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Bergman-Lorentz spaces on tube domains
over symmetric cones

David Békollé, Jocelyn Gonessa and Cyrille Nana

Abstract. We study Bergman-Lorentz spaces on tube domains over
symmetric cones, i.e. spaces of holomorphic functions which belong
to Lorentz spaces L(p, q). We establish boundedness and surjectivity of
Bergman projectors from Lorentz spaces to the corresponding Bergman-
Lorentz spaces and real interpolation between Bergman-Lorentz spaces.
Finally we ask a question whose positive answer would enlarge the inter-
val of parameters p ∈ (1,∞) such that the relevant Bergman projector
is bounded on Lp for cones of rank r ≥ 3.
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1. Introduction

The notations and definitions are those of [11]. We denote by Ω an ir-
reducible symmetric cone in Rn with rank r and determinant ∆. We de-
note TΩ = Rn + iΩ the tube domain in Cn over Ω. For ν ∈ R, we define
the weighted measure µ on TΩ by dµ(x + iy) = ∆ν−n

r (y)dxdy. We con-
sider Lebesgue spaces Lpν and Lorentz spaces Lν(p, q) on the measure space
(TΩ, µ). The Bergman space Apν (resp. the Bergman-Lorentz space Aν(p, q))
is the subspace of Lpν (resp. of Lν(p, q)) consisting of holomorphic functions.
Our first result is the following.

Theorem 1.1. Let 1 < p ≤ ∞ and 1 ≤ q ≤ ∞.
(1) For ν ≤ n

r − 1, the Bergman-Lorentz space Aν(p, q) is trivial, i.e
Aν(p, q) = {0}.

(2) Suppose ν > n
r − 1. Equipped with the norm induced by the Lorentz

space Lν(p, q), the Bergman-Lorentz space Aν(p, q) is a Banach space.

For p = 2, the Bergman space A2
ν is a closed subspace of the Hilbert space

L2
ν and the Bergman projector Pν is the orthogonal projector from L2

ν to
A2
ν . We adopt the notation

Qν = 1 +
ν

n
r − 1

.

Our boundedness theorem for Bergman projectors on Lorentz spaces is the
following.

Theorem 1.2. Let ν > n
r − 1 and 1 ≤ q ≤ ∞.

(1) For all γ ≥ ν + n
r − 1, the weighted Bergman projector Pγ ex-

tends to a bounded operator from Lν(p, q) to Aν(p, q) for all 1 <
p < Qν . In this case, under the restriction 1 < q < ∞, if γ >(

1
min (p,q)−1 − 1

) (
n
r − 1

)
, then Pγ is the identity on Aν(p, q).

(2) The weighted Bergman projector Pν extends to a bounded operator
from Lν(p, q) to Aν(p, q) for all 1 +Q−1

ν < p < 1 +Qν . In this case,
under the restriction 1 ≤ q <∞, then Pν is the identity on Aν(p, q).

For the Bergman projector Pν , following recent developments, this theo-
rem is extended below to a larger interval of exponents p on tube domains
over Lorentz cones (r = 2) (see section 7).

Finally our main real interpolation theorem between Bergman-Lorentz
spaces is the following.
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Theorem 1.3. Let ν > n
r − 1.

(1) For all 1 < p1 < Qν , 1 ≤ q1 ≤ ∞ and 0 < θ < 1, the real interpola-
tion space (

A1
ν , Aν(p1, q1)

)
θ,q

identifies with Aν(p, q), 1
p = 1−θ+ θ

p1
, 1 < q <∞ with equivalence

of norms.
(2) For all 1 < p0 < p1 < Qν (resp. 1 +Q−1

ν < p0 < p1 < 1 +Qν), 1 ≤
q0, q1 ≤ ∞ and 0 < θ < 1, the real interpolation space

(Aν(p0, q0), Aν(p1, q1))θ,q

identifies with Aν(p, q), 1
p = 1−θ

p0
+ θ

p1
, 1 < q <∞ (resp. 1 ≤ q <

∞) with equivalence of norms.
(3) For all Qν ≤ p1 < 1 +Qν , 1 ≤ q1 ≤ ∞, the Bergman-Lorentz spaces

Aν(p, q), 1 + Q−1
ν < p < Qν , 1 ≤ q < ∞ are real interpolation

spaces between A1
ν and Aν(p1, q1) with equivalence of norms.

(4) For all 1 < p0 ≤ 1 + Q−1
ν , Qν ≤ p1 < 1 + Qν , 1 ≤ q0, q1 ≤ ∞, the

Bergman-Lorentz spaces Aν(p, q), 1 + Q−1
ν < p < Qν , 1 ≤ q < ∞

are real interpolation spaces between Aν(p0, q0) and Aν(p1, q1) with
equivalence of norms.

The plan of the paper is as follows. In section 2, we overview definitions
and properties of Lorentz spaces on a non-atomic σ-finite measure space.
This section encloses results on real interpolation between Lorentz spaces.
In section 3, we define Bergman-Lorentz spaces on a tube domain TΩ over a
symmetric cone Ω. We produce examples and we establish Theorem 1.1. In
section 4, we study the density of the subspace Aν(p, q)∩Atγ in the Banach
space Aν(p, q) for ν, γ > n

r − 1, 1 < p, t ≤ ∞, 1 ≤ q < ∞. Relying on
boundedness results for the Bergman projectors Pγ , γ ≥ ν + n

r − 1 and Pν
on Lebesgue spaces Lpν [2, 4, 18], we then provide a proof of Theorem 1.2.
In section 5, we prove Theorem 1.3. We next deduce a result of dependence
of the Bergman space Aν(p, q) on the parameters p, q. In section 6, we come
back to the density of the subspace Aν(p, q) ∩ Atγ in Aν(p, q) and we prove
a stronger result than the ones in section 4. Section 7 consists of four
questions. A positive answer to the first question would enlarge the interval
of parameters p ∈ (1,∞) such that the Bergman projector Pν is bounded
on Lpν for upper rank cones (r ≥ 3). The second question addresses the
density of the subspace Aν(p, q) ∩ Atγ in the Banach space Aν(p, q). The
third question concerns a possible extension of Theorem 1.3. The fourth
question concerns the dependence on the parameters p, q of the Bergman-
Lorentz space Aν(p, q).

These results were first presented in the PhD dissertation of the second
author [12]. Similar results, with the real interpolation method replaced by
the complex interpolation method, were proved in [5].
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2. Lorentz spaces on measure spaces

2.1. Definitions and preliminary topological properties. Through-
out this section, the notation (E,µ) is fixed for a non-atomic σ-finite mea-
sure space. We refer to [20], [14], [13], [7] and [8]. Also cf. [12].

Definition 2.1. Let f be a measurable function on (E,µ) and finite µ−a.e..
The distribution function µf of f is defined on [0,∞) by

µf (λ) = µ({x ∈ E : |f(x)| > λ}).
The non-increasing rearrangement function f? of f is defined on [0,∞) by

f?(t) = inf{λ ≥ 0 : µf (λ) ≤ t}.

Theorem 2.2. (Hardy-Littlewood) [7, Theorem 2.2.2] Let f and g be two
measurable functions on (E,µ). Then∫

E
|f(x)g(x)|dµ(x) ≤

∫ ∞
0

f?(s)g?(s)ds.

In particular, let g be a positive measurable function on (E,µ) and let F be
a measurable subset of E of bounded measure µ(F ). Then∫

F
g(x)dµ(x) ≤

∫ µ(F )

0
g?(s)ds.

Definition 2.3. Let 1 ≤ p, q ≤ ∞. The Lorentz space L(p, q) is the space
of measurable functions on (E,µ) such that

||f ||p,q =

(∫ ∞
0

(
t

1
p f?(t)

)q dt
t

) 1
q

<∞ if 1 ≤ p <∞ and 1 ≤ q <∞

(resp.

||f ||p,∞ = sup
t>0

t
1
p f?(t) <∞ if 1 ≤ p ≤ ∞).

We first recall that (cf. e.g. [13, Proposition 1.4.5, assertion (16)]):

(2.1) ||f ||p,∞ = sup
λ>0

λµf (λ)
1
p .

We next recall that for p = ∞ and q < ∞, this definition gives way to
the space of vanishing almost everywhere functions on (E,µ). It is also well
known that for p = q, the Lorentz space L(p, p) coincides with the Lebesgue
space Lp(E, dµ). More precisely, we have the equality

(2.2) ||f ||p =

(∫ ∞
0

f?(t)pdt

) 1
p

.

In the sequel we shall adopt the following notation:

Lp = Lp(E, dµ).

