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The structure of Hopf algebras
giving Hopf-Galois structures
on quaternionic extensions

Stuart Taylor and Paul J. Truman

Abstract. Let L/F be a Galois extension of fields with Galois group
isomorphic to the quaternion group of order 8. We describe all of the
Hopf-Galois structures admitted by L/F , and determine which of the
Hopf algebras that appear are isomorphic as Hopf algebras. In the case
that F has characteristic not equal to 2 we also determine which of these
Hopf algebras are isomorphic as F -algebras and explicitly compute their
Wedderburn-Artin decompositions.
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1. Introduction

Let L/F be a finite Galois extension of fields with group G. The group
algebra F [G], with its usual action on L, is an example of a Hopf-Galois
structure on the extension. If H is a finite dimensional F -Hopf algebra,
then we say that H gives a Hopf-Galois structure on L/F if and only if the
following conditions hold:

• L is an H-module algebra; that is: L is an H-module with action
h(x) for h ∈ H and x ∈ L where, for y ∈ L,

h(xy) =
∑
(h)

h(1)(x)h(2)(y)

(Sweedler notation) and h(1) = ε(h)(1);
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• the F -linear map j : L⊗FH → EndK(L) given by j(l⊗h)(x) = lh(x)
for l, x ∈ L, h ∈ H, is bijective.

We note that in this definition L/F may be taken to be merely an ex-
tension of commutative rings. However, in this paper we will be concerned
exclusively with fields, specifically the case where L/F is Galois (in the usual
sense).

Since a Hopf-Galois structure on an extension L/F consists of a Hopf
algebra H and an action of H on L, it is possible for distinct Hopf-Galois
structures on L/F to involve Hopf algebras that are isomorphic, either as
F -Hopf algebras or as F -algebras. These phenomena have recently been
studied in papers such as [11] and [10]. In particular, [10] studies in detail the
Hopf-Galois structures admitted by a dihedral extension of fields of degree
2p, where p is an odd prime. In this paper we perform a similar analysis
of the Hopf-Galois structures admitted by a Galois extension of fields with
Galois group isomorphic to Q8, the quaternion group of order 8. We call
such extensions quaternionic. In addition to continuing and complementing
the work begun in the papers cited above, our results have applications in
the study of the Hopf-Galois module structure of rings of algebraic integers
in quaternionic extensions of local or global fields. Since such extensions
have been important in the history of Galois module structure (see [13], for
example), this has the potential to be a fruitful line of inquiry, which we
intend to pursue in a future paper.

A theorem of Greither and Pareigis ([8, Theorem 3.1], see also [3, The-
orem 6.8]) classifies all of the Hopf-Galois structures admitted by a finite
separable extension of fields. We state it here in a weakened form appli-
cable to finite Galois extensions. Consider the group of permutations on
the underlying set of G, Perm(G), and let λ : G ↪→ Perm(G) be the left
regular representation. A subgroup N of Perm(G) is said to be regular if
|N | = |G|, the stabiliser StabN (g) = {η ∈ N | η · g = g} is trivial for all
g ∈ G, and N acts transitively on G (any two of these properties imply
the third). The theorem of Greither and Pareigis states that there is a bi-
jection between regular subgroups N of Perm(G) normalised by λ(G) and
Hopf-Galois structures on L/F . Furthermore, if N is a regular subgroup of
Perm(G) normalised by λ(G) then the Hopf algebra giving the Hopf-Galois
structure corresponding to N is L[N ]G, the fixed ring of the group algebra
L[N ], where G acts on L[N ] by acting on L as Galois automorphisms and
on N by gη = λ(g)nλ(g−1) for all η ∈ N , g ∈ G. For a Hopf algebra
H = L[N ]G giving a Hopf-Galois structure on L/F , we refer to N as the
underlying group of H and its isomorphism class as the type of H, or the
structure given by H.

Example 1.1. Let ρ : G ↪→ Perm(G) be the right regular representation.
Suppose g, h ∈ G and x ∈ G. Then λ(g)ρ(h)[x] = gxh−1 = ρ(h)[gx] =
ρ(h)λ(g)[x]. That is: λ(g)ρ(h) = ρ(h)λ(g) for all g, h ∈ G. Thus the action
of G on ρ(G) is trivial, and so the Hopf algebra L[ρ(G)]G is in fact the group
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algebra F [G] as in the original discussion. The Hopf-Galois structure for
which N = ρ(G) is the underlying group is called the classical structure.

Example 1.2. It is clear that the action of G on λ(G) gives G-orbits equal to
the conjugacy classes. When G is not abelian (so that the ρ(G) 6= λ(G)) the
structure for which N = λ(G) is the underlying group is called the canonical
non-classical structure.

The theorem of Greither and Pareigis is the cornerstone of almost all of
the work concerned with the enumeration, description, and application of
Hopf-Galois structures on separable extensions of fields. In particular, via
a theorem of Byott [2, Proposition 1], it reveals a connection between the
theory of Hopf-Galois structures and the theory of left skew braces, which is
described in detail in the appendix to [15]. This appendix contains an enu-
meration of the Hopf-Galois structures admitted by a quaternion extension
L/F [15, Table A.1]. In section 2 below we compute the regular subgroups
corresponding to these Hopf-Galois structures, and in section 3 we determine
which of the Hopf algebras that appear are isomorphic as Hopf algebras. In
section 4 we study the F -algebra structure of these Hopf algebras: under
the assumption that F has characteristic not equal to 2, we find explicit
bases for each Hopf algebra, compute their Artin-Wedderburn decomposi-
tions, and identify which are isomorphic as F -algebras.

