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Dynamics and Julia sets of iterated
elliptic functions

Jane Hawkins and Mónica Moreno Rocha

Abstract. We study the parametrized family of elliptic functions of the
form FΛ,bpzq “ ℘Λpzq ` b for b P C, Λ a lattice, and ℘Λ the Weierstrass
elliptic ℘ function with period lattice Λ. We show that the dynamics
depend on b as b varies within one fundamental region of C{Λ, and on
the lattice Λ. We analyze properties of the Julia sets, and bifurcations of
FΛ,b, focussing on real rectangular lattices; in particular the dynamical
properties are more diverse than those coming from the family ℘Λ with
Λ varying.
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1. Introduction

In this paper we show that, when iterating meromorphic functions, the
connectivity of the Julia set changes when a constant is added to the Weier-
strass elliptic ℘ function, without changing the period lattice. Given a lattice
Λ, we consider maps: FΛ,bpzq “ ℘Λpzq` b, b P C, and show for example that
Cantor Julia sets occur when a constant is added to ℘Λ, even when Jp℘Λq

is connected. Iterated elliptic functions have been the subject of study for
some time starting with [18] and [10], and now there is a significant literature
on the topic (see for example [9] – [13], [15] – [19], and [25]). It is known for
example that for any square lattice Λ, the Julia set of ℘Λ is always connected
[12, 4]. The connected Julia sets vary quite a bit and depend on a classical
invariant called g2, or equivalently on the generators of the period lattice Λ.
We focus on real rectangular lattices in this paper, though many statements
are proved more generally. We study bifurcations that occur in parameter
space paying special attention to real parameters and parameters that lie
on the horizontal half lattice lines, emphasizing that the resulting dynamics
are quite different from each other. For example, for Λ square, since 0 is a
critical value and a pole of ℘Λ, b “ 0 is a very unstable parameter; every
neighborhood of 0 contains b’s that can move the pole to either an attracting
or repelling cycle. However there is much more stability when b lies on the
half lattice line as there are no poles near the critical values of FΛ,b. Adding
a constant to ℘nΛ, n ě 1 was also studied in [15], from a different perspective.

In Section 2 we give preliminary definitions and background for iterated
elliptic functions proving some new results relating critical values to the
lattice, which are used to parametrize the dynamics in this paper. In Section
3 we introduce the parametrized family of mappings FΛ,b studied in the
paper and prove some general properties of these maps. The main result in
Section 3 is Theorem 3.2, which shows that for any lattice except possibly
a triangular lattice (which has additional symmetries), one fundamental
period for the lattice Λ provides a parameter space in which we have a
representative of each conformal equivalence class of maps FΛ,b. In Section 4
we study the dynamical properties of maps with real parameters b. We show
that for every real rectangular lattice there are constants b such that the Julia
set of FΛ,b is the whole sphere, and that same b is also an accumulation point
for parameters where Fb has a super-attracting fixed point (Theorem 4.21).
In Section 5 we look at a different part of parameter space along horizontal
half lattice lines, and discuss bifurcations that can occur. We turn to some
results about Cantor Julia sets for FΛ,b for real rectangular lattices, including
square ones, in Section 6. We show that for some square lattices, whenever
b lies on a horizontal half lattice line, the Julia set is a Cantor set; we also
show that toral bands can occur in in the Fatou set of FΛ,b.
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2. Preliminary definitions and notation

By Λ “ rλ1, λ2s we denote the group Λ “ tmλ1 ` nλ2 : m,n P Zu Ă C.
If λ1, λ2 P C are non-zero and linearly independent over R, Λ is a lattice.
Lattices determine double periods for elliptic functions; z`Λ denotes a coset
of C{Λ containing z. A closed, connected subset Q of C is a fundamental
region for Λ if for each z P C, Q contains at least one point in the same
Λ-orbit as z and no two points in the interior of Q are in the same Λ-orbit.
If Q is a parallelogram it is called a period parallelogram for Λ.

Definition 2.1. Let C8 “ CYt8u denote the Riemann sphere. An elliptic
function f : CÑ C8 is a meromorphic function in C which is periodic with
respect to a lattice Λ.

The Weierstrass elliptic function is defined by

℘Λpzq “
1

z2
`

ÿ

λPΛzt0u

ˆ

1

pz ´ λq2
´

1

λ2

˙

,

z P C. The map ℘Λ is an even elliptic function with poles of order 2.
The derivative of the Weierstrass elliptic function is an odd elliptic function
which is periodic with respect to Λ. The Weierstrass elliptic function and
its derivative are related by the differential equation

(2.1) ℘1Λpzq
2 “ 4℘Λpzq

3 ´ g2℘Λpzq ´ g3,

where g2pΛq “ 60
ř

λPΛzt0u λ
´4 and g3pΛq “ 140

ř

λPΛzt0u λ
´6.

The numbers g2pΛq and g3pΛq are invariants of the lattice Λ in the follow-
ing sense: if g2pΛq “ g2pΛ

1q and g3pΛq “ g3pΛ
1q, then Λ “ Λ1. Furthermore

given any g2 and g3 such that g3
2 ´ 27g2

3 ‰ 0 there exists a lattice Λ having
g2 “ g2pΛq and g3 “ g3pΛq as its invariants [8]. For Λτ “ r1, τ s, the functions
gipτq “ gipΛτ q, i “ 2, 3, are analytic functions of τ in the open upper half
plane Impτq ą 0 ([8], Theorem 3.2). We have the following homogeneity in
the invariants g2 and g3 [11].

Lemma 2.2. For lattices Λ and Λ1, Λ1 “ kΛ ô

g2pΛ
1q “ k´4g2pΛq and g3pΛ

1q “ k´6g3pΛq.

A lattice Λ is said to be real if Λ “ Λ :“ tλ : λ P Λu, where z denotes the
complex conjugate of z P C.

Proposition 2.3. [14] The following are equivalent:

1. Λ is a real lattice;
2. ℘Λpzq “ ℘Λpzq;
3. g2, g3 P R.

Given any Λ, for k P Czt0u, the following homogeneity property holds:

(2.2) ℘kΛpkuq “
1

k2
℘Λpuq.
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2.1. Real rectangular period lattices for ℘Λ. For most of this paper
we assume that Λ “ rλ1, λ2s, with λ1 ą 0 and λ2 purely imaginary and lying
in the upper half plane. Since a fundamental region Q can be chosen to be
a rectangle with two sides parallel to the real axis and two sides parallel to
the imaginary axis, Λ is called a real rectangular lattice.

Remark 2.4. 1. For any lattice Λ, ℘Λ has infinitely many simple critical
points, one at each half lattice point, and we denote them by tω1, ω2, ω3u`

Λ, where

ω1 “
λ1

2
, ω2 “

λ2

2
, ω3 “ ω1 ` ω2.

We denote the set of all critical points by Critp℘Λq.
2. ℘Λ has three critical values ej “ ℘Λpωjq satisfying, when Λ is real rect-

angular, e1 ą 0. Also, one of these hold: e2 ă e3 ă 0 (if g3 ą 0),
e2 ă 0 ă e3 ă e1 (if g3 ă 0), or e3 “ 0 (if g3 “ 0). In the third case,
e2 “ ´e1 and the lattice is called rectangular square.

3. Since for any lattice Λ, e1, e2, e3 are the distinct zeros of Equation (2.1),
we have these critical value relations:

(2.3) ℘1Λpzq
2 “ 4p℘Λpzq ´ e1qp℘Λpzq ´ e2qp℘Λpzq ´ e3q.

Equating like terms in Equations (2.1) and (2.3), we obtain

(2.4) e1 ` e2 ` e3 “ 0, e1e3 ` e2e3 ` e1e2 “
´g2

4
, e1e2e3 “

g3

4
.

From Equation (2.1), we write

(2.5) ppxq “ 4x3 ´ g2x´ g3.

A cubic polynomial of the form (2.5) has discriminant:

(2.6) 4 pg2, g3q “ g3
2 ´ 27g2

3.

4. The lattice Λ is real rectangular if and only if 4pg2, g3q ą 0 and g2 ą 0.
Equivalently, Λ :“ Λpg2, g3q is real rectangular if and only if pg2, g3q lies
in the region: R “ tpg2, g3q P R2 : g3

2 ´ 27g2
3 ą 0u.

5. Λ is real rectangular square if and only if the roots of p are 0,˘
?
g2{2,

and then we have: e3 “ 0 and e1 “
?
g2{2 “ ´e2 ą 0.

2.1.1. Real rectangular lattice critical values. We can parametrize
real rectangular lattices by their critical values te1, e2, e3u under ℘Λ; the
invariants pg2, g3q they determine can be described explicitly.

Proposition 2.5. For any values e1 ą 0, and e2 ă 0 satisfying |e2| ă 2e1,
if we set

(2.7) pg2, g3q “ p4pe
2
1 ` e1e2 ` e

2
2q,´4pe2

1e2 ` e1e
2
2qq,

the corresponding map ℘Λ has critical values ℘Λpωjq “ ej , j “ 1, 2, 3 with
e3 “ ´e1 ´ e2. The critical value e3 satisfies e2 ă e3 ă e1. Moreover the
lattice Λ “ Λpg2, g3q is real rectangular, and all real rectangular lattices have
pg2, g3q satisfying Equation (2.7).
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Prescribed Parameter Ó te1, e2, e3u pg2, g3q Λ-generator
Standard square t1,´1, 0u p4, 0q γ
Center lattice tω1,´ω1, 0u p4ω2

1, 0q 2ω1

e1 te1,´e1, 0u p4e2
1, 0q

γ
?
e1

g2 t
?
g2

2 ,´
?
g2

2 , 0u pg2, 0q γ
?

2g
´1{4
2

Λ-generator t 1
k2 ,´

1
k2 , 0u p 4

k4 , 0q kγ
Table 1. Parameter relationships for ℘Λ on a rectangular
square lattice, where γ « 2.62206 denotes the lemniscate
constant.

