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Countable approximation of topological
G-manifolds, III: arbitrary Lie groups G
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This paper is dedicated to the memory of Jan W. Jaworowski (1928–2013),
with whom the author had brief cordial interactions at Indiana University.

Abstract. TheHilbert–Smith conjecture states that, for any connected topo-
logicalmanifoldM, any locally compact subgroup ofHomeo(M) is a Lie group.
Wegeneralize basic results of Segal–Kosniowski–tomDieck (2.6), James–Segal
(2.12), G. Bredon (3.7), Jaworowski–Antonyan et al. (5.5), andE. Elfving (7.3).
The last is ourmain result: for any Lie groupG, any Palais-proper topological
G-manifold has the G-homotopy type of a countable proper G-CW complex.
Along theway, we verify ann-classifying space for principalG-bundles (5.10).
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Historical introduction and statement of results
Interpreting an ambitious desire (1854) fromB. Riemann’s habilitation, Betti

formalized the extrinsic de�nition (1871) of di�erentiable (C1) manifold, as a
nonsingular di�erentiable zero-locus, via Cauchy-Dini’s implicit function theo-
rem. Later, H.Weyl gave the intrinsic de�nition (1913) of topological (C0) man-
ifold, as a locally euclidean separable metric space, the latter fromM. Fréchet’s
thesis (1906).
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Kuratowski’s thesis provided the axiomatic de�nition (1922) of topological
space. Besides manifolds, we shall consider three well-known classes of topo-
logical spaces. Firstly, O. Schreier introduced the notion (1925) of a T0 (so T3.5)
topological group: a Hausdor� space whose underlying set is a group such that
the division function (x, y) ⟼ xy−1 is continuous. Examples are Lie groups
and the p-adics. This concept is motivated by a continuous group of transfor-
mations, that is, a group action. Secondly, the absolute neighborhood extensor
(ANE) was introduced by K. Borsuk (1932): a normal Hausdor� space satisfy-
ing that any continuous function to it from any closed subset of any metrizable
space extends to a neighborhood. Examples are simplicial polytopeswith either
metric orweak topology, aswell as topologicalmanifolds. Thirdly, J.H.C.White-
head invented the CW complex (1949): a cell complex whose closure of an open
cell consists of only �nitely many open cells and a subset of the space is open
means its intersection with any open cell is open. Of course by design, simpli-
cial polytopes with weak topology are CW complexes.

Allowing for nonlinear (so noncompact) formulation, a Lie group (1873) is a
real-analytic manifold (the transition functions are C!) equipped with a group
structure such that (x, y) ⟼ xy−1 is real-analytic. Hilbert’s �fth problem
has a �rst interpretation proven by A. Gleason (1950) along withMontgomery–
Zippin (1952): the Lie groups are exactly the topological groups that are topo-
logical manifolds. A second interpretation of the �fth problem generalizes it
to e�ective group actions and not merely group translations; it is called the
Hilbert–Smith conjecture (1941): any locally compact subgroupG of the home-
omorphism group (equipped with the compact-open topology) of a connected
topological manifold is Lie. Limited by this conjecture, our main results are for
Lie groups G. Namely, J. Jaworowski’s G-ANE criterion (1981) for compact Lie
groups, generalized by S. Antonyan et al. to linear Lie groups (2017), is further
generalized to all LieG (5.5). However, when possible, we consider locally com-
pact G, such as in our generalization of Segal–Kosniowski–tomDieck’s corre-
spondence (1987) between G-maps and sections (2.6). Our main theorem (7.1)
is that any second-countableℤ-cohomology manifold, in the sense of A. Borel’s
Smith-theory seminar (1960), equipped with a Palais-proper action of a Lie
group G is a G-ANR if and only if the �xed set of each subgroup is locally
contractible. Here, one can de�ne (G-)ANR as (G-)metrizable (G-)ANE. Along
the way, we correct gaps and generalize to all Lie G a criterion of James–Segal
(1980): aG-map between suitable properG-ANRs is aG-homotopy equivalence
if and only if it restricts to homotopy equivalences between the H-�xed sets
(2.12).

Algebraic topologists prefer CWcomplexes overANEs because open cells are
euclidean spaces, quotients of cellular maps have an induced CW structure,
and one can induct on dimension. Equipped with the cell-wise product, CW
complexes and cellular maps form a subcategory of the compactly generated
Hausdor� spaces. For any topological space X, S. Eilenberg introduced (1944)
the singular complex S(X), and J. Giever proved (1950) that the evaluationmap
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|S(X)| ⟶ X from its realization polytope equipped with weak topology is a
weak homotopy equivalence.

Despite being functorial, S(X) has an excess number of simplices: c if card(X)
⩽ c else (cardX)ℵ0 , where c ∶= 2ℵ0 = card(ℝ) is the cardinality of the contin-
uum. Nonetheless, O. Hanner showed (1951) any separable metrizable ANR
is homotopy equivalent to a countable (via E. Lindelöf’s lemma, 1904) locally
�nite polytope. For Lie G, by observations of the author [Khaa, Proof 3.1] on
Antonyan–Elfving (2009), any separable G-ANR has the G-homotopy type of a
countable proper G-CW complex. Combined with the above main theorem, a
corollary (7.3) is that any topological G-manifold (each �xed set is locally eu-
clidean) with proper action of a Lie group G has the G-homotopy type of a
countable proper G-CW complex.

In particular, we recover E. Elfving’s improved thesis (2001): any locally lin-
earG-manifold isG-homotopy equivalent to a properG-CW complex. Themo-
tivating case of real-analytic G-manifolds was studied by S. Illman for decades,
whoultimately showed for all LieG that in fact they admit an essentially unique
G-triangulation (2000). In turn, this was an equivariant generalization of the
triangulation of di�erentiable manifolds (Cairns 1934, Whitehead 1940, Whit-
ney 1957). For topological manifolds, one indeed must work up to homotopy
equivalence instead of homeomorphism to a CW complex, since recently there
are shown to exist non-triangulable topologicalmanifolds of any dimension> 3
(C. Manolescu 2016).

1. Equivariant absolute neighborhood retracts, I
De�nition 1.1. LetG be topological group. For a subset S of aG-spaceX, write

OG(S) ∶= {(Gx) | x ∈ S}, where Gx ∶= {g ∈ G | gx = x},

for the set ofG-orbit types, made of theG-conjugacy classes of isotropygroups.
For any subgroupH ofG, theH-skeleton (H-�xed set) and theH-stratum are

SH ∶= {x ∈ S | H ⩽ Gx} and SH ∶= {x ∈ S | H = Gx}.

By a G-Banach space, we shall mean a real Banach space (V, ‖ ⋅ ‖) equipped
with a continuous action G × V ⟶ V by isometric linear automorphisms of
(V, ‖ ⋅ ‖).

Example 1.2. Let p be a prime. Consider the ultrametric dp(x, y) ∶= |x − y|p
on the compact abelian topological groupℤp ∶= limn→∞ℤ∕pn induced by the
p-norm

|z|p ∶= p− sup({0} ∪ {n > 0 | zn = 0 ∈ ℤ∕pn}).

The ℤp-Banach space C(ℤp) consists of continuous functions ℤp ⟶ ℝ with
the sup-norm ‖ ⋅ ‖∞. There is a compact set in C(ℤp) with in�nitely many



TOPOLOGICAL G-MANIFOLDS III 1557

orbit types:1 the closure of the set
⎧

⎨
⎩

N∑

n=1

cos(2�zn∕pn)
n2

⎫

⎬
⎭N>0

of partial sums of

an in�nite series. It shows the singular set C(ℤp)sing, an F� subset and linear
subspace, is not closed.

Consider Kuratowski’s isometric embedding [Kur35, §6] for the p-adic inte-
gers:

Φ ∶ (ℤp, dp)⟶ (C(ℤp), ‖ ⋅ ‖∞) ; x ⟼ (y ↦ dp(x, y)).
For all x, y ∈ ℤp, note that the midpoint between Φ(x) and Φ(y) has trivial
isotropy. Alsoℤp possesses invariant non-ultra metrics averaged from Cantor’s
discontinuum.

