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Ordered invariant ideals of
Fourier-Stieltjes algebras

S. Kaliszewski, Magnus B. Landstad
and John Quigg

Abstract. For a locally compact group G, every G-invariant subspace
E of the Fourier-Stieltjes algebra B(G) gives rise to the following two
ideals of the group C∗-algebra C∗(G): the intersection of the kernels
of the representations with many coefficient functions in E, and the
preannihilator of E. We investigate the question of whether these two
ideals coincide. This leads us to define and study two properties of E —
ordered and weakly ordered — that measure how many positive definite
functions E contains.
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1. Introduction

In an effort to extend the class of groups for which the Baum-Connes
conjecture is valid, Baum, Guentner, and Willett introduced in [2] crossed-
product functors, which transform actions of a locally compact group G on
C∗-algebras into C∗-algebras that lie between the full and reduced crossed
products. Our approach to this has been to form crossed-product functors
by applying coaction functors to the full crossed products. This in par-
ticular requires us to study exotic group C∗-algebras between C∗(G) and
C∗r (G) to form coaction functors. In [4] Brown and Guentner introduced a
certain method of generating exotic group C∗-algebras of a discrete group
G, starting with a G-invariant ideal D of `∞(G). Their method carries
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over to locally compact G, letting D be a G-invariant ideal of either L∞(G)
or the algebra Cb(G) of continuous bounded functions. (This L∞-or-Cb
ambiguity is useful, because there are examples in which the ideal most
naturally resides in one or the other.) They used D to define a class of
unitary representations of G, and then applied standard C∗-representation
theory to get an associated quotient of C∗(G), denoted by C∗D(G), which
was their main object of study. Recently there has been a flurry of activ-
ity regarding constructions using these group C∗-algebras (a brief sampling:
[3, 5, 6, 12, 11, 13, 14, 17, 18, 20, 19]).

In [10] our strategy was to study the exotic group C∗-algebra C∗D(G) in
terms of the dual space C∗D(G)∗ of bounded linear functionals, which can
be identified with a weak*-closed subspace of the Fourier-Stieltjes algebra
B(G) = C∗(G)∗, namely the annihilator in B(G) of the kernel of the quotient
map C∗(G)→ C∗D(G).

However, recently a fundamental question has arisen, because the same
D can be used to arrive at a potentially different weak*-closed subspace of
B(G) by taking the weak*-closure of D ∩B(G) in B(G).

Question 1.1. Does the weak*-closure D ∩B(G) coincide with the dual
space C∗D(G)∗?

In [10, Lemma 3.5 (1)] we thought we had proven that the answer to
Question 1.1 is “yes”. But although we did give a correct proof of the
inclusion C∗D(G)∗ ⊂ D ∩B(G), it has recently been pointed out to us by
Buss, Echterhoff, and Willett that our argument for the reverse inclusion is
incorrect. At this point we do not know whether [10, Lemma 3.5 (1)] is true
in general; see Section 3 for a discussion. In this paper we investigate this
question, although we emphasize that we do not have a complete solution.

Our incorrect proof of [10, Lemma 3.5 (1)] seemed to depend upon a
nonzero G-invariant ideal E of B(G) having the property that E = span{E∩
P (G)}, where P (G) denotes the set of continuous positive definite functions
on G. In this paper we initiate the study of this property, which we have
been unable to find in the literature. We call a subspace E of B(G) ordered
if it coincides with the linear span of the intersection E∩P (G), and we prove
that if a nonzero G-invariant ideal E of B(G) is ordered, then Question 1.1
has a positive answer.

Happily, Buss, Echterhoff, and Willett show in [5, Corollary 2.14] that
a positive answer to Question 1.1 in general is equivalent to E having a
somewhat weaker property, namely that the span of the intersection E ∩
P (G) be weak*-dense in E; when this happens we call E weakly ordered.
In Section 3 we explore these two (new?) properties: ordered and weakly
ordered. Although not every G-invariant ideal E of B(G) is ordered (see
Example 4.2), as far as we know it is an open question whether such E is
always weakly ordered. It seems that G-invariance of E, or the requirement
that E be an ideal, may be important here: in Example 3.23 we exhibit
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a weak*-dense subspace E of B(T) for which E ∩ P (T) = {0}, and thus
fails emphatically to be weakly ordered. We do not know an example of a
subspace E that is either G-invariant or an ideal and is not weakly ordered.
In any event, we believe that this paper, and [5], demonstrate that the
properties ordered and (perhaps more importantly) weakly ordered deserve
further study.