The first named author acknowledges funding support from the Faculty
of Natural Sciences at Keele University. We are grateful to Prof. Alan Koch
for his comments on an early draft of this paper, and to the anonymous
referee for improvements to the exposition and interpretation of our results.

2. Structures on the extension

Let L/F be a Galois extension of fields with Galois group G isomorphic
to the quaternion group of order 8. Let G have generators σ and τ , that is

G = 〈σ, τ |σ4 = τ4 = 1, σ2 = τ2, στ = τσ−1〉.

There are 5 isomorphism types of groups of order 8: the elementary
abelian group C2 × C2 × C2, C4 × C2, the cyclic group C8, the dihedral
group D4 and the quaternion group Q8. As mentioned in the introduction,
[15, Table A.1] includes a count of the Hopf-Galois structures admitted by
L/F , which we reproduce in Table 1 below. The same count appears in work
of Crespo and Salguero [4, Table 3], as an application of an algorithm writ-
ten in the computational algebra system Magma which gives all Hopf-Galois
structures on separable field extensions of a given degree.

We now determine the regular subgroups of Perm(G) corresponding to
these Hopf-Galois structures. We start with the subgroups corresponding
to the Hopf-Galois structures of type C2 × C2 × C2.
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Table 1. The number of Hopf-Galois structures on a quater-
nionic extension

Type Number of structures

C2 × C2 × C2 2

C4 × C2 6

C8 6

Q8 2

D4 6

Lemma 2.1. Let s, t ∈ {σ, τ} with s 6= t and let Es,t be generated by
λ(s)ρ(t), λ(s2), and λ(t)ρ(st). Then Es,t is a regular subgroup of Perm(G)
that is normalized by λ(G) and isomorphic to C2×C2×C2. The groups Eσ,τ
and Eτ,σ are distinct, and are the underlying groups of the 2 Hopf-Galois
structures of type C2 × C2 × C2 on L/F .

Proof. The elements of Es,t are

1, λ(s2), λ(s)ρ(t), λ(s−1)ρ(t), λ(t)ρ(st), λ(t−1)ρ(st), λ(st)ρ(s), λ((st)−1)ρ(s).

All of the non-identity elements above have order 2, so Es,t is isomorphic to
C2 ×C2 ×C2. It is clear that Es,t ⊂ Perm(G) and Es,t · 1G = G; hence Es,t
is a regular subgroup of Perm(G). To show that Es,t is normalized by λ(G),
it is sufficient to show that it is normalized by λ(s) and λ(t). Using the fact
that λ(G) and ρ(G) commute inside Perm(G) we have for example

sλ(s)ρ(t) = λ(sss−1)ρ(t) = λ(s)ρ(t)

tλ(s)ρ(t) = λ(tst−1)ρ(t) = λ(s−1)ρ(t).

Similar calculations apply to the other elements, and so Es,t is normalized
by λ(G). Finally, we have Es,t 6= Et,s since λ(t)ρ(s) lies in Et,s but not
in Es,t. Referring to Table 1 we see that Eσ,τ and Eτ,σ are the underlying
groups of the two Hopf-Galois structures of type C2×C2×C2 on L/F . �

We now find the subgroups corresponding to the Hopf-Galois structures
of type C4 × C2 using a similar technique.

Lemma 2.2. Let s, t ∈ {σ, τ, στ} with s 6= t and let As,t be generated by
the permutations λ(s) and ρ(t). Then As,t is a regular subgroup of Perm(G)
that is normalized by λ(G) and isomorphic to C4×C2. The 6 choices of the
pair s, t yield distinct groups, and these are the underlying groups of the 6
structures of type C4 × C2 on L/F .

Proof. We have 〈ρ(t), λ(s)〉 ∼= C4×C2 since ρ(t) and λ(s) are both of order
4, commute with each other, and share the same square. It is clear that
As,t ⊂ Perm(G) and that for g, h ∈ G we have λ(g)ρ(h) · 1G = gh−1; hence
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As,t is a regular subgroup of Perm(G). The verification that it is normalized
by λ(G) is very similar to the verification in Lemma 2.1, using the fact that
ρ(G) and λ(G) commute inside Perm(G). To show that the six choices of the
pair s, t yield distinct groups, note that for each such pair the group As,t is
the only one that contains λ(s) and ρ(t). Hence, by Table 1, the groups As,t
are the underlying groups of the 6 Hopf-Galois structures of type C4 × C2.

�

The subgroups corresponding to the Hopf-Galois structures of type C8

cannot be described in terms of combinations of elements from λ(G) and
ρ(G), since the order of any such element is at most 4.

Lemma 2.3. Let s, t ∈ {σ, τ, στ} with s 6= t and let Cs,t be generated by the
permutation ηs,t defined in cycle notation by

ηs,t = (1 s t (st)−1 s2 s−1 t−1 (st)).

Then Cs,t is a regular subgroup of Perm(G) that is normalized by λ(G) and
isomorphic to C8. The 6 choices of the pair s, t yield distinct groups, and
these are the underlying groups of the 6 structures of type C8 on L/F .

Proof. It is clear that Cs,t is a subgroup of Perm(G) isomorphic to C8.