We shall need the following two results.
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Proposition 2.4. [7, Lemma 4.4.5] The functional || · ||p,q is a quasi-norm
(it satisfies all properties of a norm except the triangle inequality) on L(p, q).
If 1 < p < ∞ and 1 ≤ q ≤ ∞ (and if p = q = 1), the Lorentz space L(p, q)
is equipped with a norm equivalent to the quasi-norm || · ||?p,q.

Theorem 2.5. [7, Theorem 4.4.6], [14, (2.3)] Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞.
Equipped with the quasi-norm || · ||p,q, the Lorentz space L(p, q) is a quasi-
Banach space (a Banach space with the norm referred to in the previous
proposition if 1 < p <∞ and 1 ≤ q ≤ ∞).

We next record the following results stated in [7, 13, 14].

Proposition 2.6. [13, Proof of Theorem 1.4.11] Let 1 < p <∞ and 1 ≤ q ≤
∞. Every Cauchy sequence in the Lorentz space (L(p, q), || · ||p,q) contains a
subsequence which converges a.e. to its limit in L(p, q).

Theorem 2.7. [7, Corollary 4.4.8], [13, Theorem 1.4.17] and [14, (2.7)] Let
1 < p < ∞ and 1 ≤ q < ∞. The topological dual space (L(p, q))′ of the
Lorentz space L(p, q) identifies with the Lorentz space L(p′, q′) with respect
to the duality pairing

(?) (f, g) =

∫
TΩ

f(z)g(z)dµ(z).

We finally record the nested property of Lorentz spaces. Let (X, ||·||X) and
(Y, || · ||Y ) be two quasi-normed vector spaces. We say that X continuously
embeds in Y and we write X ↪→ Y if X ⊂ Y and there exists a positive
constant C such that

||x||Y ≤ C||x||X ∀x ∈ X.

It is easy to check that X identifies with Y if and only if X ↪→ Y and Y ↪→ X.

Proposition 2.8. [13, Proposition 1.4.10 and Exercise 1.4.8] For all 1 ≤
p <∞ and 1 ≤ q < r ≤ ∞ we have the continuous embedding

L(p, q) ↪→ L(p, r).

This embedding is strict.

2.2. Interpolation via the real method between Lorentz spaces.
We begin with an overview of the theory of real interpolation between quasi-
Banach spaces (cf. e.g. [7, Chapters 4 and 5]) and [8, Chapters 3 and 5] for
Banach spaces, and [8, Sections 3.10 and 3.11] for quasi-Banach spaces).

Definition 2.9. A pair (X0, X1) of quasi-Banach spaces is called a compat-
ible couple if there is some Hausdorff topological vector space in which X0

and X1 are continuously embedded.
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Definition 2.10. Let (X0, X1) be a compatible couple of quasi-Banach
spaces. Denote X = X0 +X1. Let t > 0 and a ∈ X. We define the functional
K(t, a,X) by

K(t, a,X) = inf {||a0||X0 + t||a1||X1 : a = a0 + a1, a0 ∈ X0, a1 ∈ X1}.
For 0 < θ < 1 and 1 ≤ q ≤ ∞, the real interpolation space between X0 and
X1 is the space

(X0, X1)θ,q := {a ∈ X : ||a||θ,q,X <∞}

with

||a||θ,q,X :=

(∫ ∞
0

(
t−θK(t, a,X)

)q dt
t

) 1
q

.

The following proposition is proved in [7, Proposition 5.1.8] for Banach
spaces; for quasi-Banach Banach spaces, we refer to [8, Sections 3.10 and
3.11].

Proposition 2.11. For 0 < θ < 1 and 1 ≤ q ≤ ∞, the functional || · ||θ,q,X
is a quasi-norm on the real interpolation space (X0, X1)θ,q . Endowed with

this quasi-norm, (X0, X1)θ,q is a quasi-Banach space.

Definition 2.12. Let (X0, X1) and (Y0, Y1) be two compatible couples of
quasi-Banach spaces and let T be a linear operator defined on X := X0 +X1

and taking values in Y := Y0 + Y1. Then T is said to be admissible with
respect to the couples X and Y if for i = 0, 1, the restriction of T is a
bounded operator from Xi to Yi.

We next state the following fundamental theorem.

Theorem 2.13. [7, Theorem 5.1.12], [8, Theorem 3.11.8] Let (X0, X1) and
(Y0, Y1) be two compatible couples of quasi-Banach spaces and let 0 < θ <
1, 1 ≤ q ≤ ∞. Let T be an admissible linear operator with respect to the
couples X and Y such that

||Tfi||Yi ≤Mi||fi||Xi (fi ∈ Xi, i = 0, 1).

Then T is a bounded operator from (X0, X1)θ,q to (Y0, Y1)θ,q. More precisely,
we have

||Tf ||(Y0,Y1)θ,q ≤M
1−θ
0 M θ

1 ||f ||(X0,X1)θ,q

for all f ∈ (X0, X1)θ,q.

The following theorem gives the real interpolation spaces between Lebesgue
spaces and Lorentz spaces on the measure space (E,µ).

Theorem 2.14. [7, Theorem 5.1.9], [8, Theorems 5.2.1 and 5.3.1] Let 0 <
θ < 1, 1 ≤ q ≤ ∞. Let 1 ≤ p0 < p1 ≤ ∞ and define the exponent p by
1
p = 1−θ

p0
+ θ

p1
. We have the identifications with equivalence of norms:

a) (Lp0 , Lp1)θ,q = L(p, q);
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b) (L(p0, q0), L(p1, q1))θ,q = L(p, q) for 1 ≤ p0 < p1 <∞, 1 ≤ q0, q1 ≤
∞.

Definition 2.15. Let (R,µ) and (S, ν) be two non-atomic σ-finite measure
spaces. Suppose 1 ≤ p <∞, 1 ≤ q ≤ ∞. Let T be a linear operator defined
on the simple functions on (R,µ) and taking values on the measurable func-
tions on (S, ν). Then T is said to be of restricted weak type (p, q) if there is
a positive constant M such that

t
1
q (TχF )?(t) ≤Mµ(F )

1
p (t > 0)

for all measurable subsets F of R. This estimate can also be written in the
form

||TχF ||q,∞ ≤M ||χF ||p,1
or equivalently, in view of equality (2.1),

sup
λ>0

λµTχF (λ)
1
q ≤Mµ(F )

1
p .

In the next two statements, LR(p, 1) and LS(q,∞) denote the correspond-
ing Lorentz spaces on the respective measure spaces (R,µ) and (S, ν).

Proposition 2.16. [7, Theorem 5.5.3] Let (R,µ) and (S, ν) be two non-
atomic σ-finite measure spaces. Suppose 1 ≤ p <∞, 1 ≤ q ≤ ∞. Let T be a
linear operator defined on the simple functions on (R,µ) and taking values on
the measurable functions on (S, ν). We suppose that T is of restricted weak
type (p, q). Then T uniquely extends to a bounded operator from LR(p, 1) to
LS(q,∞).

Theorem 2.17 (Stein-Weiss). [7, Theorem 4.5.5] Let (R,µ) and (S, ν) be
two measure spaces. Suppose 1 ≤ p0 < p1 < ∞ and 1 ≤ q0, q1 ≤ ∞
with q0 6= q1. Suppose further that T is a linear operator defined on the
simple functions on (R,µ) and taking values on the measurable functions
on (S, ν) and suppose that T is of restricted weak types (p0, q0) and (p1, q1).
If 1 ≤ r ≤ ∞, then T has a unique extension to a linear operator, again
denoted by T, which is bounded from LR(p, r) into LS(q, r) where

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
, 0 < θ < 1.

If in addition, the inequalities pj ≤ qj (j = 0, 1) hold, then T is of strong
type (p, q), i.e. there exists a positive constant C such that

||Tf ||Lq(S,ν) ≤ C||f ||Lp(R,µ) (f ∈ Lp(R,µ)).

We finish this section with the Wolff reiteration theorem.

Definition 2.18. If (X0, X1) is a compatible couple of quasi-Banach spaces,
then a quasi-Banach space X is said to be an intermediate space between
X0 and X1 if X is continuously embedded between X0 ∩X1 and X0 + X1,
i.e.

X0 ∩X1 ↪→ X ↪→ X0 +X1.
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We remind the reader that the real interpolation space (X0, X1)θ,q , 0 <
θ < 1, 1 ≤ q ≤ ∞ is an intermediate space between X0 and X1. In this
direction, we recall the following density theorem. The given reference is for
Banach spaces; for quasi-Banach spaces, we refer to [8, Section 3.11].