We begin in Section 2 by setting up the ingredients for our study: starting
with a G-invariant subspace E of B(G), we introduce E-representations,
which are representations of G with a lot of coefficient functions in E (see
Definition 2.3).

We show in Section 3 that Question 1.1 is equivalent to the question of
whether the preannihilator ⊥E coincides with the intersection of the kernels
(in C∗(G)) of the E-representations, and also equivalent to the property
that E is weakly ordered. Our ignorance concerning these ideas is deep:
We do not even know whether G has nonzero E-representations, even as-
suming that E is an ideal of B(G), although we give an affirmative answer
in Proposition 3.20 for discrete groups. In Proposition 3.22 we prove that
when G is amenable (which is in some sense of no interest with regard to
our questions), the existence of just one nonzero E-representation implies
that E is weakly ordered.

In Section 4 we examine the two properties ordered and weakly ordered for
certain “classical” ideals of B(G), particularly those arising from Lp-spaces.
We prove in Proposition 4.1 that the ideals given by the intersection of B(G)
with either Cc(G) or C0(G) are ordered. On the other hand, regarding the
ideals Ep = Lp(G)∩B(G) for 1 ≤ p ≤ ∞ the situation is not so clear. We do
not know whether they are all weakly ordered. In Example 4.2 we show that
for some groups the ideal E1 of B(G) is not ordered, while in Proposition 4.4
we record the trivial fact that E∞ is ordered. In Proposition 4.5 we show
that for 1 ≤ p ≤ 2 the ideal Ep is weakly ordered, and in Corollary 4.6
we observe the consequence that E1 is weakly ordered but not ordered. In
Corollary 4.7 we show that G has at least one nonzero Ep-representation for
every p. In Proposition 4.9 we show that E2 is ordered when G is abelian,
and we conjecture that this carries over to all unimodular groups.

In Section 5 we indicate how our investigation into the ordering properties
studied in Section 3 can be applied to fix [10, Lemma 3.5 (1)]. The main
take-away from all this is the following: The statement of Lemma 3.5 (1) in
[10] should have included the hypothesis that the linear span of E ∩ P (G) is
weak*-dense in E, and any result that appeals to that lemma should account
for this additional hypothesis.

2. The setup

Since the G-invariant set D discussed in Section 1 is only used to re-
strict the coefficient functions of representations, its intersection with the
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Fourier-Stieltjes algebra is all that matters. So, let E be a G-invariant (not
necessarily weak*- or even norm-closed) vector subspace of B(G).

Remark 2.1. If E arises as in the introduction, by intersecting B(G) with a
G-invariant ideal of L∞(G) or Cb(G), then E will also be an ideal of B(G).
Although this property is in fact important to us for our main study of
coaction functors, for the time being we only require E to be a G-invariant
subspace of B(G).

Definition 2.2. Let U be a unitary representation of G on a Hilbert space
H, and let ξ, η ∈ H. Define the coefficient function Uξ,η by

Uξ,η(x) = 〈Uxξ, η〉 for x ∈ G.

We write Uξ for Uξ,ξ.
We will find it convenient to adopt the convention that the zero represen-

tation of G (on the 0-dimensional Hilbert space) is unitary.

Definition 2.3 (see [4, Definition 2.1]). An E-representation of G is a triple
(U,H,H0), where U is a unitary representation of G on a Hilbert space H
and H0 is a dense subspace of H such that Uξ,η ∈ E for all ξ, η ∈ H0.

With our convention that the zero representation is unitary, we see that
it is trivially an E-representation.

The fussy notation (U,H,H0) will help us keep track of things; [4] just
refers to U itself as the E-representation (actually, a D-representation where
D is a G-invariant ideal of `∞(G) for a discrete group G), and sometimes
we will also do this.

Of course, U integrates to a nondegenerate representation of C∗(G) on
H, which we also denote by U . When we refer to the kernel of U , we mean
the ideal

kerU := {a ∈ C∗(G) : U(a) = 0}

of C∗(G). Part (1) of the following definition is taken from [4, Definition 2.2],
and part (2) from [10, Definition 3.2].

Definition 2.4. Let E be a G-invariant subspace of B(G).

(1) Define an ideal of C∗(G) by

JE =
⋂
{kerU : U is an E-representation of C∗(G)},

and then let

C∗E,BG(G) = C∗(G)/JE .