Moreover, we have Cs,t · 1G = G since ηks,t · 1G = 1G if and only if k ≡ 0
(mod 8). Thus Cs,t is a regular subgroup of Perm(G). To show that Cs,t
is normalized by λ(G), it is sufficient to show that it is normalized by λ(s)
and λ(t). We have

λ(s)ηs,tλ(s−1) = (1 s s2 s−1)(t st t−1 (st)−1)

(1 s t (st)−1 s2 s−1 t−1 st)(1 s−1 s2 s)(t (st)−1 t−1 st)

= (1 (st)−1 t−1 s s2 st t s−1)

= η3
s,t,

and similarly, λ(t)ηs,tλ(t−1) = ηs,t. Therefore Cs,t is normalized by λ(G). It
may be verified that each of the 6 choices of the pair s, t gives a permutation
that differs from all powers of those of the other choices. Hence, by Table 1,
the groups Cs,t are the underlying groups of the 6 Hopf-Galois structures of
type C8. �

Having found the abelian underlying groups of the corresponding Hopf-
Galois structures on our extension L/F we now find the structures of quater-
nionic type which we saw earlier.

Lemma 2.4. ρ(G) and λ(G) are the underlying groups of the two Hopf-
Galois structures of type Q8.

Proof. As G is non-abelian, ρ(G) and λ(G) are distinct regular subgroups
of Perm(G) normalized by λ(G). By Table 1, they are the underlying groups
of the 2 Hopf-Galois structures of type Q8. �
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Finally, the subgroups corresponding to the Hopf-Galois structures of type
D4, the dihedral group of order 8, have a similar description to the groups
Es,t and As,t.

Lemma 2.5. Let s, t ∈ {σ, τ, στ} with s 6= t. Let Ds,λ be generated by λ(s)
and λ(t)ρ(s), and let Ds,ρ be generated by ρ(s) and λ(s)ρ(t). Then Ds,λ

and Ds,ρ do not depend upon the choice of t, and are regular subgroups of
Perm(G) that are normalized by λ(G) and isomorphic to D4. The 3 choices
of s yield 6 distinct groups, and these are the underlying groups of the Hopf-
Galois structures of type D4 on L/F .

Proof. For a fixed choice of t the elements of Ds,λ are

1, λ(s), λ(s2), λ(s−1), λ(t)ρ(s), λ(st)ρ(s), λ(t−1)ρ(s), λ((st)−1)ρ(s).

We see immediately that using st in place of t yields the same group, that
λ(s) has order 4, λ(t)ρ(s) has order 2, and that these elements anticommute.
ThereforeDs,λ

∼= D4. It is clear thatDs,λ ⊂ Perm(G) and thatDs,λ·1G = G;
hence Ds,λ is a regular subgroup of Perm(G). The verification that it is
normalized by λ(G) is very similar to the verifications in Lemma 2.1 and
Lemma 2.2, using the fact that ρ(G) and λ(G) commute inside Perm(G).
Similarly, Ds,ρ is a regular subgroup of Perm(G) that is isomorphic to D4

and normalized by λ(G). To show that the 3 choices of s yield 6 distinct
groups, note that for each s the group Ds,λ is the only one that contains
λ(s) and that Ds,ρ is the only one that contains ρ(s). Hence, by Table 1,
the groups Ds,λ and Ds,ρ are the underlying groups of the 6 Hopf-Galois
structures of type D4. �

Remark 2.6. For every regular subgroup N of Perm(G) corresponding to
a Hopf-Galois structure on L/F we have ρ(σ2) ∈ N , and so Z(ρ(G)) ⊆
ρ(G) ∩ N . Clearly this is the case for N = ρ(G) and N = λ(G), and it is
easy to verify that it holds for N = Es,t, As,t, Ds,λ, and Ds,ρ (for all valid
choices of s, t) from the definitions of these groups. Finally, we can verify
that it holds for the groups Cs,t (for all valid choices of s, t) by computing
η4
s,t = ρ(σ2) in these cases.

3. Hopf algebra isomorphisms

In this section we determine which of the Hopf algebras giving Hopf-
Galois structures on L/F are isomorphic as F -Hopf algebras. In [11, Theo-
rem 2.2] Koch, Kohl, Underwood and the second named author outline the
following criterion for two Hopf algebras arising from the Greither-Pareigis
correspondence to be isomorphic as Hopf algebras: let N1 and N2 be under-
lying groups of two Hopf-Galois structures on L/F . Then L[N1]G ∼= L[N2]G

as F -Hopf algebras if and only if there exists a G-equivariant isomorphism
f : N1

∼−→ N2. In particular, no two Hopf algebras of different types may be
isomorphic as F -Hopf algebras.
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We now determine which of our Hopf algebras are isomorphic. We con-
sider the isomorphism classes of the underlying groups individually. We
start with the elementary abelian groups.

Lemma 3.1. The Hopf algebras giving the two Hopf-Galois structures of
type C2 × C2 × C2 are isomorphic to each other as Hopf algebras. That is,
L[Eσ,τ ]G ∼= L[Eτ,σ]G as Hopf algebras.

Proof. Recall the definition of Es,t from Lemma 2.1. The non-trivial G-
orbits of Es,t are

{λ(s)ρ(t), λ(s−1)ρ(t)}, {λ(t)ρ(st), λ(t−1)ρ(st)}, {λ(st)ρ(s), λ((st)−1)ρ(s)},
with stabilisers 〈s〉, 〈t〉 and 〈st〉 respectively. The map f : Es,t → Et,s
defined by

f :


λ(s)ρ(t) 7→ λ(s)ρ((st)−1)

λ(s2) 7→ λ(s2)

λ(t)ρ(st) 7→ λ(t)ρ(s).

is a G-equivariant isomorphism. �

Now we find that for the Hopf-Galois structures of type C4×C2 the Hopf
algebra isomorphism classes are determined by the choice of s.

