = (U1, . . . , Un) where U is a spherical
unitary. For the argument in the next paragraph, we may assume without
any harm to generality that both the summands are present.

Since the Taylor spectrum of the spherical unitary U is contained in
S2n−1, one can interpret f(U) for any f ∈ C(S2n−1) by using the con-
tinuous functional calculus for U . As noted in [11, Theorem 1], C∗(Mz)
equals {Mf +B : f ∈ C(S2n−1), B ∈ K(H2(B2n))}. One then has the unital
∗-homomorphism φU : C∗(Mz) → B(H2) defined by φU (Mf + B) = f(U)
(f ∈ C(S2n−1), B ∈ K(H2(B2n))); clearly, φU (Mzi) = Ui = Ti/H2 for

each i. Further, the unitary operator Ũ in the proof of Theorem 2.1 yields
a ∗-homomorphism φk : C∗(Mz) → B(H1) defined by φk(A) = ŨA[k]Ũ∗

(A ∈ C∗(Mz)) and, as follows from the observations there, φk(Mzi) = Ti|H1

for each i. Choosing the ∗-homomorphism φ to be the sum of φk and φU , one
sees that φ(Mzi) = Ti for each i. Since the operators Mzi generate C∗(Mz),
φ with the property φ(Mzi) = Ti for each i is unique.

In case T is not a spherical unitary, the summand S
[k]
(n) is necessarily

present and so is the part φk of φ; as φk is clearly injective, so is φ. Since
any injective ∗-homomorphism between two C∗-algebras is isometric (see
[22, Theorem 3.1.5]), φ in this case is isometric. �

Our next application of Theorem 2.1 involves the concept of hyperreflex-
ivity of an operator tuple. If A is a subalgebra of B(H) and P is the set of
orthogonal projections in B(H), then A is said to be hyperreflexive if there
exists some positive constant C such that, for all S ∈ B(H),

d(S,A) ≤ C sup{‖(IH − P )SP‖ : P ∈ P with A(Ran(P )) ⊂ Ran(P )}
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where d(S,A) is the norm distance between S and A; the infimum of such
constants C is the hyperreflexivity constant κA (of A). The notion of hyper-
reflexivity was formally introduced by Arveson in [3] and appears to have its
genesis in Arveson’s work in [1]. If T = (T1, . . . , Tn) is a tuple of operators
Ti in B(H) and A(T ) is the WOT-closed algebra generated by Ti and IH,
then T is said to be hyperreflexive if A(T ) is hyperreflexive. We note that
A(T ) is closed in the weak∗ topology of B(H).

A hypereflexive operator tuple is reflexive (refer to [24] for the relevant
definitions and discussions). It was shown by Didas in [14] that any spherical
isometry is reflexive.

For r ≥ 1, a weak∗ closed subalgebra A of B(H) is said to satisfy property
(A1(r)) if for every ε > 0 and every weak∗-continuous functional φ on A
there exist vectors x, y in H such that φ(T ) = 〈Tx, y〉 for all T in A and
‖x‖‖y‖ < (r + ε)‖φ‖.

Theorem 3.2. Any nice spherical isometry is hyperreflexive.

Proof. The case n = 1 was settled by Davidson in [13]. (As [20, Proposition
3] shows, the corresponding hyperreflexivity constant in this case does not
exceed 12). So, let n > 1. If T is a nice spherical isometry then we have, by
Theorem 2.1,

T = S
[k]
(n) ⊕ U on H1 ⊕H2.

It follows from [26, Theorem 3.6] that A(U) is hyperreflexive (with κA(U) ≤
3); also, A(U) satisfies property (A1(1)) (refer to [8, Proposition 2.05]). It
is a consequence of [7, Theorem 3.1] and [15, Corollary 2.12] that the Szegö
tuple Mz(= S(n)) is hyperreflexive (with κA(Mz) ≤ 3); moreover, as follows
from [8, Theorem 3.6], A(Mz) satisfies property (A1(1)). An application of
[16, Theorem 4.1] shows that B := (⊕kA(S(n))) ⊕ A(U) is hyperreflexive.
(Actually, [21, Theorem 5.1] yields that κB ≤ 2+3 sup{κA(U), κA(Mz)} ≤ 11).

We note that A(T ) is a weak∗-closed subalgebra of B. Thus the hyper-
reflexivity of A(T ) (and hence of T ) will follow from [19, Theorem 3.3] if B is
shown to satisfy property (A1(r)) for some r ≥ 1. But B in fact satisfies prop-
erty (A1(1)) as a consequence of [17, Proposition 4.1]. (Putting r = 1, one
further deduces from [19, Theorem 3.3] that κA(T ) ≤ r+(1+r)κB ≤ 23). �
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