Proof. Setting e1, e2, and e3 as in the hypotheses, by construction we have
ř3
j“1 ej “ 0 and e2 ă e3 ă e1. The proposed value g3 satisfies

g3

4
“ ´pe2

1e2 ` e1e
2
2q “ pe1e2q ¨ p´e1 ´ e2q “ e1e2e3,

and similarly

´
g2

4
“´ pe2

1 ` e1e2 ` e
2
2q

“e1 ¨ e2 ` e1 ¨ p´e1 ´ e2q ` e2 ¨ p´e1 ´ e2q

“e1e2 ` e1e3 ` e2e3.

Using Equations (2.1) and (2.4), by uniqueness of the roots of (2.5), the
result follows. The condition |e2| ă 2e1 ensures that e3 ă e1, so e1 “

℘Λpω1q as claimed. Real lattices are characterized by having pg2, g3q that
satisfy 4pg2, g3q ‰ 0, and among real lattices, real rectangular are precisely
those with distinct real critical values te1, e2, e3u satisfying the properties of
Equation (2.4), so the result is proved. �

Starting from the standard square lattice in row 2, all other entries of Table
1 follow from the homogeneity equation (2.2) for ℘Λ, and the table shows
how the various invariants for ℘Λ interact with each other. By definition the
center lattice (shown in row 3 of Table 1) is the lattice (and corresponding
value of g2) for which the associated Weierstrass ℘ function ℘Λ has a super-

attracting fixed point at ω1. It follows that ω1 “ p2{γq´2{3
« 1.19787.

For real rectangular lattices, we use the Arithmetic Geometric Mean of
two nonnegative numbers A and B (this is discussed in various sources, e.g.,
[1]).

Definition 2.6. Given A,B ą 0, we first set A0 “ A and B0 “ B. We then
define two sequences tAnu, tBnu, n “ 0, 1, . . . by

An`1 “
1

2
pAn `Bnq, Bn`1 “

a

AnBn,
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where for Bn`1 we always choose the positive square root. The Arithmetic
Geometric Mean (AGM) of Gauss, is the common limit of the two sequences,
and is written MpA,Bq.

Since we restrict to real rectangular lattices here, we always assume that
e1 ą 0. Therefore the expression under the radical sign of the following is
always positive, so we define:

AG1pe1, e2q :“Mp
?
e1 ´ e2,

?
e1 ´ e3q

and

AG2pe1, e2q :“Mp
?
e1 ´ e2,

?
e3 ´ e2q.

For pg2, g3q as in Proposition 2.5 we have Λ “

„

π

AG1pe1, e2q
,

πi

AG2pe1, e2q



,

(see [1]).

Lemma 2.7. If Λ “ rλ1, λ2s is a real rectangular lattice, with λ1 real and
λ2 purely imaginary, and the corresponding critical values are ej , j “ 1, 2, 3,
then:

(2.8)

π
?
e1 ´ e2

ď |λ1| ď
π

?
e1 ´ e3

,

2π
?
e1 ´ e2 `

?
e3 ´ e2

ď |λ2| ď
π

rpe1 ´ e2qpe3 ´ e2qs
1
4

.

Another important identity we use throughout is the following.

Theorem 2.8. [8] Let Λ be any lattice and u P C. Then for each i P t1, 2, 3u,

(2.9) ℘Λpu˘ ωiq “
pei ´ ejqpei ´ ekq

℘Λpuq ´ ei
` ei.

The next definition appears in different forms; we use the definition from
[7].

Definition 2.9. [7] By ℘n we denote the n-fold composition of ℘ with itself;

we define the postcritical set of ℘Λ by Pp℘Λq “
ď

ną0

℘nΛpCritp℘Λqq.

Lemma 2.10. [10]. If Λ is real rectangular, Pp℘Λq Ă RY t8u.

2.2. Fatou and Julia sets for elliptic functions. Background defini-
tions and properties for meromorphic functions appear in ([2] – [5]) and [6];
if S Ă C8 is a set, then clpSq denotes the topological closure of S.

Let f : C Ñ C8 be a meromorphic function with at least two distinct
poles. The Fatou set F pfq is the set of points z P C8 such that tfn : n P Nu
is defined and normal in some neighborhood of z. The Julia set is the
complement of the Fatou set on the sphere, Jpfq “ C8zF pfq. Montel’s

theorem implies that Jpfq “ cl

˜

ď

ně0

f´np8q

¸

.
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A meromorphic function is Class S if f has only finitely many critical
and asymptotic values; for each lattice Λ, every elliptic function with period
lattice Λ is of Class S. Therefore the basic dynamics are similar to those of
rational maps with the exception of the poles. The first result holds for all
Class S functions as was shown in ([3], Corollary 4 and Theorem 12).

Theorem 2.11. For any lattice Λ, the Fatou set of an elliptic function fΛ

with period lattice Λ has no wandering domains and no Baker domains.

In particular, all Fatou components of fΛ are preperiodic, and because
there are only finitely many critical values, we have a bound on the number
of attracting periodic points that can occur.

We define the family of elliptic functions of interest in this paper. Let Λ
be a lattice.

(Main Family) FΛ,bpzq “ ℘Λpzq ` b, for b P C.
The next result was proved in [11] for the Weierstrass elliptic function but
since ℘Λ and FΛ,b have the same poles for every b P C, and FΛ,b is also even,
the same proof works.

Theorem 2.12. For any lattice Λ, FΛ,b has no cycle of Herman rings.

Since ℘Λ has three distinct critical values, so does FΛ,b; this limits the
number of disjoint forward invariant Fatou cycles to at most three. Each of
these cycles is one of four types, summarized by the following result.

Theorem 2.13. For any lattice Λ, and any b P C, each periodic Fatou
component of FΛ,b contains one of these:

1. a linearizing neighborhood of an attracting periodic point;
2. a Böttcher neighborhood of a super-attracting periodic point;
3. an attracting Leau petal for a periodic parabolic point. The periodic

point is in JpFΛ,bq;
4. a periodic Siegel disk containing an irrationally neutral periodic point.

The proof of Lemma 2.14 is given for ℘Λ in [11] but remains the same for
any elliptic function.

Lemma 2.14. If Λ is any lattice and fΛ is an elliptic function with period
lattice Λ, then JpfΛq ` Λ “ JpfΛq, and F pfΛq ` Λ “ F pfΛq.

Definition 2.15. Given two elliptic functions f “ fΛ and g “ gΛ1 over
period lattices Λ and Λ1 respectively, we say f is conformally conjugate to g
if there exists a map φpzq “ αz ` β, α ‰ 0 such that f ˝ φ “ φ ˝ g.

3. The parametrized family of elliptic functions Fb, b P C
For each fixed lattice Λ, we study the dynamical and parametric planes

of the one-parameter family of elliptic functions

(Main Family) FΛ,bpzq :“ ℘Λpzq ` b, for b P C,
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which we will denote by Fb when the lattice is fixed. Clearly CritpFΛ,bq “

Critp℘Λq; the critical values of FΛ,b are tvi “ ei ` b : i “ 1, 2, 3u, and the
critical relations from (2.4) are:

(3.1)
3
ÿ

i“1

vi “ 3b,
ÿ

i‰j

vivj “ 3b2 ´
g2

4
, v1v2v3 “ b3 ´ b

g2

4
`
g3

4
.

For each fixed lattice Λ we say that the holomorphic family of meromorphic
maps Fb parametrized over b P A Ă C is reduced if for all b ‰ b1 in A, Fb and
F 1b are not conformally conjugate.

We show that you need look no further than one period parallelogram Q
for the constant b for a reduced family of maps Fb.

Proposition 3.1. Given a fixed lattice Λ, if Fb “ ℘Λ`b, then for any λ P Λ,
Fb is conformally conjugate to Fb`λ.

Proof. For λ P Λ, a straightforward computation shows that the map
φpzq “ z ´ λ, conjugates Fb and Fb`λ. �

One can ask if there are conformally conjugate maps within a fundamental
period.

Theorem 3.2. Suppose we have a lattice Λ “ rλ1, λ2s, which is not trian-
gular. If Fb “ ℘Λ ` b, and if b and b1 are in the interior of a fundamental
region Q, then Fb is not conformally conjugate to Fb1 .

Proof. Suppose that Fb ˝ φpzq “ φ ˝ Fb1pzq for all z P C. The conformal
conjugacy has to fix 8 so φ must be of the form φpzq “ αz ` β. Moreover,
since 0 is a pole of Fb1 , φp0q “ β must be a pole of Fb, so β “ λ0 P Λ.
Moreover, φ maps all poles to poles injectively, so we must have φpΛq “
αΛ ` λ0 “ Λ, or equivalently αΛ “ Λ and since φ´1Λ “ Λ, we have αΛ “
α´1Λ “ Λ “ αkΛ, for all k P Z, so |α| “ 1 and α “ e2πi{p for some p P N.

Therefore e2πi{pΛ “ Λ, and if α ‰ 1, by [23] (and other classical sources),
p “ 2, 3, 4 or 6.

The critical values of Fb are e1`b, e2`b, e3`b, and of Fb1 are e1`b
1, e2`

b1, e3 ` b1. Since φ must map the critical values of Fb1 to the critical values
of Fb, for j “ 1, 2, 3, φpej ` b

1q “ ek ` b for some k “ 1, 2, 3. We then have,
using (2.4) and (3.1):

(3.2)

3b “ pe1 ` bq ` pe2 ` bq ` pe3 ` bq

“ φpe1 ` b
1q ` φpe2 ` b

1q ` φpe3 ` b
1q

“ pαe1 ` αb
1 ` λ0q ` pαe2 ` αb

1 ` λ0q ` pαe3 ` αb
1 ` λ0q

“ 3pαb1 ` λ0q,

so b “ αb1 ` λ0. Now from (3.2) it follows that

Fbpφpzqq “ ℘Λpαz ` λ0q ` b “ ℘Λpαzq ` αb
1 ` λ0
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and for all z, this should equal:

φp℘Λpzq ` b
1q “ α℘Λpzq ` αb

1 ` λ0.