Theorem 2.19. [7, Theorem 2.9] Let (X0, X1) be a compatible couple of
quasi-Banach spaces and suppose 0 < θ < 1, 1 ≤ q < ∞. Then the sub-
space X0 ∩X1 is dense in (X0, X1)θ,q .

We next state the Wolff reiteration theorem.

Theorem 2.20. [21, 16] Let X2 and X3 be intermediate quasi-Banach spaces
of a compatible couple (X1, X4) of quasi-Banach spaces. Let 0 < ϕ,ψ < 1
and 1 ≤ q, r ≤ ∞ and suppose that

X2 = (X1, X3)ϕ,q , X3 = (X2, X4)ψ,r .

Then (up to equivalence of norms)

X2 = (X1, X4)ρ,q , X3 = (X1, X4)θ,r

where

ρ =
ϕψ

1− ϕ+ ϕψ
, θ =

ψ

1− ϕ+ ϕψ
.

3. The Bergman-Lorentz spaces on tube domains over
symmetric cones

3.1. Symmetric cones: definitions and preliminary notions. Mate-
rials of this section are essentially from [11]. We give some definitions and
useful results.

Let Ω be an irreducible open cone of rank r inside a vector space V of
dimension n, endowed with an inner product (.|.) for which Ω is self-dual.
Such a cone is called a symmetric cone in V. Let G(Ω) be the group of
transformations of Ω, and G its identity component. It is well-known that
there exists a subgroup H of G acting simply transitively on Ω, that is, every
y ∈ Ω can be written uniquely as y = ge for some g ∈ H and a fixed e ∈ Ω.
The notation ∆ is for the determinant of Ω.

We first recall the following lemma.

Lemma 3.1. [2, Corollary 3.4 (i)] The following inequality is valid.

∆(y) ≤ ∆(y + v) (y, v ∈ Ω).

We denote by dΩ the H-invariant distance on Ω. The following lemma
will be useful.

Lemma 3.2. [2, Theorem 2.38] Let δ > 0. There exists a positive constant
γ = γ(δ,Ω) such that for ξ, ξ′ ∈ Ω satisfying dΩ(ξ, ξ′) ≤ δ, we have

1

γ
≤ ∆(ξ)

∆(ξ′)
≤ γ.

In the sequel, we write as usual V = Rn.
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3.2. Bergman-Lorentz spaces on tube domains over symmetric
cones. Proof of Theorem 1.1. Let Ω be an irreducible symmetric cone
in Rn with rank r, determinant ∆ and fixed point e. We denote TΩ = Rn+iΩ
the tube domain in Cn over Ω. For ν ∈ R, we define the weighted measure µ
on TΩ by dµ(x+ iy) = ∆ν−n

r (y)dxdy. For a measurable subset A of TΩ, we
denote by |A| the (unweighted) Lebesgue measure of A, i.e. |A| =

∫
A dxdy.

Definition 3.3. Since the determinant ∆ is a polynomial in Rn, it can
be extended in a natural way to Cn as a holomorphic polynomial we shall

denote ∆
(
x+iy
i

)
. It is known that this extension is zero free on the simply

connected region TΩ in Cn. So for each real number α, the power function

∆α can also be extended as a holomorphic function ∆α
(
x+iy
i

)
on TΩ.

The following lemma will be useful.

Lemma 3.4. [2, Remark 3.3 and Lemma 3.20] Let α > 0.

(1) We have ∣∣∣∆−α (z
i

)∣∣∣ ≤ ∆−α(=m z) (z ∈ TΩ).

(2) We suppose ν > n
r − 1 and p > 0. The following estimate∫

Ω

(∫
Rn

∣∣∣∣∆−α(x+ i(y + e)

i

)∣∣∣∣p dx)∆ν−n
r (y)dy <∞

holds if and only if α >
ν+ 2n

r
−1

p .

We denote by d the Bergman distance on TΩ. We remind the reader that
the group Rn ×H acts simply transitively on TΩ. The following lemma will
also be useful.

Lemma 3.5. [2, Proposition 2.42] The measure ∆−
2n
r (y)dxdy is Rn ×H-

invariant on TΩ.

The following corollary is an easy consequence of Lemma 3.2.

Corollary 3.6. Let δ > 0. There exists a positive constant C = C(δ) such
that for z, z′ ∈ Ω satisfying d(z, z′) ≤ δ, we have

1

C
≤ ∆(=m z)

∆(=m z′)
≤ C.

The next proposition will lead us to the definition of Bergman-Lorentz
spaces.

Proposition 3.7. The measure space (TΩ, µ) is a non-atomic σ-finite mea-
sure space.

In view of this proposition, all the results of the previous section are valid
on the measure space (TΩ, µ). We shall denote by Lν(p, q) the corresponding
Lorentz space on (TΩ, µ) and we denote by || · ||Lν(p,q) its associated (quasi-)
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norm. Moreover, we write Lpν for the weighted Lebesgue space Lp(TΩ, dµ)
on (TΩ, µ).

The following corollary is an immediate consequence of Theorem 2.19 and
assertion a) of Theorem 2.14.

Corollary 3.8. The subspace C∞c (TΩ) consisting of C∞ functions with com-
pact support on TΩ is dense in the Lorentz space Lν(p, q) for all 1 < p <
∞, 1 ≤ q <∞.

Definition 3.9. The Bergman-Lorentz space Aν(p, q), 1 ≤ p, q ≤ ∞ is the
subspace of the Lorentz space Lν(p, q) consisting of holomorphic functions.
In particular Aν(p, p) = Apν , where Apν = Hol(TΩ)∩Lpν is the usual weighted
Bergman space on TΩ. In fact, Apν , 1 ≤ p ≤ ∞ is a closed subspace of the
Banach space Lpν . The Bergman projector Pν is the orthogonal projector
from the Hilbert space L2

ν to its closed subspace A2
ν .

For each F ∈ Aν(p, q), we shall adopt the notation:

||F ||Aν(p,q) = ||F ||Lν(p,q)

Example 3.10. Let ν > n
r − 1, 1 < p < ∞, 1 ≤ q ≤ ∞. The function

F (z) = ∆−α( z+iei ) belongs to the Bergman-Lorentz Aν(p, q) if α >
ν+ 2n

r
−1

p .

Indeed we can find positive numbers p0 and p1 such that 1 ≤ p0 < p <

p1 ≤ ∞ and α >
ν+ 2n

r
−1

pi
(i = 0, 1). By assertion 2) of Lemma 3.4, the

holomorphic function F belongs to Lpiν (i = 0, 1). The conclusion follows
by assertion a) of Theorem 2.14 and Theorem 2.19.

Remark 3.11. (1) We could not provide examples showing that

Aν(p, q0) 6= Aν(p, q1)

if q0 6= q1. However, in the one-dimensional case n = r = 1, Ω =
(0,∞) (TΩ is the upper half-plane), it is easy to prove that for ν >

0, 0 < p <∞ the function (z+i)
− ν+1

p belongs to Aν(p,∞), but does
not belong to Aν(p, p) = Apν . In fact, by assertion (2) of Lemma 3.4,
the function (z+ i)−β, β ∈ R, belongs to Apν if and only if β > ν+1

p .

(2) In section 5 below, we shall show that Aν(p0, q0) 6= Aν(p1, q1) unless
p0 = p1, q0 = q1, in the following two cases:
(a) 1 < p0, p1 < Qν and 1 < q0, q1 <∞;
(b) 1 +Q−1

ν < p0, p1 < 1 +Qν and 1 ≤ q0, q1 <∞.

Lemma 3.12. Let ν ∈ R, 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and let f ∈ Aν(p, q).
For every compact set K of Cn contained in TΩ, there is a positive constant
CK such that

|f(z)| ≤ CK ||f ||Aν(p,q) (z ∈ K).

Proof. Suppose first p = ∞. The interesting case is q = ∞. In this case,
Lν(p, q) = L∞ and Aν(p, q) = A∞ is the space of bounded holomorphic
functions on (TΩ, µ). The relevant result is straightforward.
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We next suppose 1 < p < ∞, 1 ≤ q ≤ ∞ and f ∈ Aν(p, q). Since Lν(p, q)
continuously embeds in Lν(p,∞) (Proposition 2.8) it suffices to show that
for each f ∈ Aν(p,∞), we have

|f(z)| ≤ CK ||f ||Aν(p,∞) (z ∈ K).

