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Equal angles of intersecting geodesics for
every hyperbolic metric

Arpan Kabiraj

Abstract. We study the geometric properties of the terms of the Gold-
man bracket between two free homotopy classes of oriented closed curves
in a hyperbolic surface. We provide an obstruction for the equality of
two terms in the Goldman bracket, namely if two terms in the Goldman
bracket are equal to each other then for every hyperbolic metric, the an-
gles corresponding to the intersection points are equal to each other. As
a consequence, we obtain an alternative proof of a theorem of Chas, i.e.,
if one of the free homotopy classes contains a simple representative then
the geometric intersection number and the number of terms (counted
with multiplicity) in the Goldman bracket are the same.
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1. Introduction

Let F be an oriented surface (possibly with boundary). We denote the
free homotopy class of an oriented closed curve x in F by 〈x〉. Let 〈x〉 and
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〈y〉 be two free homotopy classes of oriented closed curves. Let x and y be
two representatives from 〈x〉 and 〈y〉 respectively, such that they intersect
transversally in double points. The Goldman bracket between 〈x〉 and 〈y〉
is defined as

[〈x〉, 〈y〉] =
∑

p∈x∩y
ε(p)〈x ∗p y〉

where x ∗p y denotes the loop product of x and y based at p, x ∩ y denotes
the set of all intersection points between them, ε(p) denotes the sign of
the intersection between x and y at p (in the positive direction). Abusing
notation, we sometimes denote [〈x〉, 〈y〉] simply by [x, y].

We denote the collection of all free homotopy classes of oriented closed
curves on F by C and the free module generated by C by Z(C). We extend
the Goldman bracket linearly on Z(C).

In [8], Goldman proved that this bracket is a well defined Lie bracket on
Z(C). The pair (Z(C), [, ]), is called the Goldman Lie algebra.

Remark 1. Since the set of free homotopy classes of the sphere is trivial, the
corresponding Goldman Lie algebra is trivial. For the torus, the Goldman
Lie algebra is well understood (see [3, Lemma 7.6]). Therefore throughout
the paper we only consider surfaces of negative Euler characteristic.

Let 〈x〉 and 〈y〉 be two elements in C and i(x, y) be the geometric intersec-
tion number (see Definition B.1) between 〈x〉 and 〈y〉. From the definition
it follows that if i(x, y) = 0 then [〈x〉, 〈y〉] = 0. Goldman [8, Section 5.17],
proved that if 〈x〉 contains a representative which is a simple closed curve
(a closed curve without self-intersections) then the converse is also true. He
used convexity properties of length functions on Teichmüller space to prove
the following theorem.

Theorem 1.1 (Goldman). Let 〈x〉 and 〈y〉 be two free homotopy classes
of closed oriented curves in F . If 〈x〉 contains a simple representative and
[〈x〉, 〈y〉] = 0 then i(x, y) = 0.

Goldman [8, 5.17, Remark] asked whether Theorem 1.1 (which is a topo-
logical statement) has a topological proof. In [3], using HNN extensions and
amalgamated products of the fundamental group of a surface, Chas gave a
topological proof of the following generalization of Theorem 1.1.

Theorem 1.2 (Chas). Let 〈x〉 and 〈y〉 be elements in C. If x contains a
simple representative then i(x, y) is same as the number of terms in [〈x〉, 〈y〉]
counted with multiplicity.

In this paper, we use tools from hyperbolic geometry to study the terms
of the Goldman bracket between any two free homotopy classes of oriented
closed curves. In Theorem 5.1, we obtain an obstruction for the equality of
two terms of the Goldman bracket.
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Theorem 5.1. If x and y are any two oriented closed geodesics with in-
tersection points p and q such that the terms of the Goldman bracket have
the same associated free homotopy classes (i.e., 〈x ∗p y〉 = 〈x ∗q y〉) then the
angles between x and y at p and q (defined appropriately) are equal to each
other for every hyperbolic metric in F .