(2) On the other hand, by G-invariance the preannihilator ⊥E is also an
ideal of C∗(G), so we can define another quotient C∗-algebra by

C∗E,KLQ(G) = C∗(G)/⊥E.
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Remark 2.5. Since E is a G-invariant subspace of B(G), the weak*-closure
E is also G-invariant, and hence is a C∗(G)-subbimodule of B(G), so by [16,
Corollary 3.10.8] the preannihilator ⊥E = ⊥E is a closed ideal of C∗(G).
This is also recorded in [5, Lemma 2.10]. The notation C∗E,BG and C∗E,KLQ

comes from [5].

The following is an alternative version of Question 1.1, as we will see from
the results in Section 3:

Question 2.6. If E is a G-invariant subspace of B(G), is JE = ⊥E? Equiv-
alently, is C∗E,BG(G) = C∗E,KLQ(G)?

We are most interested in this question in the special case that E is
actually an ideal of B(G).

The inclusion JE ⊃ ⊥E always holds, as (correctly) shown in the second
half of the proof of [10, Lemma 3.5 (1)], and here is the argument: Let
a ∈ ⊥E, and let (U,H,H0) be an E-representation. Then for all ξ, η ∈ H0

we have Uξ,η ∈ E, so

0 = Uξ,η(a) = 〈U(a)ξ, η〉,
and so U(a) = 0 by density. Thus a ∈ JE . Interestingly, this inclusion will
also fall out of our investigation below (see Corollary 3.15).

In [10] we gave an incorrect argument for the containment JE ⊂ ⊥E.

Remark 2.7. Just for fun, here is an alternative argument for the inclu-
sion proved above: First, a set-theoretic technicality: there is a set R of
representations of G such that

JE =
⋂
{kerU : U ∈ R}.

(The issue here is that in Definition 2.4 the intersection is indexed by a
proper class, i.e., not a set. But we are intersecting a set of ideals.) [7,
Proposition 3.4.2 (i)] says that every state of C∗(G) that vanishes on JE is
a weak*-limit of states of the form∑

U∈F
UξU,H,H0

,

where F ⊂ R is finite and ξU,H,H0 ∈ H for all (U,H,H0) ∈ F . Now, by
density each such state can be approximated in the weak*-topology by states
of the same form but with ξU,H,H0 ∈ H0 for each (U,H,H0) ∈ F . Thus every

state in J⊥E is in E. Since J⊥E is the dual space of the quotient C∗-algebra

C∗(G)/JE , every element of J⊥E is a linear combination of states in J⊥E , and

hence J⊥E ⊂ E by the preceding. Therefore JE ⊃ ⊥E.

3. Ordered and weakly ordered subspaces

We now proceed to investigate Question 2.6. Throughout, E will de-
note a G-invariant subspace of B(G). We want to find a reasonably gen-
eral sufficient condition for JE = ⊥E. In this section we illustrate one
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approach, mainly using the Hahn-Banach theorem. First we introduce some
auxiliary notation. Recall from Definition 2.3 that our notation for an E-
representation is a triple (U,H,H0), where we keep track of the Hilbert space
H and the dense subspace H0.

Notation 3.1. We write

Er := {Uξ,η : (U,H,H0) is an E-representation, ξ, η ∈ H0}.
Note: as a consequence of our convention that the zero representation is
(unitary and hence is) an E-representation, we see that 0 ∈ Er.

Remark 3.2. Think of the elements of Er as “representable” (which is our
motivation for the notation). In [19, Section 4], Wiersma defines something
similar but not quite the same — he would write AE(G) for the set of all
coefficient functions Uξ,η, where now ξ and η are allowed to be any vectors
from the Hilbert space H of the E-representation U , not just from the dense
subspace H0.

Remark 3.3. Somehow irritating, we do not know whetherG has any nonzero
E-representations, equivalently whether Er 6= {0} (see Question 3.19 below).

Lemma 3.4. For any G-invariant subspace E of B(G), Er is a vector sub-
space of E.

Proof. It is obvious that Er is closed under scalar multiplication. Note that
any direct sum of E-representations is an E-representation, by the same
reasoning as [4, Remark 2.4]. Let f, g ∈ E, and choose E-representations
(U,H,H0) and (V,K,K0) and vectors ξ, η ∈ H0 and κ, ζ ∈ K0 such that
f = Uξ,η and g = Vκ,ζ . Then (U⊕V,H⊕K,H0⊕K0) is an E-representation,
where H0 ⊕K0 stands for the algebraic direct sum of the vector subspaces
H0 and K0. Since

Uξ,η + Vκ,ζ = (U ⊕ V )(ξ,κ),(η,ζ),

we are done. �

Definition 3.5. For a (not necessarily G-invariant) subspace E of B(G),
put E0 = span{E ∩P (G)}. We say that E is ordered if E0 = E, and we say
that E is weakly ordered if E0 is weak* dense in E.

