
New York Journal of Mathematics
New York J. Math. 24 (2018) 147–156.

A note on multipliers between model
spaces

Emmanuel Fricain and Rishika Rupam

Abstract. In this note, we study the multipliers from one model space
to another. In the case when the corresponding inner functions are
meromorphic, we give both necessary and sufficient conditions ensuring
this set of multipliers is not trivial. Our conditions involve the Beurling–
Malliavin densities and are based on the deep work of Makarov–Polto-
ratski on injectivity of Toeplitz operators.
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1. Introduction

For a pair of inner functions U and V on the upper half-plane

C+ = {z ∈ C : =m(z) > 0},
the multipliers set M(U, V ) is the set of analytic functions Φ on C+ such
that

ΦKU ⊂ KV .

Here KU (respectively KV ) is the model space associated to U (respectively
to V ). See Section 2.2 for the definition. A basic question here is whether
or not

M(U, V ) 6= {0}?
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A source of inspiration for this paper stems from [GMR16, Tim16] which
examined various pre-orders on the set of partial isometries and contractions
on Hilbert spaces and their relationship to their associated Livšic character-
istic functions. It turns out, for example, that when the Livšic characteristic
functions u and v for two partial isometries A and B are inner (on the unit
disc), the issue of whether or not A is ”less than” B can be rephrased as
to whether or M(u, v) 6= {0}. Another motivation comes from the work of
Crofoot [Cro94] who studied the onto multipliers.

In [FHR18], the authors characterize the multipliers from one model space
to another in terms of kernels of Toeplitz operators and Carleson measures
for model spaces. However, it is widely understood that both the injectiv-
ity problem of Toeplitz operators and the Carleson measures question for
model spaces are rather difficult. As a result, it is not easy to apply the
characterization obtained in [FHR18] in concrete situations. In this paper,
we pursue this line of research. We consider the case when U and V are
both meromorphic on C. Our aim is to simplify the characterization proved
in [FHR18] and to apply it to several examples.

2. Preliminaries

2.1. Basic notations. We use the standard notation

Hp = Hp(C+),

1 ≤ p ≤ ∞, for the Hardy space of the upper half-plane and as usual we
identify functions in Hp with their boundary values on R. We denote by Π
the Poisson measure on R,

dΠ(t) =
dt

1 + t2
,

and by L1
Π = L1(R,Π). The Hilbert transform of a function h ∈ L1

Π is
defined as the singular integral

h̃(x) = lim
ε→0

1

π

∫
|x−t|>ε

[
1

x− t
+

t

1 + t2

]
h(t) dt.

Recall that outer functions H are of the form

H = eh+ih̃ on R,

for some h ∈ L1
Π. Recall also that if h ∈ L1

Π, then h̃ ∈ Lo(1,∞)
Π (the weak L1

space), i.e.,

Π{|h̃| > A} = o

(
1

A

)
, A→∞.

See [Mas09, Corollary 14.6].
We shall need the elementary Blaschke factor on C+ with zero at i:

bi(z) :=
z − i
z + i

,
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and

ki(z) =
1

π

1

z + i
,

the corresponding kernel (of H2) at i.

2.2. Meromorphic inner functions and model spaces. Recall that an
inner function U on the upper half-plane is a bounded and analytic function
on C+ with boundary values of modulus one almost everywhere on R. In
this paper, we are interested in the situation when the inner function U can
be extended into a meromorphic function in C. Such functions are called
meromorphic inner functions (MIF) on the upper half-plane. They can be
easily described via the standard Blaschke/singular factorization. All MIFs
have the following form:

U(z) = Ceiaz
∞∏
n=0

eiαn
z − wn
z − w̄n

, (z ∈ C+),

where a is a nonnegative constant, wn is a sequence of points in C+ tending
to infinity as n→∞ and satisfying the Blaschke condition

∞∑
n=0

=m(wn)

1 + |wn|2
<∞,

C is a unimodular constant and αn is a real number choosen so that

eiαn =

∣∣∣ i−wni−wn

∣∣∣
i−wn
i−wn

.

Associated to an inner function U on C+, the model space KU is defined by

KU := H2 ∩ (UH2)⊥.

We also have the following equivalent definition

(1) KU = H2 ∩ UH2,

where H2 is often regarded as the Hardy space of the lower half-plane.

2.3. Toeplitz operators and a characterization of multipliers. Re-
call that to every ϕ ∈ L∞(R), there corresponds the Toeplitz operator
Tϕ : H2 −→ H2 defined by

Tϕ(f) = P+(ϕf), f ∈ H2,

where P+ is the orthogonal projection of L2(R) onto H2. Using (1), it is
immediate to see that, when the function U is inner, then

(2) ker TU = KU .