The proof of Theorem 5.1 is quite elementary. We then use the follow-
ing nontrivial observation by Kerckhoff (see Lemma 2.1): If two geodesics
intersect at a point p and one of them is simple, then the twist deformation
with respect to the simple geodesic changes the angle of intersection at p
strictly monotonically. Combining Theorem 5.1 and Lemma 2.1, we obtain
an alternative proof of Theorem 1.2.

The hyperbolic geometry techniques used in our work are motivated by
the topological operations used by Chas in [3] in the following sense: In
[3], using HNN extension (for nonseparating curves) and free product with
amalgamation (for separating curves), the author wrote the terms of the
Goldman bracket as a composition of two types of terms: (a) elements of the
fundamental group of the components of F \ {the simple closed curve} and
(b) elements of the cyclic group generated by the simple closed curve. Then
the author used combinatorial group theory to distinguish the conjugacy
classes. Now to obtain a geometrical proof of nonconjugacy, it is natural to
consider the geodesic representatives of the corresponding terms and study
the angles between these geodesic arcs. That is the proof of Theorem 5.1.

Goldman discovered this bracket while studying the Weil-Petersson sym-
plectic form on Teichmüller space. He showed that given two free homotopy
classes of closed curves, the Poisson bracket of the corresponding length
functions on the Teichmüller space can be expressed in terms of the lengths
of the terms of the Goldman bracket between them (see [8, Theorem 3.15]).

The use of the work of Kerchkoff and Wolpert on angles (instead of con-
vexity of the length function) to study noncancellation of Poisson bracket
on Teichmüller space was already known (see [14, page 226]). The novelty
in our approach is to present the required results using basics of hyperbolic
geometry and to obtain a proof of Theorem 1.2 (rather than Theorem 1.1)
in a self-contained manner.

Later relation between number of terms of the Goldman bracket and
geometric intersection number has been studied using tools from both com-
binatorial group theory (see [2],[3], [6]) and hyperbolic geometry (see [5],
[10]). For a survey about these results see [4].

Idea of the proofs. We use techniques from hyperbolic geometry to prove
our results. Let X be any point in the Teichmüller space T (F ) of F (see
Section 2). Let x1 and y1 be two oriented closed curves. The free homotopy
class of x1 (respectively y1) contains a unique geodesic, which we denote by
x (respectively y).
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Given any two terms of [x, y], we consider the lifts of the terms to the
upper half plane H. If two terms corresponding to two intersection points
are freely homotopic, then the length of their geodesic representatives with
respect to X is the same.

We use the geometry of the product of geodesics in H and cosine rule of
hyperbolic triangles to show that the angle of intersection (in the positive
direction of both axes) only depends on the lengths of the curves x and y
together with the length of the geodesic representative of the corresponding
term of the Goldman bracket. As the lengths of the geodesic representatives
of the corresponding terms are the same, the angles of intersection at both
points must be the same. This hold for any X in T (F ) (Theorem 5.1), and
gives an obstruction for the equality of two terms.

For the proof of Theorem 1.2 we consider x to be simple. We use Fenchel–
Nielsen twist deformation to construct a new point Y in T (F ) where the
angle of intersection at both points are different which leads to a contradic-
tion (Figure 5). The main ingredient to show that the angles are different
is Lemma 2.1.

Organization of the paper. In Section 2 we recall some basic results from
hyperbolic geometry and Teichmüller space. In Section 3 we prove that it
is enough to consider the problem for closed surfaces. In Section 4 and
Section 5 we describe the lifts of two terms of Goldman bracket which are
equal and show the obstruction for the equality of two terms in Theorem 5.1.
In Section 6 we give an alternative proof of Theorem 1.2. In Appendix A we
provide a proof of Lemma 2.1. In Appendix B we discuss a small technical
point regarding transverse intersection and double points.

Acknowledgements. The author would like to thank Siddhartha Gadgil
for his encouragement and enlightening conversations. The author would
also like to thank Moira Chas for her help and support.