Therefore for all z P C, ℘Λpαzq “ α℘Λpzq. By Equation (2.2) and the fact
that α´1Λ “ Λ, this implies that ℘Λpαzq “ α´2℘Λpzq “ α℘Λpzq for all z.
Therefore α3 “ 1, so p “ 1 or 3. In the first case, α “ 1 and λ0 “ 0 or b and
b1 are not both in Q. Otherwise, p “ 3, so the lattice must be triangular,
and b “ e2πi{3b1 ` λ. This proves the result. �

Remark 3.3. We often restrict to this parameter plane domain:

Q “ QΛ “ tb P C : ´ω1 ă Repbq ď ω1,´Impω2q ă Impbq ď Impω2qu.

We have some additional symmetries for the Julia sets of Fb that come
from the analogous symmetry for ℘Λ.

Proposition 3.4. For a fixed lattice Λ, any b P C, and any c P Critp℘Λq,
c` z P JpFbq if and only if c´ z P JpFbq.

Proof. Using Theorem 2.8 and CritpFΛ,bq “ Critp℘Λq,

Fbpc` zq “ ℘Λpc` zq ` b “ ℘Λpc´ zq ` b “ Fbpc´ zq.

�

Define the horizonal half lattice line:

(3.3) L “ tz P C : z “ t` ω2, t P Ru.

Lemma 3.5. Assume Λ is a real lattice and fix some b P C.

1. Then, FΛ,b is anticonformally conjugate to FΛ,b̄.
2. Moreover, for Λ rectangular, if for k P Z, bk denotes the reflection of b

with respect to L` kλ2, then FΛ,b is anticonformally conjugate to FΛ,bk .

Proof. Denote by ηpzq “ z̄, that is, the complex conjugate of z; it is not
hard to show that η is an anticonformal homeomorphism of the plane that
implements the conjugacy. �

The next result follows from Remarks 2.4 and Table 1 (cf.[10], Theorems
8.1, 8.2). Let κ “ Γp1{4q2{p4

?
πq “ γ{

?
2.

Lemma 3.6. Let Λ be a real square lattice, so e1 “
?
g2{2 and ω1 “ κ{g

1{4
2

for any g2 ą 0. We then have:

1. e1 “ 2kω1 for some k P N, (and hence, the orbit of ω1 under ℘Λ lands on
a pole after one iteration), if and only if

(3.4) g2 “ p4kκq
4{3.

2. The critical value e1 “ p2k ` 1qω1 for some k P N0, (and thus p2k ` 1qω1

is a super-attracting fixed point for ℘Λ) if and only if

(3.5) g2 “ p2p2k ` 1qκq4{3.
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4. The maps Fb for real rectangular lattices and b P R
Throughout this section we assume pg2, g3q P R, and Λ is the lattice

associated to those invariants. We describe the dynamics for Fb for real
parameters b. As in (3.3), L is the horizontal half lattice line and V denotes
the vertical half lattice line: V “ tω1 ` iy : y P Ru.

Lemma 4.1. For any real rectangular lattice Λ, if b P R, then Fb maps R,
L, V , and the imaginary axis into R. For all n ą 0, Fnb ptq P rv1,8q for all
t P R; the same is true for all z P L and z P V as long as n ě 2.

Proof. Since Λ is real, e2 ă e3 ă e1, with e1 ą 0 and e2 ă 0. For all t P R,
℘Λptq P R and ℘Λptq ě e1. Thus Fnb ptq P R for all n ą 0, and since Fbptq ě v1

for all t, then Fnb ptq ě v1. Using Theorem 2.8, for any t P R, t` ω2 P L, so
we have ℘Λpt ` ω2q P R and Fbpt ` ω2q P R. Similarly, if we show that the
imaginary axis gets mapped into R, Theorem 2.8 will also show that points
on V , which are of the form u ` ω1, with u purely imaginary map under
℘Λ into R. The result for purely imaginary numbers follows by Proposition
2.3(2), and the fact that ℘Λ is even; this implies purely imaginary numbers
get mapped to real numbers for b P R. �

Proposition 4.2. Assume Λ “ r2ω1, 2ω1is is a square lattice.

1. If b “ ω1 (or an odd multiple of ω1), then F 2
b pω1q “ F 2

b pω2q “ F 3
b pω3q;

i.e., Fb has a single critical orbit.

2. If b is an odd multiple of ω1 define Mpzq “ e1

ˆ

z ` e1

z ´ e1

˙

. If t P R,

Fbptq “ ℘Λptq ` b ÞÑM ˝ ℘Λp℘Λptqq ` b ÞÑ . . .

ÞÑ pM ˝ ℘Λq
np℘Λptqq ` b.

Then M´1 “M , e1 ÞÑ 8 ÞÑ e1 and ´e1 ÞÑ 0 ÞÑ ´e1. Its fixed points are
given by e1 ˘

?
2e1. Moreover, M sends the interval pe1,8q onto itself:

this implies that M interchanges the intervals pe1, e1 `
?

2e1s with
re1 `

?
2e1,8q. M also sends the interval p´8, e1q onto itself, inter-

changes the intervals pe1 ´
?

2e1, e1s with p´8, e1 ´
?

2e1q and flips the
upper and lower half planes.

3. If Λ is the center square lattice, then for any b P C, Fbpv1q “ Fbpb`ω1q “

Fbpb ´ ω1q “ Fbpv2q, so the critical orbits of ω1 and ω2 coincide on the
second iterate.

Proof. (1) follows from (3.1) and the symmetry of ℘Λ with respect to any
critical point; a computation gives the result. (2) can be verified directly
by writing b “ p2j ` 1qω1 and using Theorem 2.8. To show (3), we have
e1 “ ω1 “ ´e2, and we apply Equation (2.9). �

4.1. The Schwarzian derivative. The Schwarzian derivative plays an
important role in the study of the dynamics of FΛ,b.
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Definition 4.3. The Schwarzian derivative of a meromorphic function f is
given by

Sfpzq “ f3pzq

f 1pzq
´

3

2

ˆ

f2pzq

f 1pzq

˙2

.

A few properties of Sf are:

1. f is a Möbius transformation if and only if Sf “ 0.
2. The Schwarzian derivative of the composition of any two functions f and
g is given by

Spf ˝ gqpzq “ Sfpgpzqq ¨ pg1pzqq2 ` Sgpzq.
From these properties we obtain the following result (cf. [9], [16]).

Proposition 4.4. If Λ is a real rectangular lattice, and if M is any Möbius
map with real coefficients, then for all t P R, t not a half lattice point,

SpM ˝ ℘Λqptq “ S℘Λptq ă 0.

Proof. By Properties 1. and 2., it is enough to prove that if Λ is real
rectangular, then for t P Rz1

2Λ, S℘Λptq ă 0. We have already remarked
that for these lattices, ℘Λptq ě e1 ą 0 on R. For any lattice Λ, we consider
℘ “ ℘Λpzq, for any z P C. From the differential equation in Equation (2.1)
we have 2℘1℘2 “ 12℘2℘1 ´ g2℘

1. Then ℘2 “ 6℘2 ´ g2{2; and differentiating
gives ℘3 “ 12℘℘1, so

(4.1)
℘3

℘1
“ 12℘,

which is the first term in S℘. We now consider the duplication formula,

℘p2zq “
1

4

ˆ

℘2pzq

℘1pzq

˙2

´ 2℘pzq.

This gives immediately that
ˆ

℘2pzq

℘1pzq

˙2

“ 4p℘p2zq ` 2℘pzqq,

and thus the second term becomes

(4.2) ´
3

2

ˆ

℘2pzq

℘1pzq

˙2

“ ´6℘p2zq ´ 12℘pzq.

Adding (4.1) and (4.2), we conclude that for any lattice Λ and any z P C,

(4.3) S℘pzq “ ´6℘p2zq.

Therefore for real rectangular lattices Λ, when z “ t P R, and 2t R Λ,
S℘Λptq ă 0 and SpM ˝ ℘Λqptq ă 0, since ℘Λp2tq ą 0.

�

The following corollary follows from Equation (4.3) and holds for an ar-
bitrary lattice Λ.
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Corollary 4.5. For the Weierstrass elliptic function ℘Λ over the lattice Λ,
S℘Λ is an even elliptic function over the lattice 1

2Λ.

Assume Λ is real rectangular and the map Fb, b P R has a non-repelling
p-cycle. Write

C “ tt0, Fbpt0q, . . . , F p´1
b pt0qu Ă R.

Then we consider its basin of attraction on R, namely

BpCq “ tx P R : F kb pxq Ñ C as k Ñ8u.

We call the cycle C topologically attracting if BpCq contains an open in-
terval U ; in this case we call BpCq the real attracting basin of C. By B0pCq
we denote the union of components of BpCq in R containing points from C.
B0pCq is the real immediate (attracting) basin of C. For Λ real rectangu-
lar, we have clpPpFbqq Ă R, so if C is non-repelling then C Ă rv1,8q and
BpCq ‰ H; i.e., C is topologically attracting on R [10]. We extend a theorem
of Singer on interval maps to this setting, (proved in [9] for rhombic square
lattices):

Theorem 4.6. If Λ is real rectangular and b P R, then:

1. the real immediate basin of a topologically attracting periodic orbit of
FΛ,b contains a real critical point.

2. If y P R is in a rationally neutral p-cycle for Fb then it is topologically
attracting; i.e., there exists an open interval U , with possibly y P BU ,
such that for every t P U , limnÑ8 F

np
b ptq “ y.

The next two results appear in ([15] Proposition 2.8 and Proposition 3.8).

Lemma 4.7. For any Λ real rectangular and any b P R, FΛ,b has no cycles
of Siegel disks.

Proposition 4.8. Let Λ be any real rectangular lattice, and b P R. Then
either JpFbq “ C8, or there exists one real non-repelling cycle whose imme-
diate basin of attraction contains a real critical point.

