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A volumish theorem for alternating
virtual links

Abhijit Champanerkar and Ilya Kofman

Abstract. Dasbach and Lin proved a “volumish theorem” for alternating
links. We prove the analogue for alternating link diagrams on surfaces, which
provides bounds on the hyperbolic volume of a link in a thickened surface in
terms of coe�cients of its reduced Jones-Krushkal polynomial. Along the
way, we show that certain coe�cients of the 4–variable Krushkal polynomial
express the cycle rank of the reduced Tait graph on the surface.
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1. Introduction
In [8], Dasbach and Lin proved the following “volumish” theorem for any

hyperbolic alternating knot K in S3: Let
VK(t) = ant

n +⋯+ amt
m

be the Jones polynomial of K, with sub-extremal coe�cients an+1 and am−1.
Let vtet ≈ 1.01494 and voct ≈ 3.66386 be the hyperbolic volumes of the regular
ideal tetrahedron and octahedron, respectively. Then
voct(max(|an+1|, |am−1|) − 1) ≤ vol(S3 − K) ≤ 10vtet(|an+1| + |am−1| − 1).

Their proof relied on volume bounds proved in [13, 1], which showed that the
hyperbolic volume of S3 − K is linearly bounded above and below by the twist
number t(K). Dasbach andLin proved that for any reduced alternating diagram
of K, the twist number t(K) = |an+1| + |am−1|.
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Recently in [9, 10], similar linear volume bounds in terms of twist number
were proved for certain alternating links in thickened surfaces, but the twist
number was not proved to be a link invariant. For alternating links in S3, the
invariance of t(K) follows from the proof of the Tait �yping conjecture in [14],
but the Tait �yping conjecture remains open for alternating virtual links (see
[4]).

Let F be a closed orientable surface of positive genus. Let K be a link in
the thickened surface F × I, which admits a reduced alternating surface link
diagram D on F. In Section 3 below, we de�ne a homological twist number
�F(D). In Section 4, we give a su�cient condition for �F(D) to be a link invariant
ofK in F×I by expressing �F(D) in terms of speci�c coe�cients of the reduced
Jones-Krushkal polynomial of K. Using the new volume bounds in terms of
twist number, we prove a “volumish” theorem for alternating links on surfaces,
which extends to virtual links.

There is an underlying similarity between the proofs of the two volumish
theorems. For alternating links in S3, to prove that the twist number is ex-
pressed by the sub-extremal coe�cients of the Jones polynomial, Dasbach and
Lin relied on two key facts: (1) the Jones polynomial of an alternating link is
a specialization of the two-variable Tutte polynomial of its Tait graph, and (2)
certain coe�cients of the Tutte polynomial express the cycle rank of the re-
duced Tait graph. For alternating links in thickened surfaces, we rely on two
similar facts: (1) the reduced Jones-Krushkal polynomial is a specialization of
the Krushkal polynomial, which extends the Tutte polynomial to a 4–variable
polynomial invariant of graphs on surfaces, and (2) certain coe�cients of the
Krushkal polynomial express the cycle rank of the reduced Tait graph on the
surface (see De�nition 3.1). The latter claim for the Krushkal polynomial is
Theorem 2.3, which is of independent interest, and is proved in Section 2 be-
low.

Let JK(t, z) denote the reduced Jones-Krushkal polynomial, de�ned in Sec-
tion 4 below. Boden and Karimi [4] proved that JK(t, z) is an invariant of ori-
ented links under isotopy and di�eomorphismof the thickened surface. In The-
orem 4.3, we express the homological twist number in terms of speci�c coe�-
cients of JK(t, z). This provides linear bounds on the hyperbolic volume of the
link K in the thickened surface in terms of the sub-extremal terms of JK(t, 0)
using the following geometric results.

A surface link diagram D on F is weakly prime if any embedded disc on F
whose boundary intersects D exactly twice contains no crossings of D. The
diagram D is cellularly embedded if the regions F − D are disks. A crossing
c is called nugatory if there exists a separating simple closed curve on F that
intersectsD only at c. A surface link diagramD is called reduced if it is cellularly
embedded and has no nugatory crossings. Note that every reduced alternating
diagram D on F is checkerboard-colorable. Additionally, D is strongly reduced
if there do not exist any simple closed curves on F that intersect D at only one
crossing; i.e., neither Tait graph of D on F has loops. The diagram D on F
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is called weakly generalized alternating (WGA) if D is both weakly prime and
reduced alternating; note that D must be cellularly embedded but it may not
be strongly reduced. See [10, Section 2] for a more general de�nition of WGA
diagrams.

For a link K in F × I with a WGA diagram D on F, Howie and Purcell [9]
de�ned the twist number tF(D) on the projection surface F × {0}, and showed
there is a lower bound on volume in terms of the twist number. Kalfagianni and
Purcell [10] proved there is also an upper bound on volume. Note that if F is a
torus, then F × I − K has a unique hyperbolic structure; for g ≥ 2, we consider
the unique hyperbolic structure for which the boundary surfaces F × {±1} are
totally geodesic.

We now combine the hyperbolicity and lower bound from [9], the upper
bound from [10] modi�ed for the homological twist number, and our Theo-
rem 4.3 below to state the volumish theorem for alternating virtual links:

Theorem 1.1. For a closed orientable surface F of genus g ≥ 1, let K be a non-
split oriented link in F × I that admits a strongly reduced WGA diagram D on
F × {0}. Let �F(K) be the homological twist number of D. Let JK(t, 0) = ant

n +

⋯+ amt
m, with sub-extremal coe�cients an+1 and am−1. Then

�F(K) = |an+1| + |am−1| − 2g,

�F(K) is an invariant of K in F × I, and F × I − K is hyperbolic with
voct

2
�F(K) ≤ vol(F × I − K) < 10vtet �F(K) if g = 1,

voct

2
(�F(K) − 3�(F)) ≤ vol(F × I − K) < 12voct �F(K) if g ≥ 2.

We prove Theorem 1.1 in Section 4 below. The strongly reduced condition
on D can be weakened to allow certain loops in the Tait graph if we use the
expression for �F(D) in Theorem 4.3. See Corollary 4.4 for cases with loops
such that �F(D) is a link invariant.

