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ABSTRACT. In previous work [4], the author claimed a characterization for
FG(n) and lower asymptotic bounds for ConjG(n) when G is a finitely generated
nilpotent group. However, a counterexample to the characterization of FG(n)
for finitely generated nilpotent groups was communicated to us by Khalid Bou-
Rabee which also had consequences to the lower asymptotic bound provided for
ConjG(n). The purpose of this note to explain what is incorrect in [4] along with
the counterexample provided to us. We will also explain what remains correct in
[4] and how we obtain weaker lower bounds for FN(n) and ConjN(n) which are
found in the author’s thesis and a forthcoming preprint.
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1. Introduction
The following is found in [4]. The numbering and any unexplained terminology

is also taken from [4].

Theorem 1.1. Let N be an infinite, finitely generated nilpotent group. Then there
exists a ψRF(N)∈N such that FG(n)≈ (log(n))ψRF(N) . Additionally, one may com-
pute ψRF(N) given a basis for γc(N/T (N)) where c is the step length of N/T (N).

Theorem 1.8(ii). Let N be an infinite, finitely generated nilpotent group. Suppose
that N is not virtually abelian. There exists a ψLower(N) ∈ N such that nψLower(N) �
ConjN(n). Additionally, one can compute ψLower(N) given a basis for γc(N/T (N))
where c is the step length of N/T (N).
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Khalid Bou-Rabee provided an example of a torsion free, finitely generated
nilpotent group G where Theorem 1.1 predicts FG(n) ≈ (log(n))5, but where it
can be shown that FG(n)� (log(n))4. Thus, the asymptotic lower bound produced
for FN(n) in [4, Theorem 1.1] is incorrect. Upon inspection of the original article, it
turns out that [4, Proposition 4.10] is false which we provide counterexamples for.
Since the proof of Theorem 1.8(ii) relied on this proposition, its proof is incomplete
as well.

2. A counterexample to [4, Proposition 4.10] and [4, Theorem 1.1]

The following group was communicated to us by Khalid Bou-Rabee:

G =
{

x,y,w,z,u,v | [x,y] = [w,z] = 1, [x,w] = [y,z] = u,

[x,z] = v, [y,w] = v−1,u and v are central
}
.

The following proposition was one of the main tools from [4].

Proposition 4.10. Let N be a torsion free, finitely generated nilpotent group with
a cyclic series {Hi}h(N)

i=1 and a compatible generating subset {xi}h(N)
i=1 . Let ϕ : N→

Q be a surjective group morphism to a finite p-group where p > B(N,Hi,{xi}).
Suppose that ϕ([x~a]) 6= 1 for all [x~a] ∈W (N,Hi,{xi})∩Z(N). Also, suppose that
ϕ(xi) 6= 1 for xi ∈ Z(N) and ϕ(xi) 6= ϕ(x j) for all xi,x j ∈ Z(N) where i 6= j. Then
ϕ(xt) 6= 1 for 1 ≤ t ≤ h(N) and ϕ(xi) 6= ϕ(x j) for 1 ≤ i < j ≤ h(N). Finally,
|Q| ≥ ph(N).

The following proposition produces infinitely many primes p in such a way
that there exists a surjective group morphism ψp : G → Qp to a finite p-group
Qp satisfying the hypotheses of Proposition 4.10 and where |Qp| = p4, and since
Proposition 4.10 predicts |Qp| = p5, we have a collection of counterexamples for
Proposition 4.10. Before starting, we introduce some notation. Let

E = {p ∈ P |4 divides p−1} .
For p ∈ E, we let {ap,bp} be the two distinct solutions to the equation T 2 + 1 ≡
0 mod p. Finally, we let Ap and Bp be the normal closures of the subgroups 〈xap y〉
and

〈
xbp y

〉
in G, respectively.

Proposition 2.1. If p∈E, then πp(Ap)∩Z(G/Gp)∼=Fp and πp(Bp)∩Z(G/Gpk
)∼=

Fp. Moreover, |G/Gp ·Ap|= |G/Gp ·Bp|= p4 and Z(G/Gp ·Ap)∼= Z(G/Gp ·Bp)∼=
Fp. We also have that πp(Ap)∩πp(Bp) ∼= {1} and 〈πp(Ap),πp(Bp)〉 ∼= Z(G/Gp).
Finally, πGp·Ap(u),πGp·Ap(v),πGp·Bp(u),πGp·Bp(v) 6= 1. Additionally, πGp·Ap(u) 6=
πGp·Ap(v) and πGp·Bp(u) 6= πGp·Bp(v).

Proof. For the first statement, it is sufficient to prove that |G/Gp ·Ap| = p4 and
that Z(G/Gp)∩ π(Ap) ∼= Fp. By direct calculation, we have that Ap ∩ Z(G) ∼=〈
uap v−1,u vap

〉
. Since (uap v−1)−ap = u−(ap)

2
vap = uvap mod Gp, we have πpk(Ap)∩

Z(G/Gp) ∼= 〈πp(u vap)〉 ∼= Fp. Since G/Gp ·Ap is generated by the set {x̄, w̄, z̄, v̄}
where each element has order p, the second paragraph after [3, Definition 8.2]
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implies that |G/Gp ·Ap| = p4. Subsequently, Z(G/Gp ·Ap) ∼= Fp. For the next
statement, we note that πp(Ap)∼= 〈u vap〉 and πp(Bp)∼=

〈
u vbp

〉
. Suppose for a con-

tradiction that there exists a natural number ` such that (u vap)` = u vbp mod Gp.
Since (u vap)` = u` v`ap , we must have that ` ≡ 1 mod p and ` ap ≡ bp mod p.
Since ` ap ≡ ap mod p, we have that ap ≡ bp mod p which is a contradiction.
In particular, πp(Ap)∩πp(Bp) = {1}; hence, 〈πp(Ap),πp(Bp)〉 ∼= Fp×Fp. Since
Z(G/Gp)∼= Fp×Fp, it follows that 〈πp(Ap),πp(Bp)〉 ∼= Z(G/Gp). The remaining
two statements are evident. �

Proposition 2.2. FG(n)- (log(n))4 .