2. Preliminaries

In this section we recall some basic facts about hyperbolic geometry, hy-
perbolic surfaces and Teichmüller space. References for the results men-
tioned in this section are [1], [7], [11].

Let F be an oriented surface of negative Euler characteristic, i.e., F be
an oriented surface of genus g with b boundary components and n punctures
such that, 2−2g−b−n < 0. Using uniformization theorem we can endow F
with a hyperbolic metric (possibly with punctures) with geodesic boundary.

2.1. Teichmüller space & hyperbolic geometry. We define the Teich-
müller space T (F ) of F , as follows. Consider a pair (X,φ) where X is a
finite area surface with a hyperbolic metric and totally geodesic boundary
and φ : F → X is a diffeomorphism. We call (X,φ) a marked hyperbolic
surface and φ the marking of X. We say (X1, φ1) and (X2, φ2) are equivalent
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if there exists an isometry I : X1 → X2 such that I ◦ φ1 is homotopic to φ2.
The Teichmüller space T (F ) of F is the space of all equivalence classes of
marked hyperbolic surfaces. Abusing notation we denote the point (X,φ)
in T (F ) by X.

By a hyperbolic surface FX we mean the surface F together with the point
X in T (F ). When the choice of X is clear from the context, we denote the
hyperbolic surface FX simply by F .

Given any hyperbolic surface F , we obtain an identification of the fun-
damental group π1(F ) with a discrete subgroup of PSL2(R) (the group of
orientation preserving isometries of the upper half plane H) up to conjugacy
in PSL2(R). We implicitly use this identification throughout the paper.
The action of π1(F ) on H is properly discontinuous and fixed point free.
Therefore the quotient space is isometric to F. Henceforth –unless otherwise
specified– by an isometry of H, we mean an orientation preserving isometry.

A homotopically nontrivial closed curve in F is called essential if it is
not homotopic to a puncture. By a lift of a closed curve γ to H, we mean
the image of a lift R → H of the map γ ◦ π where π : R → S1 is the usual
covering map.

There are three types of isometries of H, elliptic, parabolic and hyperbolic.
An hyperbolic isometry f has exactly two fixed points in the boundary ∂H
of H, one attracting and one repelling. The oriented geodesic from the
repelling fixed point to the attracting fixed point is called the axis of f and
is denoted by Af . The isometry f acts on Af by translation by a fixed
positive number, called the translation length of f which we denote by τf .

Since π1(F ) acts on H without fixed points, π1(F ) does not contain el-
liptic elements. Essential closed curves in π1(F ) correspond to hyperbolic
isometries and closed curves homotopic to punctures correspond to parabolic
isometries.

2

2
2

P

Figure 1. Axis of xy.

Let x, y ∈ π1(F ) be two hyperbolic elements whose axes intersect at a
point P (Figure 1). By [1, Theorem 7.38.6], xy is also hyperbolic. Let Q be
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the point in Ax at a distance τx/2 from P in the positive direction of Ax and
R be the point in Ay at a distance τy/2 from P in the negative direction of
Ay. Then the unique geodesic joining R and Q with orientation from R to
Q is the axis of xy and the distance between Q and R is τxy/2.

Since there is a cannonical bijective correspondence between the set of all
conjugacy classes in π1(F ) and the set of all free homotopy classes of oriented
closed curves in F, given an oriented closed curve x in F , we can (and will)
denote both its free homotopy class and the corresponding conjugacy class
in π1(F ) by 〈x〉. Every free homotopy class of an essential closed oriented
curve contains a unique closed oriented geodesic whose length is same as the
translation length of any element of the corresponding conjugacy class.

Remark 2. Let 〈x〉, 〈y〉 be any two free homotopy classes of oriented closed
curves in F . Given any two points X1 and X2 in T (F ), there is a natural
identification between:

a) the intersection points between the geodesic representatives of 〈x〉
and 〈y〉 in X1 and

b) the intersection points between the geodesic representatives of 〈x〉
and 〈y〉 in X2.

Throughout the paper we use this identification implicitly.