Virtual links. Virtual links and links in thickened surfaces are compared in
detail in [4]. Kuperberg [12] proved that virtual links are in one-to-one corre-
spondence with stable equivalence classes of links in thickened surfaces, and
each such class has a unique irreducible representative. For any virtual link
diagram, there is an explicit construction to associate a cellularly embedded
link diagram on a minimal genus surface. Moreover, a virtual link is alternat-
ing if and only if it can be represented by an alternating surface link diagram.
Any reduced alternating surface link diagram is checkerboard colorable, but
alternating virtual links also admit alternating surface diagrams which are not
checkerboard colorable. The main result of [4] is the following diagrammatic
characterization of alternating links in thickened surfaces: IfK is a non-split al-
ternating link in F×I, then any connected reduced alternating diagramD on F
has minimal crossing number c(K), and any two reduced alternating diagrams
of K have the same writhe w(K).
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The uniqueness statement in Kuperberg’s theorem implies that any two
minimal-genus diagrams of a virtual link are isotopic on F. Since the reduced
Jones-Krushal polynomial is invariant under isotopy of surface link diagrams,
we obtain an invariant of virtual links by computing JK(t, z) on aminimal genus
link diagram. By [5, Corollary 8], if a non-split link K in F × I is represented by
a reduced alternating diagram D on F, then it is the minimal genus represen-
tative of K. The genus of F is encoded as the highest power of z in JK(t, z). For
an appropriate alternating surface link diagram, Corollary 4.4 below implies
that the homological twist number of D on F is also an invariant of the virtual
link. Thus, Theorem 1.1 extends to any alternating virtual link that admits an
appropriate alternating surface link diagram.

Related results. Recently, several preprints have appeared with related re-
sults.

In [6], Boden, Karimi and Sikora prove the analogues of the Tait conjectures
for adequate links in thickened surfaces. Any alternating link diagram in a
thickened surface is adequate, so a natural question is how to extend Theo-
rem 4.3 to adequate links in thickened surfaces.

In [2], a general equivalence is established between ribbon graphs and vir-
tual links. As our main results rely on the Krushkal polynomial, which is an
invariant of ribbon graphs, this philosophy underlies our results as well.

In [3], Bavier and Kalfagianni prove results similar to Theorem 1.1 without
using polynomial invariants of ribbon graphs. Note that in [3], reduced is the
same as strongly reduced here. Their proof relies on the guts of a 3–manifold
cut along an essential surface, which is the union of all hyperbolic pieces in
its JSJ-decomposition, and the Euler characteristic of the guts is related to the
twist number using results in [6]. Signi�cantly, to prove that the twist number
is invariant, Bavier and Kalfagianni used another part of the Kau�man bracket
skein module S(F × I), which has a basis of all multi-loops on F, including ∅.
Let J0(K) = bnt

n +⋯+bmt
m be the normalized invariant of K in F × I coming

from the coe�cient in ℤ[A±1] of ∅, so just the contractible states on F. They
proved tF(K) = |bn+1|+|bm−1|−2g. In contrast, the Jones-Krushkal polynomial
JK(t, 0) uses states on F that are null-homologous, including non-contractible
states on F. Thus, JK(t, 0) ≠ J0(K) if g ≥ 2, and in Proposition 3.3 below, we
show that �F(K) ≠ tF(K) if g ≥ 2. For links in thickened surfaces, we prove
invariance of the homological twist number in Corollary 4.4 for more general
alternating link diagrams than just strongly reduced ones because loops in Tait
graphs are allowed, as long as there are no genus-generating loops.

In [16], Will proves results similar to Theorem 1.1 using inequalities for the
twist number obtained fromanew 3–variable polynomial that extendsKrushkal’s
homological Kau�man bracket polynomial, which is discussed in Section 4 be-
low.

Acknowledgement. We thank the anonymous referee for careful revisions.
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2. The Krushkal polynomial
Krushkal [11] introduced a 4–variable polynomial invariant of a graph G

embedded in a closed orientable surface F. We will denote this polyomial by
pG(x, y, u, v) and refer to it as the Krushkal polynomial. The variables x and y
play the same role as in the Tutte polynomial, while u and v re�ect how G is
embedded on F. If G is cellularly embedded (i.e., the faces of G on F are disks),
andG∗ denotes the dual graph on F, then the Krushkal polynomial generalizes
the Tutte polynomial, satisfying both of its key properties: contraction-deletion
and a duality relation, pG(x, y, u, v) = pG∗(y, x, v, u).

TheKrushkal polynomial is de�ned as the following sumover spanning sub-
graphs, such that every subgraph contributes a monomial weight xaybucvd,
where the exponents are topological quantities related to the embedding of this
subgraph.

De�nition 2.1 ([11]). Let G be a graph cellularly embedded in a closed ori-
entable surface F. The genus of a subsurface S ⊂ F is the genus of the closed
surface obtained from S by capping o� all the boundary components of S by
disks. For a spanning subgraphH of G, letℋ denote the regular neighborhood
of H on F. Let i ∶ G → F denote the embedding, and let i ∶ H → F denote its
restriction toH. De�ne:

c(H) = number of components ofH,
s(H) = twice the genus ofℋ,

s⟂(H) = twice the genus of the subsurface F −ℋ,

k(H) = dim(ker(i∗∶ H1(H;ℝ) → H1(F;ℝ))).

The Krushkal polynomial is de�ned as the following sum over all spanning
subgraphsH ⊂ G:

pG(x, y, u, v) =
∑

H⊂G

xc(H)−c(G)yk(H)us(H)∕2vs
⟂(H)∕2. (1)

We will refer to the monomial terms in (1) as weights on corresponding sub-
graphs of G.

The Tutte polynomial TG(X, Y) is related to the Whitney rank generating
function RG(x, y) by TG(X, Y) = RG(X − 1, Y − 1) (see [15, § 15.4]), which are
extensively studied polynomial invariants of graphs and matroids. If g denotes
the genus of F, by [11, Lemma 2.3],

RG(x, y) = ygpG(x, y, y, y
−1), and TG(X, Y) = RG(X − 1, Y − 1) (2)

The substitution x = X − 1 and y = Y − 1 will play a key role in the proof of
Theorem 2.3. So we de�ne

PG(X, Y,U, V) = pG(X − 1, Y − 1,U,V).
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Another specialization to obtain the Jones-Krushkal polynomial is discussed in
Section 4.