Proof. Let g ∈G\{1} such that ‖g‖S ≤ n. If πγ2(G)(g) 6= 1, then [1, Corollary 2.3]
implies there exists a surjective group morphism ϕ : G/γ2(G)→ P to a finite group
such that |P| ≤C1 log(C1 n) for some constant C1 > 0 and where ϕ(πγ2(G)(g)) 6= 1.
Thus, DG(g)≤C1 log(C1 n). Hence, we assume that g= uαu vαv . Since ‖uαu‖,‖vαv‖≤
n, [2, 3.B2] implies that there exists a constant C2 > 0 such that |αu|, |αv| ≤C2 n2.
We may without loss of generality assume that αu 6= 0. Chebotarev’s Density The-
orem and the Prime number theorem imply that there exists a prime p ∈ E such
that p - αu and where p ≤ C3 log(C3 n) for some constant C3 > 0. Proposition
2.1 implies that either πGp·Ap(g) 6= 1 or πGp·Bp(g) 6= 1. In either case, we have
DG(g)≤ (C4)

4 (log(C4 n))4 . Hence, FG(n)- (log(n))4 . �

3. Correct results from [4] and current state of affairs
The following theorems remain correct in [4]. The reason being is that do not

in anyway rely on [4, Proposition 4.10]; in fact, they rely on completely different
techniques.

Theorem 1.7. Let N be a finitely generated nilpotent group. Then there exists a
k ∈ N such that ConjN(n)- nk.

By applying [4, Proposition 4.4] and [4, Proposition 6.1], we have the following
theorem.

Theorem 3.1. Let N be an infinite finitely generated nilpotent group. There exists
a constant ψRF(N) ∈ N such that FN(n)- (log(n))ψRF(N) .

We finish by noting that the author was able to recover [4, Theorem 1.8(ii)] and
was able to obtain asymptotic lower bounds for FN(n) in his thesis in the discussion
outline below (see [5] for any unexplained terminology). We provide lower bounds
for FN(n) with the following theorem (see [5, Theorem 1.2]).

Theorem 3.2. If N is an infinite, finitely generated nilpotent group such that N/T (N)
has step length c > 1, then there exists a natural number dimRFL(N) ≥ c+ 1 and
where (log(n))dimRFL(N) � FN(n).

To produce a lower asymptotic bound for FN(n), we need to construct a sequence
of elements {xi}∞

i=1 such that the order of the minimal finite group Qi where there
exists a surjective group morphism ψi : N → Qi such that ψi(xi) 6= 1 has order
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approximately (log(‖xi‖))dimRFL(N). In order to find this sequence, we introduce a
notion of Fp-dimension associated to any primitive element x ∈

√
γc(N), denoted

dimFp(N,x), which measures the difficulty of separating x from the identity in a
finite p-group. If we let EN,x,i =

{
p ∈ P | dimFp(N,x) = i

}
, we see that there exists

a minimal index i0 such that |EN,x,i0 | = ∞. We denote this as dimRFU(N,x), and
observe that this value captures the complexity of separating powers of x from the
identity in finite p-groups as we vary the prime number. By maximizing the value
dimRFU(N,x) over all such primitive elements, we obtain the value dimRFL(N). For
any primitive element x ∈

√
γc(N) where dimRFL(N,x) = dimRFL(N), there exist a

sequence of natural numbers {mi}∞

i=1 such that the desired sequence of elements is
given by {xmi}∞

i=1.
We obtain lower asymptotic bounds for ConjN(n) with the following theorem

(see [5, Theorem 1.8])

Theorem 3.3. If N is an infinite, non-virtually abelian, finitely generated nilpo-
tent group where N|T (N)| has step length c, then there exists a natural number
dimConj(N)≥ c+1 and where n(c−1) ˙dimConj(N) - ConjN(n).

For the lower bounds of ConjN(n), we need to find an infinite sequence of non-
conjugate elements xi and yi such that the minimal finite group Qi where there
exists a surjective group morphism ψi : N→Qi such that ψi(xi) and ψi(yi) are non-
conjugate has order approximately (max{‖xi‖,‖yi‖)dimConj(N). In order to construct
this sequence, we use the concept of admissible 4-tuples. Admissible 4-tuples
(g,m,a,b) contain the data of a primitive element in g∈

√
γc(N), a natural number

m, and elements a ∈ γc−1(N) and b ∈ N such that gm = [a,b]. The structure of
conjugacy classes in the integral Heisenberg group imply that we may introduce a
Fp-dimension to (g,m,a,b), denoted dimConj,Fp(g,m,a,b), that measures the diffi-
culty of separating the conjugacy classes of ap [a,b] and ap [a,b]2 in finite p-groups
when [a,b] /∈N p. Observe that there exists a maximal index 1≤ i0≤ h(N) such that
|LCN,(g,m,a,b),i0 |= ∞. We denote this value as dimConj(g,m,a,b), and we obtain the
value dimConj(N) by maximizing the value dimConj(g,m,a,b) over all such admis-
sible 4-tuples. The admissible 4-tuples (g,m,a,b) which attain this maximum give
us the necessary sequence of non-conjugate elements via ap [a,b] and ap [a,b]2 for
p ∈ LCN,(g,m,a,b),i0 .
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