Since there are infinitely many real critical points, the following is some-
times more useful.

Corollary 4.9. Under the hypotheses of Prop 4.8, if Fb has a real non-
repelling cycle, then its immediate basin of attraction contains v1 “ e1 ` b.

Corollary 4.10. Suppose b P R is such that Fb has an attracting, super-
attracting, or parabolic cycle C whose immediate basin contains p2k ` 1qω1

for some k P Z. Then F pFbq coincides with the attracting basin of C, and
each critical orbit of Fb corresponding to ω2 and ω3 either eventually maps
to the basin of C or belongs to the Julia set.

In order to study the behavior of maps associated to certain parameters
b we develop some descriptive vocabulary.

Definition 4.11. Assume Λ is any real rectangular lattice, b P R, and k P N.
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1. b is an order k prepole parameter for ω1 if F kb pω1q “ jλ1, for some j P Z;

2. b is an order k precritical parameter for ω1 if F kb pω1q “ p2j ` 1qω1, for
some j P Z, and Fmb pω1q R ω1 ` Λ, for 0 ă m ă k. If k “ 1, we call b
precritical.

3. b is a (period k) center parameter for ω1 if F kb pω1q “ ω1 (and k is mini-
mal).

4. We say b is an order k noncritical preperiodic parameter for ω1 if F kb pω1q

is preperiodic but b is none of the above.

These definitions lead to the next proposition.

Proposition 4.12. We assume b P R, Λ is real rectangular, and all state-
ments refer to the critical point ω1 unless otherwise specified.

1. Parameters for which JpFbq “ C8 :
(a) Every order k prepole parameter b gives Julia set the whole sphere

for Fb.
(b) If g2 is chosen as in (3.4) and g3 “ 0, then b “ 0 is an order 1 prepole.
(c) If b is a noncritical preperiodic parameter, then for some k P N,

F kb pω1q is periodic of period r ě 1, the cycle

C “ tF kb pω1q, F
k`1
b pω1q, . . . , F

k`r´1
b pω1qu contains no critical point,

and JpFbq “ C8.
(d) If ω1 P JpFbq, then JpFbq “ C8.

2. Parameters for which Fb has a super-attracting cycle:
(a) If b is a period k center parameter, then the corresponding map Fb

has a super-attracting periodic orbit that contains ω1.
(b) If g2 is chosen as in (3.5), and g3 “ 0, then b “ 0 is a center parameter

of F0.
(c) Every order k precritical parameter corresponds to a map Fb with a

super-attracting periodic orbit on R containing a real critical point
of the form p2j ` 1qω1.

(d) A precritical parameter b satisfies Fbpω1q “ p2j ` 1qω1 for some
nonzero integer j. The resulting critical orbit has the form:

ω1 ÞÑ v1 “ p2j ` 1qω1 ý

and p2j ` 1qω1 is a super-attracting fixed point.

Proof. We first prove 1(d); for b P R by Definition 2.9 and Lemma 4.1, we
consider the orbits of the non-real critical points ω2 and ω3 and have that
clpPpFbqq Ă rv2,8s. If either ω2 or ω3 lands on a critical point in rv2,8q,
then the orbit lands on the same orbit as that of ω1 after one more iteration,
so is in JpFbq. By Theorem 4.6 every Fatou component that is not super-
attracting must contain an infinite forward orbit of ω1 (no Siegel disk cycles
or Herman rings occur under the hypotheses on b and Λ). If there were a
super-attracting cycle, by periodicity ω1 must land on that cycle so none
exist, and any non-repelling cycle must have a basin containing v1, which
is impossible by hypothesis. Therefore ω2 and ω3 lie in the Julia set of Fb



960 JANE HAWKINS AND MÓNICA MORENO ROCHA

along with ω1 and the result follows from Proposition 4.8. Parts 1(a), (b),
and (c) all imply ω1 P JpFbq from Definition 4.11, so follow immediately.

Properties 2(a), (c), and (d) follow directly from Definition 4.11, since all
real critical points map to v1, and 2(b) follows from the assumption on b.

�

Remark 4.13. (1) We can extend Definition 4.11 to define order k prop-
erties with respect to any critical point. In particular, any order k
precritical parameter for ω1 is also a period m center parameter for the
critical point c “ p2j ` 1qω1 if F kb pω1q “ c, and Fmb pcq “ c.

(2) When b R R, and b is noncritical preperiodic for ω1, then F pFbq need
not be empty, as the orbits of ω2 and ω3 might lie in the basin of a
non-repelling orbit.

4.2. Existence of parameters with prescribed dynamics. In Figure
1 we show a reduced region from Theorem 3.2 with the lattice outlined
in green; the real axis seems to cut through a homeomorphic copy of the
Mandelbrot set for some lattices but this is not always the case, as shown in
Figure 2 for a rectangular lattice. (The origin is in the center of each figure.)
We see features of quadratic-like mappings in the parameter spaces, but
the setting of elliptic functions allows us to prove the existence of prepole
parameters for an arbitrary real rectangular lattice. Prepole parameters
impacting the dynamics of Fb also occur in parameter space. There are
infinitely many order one prepole parameters; we find it useful to distinguish
the two closest to the origin, and to identify the order 1 center parameter
between them. When the parameter is real, the dynamics are driven by the
real critical point, so we focus on ω1.

4.2.1. Prepole and precritical parameters for ω1 under Fb.

Proposition 4.14 (Existence of order 1 prepole and precritical parameters
for ω1). Let pg2, g3q P R be given, and let e1 be the critical value of the
corresponding map ℘Λ. Suppose j P NY t0u satisfies either

(4.4) jλ1 ď e1 ă p2j ` 1qω1

or

(4.5) p2j ` 1qω1 ď e1 ă pj ` 1qλ1.

Then for the map Fb there exist order 1 prepole parameters bpj and bpj`1 for
ω1, exactly one of which is in p´ω1, ω1s; in addition there is exactly one order
1 precritical parameter, bc in p´ω1, ω1s. These parameters are arranged as
follows.

1. ´ω1 ă bpj ď 0 ă bc ď ω1 ă bpj`1 if (4.4) holds.
2. bpj ď ´ω1 ă bc ď 0 ă bpj`1 ď ω1 if (4.5) holds.
3. |bc ´ bpj | “ |bc ´ bpj`1 | “ ω1.
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Figure 1. b-space for Fb using pg2, g3q « p5.7395, 0q

Figure 2. b-space for Fb using pg2, g3q “ p7,´3q

Proof. Assume first jλ1 ď e1 ă p2j`1qω1 for some integer j ě 0 (Equation
(4.4)). Then there exists an order 1 prepole parameter b P p´ω1, ω1s such
that Fbpω1q “ e1 ` b “ qλ1 for some integer q if and only if

(4.6) b “ qλ1 ´ e1;

from the assumption, we see that choosing q “ j gives

bpj :“ jλ1 ´ e1,
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and ´ω1 ă bpj ď 0 as claimed. Any other choice of integer q would yield a
pole parameter b outside the interval p´ω1, 0s. (Equation (4.4) implies that
bpj “ 0 is possible.)

An order 1 precritical parameter bc P p´ω1, ω1s satisfies Fbpω1q “ e1`bc “
p2q ` 1qω1 if and only if

(4.7) bc :“ p2q ` 1qω1 ´ e1 ď ω1;

again choosing q “ j gives a unique bc P p´ω1, ω1s and bc ą 0 by Equation
(4.4). Clearly bc ´ bpj “ ω1.

If bpj`1 “ pj ` 1qλ1 ´ e1, then clearly 0 ă bc ď ω1 ă bpj`1 and since
λ1 “ 2ω1, |bc ´ bpj | “ |bc ´ bpj`1 | “ ω1 as claimed.

The case when p2j ` 1qω1 ď e1 ă pj ` 1qλ1, i.e., when Equation (4.5)
holds is similar. In particular, we choose q “ j ` 1 in Equation (4.6) so
that bpj`1 P p0, ω1s and q “ j in Equation (4.7) to obtain bc P p´ω1, 0s as
claimed.

�

We denote by bp the unique order 1 prepole parameter in p´ω1, ω1s (from
Proposition 4.14). We simplify the notation with the next definition.

Definition 4.15. For any real rectangular lattice Λ “ rλ1, λ2s, and for any
j P Z, we define pj :“ bpj “ jλ1 ´ e1, where e1 is the positive real critical
value of ℘Λ associated with ω1 ą 0.

We have the following consequence of the previous results.

Corollary 4.16. Assume Λ is real rectangular.

1. For any b “ pj , j P Z as in Definition 4.15, we have JpFbq “ C8.
2. If b “ bc`qλ1, q P Z, then there is a super-attracting fixed point in F pFbq.

Proof. It suffices to consider Fpj “ ℘Λptq`pj , for pj P p´ω1, ω1s by Propo-
sition 3.1. The result follows from Proposition 4.8 since there cannot be any
non-repelling cycles. Similarly, Fbcpp2j ` 1qω1q “ p2j ` 1qω1 so we have a
fixed critical point and Proposition 3.1 gives the result. �

4.2.2. Parabolic parameters for ω1. We turn to the existence of pa-
rameters which correspond to maps Fb with parabolic fixed points, which
we call parabolic parameters. For any integer j, set Ij “ rjλ1, pj ` 1qλ1q.

Lemma 4.17. Suppose we have a real rectangular lattice Λ “ rλ1, λ2s

satisfying e1 P Ij ; then there exists a unique parameter value b`1 P p´ω1, ω1s

with the property that the map Fb`1 “ ℘Λ ` b`1 has a fixed point s1 P Ij
such that F 1b`1

ps1q “ 1.