In [FHR18], the following characterization of multipliers is proved.
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Theorem 2.1 (Fricain–Hartmann–Ross). Let U and V be inner functions
with |U ′(x)| � 1, x ∈ R, and let Φ be a function holomorphic on C+. Then
the following are equivalent:

(1) Φ ∈M(U, V ).

(2) Φki ∈ ker TbiV U and supx∈R
∫ x+1
x |Φ(t)|2dt <∞.

Note that the second condition appearing in (2) says that the measure
|Φ(t)|2 dt is a Carleson measure for KU (see [Bar00, Theorem 5.1]), ensuring
that ΦKU ⊂ H2.

As one see from Theorem 2.1, the noninjectivity of a certain Toeplitz op-
erator is necessary for the set of multipliers being nontrivial. The problem of
injectivity of Toeplitz operators is a classical problem in analysis, being re-
lated to completeness of exponential systems on L2(0, 2π). In [MP05, MP10],
Makarov–Poltoratski extended the theory of Beurling–Malliavin density to
model spaces related to MIF. See next section for a brief discussion on their
results. We just mention here an easy result which shall be used below.

Lemma 2.2. Let B be a finite Blaschke product, Θ an inner function which
is not a finite Blaschke product and let 1 ≤ p ≤ ∞. Then

ker TBΘ ∩H
p 6= {0}.

Proof. Let us write

B(z) =
k∏
j=1

(
z − wj
z − wj

)mj
and define the linear map

T :

∣∣∣∣∣ KΘ ∩Hp −→ CN
f 7−→ (f (s)(λj)) 1≤j≤k

1≤s≤mj

where N =
∑

1≤j≤kmj . Since Θ is not a finite Blaschke product, we know
that KΘ ∩ Hp is of infinite dimension and then T is not one-to-one. Hence
there exists a function f ∈ KΘ ∩ Hp, f 6≡ 0, such that for every 1 ≤ j ≤ k,
1 ≤ s ≤ mj , f

(s)(λj) = 0. We can write f = Bg for some g ∈ Hp. It remains
to note that using (2), we have

TBΘ(g) = P+(ΘBg) = TΘ(f) = 0. �

2.4. Beurling–Malliavin densities. Let Λ ⊂ C+ ∪R. In [MP05, MP10],
Makarov and Poltoratski connected the Beurling–Malliavin density of Λ to
the injectivity of the kernel of a related Toeplitz operator. We briefly recall
some of these facts here. First, let Λ ⊂ R be a discrete sequence. We say
that Λ is strongly a-regular if

(3)

∫
R

|nΛ(x)− ax|
1 + x2

dx <∞,
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where nΛ is the counting function of Λ defined by

nΛ(x) =

{
card (Λ ∩ [0, x]) if x ≥ 0

−card (Λ ∩ [x, 0]) if x < 0.

It is known (see [Pol15, MiP10]) that the interior Beurling–Malliavin
(BM) density of a discrete sequence Λ can be defined as

D∗(Λ) := sup{a : ∃ strongly a-regular subsequence Λ′ ⊂ Λ}.

Similarly, the exterior BM density is defined as

D∗(Λ) := inf{a : ∃ strongly a-regular supsequence Λ′ ⊃ Λ}.

These definitions extend to the upper half-plane as well [MP10] in the fol-
lowing way. Let Λ ⊂ C+ be a discrete sequence, then

D∗(Λ) := D∗(Λ
∗),

where Λ∗ := {λ∗ : λ ∈ Λ,<λ 6= 0}, λ∗ := [<(λ−1)]−1.

Example 2.3. Let Λ = {n+ i}n∈Z. Then D∗(Λ) = D∗(Λ) = 1.

Proof. For n ∈ Z∗, we have λ∗n = [<(1/(n + i))]−1 = (n2 + 1)/n. The
counting function of this sequence is odd and nΛ∗(x) = n, for

x ∈ (n+ 1/n, n+ 1 + 1/(n+ 1)),

n > 0. Then∫ ∞
2

|nΛ∗(x)− x|
1 + x2

dx =
∑
n≥1

∫ n+1+1/(n+1)

n+1/n

x− n
1 + x2

dx

≤
∑
n

3

2

(
1 +

1

n+ 1
− 1

n

)
.

1

n2 + 1
<∞.

Thus Λ∗ is itself a 1− strongly regular sequence and so

D∗(Λ) = D∗(Λ) = 1. �

It turns out that when Λ is a discrete sequence on R, then we can construct
a MIF Θ with σ(Θ) := {x ∈ R : Θ(x) = 1} = Λ. Then it is proved in
[MiP10, MP05] that

D∗(Λ) =
1

2π
inf{a : ker TSaΘ = {0}},

and

D∗(Λ) =
1

2π
sup{a : ker TSaΘ = {0}},

where S is the singular inner function defined by S(z) = eiz. In terms of
Toeplitz kernels, when Λ is a Blaschke sequence in C+, we can replace Θ by
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the Blaschke product BΛ with zeroes on Λ, and we have

D∗(Λ) =
1

2π
inf{a : ker TSaBΛ

= {0}},

D∗(Λ) =
1

2π
sup{a : ker TSaBΛ

= {0}}.