Lemma 3.2. Let s, s′, t, t′ ∈ {σ, τ, στ} with s 6= t and s′ 6= t′. We have
L[As,t]

G ∼= L[As′,t′ ]
G if and only if s = s′.

Proof. Recall the definition of As,t from Lemma 2.2. The non-trivial G-
orbits of As,t (that is, those of length greater than one) are {λ(s), λ(s−1)},
{λ(s)ρ(t), λ(s−1)ρ(t)} both with stabiliser 〈s〉. Therefore if s 6= s′ then
there cannot be a G-equivariant isomorphism between As,t and As′,t′ for
any choices of t, t′. For fixed s and t, t′ satisfying s 6= t and s 6= t′ the map
f : As,t → As,t′ defined by

f :

 λ(s) 7→ λ(s)

ρ(t) 7→ ρ(t′).

is a G-equivariant isomorphism: �

With a nearly identical argument we now give the result for Hopf-Galois
structures of type C8.

Lemma 3.3. Let s, s′, t, t′ ∈ {σ, τ, στ} with s 6= t and s′ 6= t′. We have
L[Cs,t]

G ∼= L[Cs′,t′ ]
G as Hopf algebras if and only if t = t′.

Proof. Recall the definition of Cs,t from Lemma 2.3. The nontrivial G-
orbits of Cs,t are {ηs,t, η3

s,t}, {η2
s,t, η

6
s,t} and {η5

s,t, η
7
s,t}, all with stabiliser

〈t〉. Therefore if t 6= t′ then there cannot be a G-equivariant isomorphism
between Cs,t and Cs′,t′ for any choices of s, s′. For fixed t and s, s′ satisfying
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s 6= t and s′ 6= t let ηs,t and ηs′,t be generators of Cs,t and Cs′,t respectively;
then the map f : Cs,t → Cs′,t defined by

f : ηs,t 7→ ηs′,t.

is a G-equivariant isomorphism. �

The result for the Hopf-Galois structures of type Q8 is an instance of a
well known result (see [11, Example 2.4], for example).

Lemma 3.4. The Hopf algebras L[λ(G)]G and L[ρ(G)]G are not isomorphic
as Hopf algebras.

Proof. The G-action on ρ(G) is trivial since λ(G) and ρ(G) commute. How-
ever, the G-action on λ(G) is conjugation so that the G-orbits are the con-
jugacy classes. Therefore no G-equivariant isomorphism can exist. �

Finally, we can give the result for the Hopf-Galois structures of type D4.

Lemma 3.5. The Hopf algebras L[Ds,λ]G and L[Ds,ρ]
G are pairwise non-

isomorphic as Hopf algebras.

Proof. Recall the definitions of Ds,λ and Ds,ρ from Lemma 2.5. The non-
trivial G-orbits of Ds,λ are

{λ(s), λ(s−1)}, {λ(t)ρ(s), λ(t−1)ρ(s)}, and {λ(st)ρ(s), λ((st)−1)ρ(s)},

with stabilisers 〈s〉, 〈t〉, and 〈st〉 respectively. If s 6= s′ and f : Ds,λ →
Ds′,λ is a G-equivariant bijection then by considering stabilisers we see that
f(λ(s)) = λ(t′)ρ(s′) for some t′. But λ(s) has order 4, whereas λ(t′)ρ(s′)
has order 2. Therefore f cannot be an isomorphism.

The non-trivial G-orbits of Ds,ρ are

{λ(s)ρ(t), λ(s−1)ρ(t)} and {λ(s)ρ(st), λ(s−1)ρ(st)}

both with stabiliser 〈s〉. Therefore if s 6= s′ then there cannot be a G-
equivariant isomorphism between Ds,λ and Ds′,λ.

Finally, there cannot be a G-equivariant isomorphism between Ds,λ and
Ds′,ρ for any s, s′, since these groups have different numbers of G-orbits. �

These results agree with the number of isomorphism classes of Hopf alge-
bras for each type given in Table 1 of [4]. It may also be worth noting that
our results imply that the Hopf-Galois structures of abelian type occur in
pairs, with each pair arising from two different actions of a single Hopf al-
gebra, and that, by contrast, each Hopf-Galois structure of nonabelian type
arises from the action of a distinct Hopf algebra.
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4. F-algebra isomorphisms

In this section we investigate the F -algebra structure of the Hopf algebras
giving Hopf-Galois structures on L/F . We assume that the characteristic of
F is not 2: this ensures the Hopf algebras are separable, hence semisimple,
so that each has an Artin-Wedderburn decomposition (see section 3C of [5]).

We fix some notation. Since L/F is a quaternionic extension it has a
unique biquadratic subextension K/F corresponding to the unique order
2 subgroup 〈σ2〉 of G, so that Gal(K/F ) = G/〈σ2〉. Let s, t ∈ {σ, τ, στ}
with s 6= t, and let α, β be elements of K such that α2, β2 ∈ F , s(α) =
α, t(α) = −α, s(β) = −β and t(β) = β; note that K = F (α, β). We also fix
an algebraic closure F alg of F , and let Ω = Gal(F alg/F ).

If N is abelian then H = L[N ]G is a commutative separable F -algebra,
and hence, by [17, §6.3], corresponds to a finite Ω-set. Specifically, L[N ]G

corresponds to the Ω-set N̂ = Hom(N,F alg), where Ω acts on N by factoring

through G, and on N̂ by (ωχ) [η] = ω(χ(ω
−1
η)) for all η ∈ N (in fact, the

action of Ω on N̂ factors through Gal(L′/K) for some cyclotomic extension

L′ of L). To make this correspondence explicit, let χ1, . . . , χs ∈ N̂ be a set

of representatives for the Ω orbits of N̂ , and for each i ∈ {1, . . . , s} let Fi be
the fixed field of StabΩ(χi); then

H ∼=
s∏
i=1

Fi as F -algebras.