Proof. The interval Ij is a fundamental period interval for ℘Λ|R and ℘1Λ|R.
We showed that there exists a parameter bc “ p2j`1qω1´e1 P p´ω1, ω1s such
that Fbcpω1q is a fixed critical point. Since ℘1Λ is monotone, real analytic,
increasing on pjλ1, pj ` 1qλ1q for each j P Z, and

℘1Λ : pjλ1, pj ` 1qλ1q Ñ p´8,8q,
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with ℘1Λpp2j ` 1qω1q “ 0, there exists a unique s1 P pp2j ` 1qω1, pj ` 1qλ1q

such that ℘1Λps1q “ 1. The corresponding parameter b, which makes s1 a
fixed point of Fb, is then chosen to be b`1 “ s1 ´ ℘Λps1q.

It remains to show that b`1 P p´ω1, ω1s. We consider the function t´℘Λptq
on pjλ, pj ` 1qλq; its derivative 1´℘1Λptq is positive on pjλ, s1q, 0 at s1, and
negative on ps1, pj`1qλq. Therefore s1 is a maximum point, with maximum
value b`1, so

´ω1 ă bc “ p2j ` 1qω1 ´ ℘Λpω1q “ p2j ` 1qω1 ´ ℘Λpp2j ` 1qω1q ă b`1.

If bp ą 0, then ´ω1 ă bc ă b`1 ă bp ď ω1 (by definition of bp) and the
result is proved. Otherwise bp ď 0, and Equation (4.4) holds so jλ1 ď e1 ă

p2j`1qω1. Since ℘Λ has its minimum at p2j`1qω1 on pjλ1, pj`1qλ1q, then
℘Λps1q ą e1. Moreover p2j ` 1qω1 ă s1 ă pj ` 1qλ1 by construction. These
inequalities give:

(4.8)

´ω1 ă b`1 “ s1 ´ ℘Λps1q

ă pj ` 1qλ1 ´ e1

ă pj ` 1qλ1 ´ jλ1

ă λ1.

In this case if b`1 ą ω1, then we replace it by b̃1 “ b`1 ´ λ1 P p´ω1, ω1q.
Then Fb̃1ps1 ´ λ1q “ ℘Λps1 ´ λ1q ` b`1 ´ λ1 “ ℘Λps1q ` s1 ´ ℘Λps1q ´ λ1 “

s1 ´ λ1; also F 1
b̃1
ps1 ´ λ1q “ 1 so the result is proved. �

In the interval p´ω1, ω1s, we always find b`1 such that bc ă b`1 by Lemma
4.17. We have a similar lemma for the existence and placement of a parabolic
parameter b´1.

Lemma 4.18. Suppose we have a real rectangular lattice Λ “ rλ1, λ2s as
above. Then there exists a unique parameter value b´1 P p´ω1, ω1s with the
property that the map Fb´1has a fixed point s´1 P pjλ1, pj`1qλ1q such that
F 1b´1

ps´1q “ ´1.

Proof. The proof is essentially the same as the proof of Lemma 4.17 since
there is a unique s´1 P pjλ1, p2j`1qω1q such that ℘1Λps´1q “ ´1. It remains
to show that b´1 P p´ω1, ω1s. Since s´1 ă p2j` 1qω1 ă s1 (by monotonicity
of ℘1Λ) we established that t´ ℘Λptq is increasing there, so b´1 ă bc follows.

By symmetry of both ℘Λ and ℘1Λ about critical points (and using ℘1Λ is
an odd function while ℘Λ is even),

s1 ´ p2j ` 1qω1 “ p2j ` 1qω1 ´ s´1, and ℘Λps1q “ ℘Λps´1q

and therefore
b´1 “ s´1 ´ ℘Λps´1q

“ p2j ` 1qλ1 ´ s1 ´ ℘Λps1q ą p2j ` 1q ´ p2j ` 1q ´ ω1 “ ´ω1,

since ℘Λps1q ă s1 ` ω1 and s1 ă pj ` 1qλ1, so the result is proved.
�
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4.2.3. Higher order precritical and prepole parameters for ω1. Re-
call that an order 2 precritical parameter is b such that F 2

b pω1q is a critical
point, and an order 2 prepole has F 2

b pω1q a lattice point. Equivalently,
Fbpv1q is a critical or lattice point respectively.

For the next result we shift our focus to a fundamental region in parameter
space on the interval: Uj “ ppj , pj`1s, chosen such that e1 P Ij (so pj “
jλ1 ´ e1q. We set vb “ Fbpω1q.

Proposition 4.19. For any real rectangular lattice Λ, there exists some
T0 ą 0 dependent on Λ, such that if t ą T0, there is a bt P Uj such that
Fbtpvbtq “ t.

Before giving the proof we mention an important consequence of this
result.

Theorem 4.20 (Order 2 precritical and prepole parameters). If t “ ω1`λ ą
T0 ą 0, λ P Λ real, then

ω1 ÞÑ vbt ÞÑ t ÞÑ vbt

so Fbtpvbtq lies in a super-attracting period 2 orbit, making bt an order 2
precritical parameter for ω1. Moreover if t “ λ ą T0, λ P Λ, then

ω1 ÞÑ vbt ÞÑ t “ λ ÞÑ 8

so bt is an order 2 prepole parameter.

Proof. (of Proposition 4.19) We showed in Lemma 4.18 that pj ă b´1, and
we note that if b P ppj , b´1q then Fbpω1q ă Fb´1pω1q; i.e., vb ă vb´1 , and vb
decreases in b to jλ1 as b decreases to pj from the right.

Given t, if we find a point ct ą 0 such that

(4.9) t` e1 “ ℘Λpctq ` ct

the result follows, because we then set bt “ ct ´ e1, so that the orbit of ω1

under Fbt is:

ω1 ÞÑ e1 ` bt “ vbt “ e1 ´ e1 ` ct ÞÑ ℘Λpctq ` ct ´ e1 “ t

as claimed.
To show Equation (4.9) has a solution, we note that ℘1Λ is monotone

increasing on every interval Ij , j P Z, and ℘1Λ ` 1 ă 0 on pjλ1, s´1s Ă Ij ;
therefore ℘Λptq ` t is monotone decreasing from 8 to ℘Λps´1q ` s´1 on
pjλ1, s´1s. So as long as t ą T0 “ ℘Λps´1q ` s´1 ´ e1, there exists a unique
ct P pjλ1, s´1q on which ℘Λpctq` ct “ t` e1, which is Equation (4.9), so the
result is shown.

�

We next show that higher order prepole and precritical parameters accu-
mulate on the prepole parameters pj . We give the proof for order 3 precritical
parameters.
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Theorem 4.21 (Order 3 precritical parameters for ω1). Given any real
rectangular lattice Λ, there are infinitely many order 3 precritical parameters
that have bp :“ pj P p´ω1, ω1s as a limit point. The parameter bp is a two-
sided accumulation point for these precritical parameters.

Proof. Given a lattice, Λ, consider e1 ą 0, and ω1 determined by Λ. We
define the map:

S2pbq “ F 2
b pv1q “ F 3

b pω1q.

If S2pbq “ p2j ` 1qω1 for some integer j, then the parameter b is order 3
precritical for ω1(because F 3

b pω1q is a critical point).
On C8, for R ą 0, let BRp8q “ tz : |z| ą Ru. Take a (planar) ball

of the form Bεpbpq Ă C, then S2 : Bεpbpqztbpu Ñ C8; we have that S2 is
meromorphic for ε small.

Therefore there exists some large R such that BRp8qzt8u Ă S2pBεpbpqq.
We choose any γj :“ p2j` 1qω1 P BRp8qXR`. Then there exists some real
parameter b P Bεpbpq mapping to γj .

By choosing a sequence εm “ 2´m, starting with m large enough, we
obtain the result.

�

Essentially the same proof shows that order 3 prepole parameters accu-
mulate on bp as well, by choosing γj “ p2jqω1 “ jλ1 P BRp8q X R`.

4.2.4. Noncritical preperiodic parameters for ω1. Our standing as-
sumption is that pg2, g3q P R; we find the nonnegative integer j such that
e1 P Ij . The parameter b is noncritical preperiodic for ω1 means by defini-
tion that ω1 is not periodic, but it terminates in a cycle not containing a
critical point. A noncritical preperiodic parameter implies that JpFbq “ C8
by Proposition 4.12. We now turn to the existence of these parameters.

Lemma 4.22. For any q P N, there is a branch of the multi-valued function
℘´1

Λ pqλ1 ` e1q, with a value ηq such that the parameter

b`q “ ηq ´ e1 P p0, ω1s.

Similarly there is a branch of ℘´1
Λ pqλ1`e1q, with a value denoted by γq such

that

b´q “ γq ´ e1 P p´ω1, 0s.

Proof. We first note that since qλ1 ` e1 ą e1 for any q P N, there will
be exactly 2 real values of ℘´1

Λ pqλ1 ` e1q in each periodic interval Ij “
rjλ1, pj`1qλ1q, since ℘Λ|R : Ij Ñ re1,8q is two-to-one except at the critical
point jλ1 ` ω1. Since ℘Λ maps each interval I`j “ rjλ1 ` ω1, pj ` 1qλ1q

and I´j “ pjλ1, jλ1 ` ω1s injectively onto re1,8q, there is exactly one value

tj,q P I
`
j such that ℘Λptj,qq “ qλ1 ` e1; also there is one value sj,q P I

´
j such

that ℘Λpsj,qq “ qλ1 ` e1.
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If j0λ1 ď e1 ă j0λ1 ` ω1, we choose ηq “ sj0,q and γq “ tpj0´1q,q. Then

setting b`q “ ηq ´ e1 gives the first result and b´q “ γq ´ e1 gives the second.
We obtain a similar result if j0λ1 ` ω1 ď e1 ă pj0 ` 1qλ1 ` ω1.

�

Proposition 4.23. (Noncritical preperiodic parameters accumulate on bp.)
Let Λ be a fixed real rectangular lattice, and suppose e1 P Ij . Denote by
bp P p´ω1, ω1s either pj or pj`1. Then for any large enough integer q ą j,

we can choose a branch of ℘´1
Λ pqλ1 ` e1q with value ηq P Ij such that the

parameter

bq “ ηq ´ e1 P p0, ω1s

gives rise to the map Fbq with a preperiodic critical point for ω1. The orbit
of ω1 under Fbq is:

ω1 ÞÑ v1 ÞÑ ζq,

with ζq a repelling fixed point for Fbq . Moreover, bp is a limit point for the
bq’s, as q Ñ8.