Note that if a > b, then

(4) ker T
SbBΛ

6= {0} =⇒ ker TSaBΛ
6= {0}.

3. Main theorem and examples

In this section, we give a class of MIFs U and V for which the triviality
of M(U, V ) can be reduced to the injectivity of the Toeplitz operator TUV .
We end the section by showing examples of MIFs that fall into this category.

Theorem 3.1. Let U and V be MIFs with |U ′| � 1 on R and let

m := arg(U)− arg(V bi)

on R. Suppose that either m 6∈ L̃1
Π or if m = h̃ for some h ∈ L1

Π, then

e−h 6∈ L1(R). Then the following three conditions are equivalent.

(1) dim ker TUV bi ≥ 2.

(2) ker TUV 6= {0}.
(3) M(U, V ) 6= {0}.

Proof. (1) =⇒ (2): Since dim ker TUV bi ≥ 2, we can find a function Ψ ∈
ker TUV bi , Ψ 6≡ 0, such that Ψ(i) = 0. Then we can write Ψ = biΨ1 with

Ψ1 ∈ H2. Since

0 = TUV bi(Ψ) = TUV (Ψ1),

we have Ψ1 ∈ ker TUV and Ψ1 6≡ 0.
(2) =⇒ (3): Let Φ ∈ ker TUV be nonzero. Then there is a function g ∈ H2

such that on R, we have

Φ.UV = g.

Since
Φ

z + i
.UV .bi =

g

z + i
.
z + i

z − i
=

(
g

z + i

)
∈ H2,

then Φki ∈ ker TUV bi . Moreover, using Φ ∈ H2, we also have

sup
x∈R

∫ x+1

x
|Φ(t)|2 dt <∞.

Thus by Theorem 2.1, we deduce that Φ ∈M(U, V ), which gives (3).
(3) =⇒ (1): Now assume that M(U, V ) 6= {0}. Then, according to

Theorem 2.1, we know that ker TUV bi 6= {0}. We argue by contradiction
and suppose that dim ker TUV bi = 1. First let us prove that ker TUV bi is

generated by an outer function. Indeed, let f ∈ H2 such that ker TUV bi =
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Cf and write f = Θf0 where Θ and f0 are respectively the inner and outer
part of f . Notice that

TUV bi(f0) = P+(UV biΘf) = TΘTUV bi(f) = 0,

whence f0 ∈ ker TUV bi and there exists a λ ∈ C such that f0 = λf . Thus f
is outer.

By definition, there is a function g ∈ H2 such that on R,

UV bif = g.

Let g = gig0 be the inner-outer factorization of g. Then

UV bifgi = g0.

We deduce gif ∈ ker TUV bi . Since ker TUV bi is generated by f , we necessar-
ily get that gi is a constant of modulus one which we may of course assume
to be one. Using that f and g0 are outer and satisfy |f | = |g0| on R, we
obtain that g0 = f , and thus

(5) Uf = V bif.

Since f is an outer function that is square integrable on R, there must exist

a function h1 ∈ L1
Π(R) such that f = eh1+ih̃1 on R and |f | = eh1 ∈ L2(R).

We compare the arguments in (5) which gives

m = arg(U)− arg(V bi) = −2h̃1 = h̃,

with h = −2h1. But h ∈ L1
Π and e−h ∈ L1(R) a contradiction to our

hypothesis. Thus dim ker TUV bi ≥ 2. �

Remark 3.2. For the assertions (1) =⇒ (2) and (2) =⇒ (3), we only use
that U and V are MIFs with |U ′| � 1 on R. It is only in the assertion
(3) =⇒ (1) that we use the full hypothesis of the theorem.

It is natural to wonder for which MIFs U and V are the hypotheses of the
above theorem satisfied. We give examples here to illustrate that for many
pairs of MIFs, this is indeed the case.

Let us denote the singular inner function eiz by S(z). We know that
MIFs have the form SaBΛ, where a ≥ 0 and BΛ is a Blaschke product. So
we assume that U = SaBΛ1 and V = SbBΛ2 .

Example 3.3. Let U = Sa and V = Sb. Then we have

M(U, V ) 6= {0} ⇐⇒ b ≥ a.