For a compact set K in Cn contained in TΩ, we call ρ the Euclidean dis-
tance from K to the boundary of TΩ. We denote B(z, ρ2) the Euclidean ball
centered at z, with radius ρ

2 . We apply successively

- the mean-value property,
- the fact that the function

u+ iv ∈ TΩ 7→ ∆ν−n
r (v)

is uniformly bounded below on every Euclidean ball B(z, ρ2) when z
lies on K and

- the second part of Theorem 2.2,

to obtain that

|f(z)| = 1
|B(z, ρ

2
)|

∣∣∣∫B(z, ρ
2

) f(u+ iv)dudv
∣∣∣

≤ C
|B(z, ρ

2
)|
∫
B(z, ρ

2
) |f(u+ iv)|∆ν−n

r (v)dudv

≤ C
|B(z, ρ

2
)|
∫ µ(B(z, ρ

2
))

0 f?(t)dt

≤ C
|B(z, ρ

2
)|
∫ µ(Kρ)

0 t
1
p f?(t)t

1
p′ dt

t

≤ C||f ||Aν (p,∞)

|B(z, ρ
2
|
∫ µ(Kρ)

0 t
1
p′ dt

t ≤ CK ||f ||Aν(p,∞)

for each z ∈ K, with Kρ =
⋃
z∈K B(z, ρ2) and CK = Cp′ 1

|B(z, ρ
2

)|(µ(Kρ))
1
p′ .

We recall that there is a positive constant Cn such that for all z ∈ Cn and
ρ > 0, we have |B(z, ρ)| = Cnρ

2n and we check easily that µ(Kρ) <∞. �

Proof of Theorem 1.1. (1) We suppose that ν ≤ n
r −1. It suffices to show

that Aν(p,∞) = {0} for all 1 < p <∞. Given F ∈ Aν(p,∞), we first prove
the following lemma.

Lemma 3.13. Let F be a holomorphic function in TΩ. Then for general
ν ∈ R, the following estimate holds.

(3.1) |F (x+ iy)|∆
ν+n

r
p (y) ≤ Cp||F ||Aν(p,∞) (x+ iy ∈ TΩ).

Proof of the Lemma. We recall the following inequality [2, Proposition
5.5]:

|F (x+ iy)| ≤ C
∫
d(x+iy, u+iv)<1

|F (u+ iv)| dudv
∆

2n
r (v)

(3.2) ≤ C ′∆−ν−
n
r (y)

∫
d(x+iy, u+iv)<1

|F (u+ iv)|dµ(u+ iv).
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The latter inequality follows by Corollary 3.6. Now by Theorem 2.2, we
have∫

d(x+iy,u+iv)<1
|F (u+ iv)|dµ(u+ iv) ≤

∫ µ(Bberg(x+iy,1))

0
t

1
pF ?(t)t

1
p′
dt

t

(3.3) ≤ p′||F ||Aν(p,∞) (µ(Bberg(x+ iy, 1))
1
p′ ,

where Bberg(·, ·) denotes the Bergman ball in TΩ. By Lemma 3.5 and Corol-
lary 3.6, we obtain that

(3.4) µ (Bberg(x+ iy, 1)) ' ∆ν+n
r (y).

Then combining (3.2), (3.3) and (3.4) gives the announced estimate (3.1).
�

We next deduce that the function

z ∈ TΩ 7→ F (z + ie)∆−α(z + ie)

belongs to the Bergman space A1
ν when α is sufficiently large. We distinguish

two cases:

(1) ν ≤ −n
r ;

(2) −n
r < ν ≤ n

r − 1.

Case 1). We suppose that ν ≤ −n
r . We take α >

−ν−n
r

p and we apply

assertion (1) of Lemma 3.4

|F (x+ iy) ∆−α(x+ iy)
∣∣

= |F (x+ iy)|
∣∣∣∣∆−α− ν+n

r
p (x+ iy)

∣∣∣∣ ∣∣∣∣∆ ν+n
r

p (x+ iy)

∣∣∣∣
≤ |F (x+ iy)|

∣∣∣∣∆−α− ν+n
r

p (x+ iy)

∣∣∣∣ ∣∣∣∣∆ ν+n
r

p (y)

∣∣∣∣
≤ Cp||F ||Aν(p,∞)

∣∣∣∣∆−α− ν+n
r

p (x+ i(y + e))

∣∣∣∣ .
For the latter inequality, we applied estimate (3.1) of Lemma 3.13. The
conclusion follows because by assertion (2) of Lemma 3.4, the function

∆
−α− ν+n

r
p (x+ iy) is integrable on TΩ when α is sufficiently large.

Case 2). We suppose that −n
r < ν ≤ n

r − 1. Since ν+ n
r > 0 and ∆(y+ e) ≥

∆(e) = 1 by Lemma 3.1, it follows from (3.1) that the function z ∈ TΩ 7→
F (z + ie) is bounded on TΩ. The conclusion easily follows.

Finally we remind that A1
ν = {0} if ν ≤ n

r − 1 (cf. e.g. [2, Proposition
3.8]). We conclude that the function F (·+ie) vanishes identically on TΩ. An
application of the analytic continuation principle then implies the identity
F ≡ 0 on TΩ.
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(2) We suppose that ν > n
r −1. It suffices to show that Aν(p, q) is a closed

subspace of the Banach space (Lν(p, q), || · ||(p,q)). For p =∞, the interesting
case is q =∞ and then Aν(p, q) = A∞ν ; the relevant result is easy to obtain.
We next suppose that 1 < p <∞ and 1 ≤ q ≤ ∞. In view of Lemma 3.12, ev-
ery Cauchy sequence {fm}∞m=1 in

(
Aν(p, q), || · ||Aν(p,q)

)
converges to a holo-

morphic function f : TΩ → C on compact sets in Cn contained in TΩ. On the
other hand, since the sequence {fm}∞m=1 is a Cauchy sequence in the Banach
space

(
Lν(p, q), || · ||Aν(p,q)

)
, it converges with respect to the Lν(p, q)-norm

to a function g ∈ Lν(p, q). Now by Proposition 2.6, this sequence contains
a subsequence {fmk}∞k=1 which converges µ-a.e. to g. The uniqueness of the
limit implies that f = g a.e. We have proved that the Cauchy sequence {fm}
in (Aν(p, q), || · ||Aν(p,q)) converges in (Aν(p, q), || · ||Aν(p,q)) to the function
f. �

4. Density in Bergman-Lorentz spaces. Proof of Theorem
1.2

4.1. Density in Bergman-Lorentz spaces. We adopt the following no-
tation given in the introduction:

Qν = 1 +
ν

n
r − 1

.

We shall refer to the following result. For its proof, consult [18, Corollary
3.7] and [2, Theorem 4.23].

Theorem 4.1. Let ν > n
r − 1.

(1) The weighted Bergman projector Pγ , γ > ν + n
r − 1 (resp. γ ≥

ν + n
r − 1) extends to a bounded operator from Lpν to Apν for all

1 ≤ p < Qν (resp. 1 < p < Qν).
(2) The weighted Bergman projector Pν extends to a bounded operator

from Lpν to Apν for all 1 +Q−1
ν < p < 1 +Qν .

The following corollary follows from a combination of Theorem 4.1, The-
orem 2.13 and Theorem 2.14.

Corollary 4.2. Let ν > n
r − 1. The weighted Bergman projector Pγ , γ ≥

ν+ ν
r−1 (resp. the Bergman projector Pν) extends to a bounded operator from

Lν(p, q) to Aν(p, q) for all 1 < p < Qν (resp. for all 1 +Q−1
ν < p < 1 +Qν)

and 1 ≤ q ≤ ∞.

The following proposition was proved in [2, Theorem 3.23].

Proposition 4.3. We suppose that ν, γ > n
r − 1. Let 1 ≤ p, t < ∞. The

subspace Apν ∩Atγ is dense in the Banach space Apν .

Remark 4.4. If the weighted Bergman projector Pγ extends to a bounded
operator on Lpν and if Pγ is the identity on Atγ , then Pγ is the identity on

Apν .
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The next corollary is a consequence of Theorem 4.1, Proposition 4.3 and
Remark 4.4.

Corollary 4.5. Let ν > n
r − 1.

(1) For all p ∈ (1+Q−1
ν , 1+Qν), the Bergman projector Pν is the identity

on Apν .
(2) For all γ > ν + n

r − 1 (resp. γ ≥ ν + n
r − 1) and for all 1 ≤ p < Qν

(resp. 1 < p < Qν), the Bergman projector Pγ is the identity on Apν .

Proof. (1) Take t = 2 and γ = ν in Proposition 4.3. Then apply
assertion (2) of Theorem 4.1 and Remark 4.4.