Although in the above definition we temporarily removed the assumption
that E isG-invariant, we will tacitly impose this assumption unless otherwise
specified.

We will see that not every subspace of B(G) is ordered, and we begin
with an obvious obstruction: First recall that the involution in the Fourier-
Stieltjes algebra B(G) is given by

f̃(x) = f(x−1).

It follows from the properties of duals of C∗-algebras that every ordered

subspace E of B(G) is self-adjoint: if f ∈ E then also f̃ ∈ E.
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Remark 3.6. The above terminology “ordered” makes sense because it is
precisely what it means for the self-adjoint part of E to be a partially ordered
(real) subspace of the self-adjoint part of B(G). It is slightly less obvious
that the terminology “weakly ordered” is sensible, but it is somehow related
to the property “ordered” and is obviously weaker (in fact strictly weaker,
as we will show).

We will show in Example 4.2 that in fact not every G-invariant ideal of
B(G) is ordered.

Question 3.7. Is every G-invariant subspace of B(G) weakly ordered? Ex-
ample 3.23 below gives some negative evidence, although it does not furnish
a counterexample.

Lemma 3.8. E is weakly ordered if and only if ⊥E = ⊥E0.

Proof. Since E0 ⊂ E, this follows from the Hahn-Banach Theorem. �

The following is equivalent to [5, Lemma 2.15] (see also [19, Proposi-
tion 4.3]), with a somewhat different proof.

Proposition 3.9 ([5]). If E is closed in the norm of B(G), then it is ordered.

Proof. By [1, Theorem 3.17] E is the set of all coefficient functions of some
representation U of G, and then by [1, Proposition 2.2] E is the predual
of the von Neumann algebra generated by U(G). It then follows (see, for
example, [16, Proposition 3.6.2] or [7, Theorem 12.3.3]) that E is the linear
span of positive linear functionals. �

Remark 3.10. Proposition 3.9 obviously applies in particular to situations
where E is relatively closed in B(G) as a subset of Cb(G) with the sup norm,
most importantly E = C0(G) ∩B(G), as observed in [5, Lemma 2.15].

Remark 3.11. Here is an alternative, somewhat more elementary, argument:
Since E is a subspace, trivially E0 ⊂ E. For the opposite containment,
let f ∈ E. To show that f ∈ E0, without loss of generality assume that
f 6= 0. By [19, Proposition 4.1] (for example), there is a representation U
and vectors ξ, η such that f = Uξ,η and ‖f‖ = ‖ξ‖‖η‖ (where the norm of f
is taken in B(G)).

Let

Hξ = span{Uxξ : x ∈ G}
Hη = span{Uxη : x ∈ G},

and let Pξ and Pη be the orthogonal projections onto these respective sub-
spaces. Since Pη commutes with U ,

f(x) = 〈Uxξ, Pηη〉 = 〈UxPηξ, η〉.
Thus by construction we have

‖Pηξ‖‖‖η‖ ≥ ‖f‖ = ‖ξ‖‖η‖,
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so ‖Pηξ‖ ≥ ‖ξ‖, and hence, since Pη is a projection, we must have Pηξ = ξ,
giving ξ ∈ Hη. Similarly η ∈ Hξ. Thus in fact Hξ = Hη. Since E is G-
invariant and norm-closed, the coefficient functions Uξ′,η′ are in E for all
ξ′, η′ ∈ Hξ. Thus

f = Uξ,η =
1

4

3∑
k=0

ikUξ+ikη ∈ E0.

This argument should be compared to [19, proof of Proposition 4.3] and [5,
proof of Lemma 2.15].

Proposition 3.12. E0 = Er.

Proof. Let f ∈ E ∩ P (G). Choose a cyclic representation U of C∗(G) on a
Hilbert space H, with cyclic vector ξ, such that f = Uξ. Let

H0 = span
x∈G
{Uxξ},

which is a dense subspace of H. For all a ∈ C∗(G) and x, y ∈ G,〈
U(a)Uxξ, Uyξ

〉
= x · Uξ · y−1(a),

and x ·Uξ ·y−1 ∈ E, so (U,H,H0) is an E-representation. Therefore f ∈ Er.
By Lemma 3.4 it follows that E0 ⊂ Er.