Recall2 that any topological group is completely regular [Pon54,Теорема 10].
Hence the group is Tikhonov (T3.5) if the singleton {1} is closed (T0, Kolmogorov).
It has an invariant metric if �rst-countable T0 by Birkho�–Kakutani [MZ55,
1.23].

De�nition 1.3 (Palais). Let G be a locally compact Hausdor� group. Let X
be a Tikhonov space. A G-action on X is Palais (proper in sense of [Pal61,
1.2.2]) if each point x ∈ X has a neighborhoodU such that any y ∈ X admits a
neighborhoodV inX satisfying the property that ⟨U, V⟩G ∶= {g ∈ G |U∩gV ≠
∅} is precompact.

Palais’ metrization condition [Pal61, 4.3.4] generalizes to a criterion [AdN03,
B].

Lemma1.4 (Antonyan–deNeymet). LetG be a locally compactHausdor� group.
Let X be a metrizable space with Palais G-action. Then X is G-metrizable (that
is, admits aG-invariant metric: d(gx, gy) = d(x, y)) if and only ifX∕G is metriz-
able. Moreover, this criterion holds if alsoG is separable andX is locally separable.

Recall X is a G-ANR for the class C (C-absolute neighborhood G-retract) if
X belongs to C and, for any closed G-embedding of X into a member of C, there
is aG-neighborhood ofX withG-retraction toX. More generally,X is aG-ANE
for the class C (C-absolute neighborhood G-extensor) if, for any member B of
C and closed G-subset A of B and any G-map A ⟶ X, there is a G-extension
U ⟶ X from a G-neighborhood U of A in B. A G-ANE need not belong to C.
Write M for the class of metrizable spaces and G-M for class of G-metrizable
Palais G-spaces.

1Similarly, for the circle groupU1, the sequence (n⟼ fn)with n-th term fn(z) = ℜ(zn)∕n,
which has isotropy group ℤ∕n, converges uniformly in C(U1) to f(z) ≡ 0, which has isotropy
U1.

2Montgomery and Zippin [MZ55, 1.18] credit this result to Pontryagin viaWeil’s book (1940),
wherein the latter refers to the former’s book (1939). Later, Pontryagin’s second edition cred-
its Kolmogorov for regularity and then unnamed others for complete regularity [Pon54, При-
мер 32].
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Dugundji extension [Dug51, 4.2] equivariantly generalizes to [Abe78, 4.2]
[Ant80]. Abels’ proof works for semire�exive K-normed linear spaces [Bou59,
Cor VI:2.7].

Lemma1.5 (Abels–Antonyan). LetK be a compactHausdor� group. Any closed
convex invariant subset of a K-Banach space is an absolute K-extensor for K-M.

Next is an induction [Ant99, Thm 5] and a neighborhood version of [Abe78,
4.4].

Lemma 1.6 (Abels–Antonyan). Let G be a locally compact Hausdor� group. A
Palais G-space X is a G-ANE(G-M) if X ∈ K-ANE(K-M) for all compact K < G.

Remark 1.7 (Abels). This holds if true on maximal compact K < G, if they
exist.

Proposition 1.8. Let G be a locally compact Hausdor� group. Let X be a Palais
G-subset of a G-Banach space V. Suppose that X is a G-neighborhood retract of
its closed convex hull co(X) in V. Then X is a G-ANR3 for the class G-M.

In the proof, note that any closed convexPalaisG-subset ofV is aG-AE(G-M).
A. Feragen found ℝn ∈ G-AE(X) for Palais X ∈ T5 with X∕G paracompact
[Fer08].

Proof. There exist a G-neighborhood U′ of X in co(X) and a G-retraction r ∶
U′ ⟶X. LetK be a compact subgroup ofG. SupposeA is a closedK-subset of
aK-metrizableK-spaceB and f ∶ A⟶ X ⊂ co(X) is aK-map. By Lemma 1.5,
there exists a K-extension g ∶ B ⟶ co(X) of f. Note U ∶= g−1(U′) is a K-
neighborhood of A in B. Then r◦g|U ∶ U ⟶ X is a K-extension of f. Thus
X ∈ K-ANE(K-M). Therefore, by Lemma 1.6, and since the G-norm on V
induces a G-metric on the Palais G-space X, we obtain X ∈ G-ANE(G-M) ∩
(G-M) ⊆ G-ANR(G-M). �

Suitable for our purposes, although there are subsequent variations, the in-
heritance to �xed sets of being an absolute neighborhood retract is shown in
[Smi75].

Lemma 1.9 (Smirnov). Let G be a metrizable group. Suppose X is a G-ANR for
the class G-M. For any closed subgroup K of G, the K-skeleton XK is in ANR(M).

2. Non-equivariant construction of G-maps
Mostow’s notion of pseudo-section [Mos57, §3] led to Palais’ slice [Pal60,

1.7.7].

De�nition 2.1 (Palais). Let G be a topological group, X a G-space, and H a
subgroup of G. A subset S of X is anH-slice if GS is open in X and there exists
a G-map f ∶ GS ⟶ G∕H such that S = f−1(H), the preimage of the trivial
coset.

3Asequence of similar, but non-equivariant, criteria are exercise-statements in [Hu65, III:§6].
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R. Palais’ slice theorem [Pal61, 2.3.1] has an approximate version without
assuming that G has no small subgroups. H. Abels was the �rst to consider
non-Lie G [Abe78, 3.3] but excluded O below, which we need for Lemma 2.5.
Independently, H. Biller [Bil03, 3.8] [Bil04, 2.5] and S. Antonyan [Ant05, 3.6]
prescribed such an O. For any G, proper in the senses of Cartan, Bourbaki, and
Palais are in [Bil04, 1.1].

Lemma 2.2 (Abels–Biller–Antonyan). Let G be a locally compact Hausdor�
group. Let X be a Tikhonov space equipped with a Palais-proper G-action. Let
O be a given neighborhood of some point x in X. There exist a compact subgroup
H of G, a normal subgroup N ⩽ H of G with G∕N a Lie group, and anH-slice S
in X such that x ∈ S ⊂ O. (S becomes a slice at x ifH = Gx.)

Palais’ proof of the Montgomery–Zippin neighboring-subgroups theorem in
[Pal61, 4.2.1] now similarly works, replacing the use of his slice theorem [Pal61,
2.3.1] for Lie groups G with the above approximate one, at the expense of a
weaker conclusion.

Corollary 2.3. Let G be a locally compact Hausdor� group. LetH be a compact
subgroup of G. LetU of 1, and O ofH, be neighborhoods in G. There exist both a
subneighborhood V ⊂ O of H in G and a compact subgroup H′ ⊂ O of G, such
that any compact subgroup of G contained in V isU-conjugate intoH′ ⩾ H. �

Remark 2.4. Consider the additive group G = ℤp of p-adic integers. IfU = G
and H = 0, then H′ ≠ H, since there are nontrivial subgroups of ℤp that are
arbitrarily close to the trivial subgroup. However H′ = H works for any Lie G
[Pal61, 4.2.1].

The following rigidity lemma is a consequence of the approximate-slice the-
orem.

Lemma 2.5. LetG be a locally compact Hausdor� group. LetX be aG-set. Write
q ∶ X → X∕G for x ↦ Gx. Let T0 ⊆ T1 be G-invariant topologies on X with
(X,T0) Hausdor� and (X,T1) both Tikhonov and Palais. If q∗(T0) = q∗(T1)
then T0 = T1.

Recall (X,T) induces the quotient topology q∗(T) ∶= {V ⊆ X∕G | q−1(V) ∈
T}. A continuous function is Bourbaki-proper4 means that its product with
the identity function on each topological space is a closed function [Bou61, Déf-
inition I:10.1]. A G-action on X is Bourbaki means that the following map is
Bourbaki-proper:

G × X ⟶ X ×X ; (g, x)⟼ (x, gx).