Indeed, if b = a then U = V and of course the constant functions are
multipliers from KU into KV . We may assume now that a 6= b. Note that

m = arg(U)− arg(V bi) = (a− b)x+ 2 arctan(x)

on R. Since 2 arctan(x) ∈ L∞(R) and (a − b)x 6∈ Lo(1,∞)
Π , the function m

does not belong to the space L̃1
Π(R). Of course, we also have |U ′| � 1 on
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R. Therefore, we can apply Theorem 3.1 which gives that M(U, V ) 6= {0}
if and only if ker TUV 6= {0}. Since TUV = T

Sb−a
, we get from (2) that

b > a =⇒ ker TUV = KSb−a =⇒ M(U, V ) 6= {0}.
On the other hand, if b < a, then TUV = TSa−b and the operator TUV is thus
one-to-one, which gives M(U, V ) = {0}. Note that the result can also be
obtained from Crofoot’s paper [Cro94]. See also [FHR18, Proposition 2.2].

Example 3.4. Let U = SaBΛ1 and V = SbBΛ2 such that a 6= b and BΛ1

and BΛ2 are finite Blaschke products. Then

M(U, V ) 6= {0} ⇐⇒ b > a.

Indeed, note that

m = arg(U)− arg(V bi)

= (a− b)x+ arg(BΛ1)− arg(BΛ2) + 2 arctan(x).

Since BΛ1 and BΛ2 are finite Blaschke products,

arg(BΛ1)− arg(BΛ2) + 2 arctan(x) ∈ L∞(R).

The function (a − b)x 6∈ Lo(1,∞)
Π . Thus, the function m 6∈ L̃1

Π(R). We also
have |U ′| � 1 on R. Therefore, we can apply Theorem 3.1 which gives
that M(U, V ) 6= {0} if and only if ker TUV 6= {0}. Now if b > a, then

TUV = TΘBΛ1
where Θ is the inner function defined by Θ = Sb−aBΛ2 . Hence,

by Lemma 2.2, ker TUV 6= {0} and thusM(U, V ) 6= {0}. Note that Coburn’s
Lemma (see [Nik86, Page 318]) implies that if b > a, then ker TV U = {0}.
By symmetry, we thus get that if b < a, then M(U, V ) = {0}.

Example 3.5. Let U = BΛ1S
a and V = Sb where a ≥ 0, b > 0, BΛ1 is an

infinite Blaschke product, and let D := D∗(Λ1). Assume that |U ′| � 1 on R
and b− a 6= 2πD. Then

M(U, V ) 6= {0} ⇐⇒ b− a > 2πD.

Indeed, if b− a > 2πD, then by definition of D,

ker TUV = ker T
BΛ1

S
b−a 6= {0}.

By Theorem 3.1 and Remark 3.2, we deduce that M(U, V ) 6= {0}.
Let us now assume that b− a < 2πD. Using once more the definition of

D, there exists β > b− a such that ker T
SβBΛ1

= {0}. Since

TUV (f) = TSa−bBΛ1
(f) = T

SβSβ+a−bBΛ1

(f) = T
SβBΛ1

(fSβ+a−b), f ∈ H2,

we get that ker TUV = {0}. It thus remain to prove that that U and V
satisfy the hypothesis of Theorem 3.1 to get that M(U, V ) = {0}. So let
m = arg(U)−arg(V bi) = arg(BΛ1S

a)−arg(Sbbi). We argue by contradiction

and assume that m = h̃ for some h ∈ L1
Π(R) and e−h ∈ L1(R). Let us

choose an ε > 0 such that b − a + ε < 2πD. By Lemma 2.2, we know that
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ker TbiSε ∩ H
∞ 6= {0}. Therefore, we use [MP05, Proposition 3.14] to see

that arg(biSε) is of the form −α + h̃2, where α is the argument of a MIF,
h2 ∈ L1

Π(R) and e−h2 ∈ L∞(R). Thus,

arg(BΛ1S
b−a+ε) = arg(BΛ1S

b−abibiSε)

= arg(BΛ1S
b−abi) + arg(biSε)

= −α+ h̃+ h2,

where h+h2 ∈ L1
Π(R) and e−(h+h2) ∈ L1(R). Using [MP05, Proposition 3.14]

once more, we have that ker T
BΛ1

Sb−a+ε 6= {0}, and we get a contradiction

between (4) and the fact that b− a+ ε < 2πD.

Example 3.6. Let U = Sa and V = BΛ2S
b with a > 0, b ≥ 0. Let

D := D∗(Λ2) and assume that a − b 6= 2πD. By similar computations as
above, we can say that

M(U, V ) 6= {0} ⇐⇒ a− b < 2πD.

Corollary 3.7. Let Λ = {n + i}n∈Z, U = Sa, V = BΛ and assume that
a 6= 2π. Then

M(U, V ) 6= {0} ⇐⇒ a < 2π.

Proof. By Example 2.3, we know that D∗(Λ) = 1. Thus the conclusion
follows from Example 3.6. �
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