On the other hand, if (U,H,H0) is an E-representation and ξ, η ∈ H0,
then

Uξ,η =
1

4

3∑
0

ikUξ+ikη,

and ξ + ikη ∈ H0 for k = 0, . . . , 3. Thus Er ⊂ E0. �

Remark 3.13. Recall from Remark 3.2 that in [19] Wiersma writes AE(G) for
the set of all coefficient functions of E-representations. Using our notation,
[19, Proposition 4.3] says that AE(G) = E0. Thus by Proposition 3.12,
AE(G) = Er.

Corollary 3.14. JE = ⊥E0.

Proof. We have

JE =
⋂
{kerU : (U,H,H0) is an E-representation}

=
⋂
{kerUξ,η : (U,H,H0) is an E-representation, ξ, η ∈ H0}

= ⊥Er

= ⊥E0,

where we used density of H0 in the second step. �

Remark 3.15. We can use the above results to give an alternative proof that
⊥E ⊂ JE : Since E0 ⊂ E, we have ⊥E ⊂ ⊥E0, so the inclusion follows from
Corollary 3.14.
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The following corollary is essentially the second half of [5, Proposition 2.13].

Corollary 3.16 ([5]). If E is ordered then JE = ⊥E.

Proof. This follows immediately from Corollary 3.14 and the definition of
ordered. �

We now recover [5, Corollary 2.14] (with a similar proof), which perfects
Corollary 3.16:

Corollary 3.17 ([5]). JE = ⊥E if and only if E is weakly ordered.

Proof. By Corollary 3.14, JE = ⊥E if and only if ⊥E = ⊥E0, which in turn
is equivalent to E = E0 (where the bars denote weak*-closures), and the
result follows since E0 ⊂ E. �

Remark 3.18. By [10, Lemma 3.14], if E is a nonzero G-invariant ideal of
B(G), then the norm closure of E contains A(G), so the weak* closure
contains Br(G).1 Thus we always have ⊥E ⊂ kerλ. Suppose that E0 6=
{0}. Then E0 is also a nonzero G-invariant ideal of B(G), so by the same
argument it follows that the (perhaps) smaller ideal E0 is still weak* dense
in Br(G), and so

⊥E ⊂ ⊥E0 = JE ⊂ ⊥Br(G) = kerλ.

Thus if E0 6= {0} and ⊥E = kerλ then E is weakly ordered.

Question 3.19. If E is a nonzero G-invariant ideal of B(G), does G have a
nonzero E-representation? Equivalently, is the subspace Er of E nontrivial?
We find it hard to believe that this question is still open for general locally
compact groups.

For G discrete, the answer is yes:

Proposition 3.20. If G is discrete and E is a nonzero G-invariant ideal
of B(G), then λ is an E-representation.

Proof. As (essentially) mentioned in [4, paragraph following Definition 2.6],
if G is discrete then E ⊃ cc(G), and it follows that λ is an E-representation.

�

Remark 3.21. Trivially, if E is weakly ordered, then E0 6= {0}, so G has
a nonzero E-representation — and conversely if G is amenable (see Propo-
sition 3.22 below). Although we here are only interested in nonamenable
groups, some questions are also relevant for amenable groups, e.g., the clas-
sical ideals in Section 4. Also, if F is a nonzero G-invariant ideal of B(G)
containing E, and if G has a nonzero E-representation, then trivially it has
a nonzero F -representation.

1It might be worthwhile mentioning that there was a slight redundancy in our argument:
it was not necessary to ensure that the ideal separates points in G.
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Proposition 3.22. Let G be amenable, and let E be a nonzero G-invariant
ideal of B(G). If G has a nonzero E-representation, then E is weakly or-
dered.

Proof. By hypothesis, E0 6= {0}. As we point out in Remark 3.18, ⊥E ⊂
kerλ. Since G is amenable, kerλ = {0}. Consequently, ⊥E = kerλ. Con-
sulting Remark 3.18 again we conclude that E is weakly ordered. �

Example 3.23. Taking G to be the circle group T, we will give an example
of a weak*-dense subspace E of B(G) for which E0 = {0}, and so E fails to
be weakly ordered in a very strong way. Note that our example is neither
G-invariant nor an ideal of B(G). Let

E = span{zn+1 − zn : n ∈ N} ⊂ B(T).