4If the source of the function is Hausdor� and the target is locally compact, this notion be-
comes: (∗) the preimage of any compact subset is compact [Bou61, Proposition I:10.7].
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Proof. First assumeG is compact5Hausdor�. Then, since (X,T1) is Hausdor�,
the orbit map q ∶ (X,T1) ⟶ (X∕G, q∗T1) is Bourbaki-proper [tD87, I:3.6ii]6.
Since q∗T0 = q∗T1, this orbit map is the composite of the continuous functions
idX ∶ (X,T1)⟶ (X,T0) and q ∶ (X,T0)⟶ (X∕G, q∗T0). Then, since (X,T0)
is Hausdor�, idX ∶ (X,T1) ⟶ (X,T0) is Bourbaki-proper [Bou61, Proposi-
tion I:10.5d]. Therefore it is a homeomorphism [Bou61, Proposition I:10.2].
That is, T0 = T1.

Now assume G is locally compact Hausdor�. Fix O ∈ T1. Let x ∈ O.
Since (X,T1) is Tikhonov with Palais G-action, by the approximate-slice theo-
rem (2.2), there exist both a compact subgroupH ofG and anH-slice S such that
x ∈ S ⊂ O. First note T1 ∋ GS = q−1(GS∕G) ∈ T0 since GS∕G ∈ q∗T1 ⊆ q∗T0.
Write i ∶ S ⟶ X and j ∶ GS ⟶ X for the inclusions. Second, since
q∗T0 = q∗T1, note

(S, i∗T0)∕H = (GS, j∗T0)∕G = (GS, j∗T1)∕G = (S, i∗T1)∕H.

Then, by the previous paragraph applied to theH-set S, we obtain i∗T0 = i∗T1.
Since T0 and T1 are Hausdor�, G is locally compact, and H is closed in G, by
[Abe78, Lemma 3.5] which has a proof without any potentially implicit use of
Tikhonov [Bil03, 3.2a], the G-tube (GS, j∗Tk) is canonically homeomorphic to
the balanced product G ×H (S, i∗Tk) for each k = 0, 1. Then j∗T0 = j∗T1. So
x ∈ O∩GS ∈ j∗T0. SinceGS ∈ T0, we further haveO∩GS ∈ T0. ThusO ∈ T0.
Therefore T0 = T1. �

The statement of the following correspondence, forG a compact Lie group, is
originally due to Segal–Kosniowski [Kos74, p90]. Our notation follows tomDieck’s
proof [tD87, I:7.2, I:7.3] for G a compact Hausdor� group, which we now gen-
eralize:

IG(X, Y) ∶= {(x, y) ∈ X × Y | Gx ⩽ Gy}
MG(X, Y) ∶= IG(X, Y)∕G;

G acts on IG(X, Y) by g(x, y) ∶= (gx, gy) andMap(X, Y) by g(f)(x) ∶= g−1f(gx).

Proposition 2.6. Let G be a locally compact Hausdor� group. Let X and Y be
Tikhonov spaces with Palais G-actions. WriteMap(X, Y)G for the set of continu-
ous G-functions X → Y, and Sec(�) for the set of continuous sections of the map

� ∶ MG(X, Y)⟶ X∕G ; G(x, y)⟼ Gx.

Then the following well-de�ned function is a bijection:

Γ ∶ Map(X, Y)G ⟶Sec(�) ; f ⟼ (Gx ↦ G(x, fx)).

5This part of the argument is a reformulation of the latter half of tomDieck’s [tD87,
Proof I:7.3].

6The proof of Part(ii) implicitly assumes locally compact in its characterization (∗) of ‘proper’.
A faster proof is by applying Part(i) to a product with any space equipped with a trivial G-action.
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Proof. Consider the pullback G-space

Z ∶= lim(MG(X, Y)
�
,,,→ X∕G

q
←,, X).

By [tD87, Proposition I:7.2], it su�ces for us to show that this G-map is a G-
homeomorphism:

� ∶ IG(X, Y)⟶ Z ; (x, y)⟼ (G(x, y), x).

Clearly it is surjective. If �(x, y) = �(x′, y′) then x = x′ andG(x, y) = G(x, y′),
that is, there exists g ∈ G such that gx = x and gy = y′, so g ∈ Gx ⩽ Gy
hence y = gy = y′. Thus � is injective. Therefore the continuous G-map � is a
bijection.

Since the G-actions on X and Y are Palais, the diagonal action on X × Y is
Palais [Pal61, 1.3.3]. So theG-subspace IG(X, Y) ofX×Y is Palais [Pal61, 1.3.1].
Therefore its quotient MG(X, Y) is Tikhonov [Pal61, 1.2.8] hence Hausdor�.
Since X is Hausdor�, the subspace Z ofMG(X, Y) ×X is Hausdor�. Also, since
X andY are Tikhonov, so isX×Y andhence so is the subspace IG(X, Y) [Mun00,
33.2].

Observe that the projection Z∕G ⟶MG(X, Y) is a homeomorphism [tD87,
3.25(14)]. Furthermore, the induced map �∕G ∶ MG(X, Y) ⟶ Z∕G is the
continuous inverse. Write T1 for the topology on IG(X, Y). Write T′0 for the
topology on Z. Write T0 ∶= �∗(T′0) for the �-induced topology on IG(X, Y),
which is coarser than T1. Therefore, by Lemma 2.5, the bijective G-map � is a
homeomorphism. �

Historically, Proposition 2.6 is a useful conversion trick in transformation
groups. Lashof [Las81] used this trick so Jaworowski could improve from [Jaw76]
to [Jaw81]. The case of X and Y being the total spaces of principal G-bundles
is [Bre72, II:2.6].

Consequently, we observe an improvement of James–Segal’s nonequivariant
criterion for G-ANEs beyond compact groups G [JS80, 5.1]. It is a technical de-
vice aiding in Theorem 2.11. Denote by C ↓ B the overcategory whose objects
are morphisms C ∋ C ⟶ B and morphisms C′ ⟶ C form commutative
triangles. We suggest that interested readers acquaint themselves with the fur-
ther terminology of overspaces in [JS80], allowing for a parameterized version
of ANE theory.

Below, P denotes all paracompact Hausdor� spaces; G-P denotes the mem-
bers of P equipped with a Palais G-action whose orbit space is also a member
of P. Also consider the subclass P∗ of hereditarily P spaces (that is, each sub-
space is a member of P) and correspondingly G-P∗. Recall that the class T3.5 of
Tikhonov spaces is hereditary and preserved under taking orbit spaces of Palais
actions [Pal61, 1.2.8].

Lemma 2.7 (James–Segal–Khan). Let G be a locally compact group. Let p ∶
E ⟶ B be a G-map of T3.5 spaces with Palais G-actions. Let C be one of P∗ ⊂
P ⊂ T3.5. Then E is an absolute (neighborhood) G-extensor over B for the class
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G-C ↓ B if and only if: for all members Z ∈ G-C, the orbit space MG(Z, E) is
an absolute (neighborhood) extensor over the orbit space MG(Z, B) for the class
C ↓ MG(Z, B).

Proof. The actions being Palais is automatically satis�ed if G is compact. Our
variant of [JS80, Proposition 5.1] further assumes E, B ∈ T3.5 and not only T2.
Modi�cation of the proof of James–Segal (C = P) only requires the replace-
ment of each direction’s use of the bijection [tD87, I:7.2, I:7.3] with our Propo-
sition 2.6. �

Remark 2.8. Unfortunately a gap exists in [JS80, Proof 5.2] whereby the open
sets covering “Z” (Case I), locally closed subsets “Zj−Zj−1” (Case II), and open
sets “U” (Case III) must belong to P to apply [JS80, 3.1]. Hence we prepared
the G-P∗ version. This bootstrapping method [Bre72, Jaw81] recurs in Proposi-
tion 5.12. We write “extensor” instead of “retract,” as the subquotientMG(Z, B)
may not be a member of P∗ if Z, B ∈ G-P∗. For example, the product of the
Michael line M ∈ P∗ and the irrationals ℝ − ℚ ∈ M is not a member of T4,
so not paracompact [Mic63]. This also leads to a technical misapplication of
[JS80, 3.1] in [JS80, Proof 5.2], which we now correct with a minor generaliza-
tion (compare with [Khab, 4.4]).