A result of Böltje and Bley [1, Lemma 2.2] shows how one may construct an
F -basis of L[N ]G corresponding to this decomposition: we have L[N ]G =
F alg[N ]Ω, and the group algebra F alg[N ] has a basis of mutually orthogonal

idempotents, each corresponding to an element of N̂ . The action of Ω on
F alg[N ] permutes these idempotents, and by forming Ω-invariant linear com-
binations we obtain an F -basis of L[N ]G corresponding to the decomposition
above.

If H = L[N ]G is a Hopf algebra whose underlying group N is isomorphic
to C2×C2×C2 then the values of the characters of N lie in F , so the action

of Ω on N̂ factors through G. Using this observation we have:

Lemma 4.1. Let Es,t be defined as in Lemma 2.1. Then we have

L[Es,t]
G ∼= F 4 ×K as F -algebras.

Proof. The dual group Ês,t is generated by three characters:

χ1 :


λ(s)ρ(t) 7→ −1

λ(s2) 7→ 1

λ(t)ρ(st) 7→ 1

,
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χ2 :


λ(s)ρ(t) 7→ 1

λ(s2) 7→ −1

λ(t)ρ(st) 7→ 1

,

and

χ3 :


λ(s)ρ(t) 7→ 1

λ(s2) 7→ 1

λ(t)ρ(st) 7→ −1

.

Let χ0 denote the identity in Ês,t, and recall the G-orbit structure of Es,t
in Lemma 3.1. It is easily verified that sχ2 = χ2χ3, tχ2 = χ1χ2 and stχ2 =
χ1χ2χ3 and that s and t act trivially on χ0, χ1, χ3 and χ1χ3. Hence the

orbits of G in Ês,t are

{χ0}, {χ1}, {χ3}, {χ1χ3}, {χ2, χ1χ2, χ2χ3, χ1χ2χ3}.
The orbit representatives χ0, χ1, χ3 χ1χ3 all have stabilizer G, and the orbit
representative χ2 has stabiliser 〈s2〉. Therefore we have L[Es,t]

G ∼= F 4 ×K,
as claimed. �

For the remaining structures whose underlying group N is abelian there
may exist characters of N whose values do not lie in the field F . In these

cases the action of Ω on N̂ depends upon the intersection of L with certain
cyclotomic extensions of F , and can be difficult to trace in detail. To over-
come this problem we study the action of Ω on the group algebra F alg[N ],
as in [1, Lemma 2.2]. As discussed above, we have L[N ]G = F alg[N ]Ω, and
the action of Ω factors through Gal(L′/K) for some cyclotomic extension L′

of L. Thus, writing G′ = Gal(L′/L), we have

L[N ]G =
(
L′[N ]G

′
)G

,

where the action of G′ on L′[N ] is only on the coefficients. In the following
two lemmas we suppress the details of this first step of the descent (if any),
and begin with a convenient L-basis on L[N ] on which it is easy to follow
the action of G. By forming G-invariant linear combinations of these basis
elements we obtain a basis of L[N ]G corresponding to its Artin-Wedderburn
decomposition. Although working with bases in this way is rather cum-
bersome, it has the advantage of applying uniformly, whereas studying the

orbits of Ω in N̂ can split into many cases, depending upon the roots of
unity contained in L.

We continue with the Hopf algebras giving the structures of type C4×C2.

Lemma 4.2. Let As,t be defined as in Lemma 2.2. Then we have

L[As,t]
G ∼= F 4 × F (α, ι)d as F -algebras,

where ι ∈ F alg is such that ι2 = −1 and d = 2/[F (α, ι) : F (α)].
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Proof. Let

b0 =
1

8

(
1 + λ(s) + λ(s2) + λ(s−1) + ρ(t)−1 + λ(s)−1ρ(t) + ρ(t) + λ(s)ρ(t)

)
,

b1 =
1

8

(
1− λ(s) + λ(s2)− λ(s−1)− ρ(t)−1 + λ(s)−1ρ(t)− ρ(t) + λ(s)ρ(t)

)
,

b2 =
1

8

(
1 + λ(s) + λ(s2) + λ(s−1)− ρ(t)−1 − λ(s)−1ρ(t)− ρ(t)− λ(s)ρ(t)

)
,

b3 =
1

8

(
1− λ(s) + λ(s2)− λ(s−1) + ρ(t)−1 − λ(s)−1ρ(t) + ρ(t)− λ(s)ρ(t)

)
,

b4 =
1

4

(
1− λ(s2) + λ(s)−1ρ(t)− λ(s)ρ(t)

)
,

b5 =
1

4

(
1− λ(s2)− λ(s)−1ρ(t) + λ(s)ρ(t)

)
,

b6 =
1

4

(
λ(s)− λ(s−1)− ρ(t)−1 + ρ(t)

)
,

b7 =
1

4

(
− λ(s) + λ(s−1)− ρ(t)−1 + ρ(t)

)
.