Then E is a subspace of B(T), and we claim that E ∩ P (T) = {0}. By
Bochner’s theorem, it suffices to show that the Fourier transform

Ê = {f̂ : f ∈ E} = span{δn+1 − δn : n ∈ N}
contains no nonzero positive measure on Z. Let

µ =
k∑

n=−k
cn(δn+1 − δn),

and assume that µ is positive and nonzero. Clearly k > 0, and without loss
of generality ck 6= 0. For each n ∈ Z let pn = χ{n} ∈ c0(Z). Then

0 ≤ 〈pk+1, f〉 = ck,

so ck > 0. Next,
0 ≤ 〈pk, f〉 = ck−1 − ck,

so ck−1 ≥ ck. Continuing in this way, we find

c−k ≥ c−k+1 ≥ · · · ≥ ck > 0.

But
0 ≤ 〈p−k, f〉 = −c−k,

giving a contradiction. Note that Ê is weak*-dense in the space `1(Z) of com-
plex measures on Z, and so E is weak*-dense in B(T). We thank J. Spielberg
for fruitful discussion that led to this example.

Remark 3.24. Let E be a nonzero G-invariant ideal of B(G). Suppose that
there exists at least one nonzero E-representation U of G, equivalently E0 6=
{0}. If V is any representation of G, then U⊗V is an E-representation since
E is an ideal. In particular, U ⊗ λ is an E-representation. By Fell’s trick,
U ⊗λ is unitarily equivalent to a multiple of λ. Thus this multiple of λ is an
E-representation. We would like to conclude that λ is an E-representation,
but this seems to require that the class of E-representations be closed under
taking subrepresentations. It is not clear to us why this would be true. But
if it were then we could conclude that E0 contains every convolution ξ ∗η for
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ξ, η ∈ L2(G). Note that our assumptions imply that E0 is also a nonzero G-
invariant ideal of B(G), so by Remark 3.18 we already knew — for different
reasons — that the norm closure of E0 contains A(G).

4. The classical ideals

Inspired by the work of Brown and Guentner [4], the main examples of
G-invariant subspaces of B(G) that we want to include are actually ideals:

(1) Cc(G) ∩B(G)
(2) C0(G) ∩B(G)
(3) Lp(G) ∩B(G).

Proposition 4.1. The ideals (1) and (2) are ordered.

Proof. The first case is very well-known: by [8, Proposition 3.4],

Cc(G) ∩B(G) = span{Cc(G) ∩ P (G)}
= span{Cc(G) ∩B(G) ∩ P (G)}.

The second case was mentioned in Remark 3.10. �

However, for ideals of type (3) things are murky. We do not even know
whether they are all weakly ordered. Since this is an important source of
ideals of B(G), we examine this more closely. For 1 ≤ p ≤ ∞ let

Ep = Lp(G) ∩B(G).

In particular, E∞ = B(G).
Note that if G is unimodular then every Ep is at least self-adjoint in B(G).

However, this does not hold generally, as the following example shows.

Example 4.2. Here we show that there are groups for which the ideal E1 is
not ordered, by showing that it is not self-adjoint in B(G). It seems plausi-
ble, but not clear, that this carries over to arbitrary p <∞ by embellishing
the computations.

We want to find f ∈ E1 such that f̃ /∈ E1. Let g, h ∈ L1(G) ∩ L2(G) be
nonnegative, and put

f(x) = 〈λxg, h〉 =

∫
f(x−1y)g(y) dy.

Then f ∈ B(G), and

‖f‖1 =

∫ ∫
g(x−1y)h(y) dy dx

=

∫ ∫
g(x−1) dxh(y) dy (after x 7→ yx)

= ‖g∆−1‖1‖h‖1,

where here we write ∆−1 for the reciprocal 1/∆.
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On the other hand, f̃ ∈ B(G), and

f̃(x) = f(x−1) =

∫
g(xy)h(y) dy,

so

‖f̃‖1 =

∫ ∫
g(xy) dxh(y) dy

=

∫ ∫
g(x) dx∆(y)−1h(y) dy

= ‖g‖1‖∆−1h‖1.
Now, we impose further assumptions on g, h:

‖g‖1 =∞
‖g∆−1‖1 <∞
0 < ‖h‖1, ‖∆−1h‖1 <∞.

Then f ∈ E1 and f̃ /∈ E1, so E1 is not ordered.
We can easily choose a suitable h — for instance, let h ∈ Cc(G) be

nonnegative and not identically 0. It seems likely that we can also choose
a suitable g in any nonunimodular group. For a specific example, let G be
the ax+ b group R+ × R, with operation

(x, y)(u, v) = (xu, xv + y).