Lemma 2.9 (James–Segal). Let p ∶ E ⟶ B and q ∶ B ⟶ B0 be maps
of topological spaces with B0 ∈ P. For each member U of an open cover of B0,
suppose that E|q−1(U) is an absolute (neighborhood) extensor over q−1(U) for
the class P ↓ q−1(U). Then E is an absolute (neighborhood) extensor over B for
P ↓ B.

Proof. The [JS80, Proof 3.1] for q = idB works just as well in this setting. The
reference for Milnor’s trick in the class P for a countable locally �nite cover
is [Mil57, p25–26]; Dieudonné’s shrinking lemma in the class T4 is [Die44,
Théorème 6]. �

We state another gluing lemma but drop a hypothesis unsatis�ed in applica-
tion.

Lemma 2.10 (James–Segal). Let p ∶ E ⟶ B be a map of topological spaces.
Suppose that E is an absolute neighborhood extensor over B for the class P ↓ B.
Let C ⊂ B be closed. If E|C is an absolute extensor over C and E|B − C is so over
B − C, then E is moreover an absolute extensor over B for the class P ↓ B.

Proof. The [JS80, Proof 3.2] works just as well without the assumption B ∈ P.
The only point-set assumption used is that the member “Y” of P belongs to
T4. �

Wearrive at a corrigendumof [JS80, Proposition 4.1], which is James–Segal’s
G-ANE toG-AE criterion. We improve it beyond compact LieG, assuming a bit
more point-set topology on E (Tikhonov) and less on B (need not be paracom-
pact).
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Theorem 2.11 (James–Segal–Khan). Let G be any Lie group. Let p ∶ E ⟶ B
be a G-map of T3.5 spaces with Palais G-actions. Suppose E is an absolute neigh-
borhood G-extensor over B for the class G-P∗ ↓ B. For each compact subgroupH
ofG, assume theH-skeleton EH is an absolute extensor over theH-skeleton BH for
the classP ↓ BH . Then E is moreover an absoluteG-extensor over B forG-P∗ ↓ B.

Proof. In [JS80, 4.1], by Lemma 2.7 for C = P∗, James–Segal would reduce to a
corrected [JS80, Proposition 5.2]: MG(Z, E) ∈ AE (P∗ ↓ MG(Z, B)) if Z ∈ G-P∗.

Their reductive proof of this nonequivariant assertion works, with the fol-
lowing adjustments. In Case I, as P ⊂ T3.5, instead use Palais’ slice theo-
rem [Pal61, 2.3.1], and then Lemma 2.9 for [JS80, 3.1] with q the projection
MG(Z, B) ⟶ Z∕G ∈ P. In Case II, apply Lemma 2.10 for [JS80, 3.2], as
(Zj − Zj−1)∕G ∈ P and MG(Zj, E) ∈ ANE

(
P ↓ MG(Zj, B)

)
by Lemma 2.7.

In Case III, apply Lemma 2.9 for [JS80, 3.1], as each open subset of Z∕G ∈ P∗

belongs to P. Finally, in their clever Case IV, as in Case I use Palais’ slice theo-
rem [Pal61, 2.3.1], and that the action is Cartan so each isotropy group “Gz” is a
compact Lie group. In the descending recursion, the appeal to the nonexisting
[JS80, 2.5] should instead be to Lemma 2.10. �

Corollary 2.12 (James–Segal–Khan). Let G be any Lie group. Let f ∶ A ⟶ B
be aG-map betweenmembers ofG-P∗ that are absolute neighborhoodG-extensors
for G-P∗. For each compact subgroup H of G, assume the induced map fH ∶
AH ⟶ BH of H-skeleta is a homotopy equivalence. Then f is a G-homotopy
equivalence.

Proof. The same as [JS80, Proof 4.2], replacing [JS80, 4.1] with Theorem 2.11.
The assumption A, B ∈ G-P∗ is used for G-sections to mapping-path spaces
“W.” �

Examples in P∗ are the Michael line M, metrizable spaces, and CW com-
plexes.

3. Local �niteness of orbit types, I: transtoral induction
The arguments ofG.Mostow inspired this induction scheme [Bor60, VII:2.1].

Lemma 3.1 (Bredon). Let K be a compact Lie group (maybe disconnected). Let
S0 be a conjugation-invariant set of closed subgroups of K. Let T be a maximal
torus. If {S ∩T | S ∈ S0} is �nite, then S0 has only �nitely many conjugacy classes.

Remark 3.2. Any compact Lie groupK has a maximal torus unique up to con-
jugacy [Bou82, IX:2.2]. Let G be a Lie group. The Cartan–Malcev–Iwasawa
theorem [Iwa49, 6] states that there is a conjugacy-unique maximal compact
subgroupK of the identity componentGe ofG. ThenG has a conjugacy-unique
maximal torus T.

De�nition3.3. LetS be a collection of subsets of a topological groupG. Herein,
we say that S is compactly supported if it is closed under conjugation inG and
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there exists a compact set C in G such that each subset S ∈ S is conjugate into
C.

Remark 3.4. LetG be a virtually connected Lie group, that is, with only �nitely
many components. Let S be a conjugation-invariant set of compact subgroups
of G. Mostow extends the theorem of Remark 3.2: there is a maximal com-
pact subgroup K of such G unique up to conjugacy [Mos55, 3.1]. Then S is
compactly supported; this fails for the group G =

⨁
n∈ℕℤ∕n, which has no

maximal compact subgroup.

Our notion of (S)-maximal below is stronger than maximal in (cptS(G), ⩽).

De�nition 3.5. Let G be an arbitrary Lie group. For any compact subgroups
H and K of G, writeH ≼ K to mean that a G-conjugate ofH is a subgroup of K.
Since closed subgroups of G are Lie (Cartan’s theorem [Car30, 27]) and com-
pact Lie groups are cohop�an (injective endomorphisms are bijective), ≼ sat-
is�es antisymmetry. Hence ≼ is a partial order on the set cpt(G) of compact
subgroups of G.

Let S be a subset of G. Write cptS(G) for the subset of cpt(G) consisting of
compact subgroups of G contained in S; it may be empty. By H ∈ cptS(G) is
(S)-maximal we mean: ifH ≼ K ∈ cptS(G) then K is a G-conjugate ofH.

For Lie groups with any discrete �0, here is a downgrade of Mostow’s theo-
rem.

Proposition 3.6. Let G be an arbitrary Lie group. Let C be a compact subset of
G. Any compact subgroup of G in C conjugates into a (C)-maximal compact sub-
group. Moreover, the set of conjugacy classes of (C)-maximal compact subgroups
is �nite7.

Proof. Recall that the set Kpt(X) of nonempty compact subsets of a metric
space (X, d) is topologized by the Pompeiu–Hausdor�metric (see [Pom05, §21]
and [Hau14, p293]):

dPH(A, B) ∶= max {sup
a∈A

d(a, B), sup
b∈B

d(b, A)} where d(x, S) ∶= inf
y∈S

d(x, y).

Since C is compact, Kpt(C) is compact [Hau27, Satz 28:VI]. Since multiplica-
tion and inversion in G are continuous, it follows that any Cauchy sequence in
cptC(G) converges in cptC(G), as a limit already exists in (Kpt(C), dPH). Then
cptC(G) is closed in Kpt(C) so compact8 with respect to the metric dPH .

Fix K0 ∈ cptC(G). Let {K�}�∈L be a nonempty chain with each K� ≽ K0
in the partially ordered set (cptC(G), ≼) of De�nition 3.5. (Here, a chain is a
subset L of cptC(G) whose partial order restricts to a linear order on L.) Since

7The shape of the compact subset e�ects uniqueness, for example G = U1 × U1 and C =
U1 ∨ U1.