It is easily verified that these 8 elements of L[As,t] are linearly independent
over L and so form an L-basis of L[As,t]. Recall from Lemma 3.2 that the
non-trivial G-orbits of As,t, are {λ(s), λ(s−1)}, {λ(s)ρ(t), λ(s−1)ρ(t)}, both
with stabiliser 〈s〉. From this we see that b0, b1, b2 and b3 are fixed by G, that
tb4 = b5, and that tb6 = b7. Therefore the following linear combinations of
the above elements are all fixed by G, and in fact form a basis of L[As,t]

G

over F .

a0 = b0,

a1 = b1,

a2 = b2,

a3 = b3,

a4,0 = b4 + b5 =
1

2

(
1− λ(s2)

)
= e,

a4,1 = α(b4 − b5) = −αeλ(s)ρ(t),

a4,2 = b6 + b7 = eρ(t),

a4,3 = α(b6 − b7) = αeλ(s).

We have aiaj = δi,jai for i, j = 0, 1, 2, 3 and a4,kai = aia4,k = 0 for all
i = 0, 1, 2, 3 and k = 0, 1, 2, 3. Finally, we consider the multiplication table
of the a4,k.
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a4,0 a4,1 a4,2 a4,3

a4,0 a4,0 a4,1 a4,2 a4,3

a4,1 a4,1 α2a4,0 a4,3 α2a4,2

a4,2 a4,2 a4,3 −a4,0 −a4,1

a4,3 a4,3 α2a4,2 −a4,1 −α2a4,0

From the table it is clear that we have the claimed decomposition. �

We use a similar process for the Hopf algebras giving the Hopf-Galois
structures of type C8.

Lemma 4.3. Let Cs,t be defined as in Lemma 2.3. Then we have

L[Cs,t]
G ∼= F 2 × F (βι)d1 × F (rι, βι)d1d2 as F -algebras,

where r, ι ∈ F alg such that r2 = 2, ι2 = −1 and where d1 = 2/[F (βι) : F ]
and d2 = 2/[F (rι, βι) : F (βι)].

Proof. Let η = ηs,t as defined in Lemma 2.3, so that Cs,t = 〈η〉, and let

b0 =
1

8

(
1 + η + η2 + η3 + η4 + η5 + η6 + η7

)
,

b1 =
1

8

(
1− η + η2 − η3 + η4 − η5 + η6 − η7

)
,

b2 =
1

4

(
1− η2 + η4 − η6

)
,

b3 =
1

4

(
η − η3 + η5 − η7

)
,

b4 =
1

2

(
1− η4

)
,

b5 =
1

2

(
η3 − η7

)
,

b6 =
1

2

(
η2 − η6

)
,

b7 =
1

2

(
η − η5

)
.

It is easily verified that these 8 elements of L[Cs,t] are linearly independent
over L and so form an L-basis of L[Cs,t]. Recall from Lemma 3.3 that the
nontrivialG-orbits of Cs,t are {η, η3}, {η2, η6} and {η5, η7}, all with stabiliser
〈t〉. From this we see that b0, b1, b2 and b4 are fixed by G, that sb3 = −b3,
sb6 = −b6, and that sb5 = b7. Therefore the following linear combinations
of the above elements are all fixed by G, and in fact form a basis of L[Cs,t]
over L:
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a0 = b0,

a1 = b1,

a2,0 = b2,

a2,1 = βb3 = βb2η,

a3,0 = b4 = e,

a3,1 = βb6 = βeη2,

a3,2 = (b5 + b7) = e(η3 + η),

a3,3 = β(b5 − b7) = βe(η3 − η).

We have aiaj = δi,jai for i, j = 0, 1, aia2,k = 0 for i = 0, 1 and k = 0, 1,
aia3,k = 0 for i = 0, 1 and k = 0, 1, 2, 3, and a2,ka3,l = 0 for k = 0, 1 and
l = 0, 1, 2, 3. Finally, we consider the multiplication tables of the a2,k and
the a3,k.

a2,0 a2,1

a2,0 a2,0 a2,1

a2,1 a2,1 −β2a2,0

a3,0 a3,1 a3,2 a3,3

a3,0 a3,0 a3,1 a3,2 a3,3

a3,1 a3,1 −β2a3,0 a3,3 −β2a3,2

a3,2 a3,2 a3,3 −2a3,0 −2a3,1

a3,3 a3,3 −β2a3,2 −2a3,1 2β2a3,0

From these tables it is clear that we have the claimed decomposition. �

Comparing these results with those obtained in section 3, we see that two
Hopf algebras giving Hopf-Galois structures of the same abelian type on
L/F are isomorphic as Hopf algebras if and only if they are isomorphic as
F -algebras. On the other hand, although Hopf algebras giving Hopf-Galois
structures of different types are not isomorphic as Hopf algebras, in certain
situations it is possible that they are isomorphic as F -algebras. For example:
if β = ι then L[Es,t]

G ∼= L[As,t]
G as F -algebras.

The remaining structures are of nonabelian type, and so we cannot employ
the methods of [17, §6.3] or [1, Lemma 2.2]. We emulate the same process
using the character table in place of the dual group of our underlying group.
We write down a convenient L-basis of L[N ] and form G-invariant linear
combinations of these basis elements. We find that certain quaternion al-
gebras appear in the decompositions, and so we fix notation for these: for
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x, y ∈ F×, let (x, y)F denote the quaternion algebra with F -basis 1, u, v, w
satisfying the relations u2 = x, v2 = y, and uv = w = −vu. In addition, let
a = α2 ∈ F×, b = β2 ∈ F×, where α, β ∈ K are as defined at the beginning
of this section.

We begin with the Hopf algebras giving the classical and canonical non-
classical structures of type Q8.

Lemma 4.4. We have

L[ρ(G)]G ∼= K[G] ∼= F 4 × (−1,−1)F as F -algebras

and

L[λ(G)]G ∼= F 4 × (−a,−b)F as F -algebras.