Recall that the Haar measure and modular function are given by

d(x, y) =
dx dy

x2

∆(x, y) =
1

x
.

We look for g of the form

g(x, y) = φ(x)ψ(y),

with φ, ψ ≥ 0. We need g ∈ L2, which means

∞ >

∫
G
g(x, y)2 d(x, y) =

∫ ∞
0

φ(x)2

x2
dx

∫
R
ψ(y)2 dy.

We also need g∆−1 integrable but g nonintegrable, which means

∞ =

∫
G
g(x, y) d(x, y) =

∫ ∞
0

φ(x)

x2
dx

∫
R
ψ(y) dy

and

∞ >

∫
G

g(x, y)

∆(x, y)
d(x, y) =

∫ ∞
0

φ(x)

x
dx

∫
R
ψ(y) dy.

These conditions are all met with, e.g.,

φ(x) = xe−x and ψ(y) = e−y
2
.
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Question 4.3. When is Ep

(1) ordered?
(2) weakly ordered?

Trivially:

Proposition 4.4. E∞ is ordered.

Proposition 4.5. If 1 ≤ p ≤ 2 then Ep is weakly ordered.

Proof. [10, Proposition 4.2] says that ⊥Ep = kerλ, and the result follows.
�

Corollary 4.6. For some groups G, there are G-invariant ideals of B(G)
that are weakly ordered but not ordered.

Proof. This follows immediately from Example 4.2 and Proposition 4.5. �

We can at least answer Question 3.19 affirmatively for Ep:

Corollary 4.7. For every p, there is a nonzero Ep-representation of G.

Proof. By Proposition 4.5, Ep is weakly ordered for all p ≤ 2, and so G has
a nonzero Ep-representation, and hence has a nonzero Ep representation for
all p > 2 as well, because if p > q then Ep ⊃ Eq, since B(G) consists of
bounded functions. �

Remark 4.8. Proposition 4.5 is also implied by [19, Proposition 4.4 (i)],
which says that ALp(G) = A(G) for all p ∈ [1, 2].

Proposition 4.9. If G is abelian, then E2 is ordered.

Proof. The Fourier transform takes L2(Ĝ)∩L1(Ĝ) bijectively onto L2(G)∩
A(G). Now, L2(Ĝ)∩L1(Ĝ) is the linear span of the nonnegative functions it
contains, so L2(G)∩A(G) is the linear span of the positive definite functions
it contains. The result now follows from Proposition 4.10 below. �

In the above proof we appealed to the following elementary fact, which is
perhaps folklore:

Proposition 4.10. For any locally compact group G, if 1 ≤ p ≤ 2 then
Lp(G) ∩B(G) = Lp(G) ∩A(G).

Proof. It suffices to show that if f ∈ Lp(G) ∩ B(G) then f ∈ A(G). Since
B(G) consists of bounded functions, we have

Lp(G) ∩B(G) ⊂ L2(G) ∩B(G)

so it suffices to prove the result for the special case p = 2. Choose a represen-
tation U ofG and vectors ξ, η such that f = Uξ,η. For any g ∈ L1(G)∩L2(G),
define ψg ∈ A(G) by

ψg(x) = 〈λxg, f〉
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=

∫
g(x−1y)f(y) dy

=

∫
g(y)〈Uxyξ, η〉 dy

=

∫
〈UxUyg(y)ξ, η〉 dy

= 〈UxUgξ, η〉.

It follows that for any a ∈ C∗(G) we have

ψg(a) = 〈UaUgξ, η〉.
Letting Ugξ → ξ in the norm of the Hilbert space of U , we have ψg → f in
the B(G)-norm, and therefore f ∈ A(G). �

Remark 4.11. We conjecture that the conclusion of Proposition 4.9 holds
for all unimodular groups.

Remark 4.12. Here we show that Proposition 4.10 does not extend to p > 2:
for G = SL(2,R), by [19, Theorem 7.2]

Lp(G) ∩B(G)
weak* 6= L2(G) ∩B(G)

weak*
,

whereas

Lp(G) ∩A(G)
weak*

= Br(G) = L2(G) ∩B(G)
weak*

.

Remark 4.13. In view of the discussion in this section, it might be worth-
while to consider three possible (re-)definitions of the G-invariant ideal Ep

of B(G):

(1) Lp(G) ∩B(G);

(2) {f ∈ B(G) : f, f̃ ∈ Lp(G)};
(3) span{Lp(G) ∩ P (G)}.