De�nition 2.2. Two edges in G are parallel if they are homologous on F. Note
that parallel non-loop edges connect the same vertices, but parallel loops may
be disjoint. Let G′ denote the reduced graph of G obtained by deleting all but
one edge in each set of parallel edges inG, and deleting all homologically trivial
loops, such that the vertex set V(G′) = V(G). Note that in the de�nition of
G′, edges include loops, so that the interiors of all but one loop in each set of
parallel loops are deleted while preserving all vertices of G. Let G = (V, E) and
G′ = (V, E′). Let l = l(G′) denote the subgraph of loops in G′. Let G′ − l =

(V, E′ − l) denote the graph obtained by removing the interior of each loop in
l. Let

� = b1(G
′ − l) = |E′ − l| − |V| + c(G′) and � = b1(l) = |l|.

Note that although G′ is not uniquely determined, � and � are invariants of G.

Theorem 2.3. Let G be a graph embedded in a surface F of genus g ≥ 1. Let l0
be the set of homologically trivial loops inG. Let k = |l0| and n = |V(G)|− c(G).
Then PG(X, Y,U, V) includes terms with exactly the following coe�cients:

�VgXn−1Yk + �Vg−1XnYk.

Proof. By [11, Lemma 2.2], pG(x, y, u, v) has the property that if e is a loop in
G which is trivial inH1(F), then pG = (1 + y)pG−e, so that PG = YPG−e. Thus,
we only need to prove the case |l0| = 0, so we will consider only loops in G
that are non-trivial inH1(F).

The unique spanning subgraph H0 of G which consists of only vertices and
no edges has weight vgxn. Since any other subgraph has a non-empty edge
set, its weight has a lower exponent of x (if it has non-loop edges), or a lower
exponent of v (if it has homologically non-trivial loops). Thus, the term vgxn

occurs in pG(x, y, u, v) with coe�cient 1.
Let e′ be a non-loop edge of G′, and let {e1, … , em} be the set of all edges of G

parallel to e′, which we call the edge class of e′. For 1 ≤ j ≤ m, let Hj denote
one of the spanning subgraphs of G which consists of j edges from the edge
class of e′, and no other edges. The weight of eachHj is vgxn−1yj−1. Summing
over the weights of all such spanning subgraphs {Hj ⊂ G}, we get the following
contribution to pG(x, y, u, v):

m∑

j=1

(m

j

)
vgxn−1yj−1 =

vgxn−1

y

⎛

⎜

⎝

m∑

j=1

(m

j

)
yj

⎞

⎟

⎠

=
vgxn−1

y
((1 + y)m − 1). (3)

Thus, for every non-loop edge e′ in G′, its edge class in G contributes the ex-
pression (3) to pG(x, y, u, v).

If H is a spanning subgraph of G with the factor xn−1 in its weight, then
c(H) = |V| − 1. Hence,H has the form of someHj, possibly with loops added.
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If H has any loops, then since the loops are homologically non-trivial by as-
sumption, the weight of H has an exponent of v which is strictly less than g.
Thus, any term in pG(x, y, u, v) with a vgxn−1 factor is contributed only by the
subgraphsHj, so the term must be vgxn−1yj−1 for j ≥ 1.

Let’s see how these terms transform in PG(X, Y,U, V). With the substitution
x = X − 1 and y = Y − 1, the expression (3) simpli�es to

Vg(X − 1)n−1

Y − 1
(Ym − 1) = VgXn−1(1 + Y2 + … + Ym−1) + O(Xn−2).

Every non-loop edge in G′ contributes such an expression to PG(X, Y,U, V).
Moreover, as discussed above, the weight for H0 is vgxn, which then becomes
Vg(X − 1)n. Since vgxn always has coe�cient 1 in pG , H0 contributes an addi-
tional coe�cient −n to the term VgXn−1 in PG . Finally,

n = |V(G)| − c(G) = |V(G′)| − c(G′).

Therefore, if |l0| = 0, the coe�cient on VgXn−1 in PG(X, Y,U, V) is

|E′ − l| − n = |E′ − l| − |V(G′)| + c(G′) = b1(G
′ − l) = �.

This proves the claim for �.
We now proceed similarly for loops in G′. Let f′ be a loop of G′, and let

{f1, … , fm} be the set of all loops of G parallel to f′, which we call the edge
class of f′. For 1 ≤ j ≤ m, let Lj denote one of the spanning subgraphs of G
which consists of j loops from the edge class of f′, and no other edges. Since
we assumed that all loops in G are homologically non-trivial, the weight of Lj
is vg−1xnyj−1. By summing over the weights of all such spanning subgraphs
{Lj ⊂ G}, we get the following contribution to pG(x, y, u, v):

m∑

j=1

(m

j

)
vg−1xnyj−1 =

vg−1xn

y

⎛

⎜

⎝

m∑

j=1

(m

j

)
yj

⎞

⎟

⎠

=
vg−1xn

y
((1 + y)m − 1). (4)

Thus, for every loop f′ in G′, its edge class in G contributes the expression (4)
to pG(x, y, u, v).

IfH is a spanning subgraph ofG with the factor xn in its weight, then c(H) =
|V|. Hence, H consists of only homologically non-trivial loops. We have three
cases:

(a) All loops inH are in one edge class of G′,
(b) H has loops in distinct edge classes of G′, and g(ℋ) = 0,
(c) H has loops in distinct edge classes of G′, and g(ℋ) > 0.

In case (a), H is one of the subgraphs Lj. In case (b), H has at least one pair
of homologically non-trivial and non-homologous loops, so g(ℋ) = 0 implies
that F − ℋ has genus strictly less than g − 1. Hence, the weight of H has an
exponent of v which is strictly less than g − 1. In case (c), the weight of H has
a factor ui with i > 0. Therefore, any term in pG(x, y, u, v)with a vg−1xn factor
andwithout a u factor is contributed only by the subgraphs Lj, so the termmust
be vg−1xnyj−1 for j ≥ 1.
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With the substitution x = X − 1 and y = Y − 1, the expression (4) simpli�es
to

Vg−1(X − 1)n

Y − 1
(Ym − 1) = Vg−1Xn(1 + Y2 + … + Ym−1) + O(Xn−1). (5)

Every loop inG′ contributes such an expression toPG(X, Y,U, V), so if |l0| = 0,
the coe�cient onVg−1Xn inPG(X, Y,U, V) is �. This completes the proof of the
theorem. �

Below, we will need another coe�cient of PG(X, Y,U, V), using the follow-
ing de�nition.