2.2. Fenchel–Nielsen twist deformation. Given a point X in T (F ) and
a simple closed geodesic x in X, we define the Fenchel–Nielsen left twist
deformation of X at time s along x as follows: Cut the surface along x to
get a new (possibly disconnected) surface M with geodesic boundary. Form
a new hyperbolic surface Xs by gluing the two boundary components of M
obtained from x with a left twist of distance s, i.e., the images of a point
of x in the two boundaries of M are distance s apart in the image of x in
Xs. Notice that when viewed x as a boundary of M , the orientation of F
provides a unique notion of left and right twists along x (i.e., no orientation
of x is required). We call the Fenchel–Nielsen left twist deformation just left
twist deformation.

To consider Xs as a point in T (F ), we have to construct a homotopy class
of diffeomorphism from F to Xs. Let N be a small annular neighbourhood
of x in X and N̄ be a small annular neighbourhood of the image of x in Xs.
Define a diffeomorphism from N to N̄ which is homotopic to the left twist
deformation at time s relative to ∂N . From the definition it follows that
we only deform X in a small neighbourhood of x. Therefore we extend the
deffeomorphism from N to N̄ to a diffeomorphism from X to Xs by identity.
The composition of this deffeomorphism with the marking of X gives the
desired homotopy class of diffeomorphism from F to Xs.

Throughout the paper we fix the anticlockwise orientation of the upper
half plane H and for any X ∈ T (F ) we identify the universal cover of X
with H preserving this orientation.
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Figure 2. φp(X).

Let X be a point in T (F ) and x, y be any two intersecting closed geodesics
in X. Let p be an intersection point between x and y and φp(X) ∈ [0, π) be
the angle of intersection between x and y at p, where the angle is considered
anticlockwise from y to x (notice that for definition of φp(X), orientation of
x and y is not required) see Figure 2. When X is clear from the context, we
denote the angle φp(X) simply by φp.

Lemma 2.1 stated below, is crucial to prove Theorem 1.2. If x and y
are simple, the lemma follows from [11, Proposition 3.5]. Although in [11,
Remark on page 254] the author mentioned that the same proof works even if
y is not simple, for the sake of completeness we give the proof in Appendix A.

Lemma 2.1. Suppose X is any point in T (F ). Let x be a simple closed
geodesic and y be any other closed geodesic in X. For every intersection
point p between x and y, the function φp(Xs) is a strictly decreasing function
of s.

Remark 3. We define the angles and “left” with respect to the anticlockwise
orientation of H and the corresponding orientation of the hyperbolic surface
X ∈ T (F ) (which implies that the angle φp(X) is strictly decreasing instead
of strictly monotone).

Remark 4. The geometric intersection number between a boundary curve
or a curve homotopic to puncture and any other closed curve is zero. Also
given any hyperbolic surface with punctures, there exists a neighbourhood
around every puncture such that every essential closed geodesic is disjoint
from these neighbourhoods (i.e., all essential geodesics lie in a compact sub-
set of the surface) (see [13, Theorem 1.2]). Therefore for our discussion there
is no difference between a compact surface with boundary and a punctured
surface with the same fundamental group. Hence for the rest of the paper
we consider only compact surfaces.

Remark 5. In the definition of the Goldman bracket, we would like to
choose the two representatives to be the geodesic representatives of the free
homotopy classes. The only problem is, two geodesics not always intersect
each other in double points. In Appendix B we resolve this issue by providing
an equivalent definition of Goldman bracket which does not require the
representatives to intersect in double points.
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3. Surfaces with boundary

The aim of this section is to prove that for the proof of Theorem 1.2, it
is enough to consider surfaces without boundary.

Let F be a hyperbolic surface with geodesic boundary. To each boundary
component δ, we attach a hyperbolic surface of genus one with one bound-
ary component of length l(δ) by an isometry. We call the new surface F̄ .
Therefore there is a natural inclusion i : F → F̄ . Notice that the gluing
preserves the boundary lengths in F and does not change the metric in F .
Therefore the inclusion i is an isometric inclusion.

