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On generalized Jørgensen inequality
in infinite dimension

Krishnendu Gongopadhyay

Abstract. In [5], Li has obtained an analogue of the Jørgensen in-
equality in the infinite-dimensional Möbius group. We show that this
inequality is strict.
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1. Introduction

The Möbius group M(n) acts by isometries on the n-dimensional real hy-
perbolic space. The Jørgensen inequality is a pioneer result in the theory
of discrete subgroups of Möbius groups. The classical Jørgensen inequality
gives a necessary criterion to detect the discreteness of a two-generator sub-
group in M(2) and M(3). There have been several generalizations of the
Jørgensen inequality in higher dimensional Möbius groups, e.g. [3], [8], [9].

The Clifford algebraic formalism to Möbius group was initiated by Ahlfors
in [1]. In this approach the 2 × 2 matrices over finite dimensional Clifford
algebras act by linear fractional transformations on the n-sphere. Water-
man used the Clifford algebraic formalism of Möbius groups to obtain some
Jørgensen type inequalities in [9]. Frunză initiated a framework for infi-
nite dimensional Möbius groups in [2]. This framework is an extension of
the Clifford algebraic viewpoint by Ahlfors. In [5, 6, 4], Li has used this
viewpoint further to obtain discreteness criteria in infinite dimension.
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In [5], Li has obtained an analogue of Jørgensen inequality in the infinite-
dimensional Möbius group. The aim of this note is to show that this in-
equality is strict. In Section 2, we briefly recall basic notions of the infinite
dimensional theory and note down the Jørgensen type inequality of Li. In
Section 3 we prove that Li’s inequality is strict, see Theorem 3.1.

2. Preliminaries

2.1. Infinite dimensional Clifford group. The Clifford algebra C is the
associative algebra over R generated by a countable family {ik}∞k=0 subject
to the relations:

ihik = −ikih, h 6= k, i2k = −1,

and no others. Every element of C can be expressed as a =
∑
aII, where

I = ik1ik2 . . . ikp , 1 ≤ k1 < k2 < · · · < kp ≤ n, n is a fixed natural number

depending upon a, aI ∈ R, and
∑

I a
2
I <∞. If I = ∅, then aI is the real part

of a and the remaining part is the ‘imaginary part’ of a. In C the Euclidean
norm is given as usual by

|a| =
√
|Re(a)|2 + |Im(a)|2.

As in the finite-dimensional Clifford algebra, C has three special involutions,
defined by the following.
∗: In a ∈ C as above, replace in each I = iv1iv2 · · · ivk by ivk · · · iv1 . a 7→ a∗

is an anti-automorphism.
′: Replace ik by −ik in a to obtain a′.
The conjugate ā of a is now defined as: ā = (a∗)′ = (a′)∗.
Elements of the following type:

a = a0 + a1i1 + · · ·+ anin + · · · ,

are called vectors. The set of vectors is denoted by `2. Let `2 = `2 ∪ {∞}.
For any x ∈ `2, we have x∗ = x and x̄ = x′. Every non-zero vector is
invertible and x−1 = x̄/|x|2. The set of products of finitely many non-zero
vectors is a multiplicative group, called the Clifford group, and denoted by
Γ.

A Clifford matrix g =

(
a b
c d

)
over `2 is defined as follows:

(1) a, b, c, d ∈ Γ ∪ {0};
(2) ∆(g) = ad∗ − bc∗ = 1;
(3) ab∗, d∗b, cd∗, c∗a ∈ `2.

The set of all such matrices forms a group, denoted by SL(Γ). For g as

above, g−1 =

(
d∗ −b∗
−c∗ a∗

)
. Note that gg−1 = g−1g = I.

The group PSL(Γ) = SL(Γ)/{±I} acts on `2 by the following transfor-
mation:

g : x 7→ (ax+ b)(cx+ d)−1.
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2.2. Classification of elements in SL(Γ). Let f be in SL(Γ). Then

• f is loxodromic if it is conjugate in SL(Γ) to

(
rλ 0
0 r−1λ′

)
, where

r ∈ R− {0}, |r| 6= 1, λ ∈ Γ. If λ = ±1, then f is called hyperbolic.

• f is parabolic if it is conjugate in SL(Γ) to

(
a b
0 a′

)
, where a, b ∈ Γ,

|a| = 1, b 6= 0, and ab = ba′.
• Otherwise f is elliptic.

Definition 2.1. For g =

(
a b
c d

)
, the trace of g is defined by

tr(g) = a+ d∗.