Proof. Let µ ∈ {ρ, λ}. The character table for µ(G) is

1 {µ(s2)} {µ(s), µ(s−1)} {µ(t), µ(t−1)} {µ(st), µ((st)−1)}

χ0 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 1 1 −1 1 −1

χ3 1 1 −1 −1 1

ψ 2 −2 0 0 0

First we consider the case µ = ρ, corresponding to the classical Hopf-
Galois structure on L/F . For k = 0, 1, 2, 3, let ek be the orthogonal idem-
potent corresponding to the character χk. The idempotent corresponding
to the 2-dimensional representation is

eψ =
1

2

(
1− ρ(s2)

)
= e.

The following is a set of 8 linearly independent elements of L[ρ(G)], and
each element is fixed by G since the action of G on ρ(G) is trivial. It is
therefore a basis of L[ρ(G)]G = F [ρ(G)] over F :

{e0, e1, e2, e3, e, eρ(s), eρ(t), eρ(st)}.

The ek are orthogonal idempotents, and each is also orthogonal to every
element of the set {e, eρ(s), eρ(t), eρ(st)}. This set spans a 4-dimensional
F -algebra, which is isomorphic to the quaternion algebra (−1,−1)F via the
F -algebra isomorphism defined by eρ(s) 7→ u, eρ(t) 7→ v. Therefore we have
the claimed decomposition.

Now we consider the case µ = λ, corresponding to the canonical nonclas-
sical Hopf-Galois structure on L/F . As discussed in Lemma 3.4 the G-orbits
of λ(G) are the conjugacy classes. As above, for k = 0, 1, 2, 3 let ek be the
orthogonal idempotent corresponding to the character χk, and note that
these are fixed by G. The idempotent e, corresponding to the 2-dimensional
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representation of λ(G), is also fixed by G. Now consider the L-linearly inde-
pendent set {e, eλ(s), eλ(t), eλ(st)}. An element of the F -algebra generated
by this set is of the form

x = a0e + a1eλ(s) + a2eλ(t) + a3eλ(st) with ak ∈ L for k = 0, 1, 2, 3.

The element x is fixed by G if and only if a1 = a′1α, a2 = a′2β and a3 = a′3αβ
for some a0, a

′
1, a
′
2, a
′
3 ∈ F . Thus the following set is an F -basis of L[λ(G)]G:

{e0, e1, e2, e3, e, αeλ(s), βeλ(t), αβeλ(st)}.

As above, the ek are orthogonal to each other and to every element of the
set {e, αeλ(s), βeλ(t), αβeλ(st)}. This set spans a 4-dimensional F -algebra,
which is isomorphic to the quaternion algebra (−a,−b)F via the F -algebra
isomorphism defined by αeλ(s) 7→ u, βeλ(t) 7→ v. Therefore we have the
claimed decomposition. �

It may appear that the Hopf algebras giving the classical and canonical
non-classical structures are not isomorphic as F -algebras. However, we have:

Lemma 4.5. We have (−a,−b)F ∼= (−1,−1)F as F -algebras.

Proof. By a result of Witt [9, Theorem I.1.1], the fact that K = F (α, β)
embeds into a quaternionic extension of F implies that the quadratic form
ax2

1 + bx2
2 + abx2

3 is equivalent to the quadratic form x2
1 + x2

2 + x2
3. These

are the norm forms of the subspaces of pure quaternions of (−a,−b)F and
(−1,−1)F , respectively. Therefore these subspaces are isometric, and so (see
[12, III, Theorem 2.5]) (−a,−b)F ∼= (−1,−1)F as F -algebras. �

Corollary 4.6. We have L[ρ(G)]G ∼= L[λ(G)]G ∼= F 4 × (−1,−1)F as F -
algebras.

In fact, this result follows from an unpublished theorem of Greither which
states that if L/F is any Galois extension of fields then F [G] ∼= L[λ(G)]G as
F -algebras. See [10, Theorem 5.2] for more details.

Finally, we have the Hopf algebras giving the structures of type D4.

Lemma 4.7. Let Ds,λ and Ds,ρ be defined as in Lemma 2.5. Then we have

L[Ds,λ]G ∼= F 4 × (−a, b)F as F -algebras

and

L[Ds,ρ]
G ∼= F 4 × (−1, a)F as F -algebras.

Proof. In order to control the size of the table below, let us write

O1 = {λ(s), λ(s−1)}, O2 = {λ(t)ρ(s), λ(t−1)ρ(s)},

and

O3 = {λ(st)ρ(s), λ((st)−1)ρ(s)}.
Then the character table for Ds,λ is the following:
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1 {λ(s2)} O1 O2 O3

χ0 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 1 1 −1 1 −1

χ3 1 1 −1 −1 1

ψ 2 −2 0 0 0

As in the proof of Lemma 4.4, for k = 0, 1, 2, 3 let ek be the orthogonal
idempotent corresponding to the character χk, and note that the idempo-
tent corresponding to the 2-dimensional representation is e. Recall from
Lemma 3.5 that the non-trivial G-orbits of Ds,λ are O1, O2, and O3 with
stabilisers 〈s〉, 〈t〉, and 〈st〉 respectively. Hence each ek is fixed by G. Now
consider the L-linearly independent set {e, eλ(s), eλ(t)ρ(s), eλ(st)ρ(s)}. An
element of the F -algebra generated by these elements is of the form

x = a0e+ a1eλ(s) + a2eλ(t)ρ(s) + a3eλ(st)ρ(s) with ak ∈ L for k = 0, 1, 2, 3.