Lemma 3.1. The map i induces an injective Lie algebra homomorphism
from L(F ) into L(F̄ ).

Proof. We claim that two elements x and y are conjugate in π1(F ) if and
only if i(x) and i(y) are conjugate in F̄ . This follows from the fact that i is
an isometric inclusion and every free homotopy class corresponding to the
conjugacy class contains a unique geodesic.

Therefore i is an injection from the conjugacy classes in π1(F ) to the
conjugacy classes in π1(F̄ ). Extending i linearly, we obtain an injective Lie
algebra homomorphism from L(F ) into L(F̄ ). �

For the rest of the paper we assume the surfaces to be without boundary
unless otherwise specified.

4. Lifts of a term in the Goldman bracket

Descriptions of the lifts of the terms in the Goldman bracket have been
studied in detail in [5, Section 7] and [10, Section 4]. In this section we
provide a self-contained description needed for our results.

Fix any X ∈ T (F ) and consider F equipped with the corresponding
hyperbolic metric. Consider the term x∗py of the Goldman bracket between
two oriented closed geodesics x and y on F corresponding to the intersection
point p. Choose a lift P of p in H. Without loss of generality we assume
that P ∈ Ax. The lift of x ∗p y in H, passing through P is a bi-infinite
oriented polygonal path γ which is the concatenation of geodesic arcs γi
with the following description (see Figure 3): There exists a conjugate y0 of
y such that P = Ax ∩ Ay0 . Let γ0 be the geodesic arc of length τx on Ax

starting from P in the positive direction of Ax. There is a conjugate y1 of
y such that the endpoint of γ0 is the intersection of Ax and Ay1 . Let γ1 be
the geodesic arc of length τy on Ay1 starting from the endpoint of γ0 in the
positive direction of Ay1 . Inductively we define γi by the same process for
each positive integer i.

Similarly let γ−1 be the geodesic arc of length τy on Ay0 in the negative
direction of Ay0 ending at P . Again there is a conjugate x−1 of x such that
the beginning of γ−1 is the intersection point of Ax−1 and Ay0 . Define γ−2
to be the geodesic arc of length τx on Ax−1 in the negative direction of Ax−1
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Figure 3. A lift γ of (x ∗p y) to H. It is a concatenation
geodesic arcs γi. Each γi lies on the axis of an element either
conjugate to x or conjugate to y. The intersection points
between γi and γi+1 are the lifts of the intersection point p.

ending at the beginning of γ−1. Inductively we define γi by the same process
for each negative integer i.

In every free homotopy class of curves with endpoints in ∂H in H (fixing
endpoints in ∂H) there is a unique hyperbolic geodesic. Suppose y0 = yg

for some g ∈ π1(F ). From the description of the product of isometries in
Section 2 and the symmetry of the Figure 3 around the geodesic Axyg , we
have

Proposition 4.1. The geodesic in the free homotopy class of x ∗p y is the
projection of the axis of xyg on X. Furthermore the axis of the geodesic of
xyg intersects each γi at their midpoints.

We call the geodesic Axyg to be the axis of the lift γ.

5. Proof of Theorem 5.1

Let X be a point in T (F ) and x, y be two oriented closed geodesics in
X. Suppose p and q are two intersection points between x and y such that
〈x ∗p y〉 = 〈x ∗q y〉.

For any two oriented geodesics, by angle between them at any intersection
point we mean the angle which is in between the positive direction of both
curves, unless otherwise specified. For any point X ∈ T (F ), we denote
θp(X) to be the angle of intersection between x and y at p in X. When X
is clear from the context, we denote the angle θp(X) simply by θp.
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Remark 6. The angles θp(X) and φp(X) are either congruent or supple-
mentary.