Proof. We assume that e1 satisfies Equation (4.4); the proof when Equation
(4.5) holds is similar. The hypotheses imply that bp “ jλ1 ´ e1 P p´ω1, 0s,
and bc ą bp (if bp ă 0; if bp “ 0 replace bc by bc ` λ1 in what follows.) We

can write P`j for the restriction of ℘´1
Λ to I`j , and P´j for the restriction

of ℘´1
Λ to I´j ; we then choose the inverse γq “ P´j pqλ1 ` e1q that yields b´q

from Lemma 4.22. Then bc ą b´q ą bp, and

|b´q ´ bp| “ |γq ´ jλ1| Œ 0

as q Ñ 8. This follows since ℘Λ decreases monotonically from 8 to e1 on
pjλ1, jλ1 ` ω1s, so bp is an accumulation point since b´q Œ bp.

Fb´q pω1q “ ℘Λpω1q ` P
´
j pqλ1 ` e1q ´ e1 “ P´j pqλ1 ` e1q,

and

Fb´q pP
´
j pqλ1 ` e1qq “ ℘ΛpP

´
j pqλ1 ` e1qq ` P

´
j pqλ1 ` e1q ´ e1

“ qλ1 ` P
´
j pqλ1 ` e1q,

and since qλ1 is a lattice point, by periodicity we have

Fb´q pqλ1 ` P
´
j pqλ1 ` e1qq “ qλ1 ` P

´
j pqλ1 ` e1q.

Therefore the point ζq “ qλ1 ` P
´
j pqλ1 ` e1q is a repelling fixed point since

F 1
b´q

decreases to ´8 as t Œ jλ1, and ζq gets closer to lattice points of the

form pj ` qqλ1 as q increases. �
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4.3. Examples. We illustrate some of the preceding results with examples.
For the first several examples we use the center square lattice with g2 “

p2κq4{3 « 5.7395, with ω1 “ e1 and κ “ Γp1{4q2{p4
?
πq. For Fbpzq “

℘Λpzq ` b, we have a center parameter at bc “ 0; also bp “ ω1 since there is
an order 1 prepole parameter at each endpoint of the interval p´ω1, ω1s. For
the map Fbc “ ℘Λ, two critical points terminate at the same super-attracting
fixed point while ω3 is a prepole. We use the notation for branches of inverses
of ℘Λ: P`j and P´j , from Proposition 4.23.

1. A square lattice with all critical points terminating in repelling fixed points.
Using bM “ P`´1pλ1q « ´0.6642, we have the critical orbit:

v1 “ ω1 ` P
`
´1pλ1q ÞÑ 3ω1 ` P

`
´1pλ1q “ p ÞÑ p « 2.9294,

(using Theorem 2.8); p is a repelling fixed point and bM P p´ω1, b´1q.
We know that FbM pv2q “ FbM pv1q so ω2 terminates in a repelling orbit.
More surprising is that v3 is also preperiodic. In this example we have:

v3 “ bM ÞÑ P`0 pλ1q « 1.7315,

a repelling fixed point.
If a parameter has all critical points terminating in repelling cycles, we

call it a Misiurewicz parameter. Even for a square lattice, in general one
cannot expect ω3 to terminate in a repelling cycle when ω1 and ω2 do.

2. Using Theorem 4.20 and choosing t “ 3ω1 we obtain an order 1 precritical
parameter b˚ « ´0.7123 such that

ω1 ÞÑ e1 ` b˚ “ v1 Ø 3ω1.

In parameter plane, b˚ lies between bp ´ 2ω1 and b´1 and is a center
parameter for 3ω1. Thus b˚ ă 0 and 0 ă v1 ă ω1, but Fb˚pv1q “

℘Λpv1q ` b˚ “ 3ω1.
3. JpFbq is a Cantor set for a square lattice for some b P R. We use the

values pg2, g3q “ p1, 0q and we set b “ ω1´e1 “ κ´1{2, so there is a super-
attracting fixed point at ω1. Using the approximations from Lemma 2.7,
we have that 1{2 “ e1 ă e2 ` b ă 1 ă b ă e1 ` b “ ω1. We know that
there is an attracting basin for the fixed point at ω1 “ κ « 1.854, and
numerical estimates show that its immediate basin of attraction contains
all the critical values. In particular, it is enough to show it contains
v2 “ ω1 ´ 1 « .854, which is equivalent to showing that

|Fbpω1 ´ 1q ´ ω1| “ |℘Λpω1 ´ 1q ´ 1{2| ă 1.

This can be shown using Theorem 2.8. Once we know that all critical
values are in the immediate attracting basin of an attracting fixed point,
JpFbq is a Cantor set by [12], as shown on the left in Figure 5. When
b “ 0 it is known that JpF0q is connected [4].
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Figure 3. Three graphs of Fb restricted to L (the function
`a), with b “ a ` ω2, showing a “ 0 (blue), a ă 0 (green),
and a ą 0 (red).

5. Dynamical properties of Fb with b on the half lattice line

In this section we show that for parameters b lying on the half lattice
line L, the dynamics vary from those on R as the parameter moves along
L. We continue to assume that Λ “ rλ1, λ2s, with λ1 ą 0 and λ2 purely
imaginary. We consider parameters from the principal horizontal half period
line defined in Equation (3.3): L “ tb P C : b “ t ` ω2, t P Ru. The line L
contains all critical points of the form ω2 ` nλ1 and ω3 `mλ1, m,n P Z.

Lemma 5.1. For any real rectangular lattice, and any parameter b P L, the
function Fb maps L into L.

Proof. Set b “ a`ω2 for some a P R. Since Fbpt`ω2q “ ℘Λpt`ω2q`a`ω2,
it is enough to show that ℘Λpt` ω2q is real for any t P R. This follows from
Theorem 2.8 and the assumption that Λ is real.

�

Lemma 5.2. For any parameter b P L, Fb maps R into L and the line
V “ tω1 ` iy : y P Ru and ´V into L.

Proof. ℘Λ takes R and L to R, and ℘Λ maps V and ´V into R [8], so Fb
maps R, V, and ´V into L when b P L �

Remark 5.3. 1. When Λ is real square, it follows from Proposition 4.2(2),
that:

(5.1) ℘Λpt` ω2q “ e2

ˆ

℘Λptq ` e2

℘Λptq ´ e2

˙

, t P R.

2. From Lemma 5.1, for b P L, the map Fb can be decomposed into its
real and imaginary parts, with the imaginary part the constant value ω2:
writing b “ pa, ω2q and z “ pt, ω2q we have

Fbpzq “ p`aptq, ω2q,

where

`aptq “ ℘Λpt` ω2q ` a, t P R.
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Since the postcritical set determines the dynamics of Fb, the usefulness
of looking at `a is shown in the next two lemmas. Several graphs of `a for
different values of a are shown in Figure 3.

Lemma 5.4. Given Fb as above, with b “ a`ω2 and a P R, clpPpFbqq Ă L.

Proof. The points in the postcritical set coming from ω2 and ω3 clearly
remain on L under iteration. Moreover ℘Λ maps V , ´V , and R into L by
Lemma 5.2; since ω1 lies on V X R, the result follows. �

Lemma 5.5. Given Fb as above, b “ a ` ω2, and a P R, for zo “ to ` ω2,
to P R, we have that Fbpzoq “ zo if and only if `aptoq “ to. Moreover, `a is
periodic on R of period λ1.

Proof. We have `aptoq “ to “ ℘Λpto ` ω2q ` a if and only if to ` ω2 “

℘Λpto`ω2q`a`ω2 “ Fbpto`ω2q if and only if Fbpto`ω2q “ to`ω2. Since
℘Λpt` λ1q “ ℘Λptq, the second statement follows. �

5.1. Properties of the auxiliary map `a. Based on the discussion above,
we shift our focus to the real numbers to study the dynamics when b P L. We
note that for a “ 0, `0 is just the map ℘Λ|L, and by periodicity, restricting
the map to a fundamental region,

`0 : p´ω1, ω1s Ñ re2, e3s,

since `0p´ω1q “ ℘Λp´ω1 ` ω2q “ `0pω1q “ e3. Since Λ is real rectangular,
e2 ă 0 and e3 ą e2 so the maximum value occurs at the two endpoints of
the interval. There is a critical point of `0 at 0 which is a minimum, since
`0p0q “ ℘Λpω2q “ e2 ă 0. The maximum value e3 will be positive, negative
or zero depending on g3 being negative, positive, or 0 respectively.

For `a, with a P R, the maxima, minima, and critical points occur at the
same points in the interval, independent of a. We assume a P r´ω1, ω1s,
and set Ia “ re2 ` a, e3 ` as, so `a : RÑ Ia or by periodicity, we can write:
`a : r´ω1, ω1s Ñ Ia.

The range of values for the derivative of `a can be easily computed. The
map `1a can be written as `1ptq since it does not depend on a.

Proposition 5.6. For Λ real rectangular, b P L, and Fb, `a as above, the
function `1ptq “ ℘1Λpt ` ω2q is a real analytic, periodic, and odd function,

which maps onto the interval r´
?
η,
?
ηs with η “ ´g3 ` pg2{3q

3{2 ą 0.

Proof. This follows from classical identities in ([8], Chapter 2.23). �

The next result follows from Theorem 2.8 and is a generalization of Propo-
sition 4.2 (2) to real rectangular lattices.

Proposition 5.7. For Λ a real rectangular lattice, for all b P C, and z P L,
writing z “ t` ω2, we have Fbpzq “M ˝ ℘Λptq ` b, where M is the Möbius
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transformation defined by:

Mpzq “ e2

˜

z ` e2 `
g3

4e22

z ´ e2

¸

.