De�nition 2.4. For a graph G on the surface F, let l(G) be the subgraph of
loops in G. We call {e1, e2} ⊂ l(G) genus-generating loops if g(ℋ(e1 ∪ e2)) > 0.
Let G′ be the reduced graph of G. De�ne


(G) = #{ {e1, e2} ⊂ l(G′) | g(ℋ(e1 ∪ e2)) > 0}.

Wewill say that {e1, e2, e3} ⊂ l(G) are 3–petal loops if no pair of loops is parallel
and

g(ℋ(e1 ∪ e2 ∪ e3)) > 0 and k(e1 ∪ e2 ∪ e3) > 0.

Note that if 
(G) = 0, then G has no 3–petal loops. The following �gure shows
an example of a ribbon graph with 3–petal loops on the torus:

Lemma 2.5. Let G be a graph embedded in a surface F of genus g, such that G
has no 3–petal loops. Let k = |l0|, n = |V(G)| − c(G), and 
 = 
(G). Then
PG(X, Y,U, V) includes a term with exactly the following coe�cient:


 UVg−1XnYk.

Proof. As in the proof above, it su�ces to prove the case k = 0, so we can
assume that all loops in G are homologically non-trivial. We now determine
all possibleH ⊂ G that can contribute to the termUVg−1Xn in PG(X, Y,U, V).
Due to the substitution x = X − 1 and y = Y − 1, we need to consider H ⊂ G

with weight uvg−1xiyj. Since i ≤ n, the factorXn implies thatH can contribute
to the term UVg−1Xn only if i = n. Hence, c(H) = |V(G)| so that H ⊂ l(G)

with weight uvg−1xnyj.
Let H′ ⊂ G′ be the reduced graph of H, as in De�nition 2.2. Letℋ′ be the

regular neighborhood of H′ in F. The condition that G has no 3–petal loops
implies that G′ and henceH′ have no 3–petal loops. By [11, Equation (4.7)],

k(H′) + g(F) + g(ℋ′) − g(F −ℋ′) = b1(H
′).

The factor UVg−1 implies that g(ℋ′) = 1 and g(F − ℋ′) = g(F) − 1. Thus,
k(H′) = b1(H

′) − 2 = |E(H′)| − 2. Since g(ℋ′) = 1, the condition that H′
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Figure 1. An alternating link diagram (left) and its Tait graph
GA (right) on the torus [11, Figure 5].

has no 3–petal loops now implies k(H′) = 0, so that |E(H′)| = 2. So the only
possible H′ ⊂ G′ are the subgraphs {e1 ∪ e2} ⊂ l(G′) such that g(ℋ′) = 1.
Therefore, if H ⊂ G contributes to the term UVg−1Xn in PG(X, Y,U, V), then
H′ is a pair of genus-generating loops.

Let {e′
1
∪ e′

2
} ⊂ l(G′) be a pair of genus-generating loops, and suppose for

I = 1, 2, G has mI parallel loops in the edge class e′
I
. Let Hi,j ⊂ G denote the

subgraph with i loops (resp. j loops) in the edge class e′
1
(resp. e′

2
), which has

weight uvg−1xny(i−1)+(j−1). As in (4), summing over the weights of allHi,j ⊂ G,
we get the following contribution to pG(x, y, u, v):

∑

1≤i≤m1

1≤j≤m2

(m1

i

)(m2

j

)
uvg−1xny(i−1)+(j−1) =

uvg−1xn

y2
((1 + y)m1 − 1)((1 + y)m2 − 1). (6)

Thus, for every pair of genus-generating loops in G′, its edge class in G con-
tributes the expression (6) to pG(x, y, u, v). As in (5), with the substitution
x = X − 1 and y = Y − 1, the expression (6) simpli�es to

UVg−1Xn(1 + Y2 + … + Ym1−1)(1 + Y2 + … + Ym2−1) + O(Xn−1).

Every pair of genus-generating loops in G′ contributes such an expression to
PG(X, Y,U, V), so if k = |l0| = 0, the coe�cient onUVg−1Xn inPG(X, Y,U, V)
is 
(G). �

3. The homological twist number
In this section, we introduce the homological twist number �F(D), which

counts sets of homologically twist-equivalent crossings. In contrast, the usual
twist number tF(D), de�ned in [10, De�nition 2.4], counts twist regions (maxi-
mal strings of bigons) ofD onF. Every twist region contributes onehomological
twist to �F(D), but some crossings ofDwhich are in distinct twist regions can be
homologically twist-equivalent. An important advantage of De�nition 3.2 be-
low is that �F(D) is invariant for any reduced alternating surface link diagram
D, without the need for D to be twist-reduced.
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Figure 2. Di�erent kinds of cycles in the Tait graph are shown
in di�erent colors. From left to right: nugatory crossing (green),
null-homologous 2-cycle (cyan), genus-generating loops (blue
and red).

De�nition 3.1. Let D be a reduced alternating surface link diagram on F. Fix
a checkerboard coloring onD. LetGA (resp. GB) be the Tait graph (i.e., checker-
board graph) of D on F, whose edges correspond to crossings of D, and whose
vertices correspond to shaded (resp. unshaded) regions of F − D, such that
GA and GB are dual graphs on F. See Figure 1. Note that the Tait graph of a
reduced alternating surface link diagram may contain loops, but only homo-
logically non-trivial ones. Let G′

A
and G′

B
be the reduced Tait graphs obtained

by deleting all but one edge in each set of parallel edges in GA and GB, as in
De�nition 2.2.

See Figure 2 for several examples of di�erent kinds of cycles in the Tait graph
on the surface F.