(2) Take t = 2 in Proposition 4.3. Then apply assertion (1) of Theorem
4.1 and Remark 4.4.

�

We shall prove the following density result for Bergman-Lorentz spaces.

Proposition 4.6. We suppose that γ, ν > n
r −1, 1 ≤ p, t <∞ and 1 ≤ q <

∞. The subspace Aν(p, q)∩Atγ is dense in the (quasi-)Banach space Aν(p, q)
in the following three cases.

(1) p = q;
(2) γ = ν > n

r − 1, 1 +Q−1
ν < p, t < 1 +Qν and 1 ≤ q < p;

(3) 1 < p < Qν , 1 < t < Qγ and 1 ≤ q < p;
(4) γ ≥ ν + n

r − 1, 1 < p < Qν , 1 +Q−1
γ < t < 1 +Qγ and 1 ≤ q < p;

(5) γ ≥ ν and p, q ∈ (t,∞).

Proof. (1) For p = q, Aν(p, p) = Apν , the result is known, cf. e.g. [2,
Theorem 3.23].

(2) We suppose now that γ = ν > n
r − 1, 1 + Q−1

ν < p, t < 1 + Qν
and 1 ≤ q < p. Given F ∈ Aν(p, q), by Corollary 3.8, there exists a
sequence {fm}∞m=1 of C∞ functions with compact support on TΩ such
that {fm}∞m=1 → F (m→∞) in Lν(p, q). Each fm belongs to Ltν ∩
Lν(p, q). By Corollary 4.2 and Theorem 4.1 , the Bergman projector
Pν extends to a bounded operator on Lν(p, q) and on Ltν respectively.
So Pνfm ∈ Aν(p, q) ∩ Atγ and {Pνfm}∞m=1 → PνF (m → ∞) in

Aν(p, q). Notice that Aν(p, q) ⊂ Apν because q < p. By assertion (1)
of Corollary 4.5, we obtain that PνF = F. This finishes the proof of
assertion (2).

(3) We suppose that 1 < p < Qν , 1 < t < Qγ and 1 ≤ q < p. Given
F ∈ Aν(p, q), by Corollary 3.8, there exists a sequence {fm}∞m=1

of C∞ functions with compact support on TΩ such that {fm}∞m=1 →
F (m→∞) in Lν(p, q). Each fm belongs to Ltγ∩Lν(p, q). By Corol-
lary 4.2 and Theorem 4.1 , for all s > max{ν + n

r − 1, γ + n
r − 1},

the Bergman projector Ps extends to a bounded operator on Lν(p, q)
and on Ltγ respectively. So Psfm ∈ Aν(p, q)∩Atν and {Psfm}∞m=1 →
PsF (m→∞) in Aν(p, q). Notice that Aν(p, q) ⊂ Apν because q < p.
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By assertion (2) of Corollary 4.5 we obtain that PsF = F. This fin-
ishes the proof of assertion (3).

(4) Replace Ps in the previous case by Pγ .
(5) Let l be a bounded linear functional on Aν(p, q) such that l(F ) = 0

for all F ∈ Aν(p, q) ∩Atγ . We must show that l ≡ 0 on Aν(p, q).
We first prove that the holomorphic function Fm,α defined on TΩ by

Fm,α(z) = ∆−α
( z
m + ie

i

)
F (z)

belongs to Aν(p, q)∩Atγ when α > 0 is sufficiently large. By Lemma
3.4 (assertion (1)) and Lemma 3.1, we have∣∣∣∣∆−α( z

m + ie

i

)∣∣∣∣ ≤ ∆−α(e) = 1.

So |Fm,α| ≤ |F |; this implies that Fm,α ∈ Aν(p, q).
We next show that Fm,α ∈ Atγ when α is large. We obtain that

I :=
∫
TΩ

∣∣∣∣∆−α( x+iy
m

+ie

i

)
F (x+ iy)

∣∣∣∣t∆γ−n
r (y)dxdy

=
∫
TΩ

∣∣∣∣∆−α( x+iy
m

+ie

i

)
F (x+ iy)

∣∣∣∣t∆γ−ν(y)dµ(x+ iy).

Since γ ≥ ν, by Lemma 3.4 (assertion (1)) and Lemma 3.1, we obtain
that

I ≤ Cm,γ,ν
∫
TΩ

∣∣∣∣∣∆−αt+γ−ν
(
x+iy
m + ie

i

)∣∣∣∣∣|F (x+ iy)|tdµ(x+ iy).

Observing that (|f |t)? = (f?)t, we notice that |F |t ∈ Lν(pt ,
q
t ).

By Theorem 2.7, it suffices to show that the function z ∈ TΩ 7→

∆−αt+γ−ν
(

x+iy
m

+ie

i

)
belongs to Lν((pt )

′, ( qt )
′) when α is large. The

desired conclusion follows by Example 3.10.
So our assumption implies that

(4.1) l(Fm,α) = 0.

By the Hahn-Banach theorem, there exists a bounded linear func-

tional l̃ on Lν(p, q) such that l̃|Aν(p,q) = l and the operator norms

||l̃|| and ||l|| coincide. Furthermore, by Theorem 2.7, there exists a
function ϕ ∈ Lν(p′, q′) such that

l̃(f) =

∫
TΩ

f(z)ϕ(z)dµ(z) ∀f ∈ Lν(p, q).

We must show that

(4.2)

∫
TΩ

F (z)ϕ(z)dµ(z) = 0 ∀F ∈ Aν(p, q).
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The equation (4.1) can be expressed in the form∫
TΩ

Fm,α(z)ϕ(z)dµ(z) =

∫
TΩ

∆−α
( z
m + ie

i

)
F (z)ϕ(z)dµ(z) = 0.

Again by Theorem 2.7, the function Fϕ is integrable on TΩ since
F ∈ Lν(p, q) and ϕ ∈ Lν(p′, q′). We also have∣∣∣∣∆−α( z

m + ie

i

)∣∣∣∣ ≤ 1 ∀z ∈ TΩ, m = 1, 2, · · ·

An application of the Lebesgue dominated theorem next gives the
announced conclusion (4.2).

�

We next deduce the following corollary.

Corollary 4.7. Let ν > n
r − 1.

(1) For all 1 < p < Qν and 1 < q <∞, and for every real index γ such

that γ ≥ ν + n
r − 1 and γ >

(
1

min (p,q)−1 − 1
) (

n
r − 1

)
, the Bergman

projector Pγ is the identity on Aν(p, q).
(2) For all p ∈ (1 +Q−1

ν , 1 +Qν) and 1 ≤ q <∞, the Bergman projector
Pν is the identity on Aν(p, q).

Proof. (1) By assertion (1) of Corollary 4.5, for all t ∈ (1+Q−1
γ , 1+Qγ),

Pγ is the identity on Atγ . Next let 1 < p < Qν and 1 < q < ∞. Let

the real index γ be such that γ ≥ ν+ n
r −1 and 1+Q−1

γ < min(p, q).

We take t such that 1 + Q−1
γ < t < min(p, q). It follows from the

assertion (5) of Proposition 4.6 that the subspace Aν(p, q) ∩ Atγ is
dense in the Banach space Aν(p, q). But by Corollary 4.2, Pγ extends
to a bounded operator on Lν(p, q). We conclude then that Pγ is the
identity on Aν(p, q).

(2) By assertion (1) of Corollary 4.5, for all t ∈ (1 + Q−1
ν , 1 + Qν), Pν

is the identity on Atν . Next let 1 +Q−1
ν < p < 1 +Qν . By Corollary

4.2, Pν extends to a bounded operator on Lν(p, q). It then suffices to
show that the subspace Aν(p, q) ∩ Atν is dense in the Banach space
Aν(p, q) for some t ∈ (1 + Q−1

ν , 1 + Qν). If 1 + Q−1
ν < q < ∞, we

take t such that 1 +Q−1
ν < t < min(p, q) : the conclusion follows by

assertion (5) of Proposition 4.6. Otherwise, if 1 ≤ q ≤ 1 + Q−1
ν , by

assertion (2) of the same proposition, for all 1+Q−1
ν < p, t < 1+Qν ,

the conclusion follows.
�

4.2. Proof of Theorem 1.2. Combine Corollary 4.2 with Corollary 4.7.

The following corollary lifts the condition q < p in assertions (2), (3) and
(4) of Proposition 4.6. In fact, it gives sufficient conditions for density of
Aν(p, q) ∩Atγ in Aν(p, q) when q > p.
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Corollary 4.8. Let ν > n
r − 1 and 1 < p < q <∞. The subspace Aν(p, q)∩

Atγ is dense in the Banach space Aν(p, q) in the following three cases.