8This step is a Lie-group analogue of Blaschke’s selection theorem for convex sets [Bla16,
18.I].
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cptC(G) is sequentially compact and every chain is a (Moore–Smith) net, by a
theorem of Kelley [Kel50, 24], the chain {K�}�∈L has a convergent subnet. That
is, there exist K ∈ cptC(G) with K ≽ K0 and co�nal L′ ⊂ L satisfying: for each
" > 0, there exists � ∈ L′ such that dPH(K�, K) < " for all � ≼ � ∈ L′. Since
K is compact and G is Lie, by Montgomery–Zippin’s neighboring-subgroups
theorem [MZ42], there exists " > 0 satisfying: if K′ ∈ cpt(G) and dPH(K′, K) <
" thenK′ is conjugate intoK. Then there exists a con�nal subchainL′ ⊂ L and
� ∈ L′ such that K� ≼ K for all � ≼ � ∈ L′. Since L′ is co�nal in the linearly
ordered L, it follows that K� ≼ K for all � ∈ L. Therefore, by Zorn’s lemma
[Zor35], any element K0 of cptC(G) conjugates into a (C)-maximal element.

Assume the set M of (C)-maximal compact subgroups of G has in�nitely
many conjugacy classes. By the axiom of choice, there is an in�nite subsetM0
ofMwith pairwise distinct conjugacy classes. Since cptC(G) is compact metric,
M0 has an accumulation point K. Again, by the neighboring-subgroups theo-
rem [MZ42], there exists " > 0 satisfying: if K′ ∈ cpt(G) and dPH(K′, K) < "
thenK′ ≼ K. There are distinctK′, K′′ ∈M0 that are "-close toK. ThenK′ ≼ K
and K′′ ≼ K. By (C)-maximality, note (K′) = (K) = (K′′), which contradicts
the distinctness of conjugacy classes inM0. ThereforeM has only �nitelymany
conjugacy classes. �

We generalize the induction scheme of Lemma 3.1, to be useful for our pur-
poses.

Corollary 3.7. Let G be a Lie group (maybe disconnected). Let S be a compactly
supported set of closed subgroups of G. Let T be a maximal torus in G (see 3.2). If
{S ∩ T | S ∈ S} is �nite, then S consists of only �nitely many conjugacy classes.

Proof. The conclusion is immediate from Proposition 3.6 and Lemma 3.1. �

The following observation is recorded in the literature by R. Palais [Pal60,
1.7.27]. His proof relies on the Peter–Weyl theorem (1927) and C-T. Yang’s the-
orem [Yan57].

Theorem 3.8 (Palais). Any compact Lie group K has only countably many con-
jugacy classes of closed subgroups. (Recall that K has only �nitely many compo-
nents.)

We provide an alternative proof that �ows from the above-used �rst princi-
ples, avoiding the aforementioned results in harmonic analysis and di�erential
geometry.

Proof. Inductively assume the statement is true for compact Lie groups of ei-
ther lesser dimension or fewer components thanK, so in particular for all proper
closed subgroups of K [Car30, 27]; the basic case is the trivial group. For each
integer n > 0, de�ne Xn ∶= cpt(K) − B(K, 1∕n), the complement of the open
ball of radius 1∕n centered at the point K in the compact metric space cpt(K)
from Proof 3.6.
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By the neighboring-subgroups theorem9 [MZ42], for each compact subgroup
H of K, there exists "H > 0 such that dPH(H′, H) < "H implies H′ ≼ H. Since
Xn is compact and consists of elements satisfying the inductive hypothesis, we
obtain that Xn has only �nitely many conjugacy classes of elements. Therefore
cpt(K) = {K}∪

⋃∞
n=1 Xn has only countablymany conjugacy classes of elements.

�

Lastly, we now recover the Lie case of [AAV12, 3.1], which more generally
states that any locally compact Hausdor� group G has at most its weight wG
(that is, the minimum cardinality of a base for the topology) for the number
of conjugacy classes of compact subgroups H having coset space G∕H being
�nite-dimensional.

Corollary 3.9 (Antonyan–Antonyan–Varela-Velasco). AnyLie groupG has only
countably many conjugacy classes of compact subgroups.

Proof. The Lindelöf and locally compact space G is hemicompact [Are46,
8:a]. In other words, G =

⋃∞
n=1 Cn is the ascending union of compact sets

(so �-compact) such that any compact set in G is contained in some member
Cn. So

cpt(G) =
∞⋃

n=1
cptCn(G).

By Proposition 3.6 then Theorem 3.8, each cptCn(G) has only countably many
conjugacy classes of elements. Therefore cpt(G) does also. �

4. Local �niteness of orbit types, II: miscellaneous applications
Any abelian Lie group is isomorphic to the �nite product of cyclic groups

(�nite or not), the multiplicative groupU1 of unit-norm complex numbers, and
the additive group ℝ of real numbers (for example, [Bre72, 0:5.4]). That is, it
is the product of a �nitely generated abelian group, a �nite-dimensional torus,
and a euclidean space.

Lemma 4.1. LetA be an abelian Lie group. Let (V, ‖ ⋅ ‖) be anA-Banach space.
Any convex simplex in a PalaisA-subsetV0 ofV has only �nitelymany orbit types.

The convex simplex is the convex hull on only �nitely many extremal points.

Proof. Let ∆ be a convex simplex in V0. We shall proceed by induction on
dim(∆).

Suppose dim(∆) = 1. Assume the set OA(∆) of A-orbit types (1.1) is in�nite.
Since∆ is compact, there existx ∈ ∆ and a sequence {xn} in∆with ‖xn−x‖ ↘ 0
and the isotropy groupsAxn being distinct (that is, non-conjugate in abelianA).
Since the action of A on V0 is Palais, there exists an Ax-tube at x (2.1, 2.2), that
is an A-neighborhood U of Ax in V0 and A-map f ∶ U ⟶ A∕Ax [Pal61,
2.1.1]. There is N so that, for all n ⩾ N, we have xn ∈ U hence Axn ⩽ Ax as

9Similarly inspired byMostow, Palais’ later proof [Pal61, 4.2] of it avoids di�erential geometry.
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A is abelian. The isotropy of any point on the line from such xn to x contains
Axn∩Ax = Axn . ThenAxN ⩽ AxN+1 ⩽ AxN , by collinearity in∆. This contradicts
AxN ≠ AxN+1 .

Inductively assume that the lemma is true for all convex simplices in V0 of
dimensiond > 0. Suppose dim(∆) = d+1. Assume thatOA(∆) is in�nite. Since
∆ is compact, there exist x ∈ ∆ and a sequence {xn} in ∆ with ‖xn − x‖ ↘ 0
and the isotropy groupsAxn being distinct. Since the action ofA onV0 is Palais,
there exists an Ax-tube (U, f) at x (2.1, 2.2). By the pigeonhole principle, there
exist a convex (d + 1)-simplex ∆′ and a d-dimensional face ∆′′ of ∆′ such that
x ∈ ∆′ ⊂ ∆ ∩ U and, for in�nitely many n, the line Ln from x to xn intersects
∆′′. Re-index so that this statement is true for all n. For each n, write {yn} ∶=
Ln∩∆′′. By inductive hypothesis,OA(∆′′) is �nite. So the subsetOA{yn | n ∈ ℕ}
is �nite. However, by the collinearity argument of the basic step, within anyAx-
tube through x, the line from x to any other point inU has constant isotropy in
U away from x. Then Axn = Ayn in Ln for each n. So OA{xn | n ∈ ℕ} is �nite, a
contradiction. �

Corollary 4.2. LetG be an arbitrary Lie group. Let (V, ‖⋅‖) be aG-Banach space.
Any convex simplex in a Palais G-subset consists of only �nitely many orbit types.

Proof. Let∆ be a convex simplex in PalaisV0. Since theG-spaceV0 is Bourbaki
[Bil04, 1.6c], the set C ∶= {g ∈ G | g∆ ∩ ∆ ≠ ∅} is compact [tD87, I:3.21].
Then

⋃
OG(∆) is supported in C. So, by Corollary 3.7 and Lemma 4.1, we are

done. �

Remark 4.3. If K is compact and dim V is �nite, by covering the unit sphere
by orthogonal-action charts [Boc45, 4], we see inductively that any orthogonal
K-representationV has �nitely many orbit types [Bre72, Exercise II:2]. Using a
locally �nite covering by linear Gx-tubes, any Palais locally linear G-manifold
M locally has �nitely many orbit types; the original case of compact group K
and smooth K-manifold is due to C-T. Yang [Yan57]. Yang’s result is a step in
Lemma 3.1, used for Corollary 4.2.