De�nition 3.2. Recall, two edges in G are parallel if they are homologous on
F. Two crossings of D are homologically twist-equivalent if their corresponding
edges are parallel in either GA or GB. The homological twist number �F(D) is
de�ned as the number of homological twist-equivalence classes of crossings of
D. Thus, each homological twist corresponds to one set of parallel edges in GA
or GB, which is one edge in G′

A
or G′

B
.

See Figure 3 for two examples of homologically twist-equivalent crossings of
D on F, which do not form a twist region on F. Figure 3 (a) also provides an
example of a reduced alternating link diagram which is not strongly reduced.

Proposition 3.3. If tF(D) denotes the twist number, as in [10, De�nition 2.4], of
a strongly reduced, twist-reduced WGA diagram, then

�F(D) ≤ tF(D) ≤ 2�F(D).

Moreover, if F is a torus, then �F(D) = tF(D).

Proof. Let GA and GB be the Tait graphs ofD on F, which do not contain loops
since D is strongly reduced. A pair of edges in GA or GB is parallel if and only
if they form a null-homologous 2–cycle. If it bounds a disk ∆ on F, then the
hypothesis that D is twist-reduced, as in [10, De�nition 2.5], implies that ∆ or
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(a) (b)

Figure 3. In both (a) and (b), an alternating link diagram is
projected on the surface F, shown on a part of F which dis-
connects the surface. In both cases, the red crossing and the
blue crossing are homologically twist-equivalent. One of the
Tait graphs in (a) has homologous loops, and in (b) has a null-
homologous 2–cycle. Neither pair of crossings forms a twist re-
gion on F.

a disk in F − ∆ contains a twist region of D, which is the same as a homologi-
cal twist-equivalence class of crossings of D. Thus, the two de�nitions of twist
number agree in this case.

On the other hand, suppose the null-homologous 2–cycle bounds a subsur-
face F′ ⊂ F which is not a disk, so it forms an essential separating curve on
F. Hyperbolicity precludes both vertices from being 2–valent, but if one vertex
is 2–valent, then D has a bigon on F and the two crossings are homologically
twist-equivalent. So the two de�nitions of twist number agree in this case as
well.

However, if neither vertex is 2–valent, then the two crossings are homolog-
ically twist-equivalent, but are not part of a twist region because D is twist-
reduced. Moreover, this discrepancy occurs for every essential null-homologous
2–cycle without 2–valent vertices in GA or GB. This proves the inequality.

Finally, ifF is a torus, neitherGA norGB admits an essential null-homologous
2–cycle, so �F(D) = tF(D). �

4. The Jones-Krushkal polynomial
In [11], Krushkal de�ned a homological Kau�man bracket derived from his

4-variable polynomialpG(x, y, u, v), and proved the invariance of a two-variable
generalization of the Jones polynomial for links in thickened surfaces. We
will use a later variant JK(t, z), called the reduced Jones-Krushkal polynomial,
which was introduced by Boden and Karimi [4]. Following [11], it is proved in
[4] that JK(t, z) is an invariant of oriented links under isotopy and di�eomor-
phism of the thickened surface.

We brie�y recall the homological Kau�man bracket due to Krushkal [11].
Let F be a closed orientable surface of genus g. Let K be a link in F × I, with
a link diagram D on F. Suppose that D has c crossings, each of which can be
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Figure 4. For D on the torus (left), states sA (middle) and sB
(right) are shown. Here, |sA| = 2, |sB| = 1, r(sA) = r(sB) =

1, k(sA) = 1, k(sB) = 0.

resolved by an A–smoothing or B–smoothing. A state s of D is a collection of
simple closed curves on F that results from smoothing each crossing of D. See
Figure 4. Let a(s) and b(s) be the number of A and B–smoothings, and let |s|
be the number of closed curves in s. Let sA and sB denote the all–A and all–B
states of D, so that for the Tait graphs GA and GB, we have |V(GA)| = |sA| and
|V(GB)| = |sB|. Let n = |V(GA)| − 1 and N = |V(GB)| − 1. De�ne

k(s) = dim(kernel(i∗∶ H1(s) → H1(F))),

r(s) = dim(image(i∗∶ H1(s) → H1(F))),

where i ∶ s → F is the inclusion map. We call r(s) the homological rank of s, so
that k(s) + r(s) = |s|. The homological Kau�man bracket is de�ned as follows:

⟨D⟩F =
∑

s
A(a(s)−b(s))(−A−2 − A2)k(s)zr(s).

To recover the usual Kau�man bracket for a virtual link diagram D, we set z =
−A−2 − A2 and divide by one factor of −A−2 − A2 (see Example 2 below). To
obtain the Jones-Krushkal polynomial, which was the original link invariant
de�ned in [11], we normalize by the writhe as usual, (−A)−3w(D)⟨D⟩F , and set
A = t−1∕4.

If D is checkerboard colorable, then [K] = 0 inH1(F × I) by [4], so it follows
that k(s) ≥ 1 for every state s of D. So we can instead use the following version
of the Jones-Krushkal polynomial due to Boden and Karimi:

De�nition 4.1 ([4]). Suppose K is an oriented link in F × I, represented by
a checkerboard-colorable link diagram D on F. The reduced Jones-Krushkal
polynomial is de�ned by

JK(t, z) = (−1)w(D)t3w(D)∕4
∑

s
t(b(s)−a(s))∕4(−t−1∕2 − t1∕2)(k(s)−1)zr(s).

The reduced Jones-Krushkal polynomial specializes to the usual Jones poly-
nomial VK(t) by setting z = −t−1∕2 − t1∕2. Any classical diagram will have
r(s) = 0 for all states, so that JK(t, z) = VK(t) for every classical link K. How-
ever, there exist alternating virtual knots withVK(t) = 1 but non-trivial JK(t, z).
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By [11, Theorem 6.1] for non-split D, we obtain ⟨D⟩F from PGA(X, Y,U, V)

as follows:

⟨D⟩F(A, z) = A(2g+2n−c)d zgPGA (−A−4, −A4,
A2

z
,
1

A2z
) .

With the additional normalization as in De�nition 4.1, we obtain JK(t, z) by

JK(t, z) = (−1)wt(3w−2g−2n+c)∕4zgPGA (−t, −t−1,
1

z
√
t
,

√
t

z
) . (7)

Recall the de�nition of genus-generating loops and 3–petal loops from De�-
nition 2.4.