(1) γ = ν, 1 +Q−1
ν < p, t < 1 +Qν ;

(2) γ ≥ ν + n
r − 1, γ > 2−p

p−1(nr − 1), 1 < p < Qν , 1 < t < Qγ ;

(3) γ ≥ ν + n
r − 1, γ > 2−p

p−1(nr − 1), 1 < p < Qν , 1 +Q−1
γ < t < 1 +Qγ .

Proof. We resume the proof of assertion (2) (resp. assertions (3) and (4)) of
Proposition 4.6 up to the equality PγF = F (resp. PνF = F ). In the proof
of Proposition 4.6, this equality followed from the inclusion Aν(p, q) ⊂ Apν
(since q < p) and assertion (1) (resp. assertion (2) of Corollary 4.5. Here
we use assertion (1) (resp. assertion (2)) of Corollary 4.7. �

5. Real interpolation between Bergman-Lorentz spaces.
Proof of Theorem 1.3.

In this section, we prove Theorem 1.3. In the sequel, we write

L0 = Lp0
ν (resp. L0 = Lν(p0, q0)), L1 = Lν(p1, q1), L = L0 + L1

and

A0 = Ap0
ν (resp. A0 = Aν(p0, q0)), A1 = Aν(p1, q1), A = A0 +A1.

We shall use the following lemma.

Lemma 5.1. Let 0 < θ < 1, 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1, q ≤ ∞. Define
the exponent p by 1

p = 1−θ
p0

+ θ
p1
. We have the identification with equivalence

of (quasi-)norms:

(5.1) (L0, L1)θ,q ∩ (A0 +A1) = Aν(p, q) ∩ (A0 +A1) .

Moreover, the identity Aν(p, q)∩(A0 +A1) = Aν(p, q) holds if there exists
γ > n

r − 1 such that Pγ is the identity on Aν(p, q) and extends to a bounded
operator on Li, i = 0, 1.

The space on the left side of (5.1) is equipped with the (quasi-)norm
induced by the real interpolation space (L0, L1)θ,q and the space on the

right side is equipped with the (quasi-)norm induced by the Lorentz space
Lν(p, q).

Proof of the lemma. We have

(L0, L1)θ,q ∩ (A0 +A1) = (L0, L1)θ,q ∩ ((A0 +A1) ∩Hol(TΩ))

=
(

(L0, L1)θ,q ∩Hol(TΩ)
)
∩ (A0 +A1)

= (Lν(p, q) ∩Hol(TΩ)) ∩ (A0 +A1)
= Aν(p, q) ∩ (A0 +A1) ,

where the third equality follows from assertion b) of Theorem 2.13.
For the second assertion, suppose that there exists γ > n

r −1 such that Pγ
is the identity on Aν(p, q) and extends to a bounded operator on Li, i = 0, 1.
Then PγF = F for all F ∈ Aν(p, q).Now, since Lν(p, q) ⊂ L0+L1, there exist
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ai ∈ Li (i = 0, 1) such that F = a0 +a1. Then F = PγF = Pγa0 +Pγa1 with
Pγai ∈ Ai (i = 0, 1). This shows that Aν(p, q) ⊂ A0 + A1 : the conclusion
follows. �

We next prove assertions (1) and (2) of Theorem 1.3. In view of the previ-
ous lemma, it follows from the hypotheses and from Theorem 4.1, Corollary
4.5, Corollary 4.2 and Corollary 4.7 that it suffices to prove the identity

(A0, A1)θ,q = (L0, L1)θ,q ∩ (A0 +A1) ,

with equivalence of norms. We shall prove this identity for all 1 ≤ q ≤ ∞.
More precisely, we prove the following theorem.

Theorem 5.2. Let ν > n
r , 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1, q ≤ ∞ and

0 < θ < 1. Suppose that there exists γ > n
r − 1 such that Pγ is the identity

on Aν(p, q) (resp. on A0+A1) and extends to a bounded operator on Li, i =
0, 1. Then if 1

p = 1−θ
p0

+ θ
p1
, we have

(5.2)
(A0, A1)θ,q = (L0, L1)θ,q ∩ (A0 +A1) = Aν(p, q) ∩ (A0 +A1) = Aν(p, q).

Proof of Theorem 5.2. The second identity of (5.2) was given by Lemma
5.1. By Definition 2.10 (the definition of real interpolation spaces), we have
at once

(A0, A1)θ,q ↪→ (L0, L1)θ,q

with 1 ≤ q ≤ ∞. Since (A0, A1)θ,q ⊂ A0 +A1, we conclude that

(A0, A1)θ,q ↪→ (L0, L1)θ,q ∩ (A0 +A1) .

We next show the converse, i.e. (L0, L1)θ,q ∩ (A0 + A1) ↪→ (A0, A1)θ,q . We
must show that there exists a positive constant C such that

(5.3) ||F ||(A0,A1)θ,q
≤ C||F ||(L0,L1)θ,q

∀F ∈ (L0, L1)θ,q ∩ (A0 +A1) .

We recall that, given a compatible couple (X0, X1) of (quasi-)Banach spaces,
if we write X = X0 +X1, we have

(5.4) ||F ||(X0,X1)θ,q
=

(∫ ∞
0

(
t−θK(t, F,X)

)q dt
t

) 1
q

if q <∞ (resp.

(5.5) ||F ||(X0,X1)θ,∞
= sup

t>0
t−θK(t, F,X)

if q =∞) with

K(t, F,X) = inf {||a0||X0 + t||a1||X1 : F = a0 + a1, a0 ∈ X0, a1 ∈ X1} .

When we compare (5.4) (resp. (5.5)) for X = A and X = L, the estimate
(5.3) will follow if we can prove that

K(t, F,A) ≤ CK(t, F, L) (F ∈ Aν(p, q) (resp. F ∈ A0 ∩A1)).
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We have F = PγF and Pγ extends to a bounded operator from Li to Ai, i =
0, 1. So we obtain the inclusion

{(a0, a1) ∈ A0 ×A1 : F = a0 + a1}

⊃ {(Pγa0, Pγa1) : (a0, a1) ∈ L0 × L1, F = a0 + a1},
which implies that

K(t, F,A)

≤ inf {||Pγa0||L0 + t||Pγa1||L1 : F = a0 + a1, a0 ∈ L0, a1 ∈ L1}

≤ inf {||Pγ ||0||a0||L0 + t||Pγ ||1||a1||L1 : F = a0 + a1, a0 ∈ L0, a1 ∈ L1}
where || · ||i denotes the operator norm on Li (i = 0, 1). We have shown
that

K(t, F,A) ≤
(

max
i=0,1

||Pγ ||i
)
K(t, F, L).

Remind that max
i=0,1

||Pγ ||i <∞. This completes the proof. �

We now prove assertions (3) and (4) of Theorem 1.3. We combine the
Wolff reiteration theorem (Theorem 2.20) with the first assertion of the
theorem. Here X1 = A1

ν (resp. X1 = Aν(p0, q0)) and X4 = Aν(p1, q1). We
take X2 = Aν(p2, r) and X3 = Aν(p3, q) with 1 +Q−1

ν < p2 < p3 < Qν , 1 ≤
r <∞ and 1 ≤ q <∞. By assertion (1) of the theorem, we have

X2 = (X1, X3)ϕ,r with
1

p2
=

1− ϕ
p0

+
ϕ

p3

and

X3 = (X2, X4)ψ,q with
1

p3
=

1− ψ
p2

+
ψ

p1
.

By Theorem 2.20, we conclude that

X2 = (X1, X4)ρ,r , X3 = (X1, X4)θ,q

with

ρ =
ϕψ

1− ϕ+ ϕψ
, θ =

ψ

1− ϕ+ ϕψ
.

In other words, in the present context, we have

Aν(p2, r) =
(
A1
ν , Aν(p1, q1)

)
ρ,r
, Aν(p3, q) =

(
A1
ν , Aν(p1, q1)

)
θ,q

(resp.

Aν(p2, r) = (Aν(p0, q0), Aν(p1, q1))ρ,r , Aν(p3, q) = (Aν(p0, q0), Aν(p1, q1))θ,q)

with

ρ =
ϕψ

1− ϕ+ ϕψ
, θ =

ψ

1− ϕ+ ϕψ
.