Next, we shall exploreOG for the convexhull co(C) of in�nite subsetsC ⊂ V:
that is, co(C) is the intersection of all convex sets of V containing C [Rud91,
3.19a]. Equivalently, co(C) is the set of (�nite) convex linear combinations of
points inC. Recall that there exist compactC whose co(C) is not closed [Rud91,
Exercise 3:20]. Write co(C) for the closed convex hull, that is, the metric clo-
sure in V of co(C). Equivalently, co(C) is the intersection of all closed convex
sets of V containing C. For any subset C ⊂ V and " > 0, consider the closed
neighborhoodD"(C) in co(C):

D"(C) ∶= {y ∈ co(C) | d(y, C) ⩽ "}.

Lemma 4.4. LetA be an abelian Lie group. Let (V, ‖ ⋅ ‖) be anA-Banach space.
Let V0 be a convex PalaisA-subset of V. Let C ⊂ IntV0 be a compact set of only a
single orbit type. There exists " > 0 such thatD"(C) has only a single orbit type.
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Proof. Since the action of A on co(C) ⊂ V0 is Palais, at each point x ∈ C
there is an Ax-tube (Ux ⊂ co(C), fx ∶ Ux ⟶ A∕Ax) [Pal61, 2.3.1]. Since C
is compact, there exists " > 0 such that the open neighborhood

⋃
x∈C Ux of C

in co(C) contains the closed neighborhoodD"(C) [Mun00, Exercise 27:2d]. We
show OA(D"C) = OA(C).

SinceA is abelian, each point ofC has common isotropyK ⩽ A. If y ∈ co(C),
noteAy ⩾ K. If y ∈ co(C)− co(C), there exist anAy-tube (Uy ⊂ co(C), fy) and
a point z ∈ Uy ∩ co(C), so Ay ⩾ Az ⩾ K. Thus, for each y ∈ D"(C), we have
both Ay ⩾ K and a point x ∈ C such that y ∈ Ux, so Ay ⩽ Ax = K, hence
Ay = K. �

Corollary 4.5. LetG be an arbitrary Lie group. Let (V, ‖⋅‖) be aG-Banach space.
Let V0 be a convex Palais G-subset of V. Let T be a maximal torus in G (see 3.2).
Let C ⊂ IntV0 be a compact set of only a single T-orbit type. There exists " > 0
such thatD"(C) ⊃ C has only �nitely many G-orbit types.

Proof. By Lemma 4.4, there exists " > 0 so thatD"(C) has a single T-orbit type.
Since co(C) is compact [Rud91, 3.20c], the above closed set is also [Mun00,
26.2]. So, sinceD"(C) ⊂ V0 is compact and the G-space V0 is Bourbaki [Bil04,
1.6c], the subset C′ ∶= {g ∈ G | gD"(C) ∩ D"(C) ≠ ∅} of G also is compact
[tD87, I:3.21]. Then

⋃
OG(D"C) is supported in C′. So, by Corollary 3.7, we are

done. �

5. Equivariant absolute neighborhood retracts, II
For inductive methods of proof, the following technical notion was intro-

duced in [Jaw81].

De�nition 5.1 (Jaworowski). Any G-space X having �nite structuremeans
that X has only �nitely many orbit types and, for each orbit type (H), the quo-
tient mapX(H) ⟶X(H)∕G is a G∕H-�ber bundle with only �nitely many local
trivializations. Here (H) is the conjugacy class of H in G and X(H) ∶= {x ∈
X | (Gx) = (H)}.

It led to a characterization [Jaw81, 4.2] that was the culmination of three pa-
pers. Much later, the separable hypothesiswas able to be removed by [AAMV17,
1.6].

Lemma 5.2 (Jaworowski–Antonyan et al.). LetK be a compact Lie group. LetX
be a K-metrizable space of �nite structure. Then X is a K-ANE for the class K-M
if and only if, for each closed subgroupH of K, theH-skeleton XH is ANR forM.

The following shorter property occurs in the K-metric spaces of [AAMV17,
4.1].

De�nition 5.3. AG-space is FTC (�nite trivializing covers) if it satis�es the
de�nition of �nite structure (5.1) without assumption of �nitely many orbit
types.



TOPOLOGICAL G-MANIFOLDS III 1569

Remark5.4 (Antonyan et al.). In a di�erent direction than ours inTheorem5.5,
the generalization [AAMV17, 4.1] of Lemma 5.2 only assumes that X is FTC.

We a�rm [AAMV17, Question 6.5] by removal of the linearity of the Lie
group.

Theorem 5.5. Let G be an arbitrary Lie group. Let T be a maximal torus in G.
LetX be a PalaisG-metrizable space supporting only �nitelymanyT-orbit types.10
Suppose X is K-FTC for all compact subgroups K < G. Then X is a G-ANR for
the class G-M if and only if: XK is ANR for the classM for any compact K < G.

Proof. Let K be any compact subgroup of G. Let T′ be a maximal torus in
K. Since the maximal tori of G are unique up to conjugacy (3.2), we may as-
sume that T′ ⩽ T. Since T′ is central in T, there exists a restriction OT(X)⟶
OT′(X), which is automatically surjective. Hence OT′(X) is �nite (compare
[Pal60, 1.7.30]). So OK(X) is �nite (3.1). Since X is K-FTC, we conclude X
has K-�nite structure.

First, suppose that X ∈ G-ANR(G-M). Then XK ∈ ANR(M) by Lemma 1.9.
Conversely, suppose that XH ∈ ANR(M) for any compact H < G. Since

X has K-�nite structure and XH ∈ ANR(M) for all closed H ⩽ K, we have
X ∈ K-ANE(K-M) byLemma5.2. Since this is true for allK,X ∈ G-ANR(G-M)
by Lemma 1.6. �

Recently, Lemma 5.2 is generalized to include linear Lie groups [AAMV17,
6.1].

Corollary 5.6 (Antonyan–Antonyan–Mata-Romero–Vargas-Betancourt). LetL
be a linear Lie group. Let X be any Palais L-metrizable space having �nite struc-
ture. ThenX is an L-ANE for the class of Palais L-metrizable spaces if and only if,
for each compact subgroupK of L,XK is anANR for the class ofmetrizable spaces.

The proof of this as a corollary shall appear below, after the following key
lemma. Linearity of L forces keeping the hypothesis of X under restriction
[AAMV17, 6.4].

Lemma 5.7 (Antonyan–Antonyan–Mata-Romero–Vargas-Betancourt). Let L
be a linear Lie group. Let X be a Palais L-metrizable space of �nite structure.
For any compact subgroup K of L, the restriction of the K-action on X has �nite
structure.

Proof of Corollary 5.6. Let K be any compact subgroup of L. Since X is as-
sumed to have L-�nite structure, by Lemma 5.7, it has both T-�nite structure
and K-�nite structure. Therefore X has only �nitely many T-orbit types and
is K-FTC. Consequently, the L-ANE criterion follows immediately from Theo-
rem 5.5. �

10AssumeX is FUI (seeDe�nition 6.1). ThenX has only �nitelymanyG-orbit types (6.4, 3.7).
Moreover, it su�ces to check the K-FTC hypothesis only on the upper bounds K1, … , Kn (1.7).
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Now, we turn to relating FTC to �nite covering dimension. The next two
results are folklore recorded by G. Bredon in the case of P being a �nite simpli-
cial complex. In our generalization, ametric polytope is a simplicial complex
with L1-metric topology; it is full means that it contains the simplex spanned
by any �nite subset of vertices. Observe that if P is locally �nite then it has no
in�nite full subpolytope; note a counterexample to the converse is the metric
cone on the simplicial real line.

Lemma5.8 (Bredon). LetA a closed subset of a paracompactHausdor� spaceX.
Let P be ametric polytope11with only countably many vertices and no in�nite full
subpolytope.12 SupposeX has covering dimension⩽ n and P is (n−1)-connected
for some n ∈ ℕ. Any continuous function A ⟶ P extends to a continuous
X ⟶ P.