De�nition 4.2. For a reduced alternating diagramD onF, let l(G′
A
) and l(G′

B
)

be the subgraphs of loops in the reduced Tait graphs G′
A
and G′

B
. De�ne


(D) = #{ {e1, e2} ⊂ l(G′
A
) | g(ℋ(e1 ∪ e2)) > 0},


̄(D) = #{ {e1, e2} ⊂ l(G′
B
) | g(ℋ(e1 ∪ e2)) > 0}.

Theorem 4.3. For a closed orientable surface F of genus g ≥ 0, let K be a non-
split oriented link in F × I that admits a reduced alternating diagram D on F,
such that neither of its Tait graphs has 3–petal loops. Let

� = |l(G′
A
)|, �̄ = |l(G′

B
)|, � = b1(G

′
A
− l(G′

A
)), �̄ = b1(G

′
B
− l(G′

B
)),


 = 
(D), 
̄ = 
̄(D). Then

�F(D) = b1(G
′
A
) + b1(G

′
B
) − 2g = � + � + �̄ + �̄ − 2g (8)

and the reduced Jones-Krushkal polynomial JK(t, z)has the following coe�cients:

(−1)(w+n)t
3w+2n+c

4 ((−1)ct(g−c) (�̄zt
1

2 − (�̄ − 
̄)t) − (� − 
)t−1 + �zt
−
1

2 ) , (9)

where c and w are the crossing number and writhe of D, and n = |V(GA)| − 1.

We prove Theorem 4.3 after the following corollary, which is important for
Theorem 1.1. Recall that D is strongly reduced when neither GA nor GB has
loops, so in particular, 
(D) = 
̄(D) = 0. In addition, 
(D) = 
̄(D) = 0 implies
that neither Tait graph of D has 3–petal loops.

Corollary 4.4. If D is a reduced alternating diagram on F, such that 
(D) =

̄(D) = 0, then �F(D) is a link invariant of K in F × I.

Proof. For g(F) = 0, the twist number is a link invariant by the proof of the
Tait �yping conjecture in [14], so we may assume g(F) ≥ 1. By [4], JK(t, z) is
an invariant ofK in F×I. Thus, by Theorem 4.3, �F(D) is a link invariant when

(D) = 
̄(D) = 0, and the terms in (9) are distinct terms in JK(t, z).

The terms in (9) coincide when (−1)ct(g−c) = ±t−1 or ±t−2; i.e., when c =
g + 1 or c = g + 2. As D is cellularly embedded, c = |VA| + |VB| + 2g − 2

with |VA|, |VB| ≥ 1, which allows only the cases: (g, c) ∈ {(1, 2), (1, 3), (2, 4)}.
Moreover, both c = g + 1 and c = g + 2 imply that either |VA| = 1 or |VB| = 1.
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So one Tait graphG consists of only loops, and asD is reduced alternating, these
loops are homologically non-trivial.

Let H ⊂ G. For [)ℋ] in H1(F), let Λ(H) = dim([)ℋ]). By [11, Equa-
tion (5.5)],

g(ℋ) + g(F −ℋ) + Λ(H) = g(F).

Since D is cellularly embedded, then so is G. Thus, for H = G consisting of
homologically non-trivial loops, we have g(F−ℋ) = Λ(H) = 0. Hence, g(ℋ) >

0, which implies that at least one pair of loops in G must be genus-generating
loops, which are excluded by the condition 
(D) = 
̄(D) = 0.

Therefore, when 
(D) = 
̄(D) = 0, the terms in (9) are distinct terms in
JK(t, z). �

The proof of Corollary 4.4 relies on the condition 
(D) = 
̄(D) = 0, but it
may not be necessary.

Question 4.5. If D is a reduced alternating diagram on F, is �F(D) a link in-
variant of K in F × I?

Proof of Theorem 4.3. If g = 0, thenD is a classical link diagram. In this case,
� = �̄ = 0 since loops in its Tait graph can only come from nugatory crossings,
so 
 = 
̄ = 0. For classical links, JK(t, z) = VK(t), so now both (8) and (9)
follow from [8].

To prove (8) for g > 0, we extend the argument in [8] to links in thickened
surfaces. Let GA = (VA, EA), G

′
A
= (VA, E

′
A
), GB = (VB, EB), G

′
B
= (VB, E

′
B
).

Since GA and GB are dual graphs on F, |EA| = |EB| and |VA| + |VB| = |EA| +

2−2g. The homological twist number �F(D) counts sets of homologically twist-
equivalent crossings, which we can count using sets of parallel edges inGA and
GB, as follows:

�F(D) = |EA| − (|EA| − |E′
A
|) − (|EB| − |E′

B
|)

= |E′
A
| + |E′

B
| − |EA|

= |E′
A
| + |E′

B
| − (|VA| + |VB| − 2 + 2g)

= (|E′
A
| − |VA| + 1) + (|E′

B
| − |VB| + 1) − 2g

= b1(G
′
A
) + b1(G

′
B
) − 2g

= � + � + �̄ + �̄ − 2g.

We now prove (9) for g > 0. Let PGA(X, Y,U, V) be as in Theorem 2.3, with
G = GA. By [11, Theorem 3.1], PGB(X, Y,U, V) = PGA(Y, X, V,U). Therefore,
by Theorem 2.3, �, �̄, �, �̄ are exactly the coe�cients of the following terms of
PGA(X, Y,U, V):

�VgXn−1 + �Vg−1Xn + �̄UgYN−1 + �̄Ug−1YN , (10)

where n = |VA| − 1 andN = |VB| − 1. Using �(F) = |VA| + |VB| − c, we have
n + N = c − 2g.
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Let �(X�Y�UiVj) ∈ ℤ[t±1∕2, z] denote the term in JK(t, z) obtained from
X�Y�UiVj by the substitutions in (7). We evaluate each term in (10):

�(VgXn−1) = (−1)wt
3w−2g−2n+c

4 zg (

√
t

z
)

g

(−t)n−1 = (−1)(w+n) t
3w+2n+c

4 (−t−1),

�(Vg−1Xn) = (−1)wt
3w−2g−2n+c

4 zg (

√
t

z
)

g−1

(−t)n = (−1)(w+n) t
3w+2n+c

4 (zt
−
1

2 ),

�(UgYN−1) = (−1)wt
3w−2g−2n+c

4 zg (
1

z
√
t
)

g

(−t)2g+n−c+1

= (−1)(w+n) t
3w+2n+c

4 (−1)ct(g−c)(−t),

�(Ug−1YN) = (−1)wt
3w−2g−2n+c

4 zg (
1

z
√
t
)

g−1

(−t)2g+n−c

= (−1)(w+n) t
3w+2n+c

4 (−1)ct(g−c)(zt
1

2 ).