To conclude, given 1 +Q−1
ν < p < Qν , take for instance p3 = p.
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Remark 5.3. Theorem 5.2 has a more general form. Let X = (X0, X1)
be a compatible couple of (quasi-)Banach spaces and let Y = (Y0, Y1) be
a sub-couple of (X0, X1), i.e. each Yi is a closed subspace of Xi for each
i = 0, 1. It is known [15, 17] that for all 0 < θ < 1, 1 ≤ q ≤ ∞, we have

(Y0, Y1)θ,q = (X0, X1)θ,q ∩ (Y0 + Y1)

if there exists a positive constant C such that

K(t, a, Y ) ≤ CK(t, a,X) ∀t > 0 ∀a ∈ Y0 + Y1.

In [15], such a subcouple Y is called a K−subcouple of X.

In this vein, the following corollary is a consequence of Theorem 5.2.

Corollary 5.4. Let ν > n
r − 1.

(1) For all 1 < p1 < Qν , 1 < q1 <∞ and 0 < θ < 1, the real interpola-
tion space (

A1
ν , Aν(p1, q1)

)
θ,q

identifies with

Aν(p, q) ∩
(
A1
ν +Aν(p1, q1)

)
,

1

p
= 1− θ +

θ

p1
, 1 ≤ q ≤ ∞

with equivalence of norms.
(2) For all 1 < p0 < p1 < Qν , 1 < q0, q1 < ∞ (resp. 1 + Q−1

ν < p0 <
p1 < 1 +Qν , 1 ≤ q0, q1 <∞) the real interpolation space

(Aν(p0, q0), Aν(p1, q1))θ,q

identifies with

Aν(p, q) ∩ (Aν(p0, q0) +Aν(p1, q1)) ,
1

p
=

1− θ
p0

+
θ

p1
, 1 ≤ q ≤ ∞

with equivalence of norms.

Proof. We apply Theorem 5.2 after the following two remarks.

(1) By assertion (2) of Corollary 4.5 and assertion (1) of Corollary 4.7
respectively, for γ > ν+n

r−1 sufficiently large, the weighted Bergman

projector Pγ is the identity on A1
ν and Aν(p1, q1). Hence Pγ is the

identity on A1
ν+Aν(p1, q1). Next, by assertion (1) of Theorem 4.1 and

Corollary 4.2 respectively, Pγ also extends to a bounded operator on
L1
ν and Lν(p1, q1).

(2) By assertion (1) (resp. assertion (2)) of Corollary 4.7, for γ > ν +
n
r − 1 sufficiently large, the weighted Bergman projector Pγ (resp.
the weighted Bergman projector Pν) is the identity on Aν(p0, q0) and
Aν(p1, q1). Hence Pγ is the identity on Aν(p0, q0) +Aν(p1, q1). Next,
by Corollary 4.2, Pγ (resp. Pν) also extends to a bounded operator
on Lν(p0, q0) and Lν(p1, q1).

�
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As announced in assertion (2) of Remark 3.11, we next prove the following
theorem.

Theorem 5.5. Let ν > n
r − 1. Then Aν(p0, q0) 6= Aν(p1, q1) unless p0 =

p1, q0 = q1, in the following two cases:

(a) 1 < p0, p1 < Qν and 1 < q0, q1 <∞;
(b) 1 +Q−1

ν < p0, p1 < 1 +Qν and 1 ≤ q0, q1 <∞.
Moreover, Aν(p, q) is strictly contained in Aν(p,∞) in the following two
cases:

(a) 1 < p < Qν and 1 < q <∞;
(b) 1 +Q−1

ν < p < 1 +Qν and 1 ≤ q <∞.
Proof. We rely on the following theorem.

Theorem 5.6. [16, Theorem 2 of section 3] Let (A0, A1) be a compatible
couple of Banach spaces such that A0 ∩A1 is not closed in A0 +A1. Let 0 <
θ, η < 1, 1 ≤ p, q ≤ ∞. Then (A0, A1)θ,p 6= (A0, A1)η,q unless θ = η, p = q.

Let us prove the first assertion of Theorem 5.5. According to assertion (2)

of Theorem 1.3, for all p(0) and p(1) satisfying 1 < p(0) < p0, p1 < p(1) < Qν
in case (a) (resp. 1 +Q−1

ν < p(0) < p0, p1 < p(1) < 1 +Qν in case (b)), there

are 0 < θ, η < 1 such that Aν(p0, q0) =
(
Ap

(0)

ν , Ap
(1)

ν

)
θ,q0

and Aν(p1, q1) =(
Ap

(0)

ν , Ap
(1)

ν

)
η,q1

. By Theorem 5.6, it suffices to show that the subspace

Ap
(0)

ν ∩Ap
(1)

ν is not closed in the space Ap
(0)

ν +Ap
(1)

ν when 1 < p(0) < p(1) <∞.
In view of Proposition 4.3, we recall that the subspace Ap

(0)

ν ∩Ap
(1)

ν is dense in

the space Ap
(1)

ν , and in view of Example 3.10, we point out that Ap
(0)

ν ∩Ap
(1)

ν

is strictly contained in Ap
(1)

ν . Now let F ∈ Ap
(1)

ν \
{
Ap

(0)

ν ∩Ap
(1)

ν

}
. There

exists a sequence {Fn}∞n=1 of elements of Ap
(0)

ν ∩Ap
(1)

ν which converges to F

in Ap
(1)

ν . Moreover, since

‖Fn − F‖
Ap

(0)
ν +Ap

(1)
ν

≤ ‖Fn − F‖
Ap

(1)
ν

,

we also have the convergence {Fn}∞n=1 → F in Ap
(0)

ν +Ap
(1)

ν . So F belongs to

the closure of Ap
(0)

ν ∩Ap
(1)

ν in Ap
(0)

ν +Ap
(1)

ν and does not belong to Ap
(0)

ν ∩Ap
(1)

ν :

we have reached the conclusion that Ap
(0)

ν ∩Ap
(1)

ν is not closed in Ap
(0)

ν +Ap
(1)

ν .
We next prove the second assertion of Theorem 5.5. It follows from

Proposition 2.8 that Aν(p, q) ⊂ Aν(p, q′) for all 1 ≤ p < ∞, 1 ≤ q <
q′ ≤ ∞. Hence, in view of the first part of the theorem, we obtain that
Aν(p, q) ( Aν(p, q′) if 1 < p < Qν , 1 < q < q′ < ∞ (resp. 1 + Q−1

ν <
p < 1 + Qν , 1 ≤ q < q′ < ∞). In both cases, we conclude that Aν(p, q) (
Aν(p, q′) ⊂ Aν(p,∞). �

Remark 5.7. (1) Theorem 5.5 takes the following form in the one-
dimensional case, n = r = 1, ν > 0. For all 1 < p0, p1 < ∞, 1 ≤
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q0, q1 < ∞, the property Aν(p0, q0) 6= Aν(p1, q1) holds unless p0 =
p1, q0 = q1. Moreover, Aν(p, q) ( Aν(p,∞) for all 1 < p < ∞ and
1 ≤ q <∞.

(2) Still in the one-dimensional case, Theorem 1.3 gives the following
corollary.

Corollary 5.8 (n = r = 1). Let ν > 0. For all 0 < θ < 1, 1 ≤ q <∞, the
real interpolation space

(Aν(p0, q0), Aν(p1, q1))θ,q

identifies with Aν(p, q) with equivalence of norms in the following two cases.

(1) p0 = q0 = 1, 1 < p1 <∞, 1 ≤ q1 ≤ ∞;
(2) 1 < p0 < p1 <∞, 1 ≤ q0, q1 ≤ ∞.

6. Back to the density in Bergman-Lorentz spaces.

In this section, we shall prove the following more general result than
Proposition 4.6 and Corollary 4.8.

Theorem 6.1. Let γ, ν > n
r − 1. Then the subspace Aν(p, q) ∩ Atγ is dense

in the Banach space Aν(p, q) in the following two cases:

(1) 1 < p < Qν , 1 ≤ t <∞, 1 < q <∞;
(2) 1 +Q−1

ν < p < 1 +Qν , 1 ≤ t <∞, 1 ≤ q <∞.

Proof. According to Proposition 4.3, the subspace Apν ∩Atγ is dense in the

Banach space Apν for all p, t ∈ [1,∞).
Let F ∈ Aν(p, q). Given α > 0 and m = 1, 2, · · · , let

Fm,α(z) = F

(
z +

ie

m

)
∆−α

( z
m + ie

i

)
.