The element x is fixed by G if and only if a1 = a′1α, a2 = a′2β and a3 = a′3αβ
for some a0, a

′
1, a
′
2, a
′
3 ∈ F . The set

{e0, e1, e2, e3, e, αeλ(s), βeλ(t)ρ(s), αβeλ(st)ρ(s)}
is therefore an F -basis of L[Ds,λ]G. The ek are orthogonal to each other
and to every element of the set {e, αeλ(s), βeλ(t)ρ(s), αβeλ(st)ρ(s)}. This
set spans a 4-dimensional F -algebra, which is isomorphic to the quater-
nion algebra (−a, b)F via the F -algebra isomorphism defined by αeλ(s) 7→
u, βeλ(t)ρ(s) 7→ v. Therefore we have the claimed decomposition.

We determine the structure of L[Ds,ρ]
G by essentially the same method,

and so we omit some of the details. In notation analogous to that employed
above, we find that the set

{e0, e1, e2, e3, e, eρ(s), αeλ(s)ρ(t), αeλ(s)ρ(st)}
is an F -basis of L[Ds,λ]G. The final four elements span a 4-dimensional
F -algebra, which is isomorphic to the quaternion algebra (−1, a)F via the
F -algebra isomorphism defined by eρ(s) 7→ u, αeλ(s)ρ(t) 7→ v. Therefore
we have the claimed decomposition. �

As in the case of the Hopf algebras giving the Hopf-Galois structures of
Q8 type, some of the quaternion algebras appearing in the decompositions
above are isomorphic:

Lemma 4.8. We have (−a, b)F ∼= (−1, a)F as F -algebras.

Proof. Write [−a,−b], [−1, a] for the classes of (−a, b)F , (−1, a)F in the
Brauer group Br(F ). It is sufficient to show that [−a,−b] = [−1, a]. We
refer to [12, Chapters III and IV] for properties of quaternion algebras over F
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and their classes in Br(F ). Using the result of Lemma 4.5 we have [−a,−b] =
[−1,−1], and so in Br(F ) we have

[−a, b][−a,−b] = [−a,−b2] by [12, III, Theorem 2.11]

= [−a,−1] by [12, III, Proposition 1.1]

= [−1,−a]

= [−1, a][−1,−1] by [12, III, Theorem 2.11]

= [−1, a][−a,−b].
Cancelling [−a,−b], we obtain [−a, b] = [−1, a] = [a,−1], as claimed. There-
fore (−a, b)F ∼= (−1, a)F as F -algebras. �

Corollary 4.9. We have

L[Ds,ρ]
G ∼= L[Ds,λ]G ∼= F 4 × (−1, a)F as F -algebras.

In order to better understand the F -algebra structure of the Hopf algebras
L[Ds,ρ]

G, we investigate the relationships between (−1, a)F , (−1, b)F and
(−1, ab)F .

Lemma 4.10. Let x, y ∈ {a, b, ab} with x 6= y. Then we have (−1, x)F ∼=
(−1, xy)F as F -algebras if and only if (−1, y)F ∼= M2(F ) as F -algebras.

Proof. In Br(F ) we have [−1, xy] = [−1, x][−1, y], so [−1, x] = [−1, xy] if
and only if [−1, y] = [−1, 1]. That is, (−1, x)F ∼= (−1, xy)F as F -algebras if
and only if (−1, y)F ∼= (−1, 1)F ∼= M2(F ) as F -algebras. �

Lemma 4.10 suggests three scenarios for the quaternion algebras (−1, a)F ,
(−1, b)F , and (−1, ab)F : all three are isomorphic to matrix rings, exactly
one is isomorphic to a matrix ring and the other two are isomorphic to the
same division algebra, or each is isomorphic to a distinct division algebra.
We conclude with examples illustrating that each of these three cases does
occur.

Example 4.11. Suppose that −1 is a square in F . Then for x ∈ {a, b, ab}
we have that −1 occurs as the norm of an element of the field F (x), and so
(−1, x)F ∼= (−1, 1)F ∼= M2(F ) [9, Proposition I.1.6]. Therefore in this case
we have

L[Ds,ρ]
G ∼= L[Dt,ρ]

G ∼= L[Dst,ρ]
G ∼= F 4 ×M2(F )

as F -algebras.

Example 4.12. Let F = Q, α =
√

11, β =
√

2. Then by [7] K = Q(α, β)
can be embedded in a quaternionic extension L of Q. In this case we have
(−1, b)Q ∼= (−1, 1)Q ∼= M2(Q) as Q-algebras since 2 is the norm of the
element 1 + i ∈ Q(i), and so by Lemma 4.10 we have (−1, a)Q ∼= (−1, ab)Q
as Q-algebras. However, (−1, a)Q 6∼= M2(Q), since no element of Q(i) has
norm 11. Therefore in this case we have L[Dt,ρ]

G ∼= Q4 ×M2(Q) and

L[Ds,ρ]
G ∼= L[Dst,ρ]

G ∼= Q4 × (−1, a) 6∼= Q4 ×M2(Q)

as Q-algebras.
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Example 4.13. Let F = Q, α =
√

11, β =
√

6. Then by [16, Example
4.4] K = Q(α, β) can be embedded in a quaternionic extension L of Q. In
this case none of (−1, a)Q, (−1, b)Q, (−1, ab)Q is isomorphic to M2(Q) as a
Q-algebra, since none of 6, 11, 66 occurs as the norm of an element of Q(i).
Therefore by Lemma 4.10 these quaternion algebras are all nonisomorphic
as Q-algebras, and so we have

L[Ds,ρ]
G 6∼= L[Dt,ρ]

G 6∼= L[Dst,ρ]
G

as Q-algebras.
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