Proof. Do verbatim with [Bre72, II:9.1], using P ∈ ANE(T4) [Hu65, III:11.7d].
�

Corollary 5.9 (Bredon). Let n ∈ ℕ. Let A be a closed subset of a paracompact
Hausdor� space B with dim(B) ⩽ n. Let F be an (n − 1)-connected, countable,
metric polytope with no in�nite full subpolytope. Let F ⟶ E ⟶ B be a �ber
bundle. Any continuous sectionA⟶ E extends to a continuous sectionB⟶ E.

Proof. Do verbatim with [Bre72, II:9.2], using Lemma 5.8 for [Bre72, II:9.1].
�

We arrive at a classi�cation theorem that becomes Bredon’s [Bre72, II:9.3,
9.7i] when G is a compact Lie group and his isotropy groups are limited to be
trivial. In turn, Bredon’s theorem generalized Palais’ [Pal60, 2.6.2] from requir-
ing B to be locally compact, second countable, and Hausdor� [Pal60, 2.1.1] to
B paracompact.

Theorem 5.10. Let G be any Lie group. Recall Milnor’s join EnG ∶= G◦(n+1)

with coarse topology [Mil56]. Let G ⟶ E
�
,,→ B be a principal G-bundle with

B paracompact Hausdor� and of covering dimension ⩽ n. There are a map
f ∶ B ⟶ BnG ∶= EnG∕G and a G-homeomorphism E ⟶ f∗(EnG) over
the identity on B.

Relatively further, if dim(B) < n then isomorphic bundles have homotopic
maps.

Proof. Firstly, the (n+1)-fold coarse joinEnG is (n−1)-connected [Mil56, 2.3].
Since G is a manifold of class C1, it admits a triangulation [Whi40, Theo-

rem 7]. SinceG is separable and locally compact, the triangulation is countable
and locally �nite. Since the coarse (which is metrizable [Khab, §3.1]) join of
two metric polytopes each with no in�nite full subpolytope has this property,

11For locally �nite complexes, the CW topology and the euclidean-metric topology are equal.
12The homotopy type of a countable CW complex contains such a polytope P [Whi49,

Thm 13].
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the countable metric polytope EnG has no in�nite full subpolytope (which is
false for only locally �nite).

Then, by Corollary 5.9, the bundle EnG ⟶ EnG ×G E ⟶ B admits a sec-
tion. This section corresponds to a G-map E ⟶ EnG [Bre72, II:2.6], which
induces a map f ∶ B ⟶ BnG, yielding a G-map E ⟶ f∗(EnG) inducing the
identity on B. In order to show this continuous bijection is open, it remains to
apply Lemma 2.5.

Since G and B are Hausdor�, so is f∗(EnG) by local triviality. Since G is
locally compact and B is Hausdor�, the G-action on E is Palais (1.3) by local
triviality. We now explicitly show that E is Tikhonov. Let C ⊂ E be closed and
x ∈ E −C. There are a neighborhoodU of �(x) in B and a G-homeomorphism
� ∶ �−1(U) ⟶ G × U. Since B is regular [Die44, 1a], there is a subneighbor-
hoodV of x in BwithV ⊂ U. Then, since B is normal [Die44, 1b], by Urysohn’s
lemma [Ury25, 25], there exists a map � ∶ B ⟶ [0, 1] with �(V) = {1} and
�(B − U) = {0}. Since G and U are Tikhonov, so is the product G × U [Eng89,
1.5.8, 2.3.11]. Then there is a map � ∶ G × U ⟶ [0, 1] with �(�(x)) = 1 and
�(�(C ∩ �−1U)) = {0}. So the map 
 ∶= (�◦�) ⋅ (�◦�) ∶ E ⟶ [0, 1] satis�es

(x) = 1 and 
(C) = {0}. Thus E is Tikhonov. Therefore E ⟶ f∗(EnG) is a
G-homeomorphism, by Lemma 2.5. �

Remark 5.11. For G a compact Lie group, an n-classifying bundle exists for
B a �nite polytope [Ste51, 19.6]. Our theorem was not observed after the con-
struction of En(G) in [Mil56], but Dold [Dol63, 7.6] implies it classi�es over
paracompact B with dim(B) ⩽ n replaced by B locally a neighborhood retract
of euclidean n-space. The relaxed case n = ℵ0 [Dol63, 7.5] is easier to achieve
[tD66, II] [Hus66, 4.12.2].

For compact Lie G, [Las81, 4] and [Jaw81, 1.3] asserted a version of the fol-
lowing.

Proposition 5.12. LetG be anarbitrary Lie group. LetX be aPalaisG-spacewith
orbit space X∕G both of �nite covering dimension and hereditarily paracom-
pact (that is, all subspaces are paracompact). Then X satis�es the FTC property
(5.3).13

Proof. Let H be a compact subgroup of G. By Cartan’s closed-subgroup the-
orem [Car30, 27], both H and its normalizer NGH are Lie. Consider the Weyl
groupWGH ∶= NGH∕H. Note X(H) = G∕H ×WGH XH as G-spaces. Since the
induced action of the Lie groupWGH on XH is Palais [Pal61, 1.3.1], XH is cov-
ered by H-tubes [Pal61, 2.3.1]. Therefore XH is the total space of a principal
WGH-bundle.

Since implicitly X is Tikhonov (1.3), so is X∕G [Pal61, 1.2.8]. Since X∕G is
hereditarily paracompact hence totally normal, by Dowker’s monotonicity of
dimension [Dow53, 2.8], dim(XH∕WGH) ⩽ dim(X∕G). Also, Milnor covers
the principal bundle En(WGH) with n + 1 explicit local trivializations [Mil56,

13A fortiori, the proof shows each X(H) has a trivializing cover by 1 + dim(X∕G) open sets.
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Proof 3.1]. Then, since the subspace XH∕WGH of X∕G is paracompact Haus-
dor�, Theorem 5.10 implies that XH has a �nite cover by local trivializations.
Therefore X is FTC. �

Remark5.13 (Stone). Anymetrizable space is hereditarily paracompact [Sto48].

Here is a more practical form of Theorem 5.5 that is devoid of mention of
FTC. ForG compact, Jaworowski’sG-ENR theorem [Jaw76] hasX’s hypotheses
below.

Theorem 5.14. Let G be an arbitrary Lie group. Let X be a Palais G-metrizable
space. Suppose X is separable, locally compact, and of �nite covering dimension.
Let T be a maximal torus in G. Assume OT(C) is �nite for each compact C ⊂ X.
Then X is G-ANR for the class G-M of Palais G-metrizable spaces if and only if,
for each compact subgroup K of G, the K-skeleton XK is an ANR for the classM.

Proof. Let K be a compact subgroup of G. In particular, K is Lie [Car30, 27].
First, suppose that X ∈ G-ANR(G-M). Then XK ∈ ANR(M) by Lemma 1.9.
Conversely, suppose that XH ∈ ANR(M) for each compact H < G. Let

x ∈ X. Since X is locally compact, there is a precompact open neighborhood
Ux of x inX. SinceOT(Ux) is assumed to be �nite, as in Proof 5.5, we have that
OK(Ux) is �nite. Then OK(KUx) is �nite. Since X is separable metric, Palais
shows dim(X∕K) ⩽ dim(X) [Pal60, 1.7.32]. Since X∕K is metrizable hence
perfectly normal (that is, T6) [Čec33, 26], by Čech’s monotonicity of dimension
[Čec33, 28] [Eng78, 3.1.20], note dim(KUx∕K) ⩽ dim(X∕K) < ∞. So KUx is
K-FTC (5.12).