A non-trivial element g ∈ SL(Γ) as above is called vectorial if b∗ = b, c∗ = c,
and tr(g) ∈ R.

The real part of trace is a conjugacy invariant in SL(Γ).

Lemma 2.2. [7, 5] If an element g in SL(Γ) is hyperbolic, then tr(g) ∈ R
and tr2(g) > 4.

Definition 2.3. A subgroup G of SL(Γ) is called elementary if it has a finite
orbit in `2. Otherwise, G is called non-elementary. A subgroup G of SL(Γ)
is discrete if a sequence fi → g in G implies that fi = g for all sufficiently
large i. Otherwise G is not discrete.

2.3. Li-Jørgensen inequality. The following is the generalized Jørgensen
inequality in infinite dimension that was given by Li in [5].

Theorem 2.4. [5, Theorem 3.1] Let f, g ∈ SL(Γ) be such that f is hyper-
bolic, and [f, g] = fgf−1g−1 is vectorial. Suppose that the two-generator
group 〈f, g〉 is discrete and non-elementary. Then

(2.1) |tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.

3. Li-Jørgenesen inequality is strict

Theorem 3.1. Let f, g ∈ SL(Γ) be such that f is hyperbolic and [f, g] =
fgf−1g−1 is vectorial. Suppose that the two-generator group 〈f, g〉 is discrete
and non-elementary. Then

(3.1) |tr2(f)− 4|+ |tr([f, g])− 2| > 1,

where the above inequality is strict.

Proof. It follows from Theorem 2.4 that

|tr2(f)− 4|+ |tr([f, g])− 2| ≥ 1.

If possible suppose that

(3.2) |tr2(f)− 4|+ |tr([f, g])− 2| = 1.
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Up to conjugacy, we assume f =

(
r 0
0 r−1

)
, r > 1. Let g =

(
a b
c d

)
. Let

J(f, g) denote the left hand side of (3.2).
By computation it is easy to see that

tr([f, g])− 2 = −(r − r−1)2bc∗,
and

tr2(f)− 4 = (r − r−1)2.
So

J(f, g) = (r − r−1)2(1 + |bc∗|) = 1.

Since [f, g] is vectorial, it follows from above that bc∗ is a real number.
Let

g0 = g, gm+1 = gmfg
−1
m , gm =

(
am bm
cm dm

)
.

Also let K = (r − r−1)2 and wm = bmc
∗
m.

Then by the equality in (3.2) we have K(1 + |w0|) = 1. This implies
K < 1.

Now note that

(3.3) bm+1c
∗
m+1 = −K(1 + bmc

∗
m).bmc

∗
m.

By induction, wm = bmc
∗
m is a sequence of real numbers. Also

|wm+1| ≤ K|wm|(1 + |wm|).
If possible suppose K(1 + |wm|) < 1 for some m. Then using arguments
similar to the proof of [5, Theorem 3.1], it can be shown that

|bm+1c
∗
m+1| ≤ |bmc∗m|

and bmc
∗
m → 0 as m→∞, that would give a contradiction to the assumption

that 〈f, g〉 is non-elementary. So, we must have K(1 + |wm|) ≥ 1 for all m.
Thus

1 ≤ K(1 + |wm|) ≤ K(1 + |wm−1|).
It is given that K(1 + |w0|) = 1. By induction, it follows that for all m,

(3.4) J(f, gm) = K(1 + |wm|) = 1.

Note from (3.3) and (3.4) that

1−K = K|wm+1| ≤ K.K|wm|.|1 + wm|
≤ (1−K)K|1 + wm| ≤ (1−K)K(1 + |wm|)
≤ (1−K),

which implies

(3.5) K|1 + wm| = 1.

Observe that

|tr([f, g])− 2 + 4− tr2(f)| = K|1 + bc∗| = 1

= |tr([f, g])− 2|+ |4− tr2(f)|.
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Since 4 − tr2(f) < 0, this implies w0 > 0. Hence by induction from (3.4)
and (3.5), wm > 0 for all m. Thus, we have from (3.4), K = 1/(1 + wm).
In particular, wm = wm+1. Now, from (3.3), we have K(1 + wm) = −1, i.e.
K = −1/(1 + wm). This is a contradiction. Hence the inequality must be
strict. �
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[2] Frunză, Monica. Möbius transformations in infinite dimension. Analyse complexe
(Bucharest, 1989). Rev. Roumaine Math. Pures Appl. 36 (1991), no. 7–8, 369–376.
MR1144568, Zbl 0753.30035. 865

[3] Hersonsky, Sa’ar. A generalization of the Shimizu–Leutbecher and Jørgensen in-
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