This veri�es that the terms in (9) come from the corresponding terms in (10).
We now �nd the other terms in PGA(X, Y,U, V) that overlap with these terms
in JK(t, z).

For the �–term, suppose �(X�Y�UiVj) = ±�(VgXn−1). Since the RHS has
no z factor, it follows that i + j = g. From exponents on t, we have

� − � − i∕2 + j∕2 = g∕2 + n − 1 ⟹ � + j + 1 = � + g + n.

If � = n − � for some integer � ≥ 0, then

n − � + j + 1 = � + (i + j) + n ≥ 0 ⟹ � = 0 or � = 1.

If � = n then � + i = 1, so �, i ∈ {0, 1}. If � = n−1 then � + i = 0, so � = i = 0.
We are left with only three possibilities:

� = n − 1, � = 0, i = 0, j = g ⟹ VgXn−1

� = n, � = 0, i = 1, j = g − 1 ⟹ UVg−1Xn

� = n, � = 1, i = 0, j = g ⟹ VgXnY

We already know �VgXn−1 is in PGA(X, Y,U, V). Since GA does not have 3–
petal loops, we can apply Lemma 2.5 to see that UVg−1Xn has coe�cient 
 in
PGA(X, Y,U, V). As a term in JK(t, z), �(VgXn−1) = −�(UVg−1Xn) becauseXn

andXn−1 contribute opposite signs, so we call it the (�−
)–term in JK(t, z). For
the �nal case above, we claim thatVgXnY cannot be a term in PGA(X, Y,U, V).
Suppose there exists H ⊂ GA whose weight contributes to VgXnY. As in the
proof of Lemma 2.5, the factor Xn implies H ⊂ l(GA). Because D is reduced
alternating on F, all loops in GA are homologically non-trivial. The factor Y
implies thatH has weight with a factor yk for k > 0, soH must contain 3-petal
loops, which are excluded by hypothesis. Thus, VgXnY cannot be a term in
PGA(X, Y,U, V). With the cases exhausted, we see that no other terms in
PGA(X, Y,U, V) besides V

gXn−1 and UVg−1Xn contribute to the (� − 
)–term
in JK(t, z).
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For the �̄–term, we can use duality [11, Theorem 3.1]: PGA(X, Y,U, V) =
PGB(Y, X, V,U). If �(X

�Y�UiVj) = ±�(UgYN−1), the argument above for the
dual graph GB again implies only three possibilities:

� = 0, � = N − 1, i = g, j = 0 ⟹ UgYN−1

� = 0, � = N, i = g − 1, j = 1 ⟹ Ug−1VYN

� = 1, � = N, i = g, j = 0 ⟹ UgXYN

By the same arguments on the dual graph, for D reduced alternating, only
UgYN−1 andUg−1VYN are terms in PGA(X, Y,U, V). Therefore, no other terms
in PGA(X, Y,U, V) besides these terms contribute to the (�̄−
̄)–term in JK(t, z).

For the �–term, suppose �(X�Y�UiVj) = ±�(Vg−1Xn). Since the RHS has
a z factor, it follows that i + j = g − 1. From exponents on t, we have

� − � − i∕2 + j∕2 = (g − 1)∕2 + n ⟹ � = � + i + n.

If � = n − � for some integer � ≥ 0, then

n − � = � + i + n ≥ 0 ⟹ � = i = � = 0.

This leaves only one possibility:

� = n, � = 0, i = 0, j = g − 1 ⟹ Vg−1Xn.

Therefore, no other terms in PGA(X, Y,U, V) besides V
g−1Xn contribute to the

�–term in JK(t, z). For the �̄–term, we can use a similar argument or use duality
again.

This completes the proof of (9). �

Lemma 4.6. ForK inF×I as in Theorem 4.3, only the termsVgXn andUgYN of
PGA(X, Y,U, V) contribute the extremal terms of JK(t, 1), which has span (c − g).

Proof. By [4, Theorem 2.9], and dividing by one factor of −A−2 − A2 for the
reduced polynomial, the span of JK(t, 1) is exactly (c − g). We now identify the
subgraphs of GA that contribute the two extremal terms of JK(t, 1). By (7), the
term in PGA(X, Y,U, V)which contributes the highest t–degree term of JK(t, 1)
has the highest X–degree and highest V–degree. Namely, the unique spanning
subgraphH0 in GA with an empty edge set has weight vgxn. Similarly,H = GA
has weight ugyN , which contributes the the lowest t–degree term of JK(t, 1).
Thus, PGA(X, Y,U, V) has the terms VgXn and UgYN , which contribute the
extremal terms of JK(t, 1).

We claim that no other terms ofPGA(X, Y,U, V) contribute the extremal terms
of JK(t, 1). Suppose there existsH ⊂ GAwhoseweight also contributes toVgXn.
As in the proof of Lemma 2.5, the factor Xn implies H has weight with factor
xn andH ⊂ l(GA). Thus,H has weight vgxnyk for k ≥ 0. BecauseD is reduced
alternating on F, all loops in GA are homologically non-trivial. If k > 0 then
H must contain 3–petal loops, which are excluded by hypothesis. Thus, only
H0 contributes the term VgXn in PGA(X, Y,U, V). The argument for H = GA
follows by duality [11, Theorem 3.1], PGB(X, Y,U, V) = PGA(Y, X, V,U). �
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Proof of Theorem 1.1. Since D is strongly reduced, � = �̄ = 0. Thus, by (8),

�F(D) = � + �̄ − 2g,

which is a link invariant of K in F × I by Corollary 4.4.
We claim that the � and �̄ terms in (9) with � = �̄ = 0 and 
 = 
̄ = 0 are

exactly the sub-extremal terms of JK(t, 0). By Lemma 4.6, only the terms VgXn

and UgYN of PGA(X, Y,U, V) contribute the extremal terms of JK(t, 1), which
has span (c −g). The � and �̄ terms in (10) di�er from VgXn andUgYN , and in
JK(t, 1) they have span (c − g − 2) by (9), so they are the sub-extremal terms of
JK(t, 1). Moreover, by (7) neither the extremal terms nor the � and �̄ terms have
a z factor in JK(t, z). Thus, the � and �̄ terms in (9) are exactly the sub-extremal
terms of JK(t, 0). This proves the �rst part of Theorem 1.1.