Let P and Q be two lifts of p and q respectively in H, lying in Ax.
There exist two conjugates y1 and y2 of y such that P = Ax ∩ Ay1 and
Q = Ax∩Ay1 . Let R1 (respectively R2) be the point in Ax at a distance τx/2
from P (respectively from Q) in the positive direction of Ax. Similarly let
S1 (respectively S2) be the point in Ay1 (respectively Ay2) at a distance τy/2
from P (respectively from Q) in the negative direction of Ay1 (respectively
Ay2). By definition, the angle between PR1 and PS1 at P is π− θp and the
angle between QR2 and QS2 at Q is π − θq (see Figure 4).

Figure 4. In the above figure we have chosen ε(p) = ε(P )
to be +1 and ε(q) = ε(Q) to be −1.

Consider the triangles ∆PR1S1 and ∆QR2S2. From the above description
we have

lX(PR1) = lX(QR2) = τx/2 and lX(PS1) = lX(QS2) = τy/2.

Also from the Proposition 4.1 and the assumption 〈x ∗p y〉 = 〈x ∗q y〉, we
have

lX(x ∗p y)

2
= lX(R1S1) = lX(R2S2) =

lX(x ∗q y)

2
.(1)

Therefore by the cosine rule of hyperbolic triangles [1, §7.12], we have

θp(X) = θq(X).(2)

As X ∈ T (F ) is arbitrary, the above equation holds for all X ∈ T (F ).
Therefore we have to following theorem.

Theorem 5.1. Let X be a point in T (F ). If x and y are two oriented closed
geodesics in X with intersection points p and q such that 〈x ∗p y〉 = 〈x ∗q y〉
then θp(Y ) = θq(Y ) for all Y ∈ T (F ).
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Remark 7. For the Theorem 5.1, we do not need x to be simple. Clearly
Equation 2 gives an obstruction for the equality of terms in the Goldman
bracket. In the next section we show that if we assume x to be simple
in Theorem 5.1 and ε(p) 6= ε(q) then there exists X ∈ T (F ) such that
θp(X) 6= θq(X). It would be interesting to see other examples for which the
Equation 2 fails.

Remark 8. The above obstruction is geometric not topological. In [3, Prob-
lem 13.4], Chas asked the following question: “How does one characterize
topololgically pairs of intersection points for which the corresponding terms
in the Goldman bracket cancel?” Although Theorem 5.1 does not solve the
problem, the fact that the angles are congruent for all metrics makes it al-
most topological. It might give a hint of how to find a characterization in
topological terms. Also the duality between the equalities 1 and 2 can be
used to construct length equivalent curves (see [9]). For topological proper-
ties of length equivalent curves see [12].

6. Proof of the Theorem 1.2

We prove the following lemma from which Theorem 1.2 follows.

Lemma 6.1. Let X be any point in T (F ) and x, y be two oriented closed
geodesics on X intersecting each other. Suppose x is a simple geodesic. If
p, q ∈ x ∩ y such that ε(p) = −ε(q) then 〈x ∗p y〉 6= 〈x ∗q y〉.

Figure 5. Two lifts P and Q of the points p and q respectively.

Proof. We prove the lemma by contradiction. Suppose ε(p) = −ε(q) and
〈x ∗p y〉 = 〈x ∗q y〉.

We have two possibilities:

(1) ε(p) = +1. In this case θp + φp = π.
(2) ε(p) = −1. In this case θp = φp.

As proofs for both the cases are identical, without loss of generality we
assume that ε(p) = +1 and ε(q) = −1. Therefore θp + φp = π and θq = φq.
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As x is simple, let Xs be the point in T (F ) obtained by a left twist
deformation after time s from X along x. Since ε(p) = −ε(q),

φp(Xs) = π − θp(Xs) and φq(Xs) = θq(Xs) (see Figure 5).

By Lemma 2.1, both the functions φp(Xs) and φq(Xs) are strictly decreasing.
Therefore θp(Xs) is an strictly increasing function and θq(Xs) is a strictly
decreasing function. On the other hand by Theorem 5.1, θp(Xs) = θq(Xs).
Thus we arrived at a contradiction as desired. �

Appendix A. Proof of Lemma 2.1

Lemma 2.1. Let x be a simple closed geodesic and y be any closed geodesic
in X. For every intersection point p between x and y, the function φp(Xs)
is a strictly decreasing function of s.