We claim that
1. Fm,α ∈ Aν(p, q) with ||Fm,α||Aν(p,q) ≤ ||F ||Aν(p,q);
2. lim

m→∞
||F − Fm,α||Aν(p,q) = 0;

3. for α large enough, Fm,α ∈ Atγ .
For claim 1, by Lemma 3.4 and Lemma 3.1, observe that if z = x+ iy,∣∣∣∣∆−α( z

m + ie

i

)∣∣∣∣ ≤ ∆−α
( y
m

+ e
)
≤ ∆−α(e) = 1.

We recall from [2, Theorem 3.7] that

||Fm,α||Aσν ≤ ||F ||Aσν (F ∈ Aσν )

for all σ ∈ [1,∞). Applying Theorem 1.3 to the linear operator F 7→ Fm,α
with p0 = 1, 1 < p1 < Qν , 1 ≤ q1 ≤ ∞ (resp. 1 + Q−1

ν < p0, p1 <
1 +Qν , 1 ≤ q0, q1 ≤ ∞), we obtain that

||Fm,α||Aν(p,q) ≤ ||F ||Aν(p,q)
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for all 1 < p < Qν , 1 < q <∞ (resp. 1 +Q−1
ν < p < 1 +Qν , 1 ≤ q <∞).

For claim 2, it was shown in [2, Theorem 3.23] that

lim
m→∞

||F − Fm,α||Aσν = 0 (F ∈ Aσν )

for all σ ∈ [1,∞). Applying again Theorem 1.3, we reach the announced
conclusion.

Finally, to prove claim 3, we obtain by Lemma 3.13 and Lemma 3.1
that there are positive constants C = C(p) and C(m, p, ν) such that for all
x+ iy ∈ TΩ and all F ∈ Aν(p, q) we have

|F (x+ i(y +
e

m
))| ≤ C∆

− ν+n
r

p (y +
e

m
)||F ||Aν(p,q)

≤ C(m, p, ν)||F ||Aν(p,q).

In particular, the function F
(
·+ ie

m

)
is bounded. It now suffices to show

that the function z 7→ ∆−α
( z
m

+ie

i

)
belongs to Atγ when α is sufficiently

large. This follows by assertion (2) of Lemma 3.4. �

Remark 6.2. It follows from assertion (2) of the previous theorem that
when n = 1 (and then r = 1), the subspace Aν(p, q) ∩ Atγ is dense in the
Banach space Aν(p, q) for all γ, ν > 0, 1 < p <∞ and 1 ≤ q, t <∞.

7. Open questions.

7.1. Statement of Question 1. In [4], the following conjecture was stated.

Conjecture. Let ν > n
r − 1. Then the Bergman projector Pν admits a

bounded extension to Lpν if and only if

p′ν < p < pν :=
ν + 2n

r − 1
n
r − 1

− (1− ν)+
n
r − 1

.

This conjecture was completely settled recently for the case of tube do-
mains over Lorentz cones (r = 2). The proof of this result is a combination
of results of [3] and [10] (cf. [6]; cf. also [9] for the particular case where
ν = n

2 ). In this case, Theorem 1.3 can be extended as follows.

Theorem 7.1. We restrict to the particular case of tube domains over
Lorentz cones (r = 2). Let ν > n

2 − 1.

(1) For all 1 < p1 < Qν , 1 ≤ q1 ≤ ∞ and 0 < θ < 1, the real interpola-
tion space (

A1
ν , Aν(p1, q1)

)
θ,q

identifies with Aν(p, q), 1
p = 1−θ+ θ

p1
, 1 < q <∞ with equivalence

of norms.
(2) For all 1 < p0 < p1 < Qν (resp. p′ν < p0 < p1 < pν), 1 ≤ q0, q1 ≤ ∞

and 0 < θ < 1, the real interpolation space

(Aν(p0, q0), Aν(p1, q1))θ,q
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identifies with Aν(p, q), 1
p = 1−θ

p0
+ θ

p1
, 1 < q <∞ (resp. 1 ≤ q <

∞) with equivalence of norms.
(3) For all Qν ≤ p1 < pν , 1 ≤ q1 ≤ ∞, the Bergman-Lorentz spaces

Aν(p, q), p′ν < p < Qν , 1 ≤ q < ∞ are real interpolation spaces
between A1

ν and Aν(p1, q1) with equivalence of norms.
(4) For all 1 < p0 ≤ p′ν , Qν ≤ p1 < pν , 1 ≤ q0, q1 ≤ ∞, the Bergman-

Lorentz spaces Aν(p, q), p′ν < p < Qν , 1 ≤ q < ∞ are real inter-
polation spaces between Aν(p0, q0) and Aν(p1, q1) with equivalence of
norms.

In the upper rank case (r ≥ 3), we always have (1 − ν)+ = 0 and the
conjecture has the form

p′ν < p < pν :=
ν + 2n

r − 1
n
r − 1

.

The best result so far towards the above conjecture is Theorem 1.2. If we
could show that Pν is of restricted weak type (p1, p1) for some 1+Qν < p1 <
pν (resp. p′ν < p1 < 1+Q−1

ν ), then by the Stein-Weiss interpolation theorem
(Theorem 2.20), we would obtain that Pν admits a bounded extension to
Lpν for all 1 +Qν ≤ p < p1 (resp. p′ν < p1 < 1 +Q−1

ν ). This would improve
Theorem 1.2.

Question 1. Prove the existence of an exponent p1 ∈ (1 + Qν , pν) (resp.
p1 ∈ (p′ν , 1 +Q−1

ν )) such that Pν is of restricted weak type (p1, p1). That is,
there exists a positive constant Cp1 such that for each measurable subset E
of TΩ, we have

sup
λ>0

λp1µPνχE (λ) ≤ Cp1µ(E).

Remark 7.2. This question, in the suggested range, is equivalent to the
conjecture. For Lorentz cones (r = 2), the latter property holds for all
p1 ∈ (p′ν , 1 + Q−1

ν ) ∪ (1 + Qν , pν). In this case, it would be interesting, and
stronger than the conjecture, to prove that the Bergman projector Pν is of
restricted weak type (p, p) at the end-points p = pν or p = p′ν . Recall that
when n = r = 1, the Bergman projector is of weak type for p = 1; for the
unit disc, this result goes back to [19].

7.2. Question 2. Can Theorem 6.1 be extended to some (all) exponents
1 + Qν ≤ p < ∞? One could expect that Aν(p, q) ∩ Atγ should be dense in
Aν(p, q) with no restriction on the indices.

7.3. Question 3. This question is twofold. It concerns real interpolation
spaces between two Bergman-Lorentz spaces and it is induced by Theorem
1.3 and Corollary 5.4.

(1) We suppose that n ≥ 3, r ≥ 2. Can assertions (3) and (4) of
Theorem 1.3 be extended to some (all) values p ∈ (1, 1 + Q−1

ν ] or
p ∈ [Qν , 1 +Qν)?
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(2) Is the Bergman-Lorentz space Aν(p,∞) a real interpolation space
between two different Bergman-Lorentz spaces for some (all) 1 ≤ p <
∞? By Corollary 5.8, this question arises even in the one-dimensional
case.

Related is the following question induced by the second part of Lemma 5.1.
Let 0 < θ < 1. We consider two cases:

(1) p0 = q0 = 1, 1 < p1 <∞, 1 ≤ q1 ≤ ∞;
(2) 1 < p0 < p1 <∞, 1 ≤ q0, q1 ≤ ∞.

Define the exponent p by 1
p = 1−θ

p0
+ 1

p1
. Does the inclusion

Aν(p, q) ⊂ Aν(p0, q0) +Aν(p1, q1)

hold for all 1 ≤ q ≤ ∞? In particular, even in the one-dimensional case, is
the inclusion Aν(p,∞) ⊂ Aν(p0, q0) +Aν(p1, q1) valid?

7.4. Question 4. This question is also twofold. It is induced by Remark
3.11, Proposition 2.8 and Theorem 5.5.

(1) Prove that the subspace Aν(p, q) is strictly contained in the space
Aν(p,∞) for all 1 ≤ p <∞, 1 ≤ q <∞. It is likely that the function

∆
− ν+ 2n

r −1

p (z + ie) belongs to Aν(p,∞). By assertion (2) of Lemma
3.4, it does not belong to Apν .

(2) More generally, let 1 < p0, p1 < ∞ and 1 ≤ q0, q1 ≤ ∞. Prove that
Aν(p0, q0) 6= Aν(p1, q1) unless p0 = p1, q0 = q1.

8. Final remark

Many results in this paper make sense as well in the quasi-normed setting,
that is, 0 < p <∞, 0 < q ≤ ∞. The interested reader would state and prove
them in the general setting.
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