Hence KUx has K-�nite structure. Since KUx is open in X, by Hanner’s
global-to-local principle [Hu65, III:7.9], each closed H ⩽ K has (KUx)H =
KUx ∩ XH ∈ ANR(M). Therefore KUx ∈ K-ANE(K-M) by Jaworowski’s cri-
terion (5.2). Then X =

⋃
x∈X KUx ∈ K-ANE(K-M) by Antonyan’s open-union

theorem [Ant05, 5.7] as K-M ⊂ K-P [Khaa, 2.3]. Thus X ∈ G-ANE(G-M) by
Abels’ induction (1.6). �

Example 5.15. Consider the holomorph Lie group G = T ⋊id GL2(ℤ) and
X = G∕U1, where the circle group U1 is a subgroup of the maximal torus
T = U1 × U1 as �rst factor. Then X has a single G-orbit type but countably
in�nitely many T-orbit types by restriction, namelyOT(X) = {ℝ(a, b)∕ℤ2 | a >
0 and b coprime integers}. However, on compact setsOT is �nite: X has locally
�nitely many T-orbit types.

6. Finiteness of orbit types and of covering dimension
In the �rst part of this section, we make an additional de�nition and a se-

quence of comparative observations that re�ect more on concepts of the previ-
ous section.

De�nition 6.1. Let G be a topological group. A Cartan G-space X being FUI
(�nite upper isotropies) shall mean that

⋃
OGX has only �nitely many con-

jugacy classes of upper bounds in the preordered set (cpt G, ≼) of De�nition 3.5.
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Example 6.2. If X has �nitely many orbit types, then X has the FUI property.

Example 6.3. Let G be a locally compact Hausdor� group. Let X be a Palais
G-space with X Tikhonov and X∕G compact. Any G-subset of X is FUI using
2.2.

Lemma 6.4. Let G be a topological group. Let X be a Cartan G-space satisfying
the FUI property. The union

⋃
OG(X) of orbit types is compactly supported (3.3).

Proof. LetK1, … , Kn represent the upper bounds of
⋃

OG(X) in (cpt G, ≼). Note
C ∶=

⋃n
i=1 Ki is compact. For all x ∈ X, then Gx ≼ Ki ⊆ C for some i. �

Our contribution shall be to notice an equivalence with the maximal torus
(3.2).

Proposition 6.5. LetL be any linear Lie group. LetT be amaximal torus inL. Let
X be a Palais L-metrizable space satisfying FTC. Then X has only �nitely many
L-orbit types if and only if X is FUI and has only �nitely many T-orbit types.

Proof. On the one hand, suppose that X has only �nitely many L-orbit types.
Then X is FUI by Example 6.2. Since X is L-FTC, it has L-�nite structure. So
X has T-�nite structure by Lemma 5.7, hence it has only �nitely many T-orbit
types.

Conversely, suppose X is FUI and has only �nitely many T-orbit types. By
Lemma 6.4 then Corollary 3.7, we �nd X has only �nitely many L-orbit types.

�

In the second part of this section, we state a folklore result from dimen-
sion theory (see after [Dra88a, Проблема 2]), which shall be documented by
F. D. Ancel [Anc]. For locally compact spaces, dimℤ is ℤ-Čech cohomologi-
cal dimension in the sense of Cohen [Coh54, 2.10]; for normal spaces, dim is
Čech–Lebesgue covering dimension.

Lemma 6.6 (Kozlowski). LetX ∈ ANR(M) be a locally compact space. Suppose
dimℤ(X) = n < ∞. Then X has �nite covering dimension. Moreover, dim(X) =
n.

Dranishnikov found X ∈ M compact, dimℤ(X) < ∞, and dim(X) = ∞
[Dra88b].

7. Equivariant topological manifolds
The following generalization of [Khaa, 3.1] now includes nonlinear cases of

G. It is an application of Smith theory, newG-ANR theory, andG-overhomotopy
theory.

Theorem7.1. LetG be anyLie group. LetM be a second-countableℤ-cohomology
manifold [Khaa, 1.3] equippedwith a PalaisG-action such that any nonemptyK-
skeleton (K-�xed set)MK = {x ∈ M | ∀g ∈ K ∶ gx = x} is locally contractible.
ThenM isG-homotopy equivalent to a countable properG-CW complex. Further,
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a G-map f ∶ M ⟶ N between such ℤ-cohomology manifolds is a G-homotopy
equivalence if and only if eachmap fK ∶ MK ⟶NK is a homotopy equivalence.

Proof. Let T denote a maximal torus in G (see Remark 3.2). By the Mann–
Floyd theorem [Bor60, VI:1.1], any compact set in M has only �nitely many
T-orbit types. The de�nition ofℤ-cohomologymanifold [Bor60, I:3.3] includes
both that it is locally compact Hausdor� [Bor60, I:1.1] (hence T3.5) and it has
�niteℤ-Čech cohomological dimension [Coh54, 2.10]. NoteM isG-metrizable,
as second-countable T3 implies metrizable [Tyk26, 2], and as both G andM are
separable (1.4).

Since M has �nite covering dimension (6.6) and MK is closed in M ∈ T4,
note dim(MK) ⩽ dim(M) < ∞ [Čec33, 4] (see also [Eng78, 3.1.4]). Then,
by Kodama–Dugundji [Hu65, IV:7.1], MK is locally contractible if and only if
MK ∈ ANR(M). (The empty set is trivially an ANR.) ThusM ∈ G-ANR(G-M)
by Theorem 5.14. SoM is G-homotopy equivalent to a proper G-CW complex
[AntE09, 1.1]. SinceM is separable, the ‘countable’ is the same as in the second
half of [Khaa, Proof 3.1].

Lastly, our version (2.12) of the James–Segal criterion is satis�ed (5.13) if one
works in the subclass G-M ⊂ G-P∗, sinceM,N ∈ G-ANR(G-M). Alternatively,
and less directly because ofmore theoretical operations, one can use thatM and
N have the G-homotopy type of G-CW complexes, then the corresponding the-
orem for G-CW complexes [tD87, II:2.7], which is proven using G-obstruction
theory. �

De�nition 7.2. By topological G-manifold [Kha18, 2.2], we mean that the
H-skeleton is a topological (C0) manifold for each closed subgroupH of a topo-
logical group G. Any topological manifold is separable, metrizable, and locally
euclidean.

Finally, we generalize [Khaa, Corollary 3.2] beyond the Lie group G being
linear. Recall a G-CW complex is countable if it has countably many G-cells
[Mat71, 1.4].

Corollary 7.3. LetG be an arbitrary Lie group. Any topologicalG-manifold with
Palais action has equivariant homotopy type of a countable proper G-CW com-
plex. Furthermore, a G-map between such spaces is a G-homotopy equivalence if
and only if its restriction to their K-�xed sets is a homotopy equivalence for each
K ⩽ G.

Proof. LetM be a topologicalG-manifold with Palais action. Since eachmani-
foldMH is locally euclidean hence locally contractible, and sinceM is a second-
countable ℤ-cohomology manifold, we obtain the conclusion by Theorem 7.1.

�

Next, we generalize [Kha18, Corollary 3.5] from Γ virtually torsionfree and
we moreover answer [Kha18, Footnote 5], which asked if it is true for Γ residu-
ally �nite.
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Example 7.4. Let Γ be a countable discrete group. Any topological Γ-manifold
with properly discontinuous action has the Γ-homotopy type of a countable Γ-
CW complex. Hence, any Γ-space M with MH a contractible manifold if H is
�nite and empty otherwise is amanifoldmodel forEf inΓ in the sense of [CDK14]
[CDK15].

Thus more tractible are its Davis–Lück OrΓ-spectral homology groups (see
[DL98, 3.7, 4.3]), since we conclude countability of the Γ-CW complex that left-
approximates.

In particular, we generalize Elfving’s improved thesis [Elf01, Theorem 1].
The de�nition of locally linear, along with some discussion, is found in [Kha18,
3.6, 3.7]. Note any smoothable action is locally linear, but not vice versa; see
[Bre72, VI:9.6].

Corollary 7.5 (Elfving). Let G be any Lie group. Any locally linear G-manifold
with Palais action has the equivariant homotopy type of a G-CW complex.

Proof. This special case now follows immediately from Corollary 7.3. �

[Khaa, §4] has 4 uncountable families of G-manifolds that are not locally
linear.

Acknowledgements. I thank Christopher Connell for various basic discus-
sions. I am grateful to Ric Ancel and Alex Dranishnikov for email dialogue
on Lemma 6.6. The referee kindly pointed out the special case Corollary 3.9 is
more recently known.
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