Proof. We use the unit disc model of the hyperbolic plane. Without loss of
generality, assume that the axis of the simple geodesic x, Ax is the horizontal
diameter.

Since x is simple, all lifts of x are disjoint. Fix a lift P of p in Ax and
choose a lift γ of y passing through P . Let γs be the image of γ after left
twist deformation along x at time s and γs is the geodesic corresponding
to γs. When we travel from P along γs, every time we cross a lift of x, we
have to slide a distance s to the left along that lift. Therefore viewed from
P , γs is an alternative concatenation of geodesic arcs Ai and Bi as shown
in Figure 6.

To prove the lemma it is enough to show that the endpoints of γs are
strictly to the left (when viewed from a P ) of the endpoints of γ.

Consider the geodesic rays (the dotted lines in the figure) obtained by
extending Ai in the forward direction viewed from P . We also denote this
rays by Ai. We claim that for i positive (respectively negative), the endpoint
of the ray Ai+1 (respectively Ai−1) lies on the left (when viewed from P ) of
the endpoint of the ray Ai. We show it for i positive. For i negative the
proof is similar.

Suppose the endpoint of Ai+1 is on the right of the endpoint of Ai. Then
the geodesic rays Ai and Ai+1 must intersect. The angle between Bi+1

with Ai−1 and Ai are the same (viewed anti-clockwise from Bi). Therefore
sum of the angles of the triangle formed by the endpoints of Bi+1 and the
intersection point between Ai and Ai+1 is at least π, which is impossible by
Gauss–Bonnet theorem. This proves the claim.

By the uniqueness of geodesics in H, when i goes to +∞ (respectively
−∞) the endpoints of the rays Ai converges to the endpoints of γs. As for i
positive (respectively negative), endpoint of each Ai+1 (respectively Ai−1) is
strictly to the left of the endpoint of Ai, when viewed from P , the endpoints
of γs lies strictly on the left of the endpoints of the geodesic γ. �
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Appendix B. Transverse intersection without double points

In the definition of the Goldman bracket, we required the two curves to
intersect transversally in double points. In this section we show that the
condition of intersecting in double points is not necessary.

Let x : S1 → F and y : S1 → F be two smooth curves on F , inter-
secting transversally (not-necessarily in double points). Define the set of all
intersection points

I(x, y) = {(t1, t2) ∈ S1 × S1 : x(t1) = y(t2)}.

Definition B.1. Let 〈x〉 and 〈y〉 be two free homotopy classes of closed
curves. The geometric intersection number i(x, y) between 〈x〉 and 〈y〉 is
defined as

i(x, y) = inf
x∈〈x〉,y∈〈y〉

#I(x, y).

Let x and y be two smooth closed oriented curves in F . Given any inter-
section point (t1, t2) ∈ I(x, y), let p = x(t1) = y(t2). Let x∗ : π1(S

1, t1) →
π1(F, p) and y∗ : (S1, t2)→ π1(F, p) be the maps induced by x and y in the
fundamental group of S1 based at t1 and t2 respectively. Let z1 (respec-
tively z2) be the generator of π1(S

1, t1) (respectively π1(S
1, t2)) with the

given orientation of S1. Define the loop product of x and y at (t1, t2) by
x∗(z1) ∗p y∗(z2) where ∗p denotes the product of the fundamental group of
F based at p. Define the Goldman bracket between x and y to be

[x, y] =
∑

(t,t2)∈I(x,y)

ε(p)〈x∗(z1) ∗p y∗(z2)
〉
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where ε(p) = ±1 depending on whether the orientation of (x′(t1), y
′(t2))

agrees with the orientation of F or not.
It is straightforward to check that this definition agrees with the original

definition of the Goldman bracket. The benefit of the above definition is that
we can consider only the geodesic representatives in the corresponding free
homotopy classes as two geodesics always intersect each other transversally.
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