Moreover for a P R, we have `aptq “M ˝ ℘Λptq ` a.

Proof. The proofs of the two parts are almost identical so we prove the
second statement. We use Theorem 2.8 and rewrite the numerator using
the identities given in (2.4) to see that:

`aptq “
2e2

2 `
g3

4e2

℘Λptq ´ e2
` e2 ` a(5.2)

“ e2

˜

℘Λptq ` e2 `
g3

4e22

℘Λptq ´ e2

¸

` a

“ M ˝ ℘Λptq ` a,

�

The map M preserves the real line, interchanges the upper and lower half
planes and permutes e2 with 8 and 0 with ´pe2 ` g3{p4e

2
2qq.

It is of interest to determine when we obtain attracting cycles for Fb. We
have transformed the question into one for maps on the real line (`a), so
we can use the Schwarzian derivative. Using Proposition 4.4 we prove the
following result.

Proposition 5.8. If Λ is any real rectangular lattice, then for any b P C,
for all z P L, SFbpzq ă 0. Equivalently S`aptq ă 0 for all t P R.

Proof. Since e1 ą 0 for real rectangular lattices Λ, for all real t, ℘Λptq ą 0,
so we have that S℘Λptq “ ´6℘Λp2tq ă 0. Then for z P L, writing z “
t ` ω2, we have that SFbpzq “ SpM ˝ ℘Λqptq “ S℘Λptq “ ´6℘Λp2tq ă 0 by
Proposition 4.4. �

Using Proposition 5.8, we can apply the result from ([9], Theorem 4.1) to
obtain the following result. Write rzs for the coset z ` Λ.

Theorem 5.9. If Λ is a real rectangular lattice, and b “ a ` ω2, a P R,
then:

1. The immediate basin of an attracting periodic orbit of Fb on L contains
an element of either rω2s X L or rω3s X L (or both).

2. If z0 “ t0 ` ω2, (t0 real) is in a rationally neutral p-cycle for Fb then it
is topologically attracting in the sense that there is an open interval in
L that is attracted to z0, and a critical point in its immediate attracting
basin that contains an element of either rω2s X L or rω3s X L (or both).
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5.2. Center and parabolic parameters on L. In Definition 4.11 we
defined order k prepole and (period m) center parameters in terms of ω1;
we carry those definitions over verbatim for ω2 and ω3. We first show that
there are no prepole parameters along L.

Proposition 5.10. For Λ real rectangular, there are no prepole parameters
b P L.

Proof. We show that if b P L, then none of ω1, ω2, or ω3 land on a pole
under Fb. For any z P R Y L, Fbpzq “ u ` a ` ω2, with u “ ℘Λpzq P R,
and a P R. Since ω2 is purely imaginary, Fbpzq P L, which contains no
poles. Therefore Fnb pzq P L as well for each n, and hence Fnb pzq R Λ. Since
ω1 P R, ω2, ω3 P L, there are no prepole parameters. �

Many bifurcations in b-space depend on the lattice Λ, but the next result
shows there exist center parameters b P L for any lattice Λ.

Theorem 5.11 (Fixed center parameters for ω2 and ω3). For any real rect-
angular lattice Λ the parameters on L given by bj “ ωj ´ ej each give Fbj
with a super-attracting fixed point at ωj , j “ 2, 3.

Proof. The point ω1 is a super-attracting fixed point for `pω1´e3q, and 0 is
a fixed critical point for `´e2 . The result follows from Lemma 5.5. �

The connectivity of the resulting Julia sets in Theorem 5.11 depends on
the lattice; we develop this idea further below.

5.2.1. Parabolic parameters on L. Whenever η ě 1 from Proposition
5.6, we obtain parabolic behavior for some parameters on L.

Proposition 5.12 (Existence of parabolic parameters). If pg2, g3q P R and
4pg2, g3 ` 1q ą 0, in the set p´ω1, ω1s ` ω2 Ă L, there exist parameters
bj P L, j “ 1, 2 for which FΛ,bj has a parabolic fixed point in each periodic

interval on L with multiplier p´1qj . In particular in the interval p´ω1, ω1s,
there are exactly 2 parameters a`1 , a

`
2 for which Fb, b “ a`j ` ω2, j “ 1, 2

has a fixed point with derivative 1, and two parameters a´1 , a
´
2 for which Fb,

b “ a´j ` ω2, j “ 1, 2 has a fixed point with derivative ´1.

Proof. If pg2, g3q P R then 4pg2, g3q ą 0. If in addition 4pg2, g3 ` 1q ą 0,

then by Proposition 5.6 we have ´g3` pg2{3q
3{2 “ η ą 1. By periodicity on

each line segment of L of length 2ω1, the maximum value of `1 is
?
η ą 1,

and the minimum value is ´
?
η ă ´1. By the Intermediate Value Theorem

there exists a point t0 P p0, ω1q such that `1pt0q “ 1 ă
?
η; since `1 is an odd

function, we have `1p´t0q “ ´1. Therefore setting a1 “ t0 ´ `0pt0q, we have
`a1pt0q “ t0 with multiplier 1. Similarly a´1 “ ´t0´ `0p´t0q “ ´t0´ `0pt0q,
we have `a´1p´t0q “ ´t0 with multiplier ´1.

Since `1 “ 0 at the endpoints and midpoint of p´ω1, ω1s, the Intermediate
Value Theorem guarantees the existence of two points t`1 ă t`2 in r0, ω1s such
that `1 “ 1, and two points t´1 ă t´2 in p´ω1, 0s such that `1 “ ´1. Each of
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these four points (or a translation by ˘λ1) becomes a parabolic fixed point
of `a for the appropriate choice of parameter a˘j P p´ω1, ω1s. Specifically, we

choose a`j “ pt
`
j ` kλ1q ´ ℘Λpt

`
j q for some k P Z such that a`j P p´ω1, ω1s.

This is possible since there is a representative of pt`j ´℘Λpt
`
j qq `Λ in every

interval of L of length 2ω1. �

Remark 5.13. When 4pg2, g3 ` 1q “ 0, every fundamental interval along
L contains exactly two parabolic parameters, each corresponding to a map
with fixed point; one with multiplier 1 and the other with multiplier ´1.

Unlike the case when b is real, we next show that for some real rectangular
lattices no parabolic parameters exist.

6. Maps Fb with Cantor Julia set

We recall that for any square lattice, Jp℘Λq is connected [11]. In addition
for any example of a lattice Λ for which the connectivity of Jp℘Λq is known,
it is connected. In this section we show that adding a constant changes the
connectivity. As always we consider Λ to be a real rectangular lattice. The
next result shows that for some lattices Λ, every b P L yields a map with a
Cantor Julia set. Since we write parameters b P L as b “ a` ω2, a real, we
denote a line segment along L by rα1, α2s ` ω2 where α1, α2 P R.

Theorem 6.1. Let Λ “ Λpg2, g3q be any real rectangular lattice and suppose
that pg2, g3q P R also satisfies: 4pg2, g3 ` 1q ă 0. Then for any b P L, JpFbq
is a Cantor set.

Proof. We write b “ a`ω2. The conditions on the pair pg2, g3q imply that
|`1aptq| ă 1 for all t P R by Proposition 5.6. Since `a : R Ñ re2 ` a, e3 ` as,
let p “ maxte3 ` a, e2 ` a ` 2ω1u, I “ re2 ` a, ps, and consider `a : I Ñ I.
By the Contraction Mapping Theorem, there exists a unique fixed point
t0 P I, and all points in I converge under iteration to t0. Since I contains
a fundamental period of `a, then all points t P L, and therefore all points
in ˘V are attracted to the fixed point at t0. The Fatou set is open, so by
([12], Corollary 3.11 and Theorem 3.12), we have a double toral band, and
a Cantor Julia set (see Definition 6.9 below). �

The region in R where pg2, g3q satisfies the hypotheses of Theorem 6.1
is shown in yellow on the left in Figure 4. A typical Julia set obtained by
choosing pg2, g3q satisfying the hypotheses of Theorem 6.1, with a generic
value of b on L is shown in Figure 4. We can generalize some of these results
to arbitrary lattices.

Theorem 6.2. If Λ is a real rectangular lattice and Fb, b P L has an
attracting fixed point whose basin of attraction contains r0, ω1s ` ω2, then
JpFbq is a Cantor set.

Proof. Let z0 satisfy Fbpz0q “ z0 with |F 1bpz0q| ă 1. Then z0 P L by Lemma
5.4. Let A denote the immediate attracting basin of z0, and set AL “ AXL.
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Figure 4. Pairs pg2, g3q satisfying 4pg2, g3q ą 0 and
4pg2, g3 ` 1q ă 0 are in yellow on the left, and a Cantor Ju-
lia set for Fb using pg2, g3q “ p6, 2q satisfying: 4pg2, g3q ą 0,
4pg2, g3 ` 1q ă 0, and b P L is shown on the right.

By hypothesis, symmetry about 0, and periodicity, we have that AL “ L,
since the entire interval r´ω1, ω1s ` ω2 Ă F pFbq. By the proof of Lemma
5.4 we have that `ap˘V q Ă A, if b “ a ` ω2, hence ˘V Ă A as well. The
Fatou set is open, so by ([12], Corollary 3.11 and Theorem. 3.12) we have a
double toral band and a Cantor Julia set.

�

We generalize the conditions for JpFbq to be a Cantor set once more.

Proposition 6.3. Let Λ be any real rectangular lattice. For any fixed
t0 P R, choosing a “ t0 ´ ℘Λpt0 ` ω2q P R gives t0 as a fixed point of `aptq.
When t0 is attracting for `a, setting p “ maxte3`a, e2`a`2ω1u, and letting
U “ re2 ` a, ps, if `a contains U in its attracting basin, then for b “ a` ω2,
JpFbq is a Cantor set.