By Proposition 3.3,
�F(D) ≤ tF(D) ≤ 2�F(D).

The volume bounds in Theorem 1.1 now follow from [10, Theorem 1.4]. Since
essential null-homologous cycles occur only for g ≥ 2, the bounds for g = 1

are the same as in [10, Theorem 1.4] with �F(D) = tF(D). Since �F(D) ≤ tF(D),
the lower bound for g ≥ 2 is the same as in [10, Theorem 1.4]. Since tF(D) ≤
2�F(D), the upper bound for g ≥ 2must be doubled. �

5. Examples
Below we con�rm Theorem 2.3 and Theorem 4.3 for three virtual links.

Figure 5. The 2×2 square weave on the torus as a virtual link,
its diagram D with �F(D) = 4, and self-dual Tait graphs GA =

GB shown as a ribbon graph.

Example 1. The 4–component virtual link K1 shown in Figure 5 is also dis-
cussed in [4, Example 3.10]. For its 2 × 2 square weave diagram D on the torus,
�F(D) = 4. We have the following data from this diagram: g = 1,

� = 3, � = 0, 
 = 0, �̄ = 3, �̄ = 0, 
̄ = 0, c = 4, w = −4, n = 1, N = 1.

Eqn (8) ∶ �F(D) = � + � + �̄ + �̄ − 2g = 4

Eqn (10) ∶ �VgXn−1 + �Vg−1Xn + �̄UgYN−1 + �̄Ug−1YN = 3V + 3U

PGA(X, Y,U, V) = VX + 6 + UY + 3V + 3U
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Eqn (9) ∶ −�̄(zt−4) + (�̄ − 
̄)t−7∕2 + (� − 
)t−5∕2 − �(zt−2)

= 0 + 3t−7∕2 + 3t−5∕2 + 0

JK(t, z) = −t−9∕2 + 3t−7∕2 + 3t−5∕2 − t−3∕2 +
(
6zt−3

)

These results agree with Theorem 2.3 and Theorem 4.3. Note that � = �̄ = 0,
sowe can compute �F(K1)directly from the sub-extremal coe�cients of JK(t, 0).
As discussed in [7], the hyperbolic volume ofT2×I−K1 is 4voct, which is within
the bounds of Theorem 1.1 for �F(K1) = 4.

Figure 6. First row, left to right: Virtual knot 4.106, its dia-
gramD on the toruswith �F(D) = 3, and its Tait graphsGA (red)
and GB (blue) on the torus. Second row, left to right, shown
as ribbon graphs: Tait graph GB and its reduction G′

B
(blue),

and GA (red) which is already reduced. Note the pair of genus-
generating loops in GA.

Example 2. The virtual knot K2 = 4.106 is shown in Figure 6, with a diagram
D shown on the torus. From the diagram we have: g = 1,
� = 1, � = 2, 
 = 1, �̄ = 1, �̄ = 1, 
̄ = 0, c = 4, w = −2, n = 1, N = 1.

Eqn (8) ∶ �F(D) = � + � + �̄ + �̄ − 2g = 3

Eqn (10) ∶ �VgXn−1 + �Vg−1Xn + �̄UgYN−1 + �̄Ug−1YN

= V + 2X + U + Y

PGA(X, Y,U, V) = UX + UY + VX + V + 2X + U + Y + 2

Eqn (9) ∶ �̄(−zt−5∕2) + (�̄ − 
̄)t−2 + (� − 
)t−1 + �(−zt−1∕2)

= −zt−5∕2 + t−2 + 0 − 2zt−1∕2

JK(t, z) = −t−3 + t−2 − 1 + ( −zt−5∕2 + 2zt−3∕2 −2zt−1∕2 )
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These results agree with Theorem 2.3 and Theorem 4.3. Note that one of
the coe�cients in (9) is zero because � = 
 = 1. In this case, �F(K2) cannot
be computed directly from the coe�cients of JK(t, z). Also, note that if we set
z = −t−1∕2 − t1∕2, then JK(t, z) = 1, so the virtual knot 4.106 has trivial Jones
polynomial.

Figure 7. First row, left to right: Virtual knot 4.105, and its
diagram D on the torus with �F(D) = 2. Second row, left to
right, shown as ribbon graphs: Tait graph GB and its reduction
G′
B
(blue), andGA (red) which is already reduced. Note the pair

of genus-generating loops in G′
B
.

Example 3. The virtual knot K3 = 4.105 is shown in Figure 7, with a diagram
D shown on the torus. From the diagram on the torus, we can see �F(D) = 2,
but it is less apparent from the virtual link diagram which evokes the knot 818.
We have the following data from this diagram: g = 1,

� = 2, � = 0, 
 = 0, �̄ = 0, �̄ = 2, 
̄ = 1, c = 4, w = −4, n = 2, N = 0.

Eqn (8) ∶ �F(D) = � + � + �̄ + �̄ − 2g = 2

Eqn (10) ∶ �VgXn−1 + �Vg−1Xn + �̄UgYN−1 + �̄Ug−1YN = 2VX + 2

PGA(X, Y,U, V) = VX2 +U + V + 2X + 2VX + 2

Eqn (9) ∶ �̄(zt−7∕2) − (�̄ − 
̄)t−3 − (� − 
)t−2 + �(zt−3∕2)

= 2zt−7∕2 + t−3 − 2t−2 + 0

JK(t, z) = t−4 + t−3 − 2t−2 + t−1 + ( 2zt−7∕2 − 2zt−5∕2)

These results agree with Theorem 2.3 and Theorem 4.3. Note that because

̄ = 1, �F(K3) cannot be computed directly from the coe�cients of JK(t, z).
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