(1) is of course how we defined the notation Ep in this paper, and (2)
is the self-adjoint part of (1). Since (3) is always self-adjoint, we obviously
have (1) ⊃ (2) ⊃ (3).

(3) is the convention used in [6], with good reason.
By our definition, (1) = (3) only when (1) is ordered, which we have seen

does not always occur; for example, it happens for p = 2 and G unimodular
(in which case in fact (1) = (2) = (3)), but (1) is not ordered for some (all?)
nonunimodular G, by Example 4.2.

If G is unimodular then (1) = (2).

Remark 4.14. Here is a frustrating illustration of our ignorance: First recall
that [19, Theorems 7.2 and 7.3] show that for G = SL(2,R) the large ideals

of B(G) consist precisely of Ep
weak*

for 1 ≤ p ≤ ∞, and moreover for
2 ≤ p ≤ ∞ these ideals are all distinct, the extremes being Br(G) for p = 2

and B(G) for p =∞. Now let E = Ep for some p ∈ (2,∞). Then E
weak*
0 is
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a large ideal of B(G), and so by Wiersma’s results it coincides with Ep′
weak*

for a unique p′ ∈ [2, p]. But since we don’t know whether Ep is weakly
ordered, we can’t determine whether p′ = p.

5. Final comments

In this section we show how to apply the preceding discussion to fix [10,
Lemma 3.5 (1)] and the references to it that have appeared already in the
literature.

Most importantly, in all cases where [10, Lemma 3.5 (1)] is used, the
hypothesis that E0 be weak*-dense in E should be mentioned and verified.
We emphasize that for large ideals E of B(G) (or even just nonzero G-
invariant norm-closed ideals), there is no problem: C∗E,BG(G) = C∗E,KLQ(G).
However, if E is just a nonzero G-invariant ideal, then it’s probably best to
use the Brown-Guentner convention for C∗E(G), namely take

C∗E(G) = C∗E,BG(G) = C∗(G)/JE

rather than C∗E,KLQ(G) = C∗(G)/⊥E. As we have seen, if we replace the

given E by E0 := span(E ∩ P (G)) then the two approaches give the same
group C∗-algebra. Note that this is the approach of [5, Example 2.16] for
Ep.

We give a few examples of how results that mention [10, Lemma 3.5 (1)]
should be adjusted. In that lemma itself, also item (2) depends upon the new
hypothesis, since part of [10, Lemma 3.5 (2)] is equivalent to the equality
C∗(G)/⊥E = C∗(G)/JE .

[10, Corollary 3.6 (1)] says that a representation U of G is an E-repre-
sentation if and only if kerU ⊃ ⊥E. Since this depends upon ⊥E = JE , the
new hypothesis E0 = E should be added here.

Similarly, the new hypothesis should be added to [10, Observation 3.8 and
Remark 3.18].

[10, Section 4] is explicitly about the classical ideals mentioned in Sec-
tion 4, and in particular the problem arises in discussions of C∗Lp(G)(G).

However, it follows from Proposition 4.5 that [10, Proposition 4.2] is correct
as stated.

Remark 5.1. This might be a convenient place to correct another (relatively
harmless) misstatement in [10, Remark 4.3], where it is asserted that, for
discrete G, the weak*-closure of C0(G) ∩ B(G) being strictly larger than
Br(G) occurs precisely when G is a-T-menable but nonamenable, and that
for perhaps the earliest result along these lines one can see [15]. This is gar-
bled in a couple of ways. First of all, Menchoff’s 1916 paper gives examples
of singular measures whose Fourier coefficients tend to zero, thus showing
that the intersection E := C0(G) ∩ B(G) can properly contain the Fourier
algebra A(G), even for G = T. This certainly does not, however, illustrate
the phenomenon of the weak*-closure E being strictly larger than Br(G).
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The second blunder here is the use of the word “precisely”; a-T-menability
is equivalent to JE = 0, and hence to J⊥E = B(G). This property certainly

implies E = B(G), which is strictly larger than Br(G) if G is nonamenable
— so, when G is a-T-menable but nonamenable we have E ) Br(G) for
E = C0(G)∩B(G). On the other hand, it is not clear to us that E ) Br(G)
implies a-T-menability.

While we are at it, we can mention one more minor slip in [10]: in the
bibliographic entry for [15] the French word “développement” is misspelled.
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