Proof. We have that `apt0q “ ℘Λpt0`ω2q`a “ ℘Λpt0`ω2q´℘Λpt0`ω2q`

t0 “ t0. The derivative at the fixed point is exactly ℘1Λpt0`ω2q P R; assume
it is attracting. Set p “ maxte3 ` a, e2 ` a` 2ω1u, and let U “ re2 ` a, ps;
consider `a : U Ñ U . If U is in the basin of attraction of t0, then all points
t P L are as well. As above, it follows that all points in ˘V are attracted to
the fixed point at t0, and JpFbq is a Cantor set.

�
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We now turn to the existence of maps Fb which satisfy the hypotheses of
Theorem 6.2 but not those of Theorem 6.1.

Example 6.4. We start with a rectangular lattice Λ determined by the
invariants pg2, g3q “ p5, 1q, so that 4pg2, g3q “ 98 ą 0 and 4pg2, g3 ` 1q “
17 ą 0; so Theorem 6.1 does not apply. One can check that e2 “ ´1 for this
lattice, and since g3 ą 0, we have that e3 ă 0. By choosing a “ 1, Theorem
5.11 implies that 0 is a super-attracting fixed point for `a.

By symmetry of the map `a about critical points, it is enough to check
that on r0, ω1s, applying (5.2),

`aptq “
2e2

2 `
g3

4e2

℘Λptq ´ e2
` e2 ` a “

2´ 1{4

℘Λptq ` 1
ă t.

This will imply that all points in L iterate to the fixed point at 0. Even
though the maximum value of `1a ą 1, this is straightforward to check. We
have:

`aptq “
7

4
p℘Λptq ` 1q´1

ă
7

4

ˆ

1`
1

t2
`
t2

4

˙´1

,

using the Laurent series expansion of ℘Λ about 0, and truncating it after
the first two terms (since g2, g3 ą 0 this provides a lower bound for ℘Λptq
and an upper bound for `aptqq.

Since
ˆ

1`
1

t2
`
t2

4

˙´1

“

ˆ

4t2 ` 4` t4

4t2

˙´1

“
4t2

4t2 ` 4` t4
,

it suffices to show 7t2 ă tpt2 ` 2q2, for t ą 0 and this can easily be shown.

Remark 6.5. For a real square lattice and b of the form b “ a` ω2, a P R,
if we choose a “ e1, `a, can be written as:

(6.1) `aptq “
2e2

1

e1 ` ℘Λptq
.

Then a sufficient condition for JpFbq to be a Cantor set for a square lattice
is given in Theorem 6.7.

Proposition 6.6. For Λ real rectangular square, the point 0 is a super-
attracting fixed point of `e1ptq. When 0 is the only fixed point for `e1 on the

interval r0, ω1s, then JpFe1`ω2q is Cantor. It is necessary that e1 ă pγ{2q
2{3

for the condition to be satisfied.

Proof. By Theorem 5.11, a “ ´e2 “ e1 will yield a super-attracting fixed
point at 0. If 0 is the only fixed point of `a, then we have `aptq ă t near 0,
and therefore for all t P p0, ω1s. Clearly if there is some t such that `aptq “ t
we have a fixed point, and if `aptq ą t for some t P p0, ω2q, then by the
Intermediate Value Theorem we have a fixed point in between 0 and t. If
`aptq ă t on p0, ω1s, then `apω1q ă ω1. By Table 1, this means e1 ă

γ
2
?
e1

, or

e1 ă pγ{2q
2{3 « 1.19787.
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Figure 5. Cantor Julia sets, on the left using b P R and
pg2, g3q “ p1, 0q, and on the right using b P L and pg2, g3q “

p3.24, 0q. The attracting fixed point is marked in white and
the period lattice is shown in green in both.

Since `aptq ă t on p0, ω1s, then `naptq ă `n´1
a ptq for all n P N, and therefore

the decreasing sequence t`naptqu must converge to a fixed point which has to
be 0. Then all t P L and V are attracted to 0 and JpFbq is a Cantor set.

�

Using the idea for the proof above we obtain a continuum of examples with
Cantor Julia set; the right picture of Figure 5 shows JpFbq from Theorem
6.7, using e1 “ .9.

Theorem 6.7. If ℘Λ has a real square period lattice Λ and e1 ď 1, then
setting b “ e1 ` ω2 we have that JpFbq is a Cantor set.

Proof. We show that Theorem 6.2 can be applied to yield the result. By

Equation (6.1), `aptq “
2e2

1

e1 ` ℘Λptq
and has 0 as a super-attracting fixed

point. Since `aptq ă t for small t ą 0, it suffices to show that `aptq ă t
for all t ą 0. As above we approximate ℘Λ from below using its Laurent
series expansion, all of whose nonzero coefficients are positive if g2 ą 0, and

we have from Table 1, that g2 “ 4e2
1. Therefore ℘Λptq ą

1
t2
`

e21t
2

5 , so it is
enough to show that

(6.2)
10e1t

2

e2
1t

4 ` 5e1t2 ` 5
ă t.

Reducing Equation (6.2) to showing the quadratic polynomial rptq “ 5e1t
2´

10e1t` 5 is positive as above, this holds when e1 ď 1 for all t ą 0. �

This next result gives rise to a large number of examples, not satisfying
the hypotheses of any of the previous results, of maps Fb on square lattices
with Cantor Julia sets.

Proposition 6.8. Assume Λ is the center square lattice, and set A “

p´ω1, 0q. Suppose a P A is such that there exists an attracting fixed point
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t0 for `a, and t0 P A. Then t0 is the only fixed point in A; if t0 is the only
fixed point for `a on Ia “ r´ω1 ` a, as, then JpFa`ω2q is a Cantor set.

Proof. Since t0 P A, the interval B “ A X Ia “ p´ω1, aq ‰ H. Since
℘1Λpzq ă 0 on A` ω2, we have `1pt0q ă 0. Therefore `a is strictly decreasing
on A and therefore t0 is the only fixed point of `a in A. By Theorem 4.6
there must be a critical point in the immediate basin of attraction of t0, so
since ´ω1 is the only critical point in the domain and range of `a, it iterates
to t0. But `ap´ω1q “ a, so a is also in the immediate attracting basin and
therefore the entire interval B is.

For all t P IazA, we have t P p´2ω1,´ω1q and `1aptq ą 0, so the sequence
t`naptqu increases until `no

a ptq P B for some no. For n ą no, t`
n
aptqu is attracted

to t0. Therefore the entire interval Ia is in the attracting basin of t0 and by
Proposition 6.3, JpFbq is a Cantor set.

�

Toral band Fatou components. A fundamental region for an elliptic
function can be identified with the torus C{Λ; we consider Fatou components
on a torus, and have the following definition from ([11], Definition 5.1 and
Proposition 5.2).

Definition 6.9. A Fatou component A0 of the map Fb is a toral band if A0

contains an open subset U which is simply connected in C, but U projects
to a topological band around the torus C{Λ containing a homotopically
nontrivial curve. We say A0 is a double toral band if U Ă A0 contains a
simple closed loop which forms the boundary of a fundamental region for Λ.

It is clear that when JpFbq is a Cantor set we have a double toral band
but other types of toral bands can occur. We refer to a Fatou component
A0 as a single toral band if it is a toral band but not a double toral band.

Proposition 6.10. [11] For any lattice Λ, an elliptic function fΛ has a
toral band if and only if there is a component of the Fatou set which is not
completely contained in the interior of one fundamental region Q.

Example 6.11. We show the existence of a map Fb with a toral band
but such that JpFbq is not a Cantor set using numerical estimates from
Lemma 2.7. For this example, pg2, g3q “ p7,´3q. The critical values for the
associated map ℘Λ are pe1, e2, e3q “ p1,´1.5, .5q, by Proposition 2.5.

We choose b P L given by: b “ ω2´e2 “ ω2`1.5 so that we have a super-
attracting fixed point at ω2. We have a second attracting fixed point on L;
this is the fixed point contained in a toral band. If we denote by pη1, η2, η3q,
the real parts of pv1, v2, v3q which all lie on L, we have: η2 “ 0 ă η2 “ 2 ă
η3 “ 2.5, and calculating the first few terms in the AGM sequence for λ1,
we see that η3 ă λ1, and it then follows that ω1 ă η2 ă η3 ă λ1, and the
function `a defined earlier, using a “ 1.5, is concave down on the interval
pω1, λ1q and maps L periodically onto r0, 2s. From here it is not too difficult
to show there is an attracting fixed point p “ α`ω2, with ω1 ă α ă η2, and
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with both v2 and v3 in its attracting basin. This gives us the existence of
a toral band; the additional attracting fixed point at ω2 implies that JpFbq
is not a Cantor set. The parameter space for the example is shown on the
right in Figure 2.
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[2] Baker, Ian N.; Kotus, Janina; Lü, Yinian. Iterates of meromorphic func-
tions. I. Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241–248. MR1116639
(92m:58113), Zbl 0711.30024, doi: 10.1017/S014338570000612X. 952

[3] Bergweiler, Walter. Iteration of meromorphic functions. Bull. Amer. Math.
Soc. (N.S.) 29 (1993), no. 2, 151–188. MR1216719 (94c:30033), Zbl 0791.30018,
arXiv:math/9310226, doi: 10.1090/S0273-0979-1993-00432-4. 953

[4] Clemons, Joshua J. Connectivity of Julia sets for Weierstrass elliptic func-
tions on square lattices. Proc. Amer. Math. Soc. 140 (2012), no. 6, 1963–1972.
MR2888184, Zbl 1297.37021, doi: 10.1090/S0002-9939-2011-11079-7. 948, 967

[5] Devaney, Robert L.; Keen, Linda. Dynamics of tangent. Dynamical
systems (College Park, MD, 1986-87), 105–111, Lecture Notes in Math.,
1342. Springer, Berlin, 1988. MR0970550 (90e:58093), Zbl 0662.30019,
doi: 10.1007/BFb0082826. 952

[6] Devaney, Robert L.; Keen, Linda. Dynamics of meromorphic maps:

maps with polynomial Schwarzian derivative. Ann. Sci. École Norm. Sup.
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